• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Deterministic model for outcrop to subsurface wireline log correlation, Eocene Green River Formation, eastern Uinta Basin, Colorado and Utah, A

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Peacock_mines_0052N_11410.pdf
    Size:
    27.58Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    supplemental.zip
    Size:
    70.15Kb
    Format:
    Unknown
    Download
    Author
    Peacock, Julia
    Advisor
    Sarg, J. F. (J. Frederick)
    Date issued
    2017
    Keywords
    geology
    petrophysics
    stratigraphy
    Green River
    deterministic model
    sedimentology
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172037
    Abstract
    The Eocene Green River Formation of the Uinta basin is a fluvial-lacustrine system comprised of carbonates, siliciclastics, and oil shale. Log evaluation is difficult, due to complex mineralogy and the thin interbedded nature of diverse rock types. Historically, log correlations have used a zoned model, which excludes detail and suggests continuity that is misleading on a bed-by-bed basis. A deterministic model is applied here which utilizes gamma ray, bulk density, neutron porosity, and photoelectric effect logs. A four-mineral solution gives volume percent of quartz, calcite, dolomite, and mixed clay. To obtain these volume percentages, log-based calculations yield an apparent matrix density (RHOmaa) and an apparent photoelectric cross section (Umaa). To calibrate these results, outcrop work was completed to determine mineralogy, and expected facies changes from littoral to profundal environments. The development of this RHOmaa-Umaa methodology has enabled the building of a stratigraphic framework for the eastern Uinta basin that can be extended from outcrop and core into the basin. Through the integration of outcrop mineralogy work with subsurface calculated mineralogy, this research includes an interpretation of basinward stratigraphic and lithology changes. This understanding allows for the prediction of mineralogy and facies changes using commonly available well data. Resulting correlations successfully identify and correlate rich and lean oil shale zones and sequence boundaries showing stratigraphic thickening into the basin center. The clay volume calculations demonstrate that the Douglas Creek member has a lower volume of diagenetically altered minerals than the Parachute Creek member. Organic rich zones have higher volumes of dolomite, suggesting a link between organic matter productivity and the degree of dolomitization. Rich zones also have lower bulk densities and higher neutron porosity values due to high organic matter volumes. Total carbonate volumes increase higher in the stratigraphic section, driven by an increase in dolomite volumes. This petrophysical method is not without limitations. Borehole conditions must be considered. The system can only identify three constituents at a time as data points will drift on the cross-plot due to diverse mineralogy. Diagenetic minerals, including analcime and sodium-rich feldspars, also cause data point drift that must be corrected for.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.