• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Pore-scale assessment of Middle Bakken reservoir using centrifuge, mercury injection, nitrogen adsorption, NMR, and resistivity instruments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Karimi_mines_0052E_11408.pdf
    Size:
    4.711Mb
    Format:
    PDF
    Download
    Author
    Karimi, Somayeh
    Advisor
    Kazemi, Hossein
    Date issued
    2017
    Keywords
    centrifuge
    Middle Bakken
    tortuosity
    low-permeability rocks
    capillary pressure
    nuclear magnetic resonance
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172035
    Abstract
    To understand and decipher the pore-scale flow and transport mechanisms in the Bakken, and in similar low-permeability reservoirs, reliable data measured on cores is of great help. Thus, in this research a series of diverse experiments, which addressed specific issues, were conducted. The experiments included centrifuge, mercury intrusion capillary pressure (MICP), nitrogen adsorption, resistivity, and nuclear magnetic resonance (NMR) experiments on twelve Middle Bakken core plugs. The reason for such variety of experiments was the need to characterize the pores flow characteristics in addition to the rock-fluid interaction behavior of the pore space. As a result, capillary pressure characteristics of the drainage and imbibition cycles, residual saturations, mobile fluid saturation range, pore-size distribution, tortuosity, and fluid distribution within the pores were measured. From the core experiments, we were also able to determine how ultra-tight pore characteristics affect oil recovery. The cores used in the study were in three conditions: clean, preserved, and uncleaned exposed cores. Bakken oil, decane, formation brine, and several synthetic brines (with different salinities) were used in saturating and de-saturating the cores in an ultra-high-speed centrifuge. After saturating the cores with brine or oil, a set of drainage and imbibition experiments was performed. NMR measurement was conducted before and after each saturation/de-saturation step. Resistivity measurements on five of the brine-saturated cores were conducted to determine tortuosity. Centrifuge experiments yielded large water-oil capillary pressures (hundreds of psi) in the Bakken cores. The mobile fluid saturation range for water displacing oil was 8 to 12 percent. The saturation range for water displacing oil was much smaller than for gas displacing liquid. NMR evaluations indicated that, after every saturation/de-saturation step, brine resided in smaller pores while oil resided in larger pores. Resistivity measurements yielded large tortuosities. These large tortuosities indicate that fluids have great difficulty moving from one point in the reservoir to another. Tortuosity information is critical in assessing molecular mass transport by diffusion in reservoir pores. Because displacements involving liquid injection have difficulty with entering the pores in unconventional shale, gas diffusion could alleviate such problems as an alternative. In summary, drainage and imbibition experiments, followed by NMR measurements, provided a great amount of useful information for assessing EOR potential in Bakken and other low-permeability shale reservoirs.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.