• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Numerical investigation of polymer injection effects on geomechanical reservoir properties during enhanced oil recovery

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ramirez_mines_0052N_11417.pdf
    Size:
    2.248Mb
    Format:
    PDF
    Download
    Author
    Ramirez, Alberto
    Advisor
    Zerpa, Luis E.
    Date issued
    2017
    Keywords
    geomechanics
    stress distribution
    polymer injection
    chemical enhanced oil recovery
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172043
    Abstract
    Polymer injection is an enhanced oil recovery method based on the viscosity increase of the injected aqueous phase to control its mobility. The changes in mobility could affect the pore pressure distribution within the reservoir. The objective of this research work is investigating the effects of polymer injection on the geomechanical stress distribution within a reservoir. Specific objectives include sensitivity analysis of the polymer rheology to determine changes in reservoir stress magnitudes. A coupled fluid flow-geomechanics numerical reservoir simulator is used to investigate the effect of polymer rheology on the stress distribution and magnitude within a reservoir. A hypothetical reservoir model is developed considering a heterogeneous rock properties distribution. A combination of water injection and polymer injection treatments is modeled at different injection rates. For the sensitivity analysis, the effective mean stress changes are compared at different times during the process. Maximum and minimum stresses are used to determine the rock failure criteria at different polymer viscosities and injection rates. We determine the rock failure criteria using the Mohr-Coulomb failure envelope. Water injection efficiency, in terms of oil recovery, increased after the first polymer injection treatment. During polymer injection, effective mean stress increased with time. Compared to the effective mean stress during water injection, polymer injection mean effective stress showed higher values in most cases. At depths where there was high water saturation, the pore pressure was higher causing the decrease of effective mean stress at that time. At a higher polymer injection rate, on average, the effective means stress increases fifty percent at the less water saturated zones. At the high pore pressure zone, the increase in effective mean stress was not as high with the second polymer injection compared with the first one. The maximum stress values decreased with time. Stress magnitudes were affected by both water injection and polymer injection. Their behavior has similar tendencies when compared to reservoir depths. Changes in the stress magnitudes will cause rock failure at different viscosities. Results from this study provide insight on the changes of stress magnitudes of the rock expected during polymer injection. The results and observations presented in this work could lead to feasibility assessment, development and design of monitoring technologies for estimation of polymer slug location, and provide means for estimating of the EOR treatments efficiency.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.