• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Evolution of hydrothermal fluids from the deep porphyry environment to the shallow epithermal environment, The

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Tsuruoka_mines_0052E_11407.pdf
    Size:
    11.11Mb
    Format:
    PDF
    Download
    Author
    Tsuruoka, Subaru
    Advisor
    Monecke, Thomas
    Date issued
    2017
    Keywords
    hydrothermal fluid
    Refugio
    Summitville
    porphyry-epithermal
    critical fluid
    Santa Rita
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172034
    Abstract
    The current understanding of magmatic-hydrothermal processes resulting in the formation of porphyry and epithermal deposits is based on case studies that focused on deposits such as Santa Rita porphyry copper deposit in New Mexico, the Refugio porphyry gold deposit in Chile, and the Summitville high-sulfidation epithermal deposit in Colorado. The present study re-examines these classical study sites to constrain the physical nature of the mineralizing hydrothermal fluids and to test recent models suggesting that metal transport can occur in the vapor phase. Careful petrographic investigations involving a combination of microanalytical techniques were performed to unravel paragenetic relationships in the three deposits. Based on fluid inclusion research on quartz closely associated with mineralization, it is shown that ore formation at Santa Rita occurred from a near-critical single-phase hydrothermal fluid under hydrostatic conditions. Observed fluid inclusion assemblages have salinities of ~11 wt% NaCl equiv. and homogenize at ~350–450°C. At Refugio, gold mineralization postdated the formation of banded quartz veins and appears to also have formed from a near-critical single-phase fluid at hydrostatic load. Microthermometric data on a small number of petrographically well-defined fluid inclusion assemblages yielded salinities of ~13 wt% NaCl equiv. and homogenization temperatures of <440°C. At Summitville, enargite precipitated from a hydrothermal liquid. Primary fluid inclusion assemblages have a salinity of ~7.5 wt% NaCl equiv. and homogenize at ~270°C. The paragenetically late gold mineralization formed from a hydrothermal liquid undergoing additional cooling and dilution with ambient water. The research provides new constraints on the formation of porphyry and epithermal deposits, highlighting the importance of near-critical hydrothermal fluids. It is shown that mineralization in porphyry deposits takes place late in the paragenesis and is caused by near-critical single-phase hydrothermal fluids derived from an actively degassing magma chamber. Vein formation occurs at the ductile-brittle boundary, which coincides with the transition from lithostatic to hydrostatic conditions. Epithermal mineralization is caused by hydrothermal liquids that originated from the near-critical single-phase hydrothermal fluids through isochemical contraction. The mineralizing hydrothermal liquids undergo cooling and dilution with ambient waters in the shallow subsurface.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.