• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Full waveform inversion with reflected waves for acoustic 2D VTI media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Pattnaik_mines_0052N_11293.pdf
    Size:
    2.044Mb
    Format:
    PDF
    Download
    Author
    Pattnaik, Sonali
    Advisor
    TSvankin, I. D.
    Date issued
    2017
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/171144
    Abstract
    With the recent advances in seismic data acquisition, such as wide-azimuth, long-offset surveys and low-frequency sources, full-waveform inversion (FWI) has become an efficient tool in building high-resolution subsurface models. Conventional FWI relies mainly on diving waves to update the low-wavenumber components of the background model. However, such FWI algorithms may fail to provide a satisfactory model update for regions probed primarily by reflected waves. This typically occurs for deep target zones where the conventional FWI updates mostly the high-wavenumber model components due to the absence of diving waves. Reflection waveform inversion (RWI) has been developed to retrieve the intermediate-to-long wavelength model components in those deeper regions from reflection energy. In this thesis, I highlight the limitations of conventional waveform inversion when applied to reflections-dominated seismic data and propose a new implementation of RWI for acoustic VTI (transversely isotropic with a vertical symmetry axis) media. I extend the idea of scale separation between the background and perturbation models to VTI media and use an optimized parameterization to mitigate parameter trade-offs in RWI. The proposed workflow repeatedly alternates between updating the long-wavelength model components by fixing the perturbation model and the shorter-wavelength, migration-based reflectivity update. I develop an hierarchical two-stage approach that operates with the P-wave zero-dip normal-moveout velocity $V_{\rm nmo}$ and anisotropy coefficients $\delta$ and $\eta$. At the first stage, $V_{\rm nmo}$ is estimated by applying the Born approximation to a perturbation model in $\delta$ to compute the corresponding reflection data. Although the algorithm does not invert for $\delta$, this parameter helps improve the amplitude fit for the employed acoustic model that ignores the elastic nature of the subsurface. At the second stage, the parameter $\eta$, which can be constrained by far-offset data, is estimated from the obtained perturbation model in $V_{\rm nmo}$. The proposed 2D algorithm is tested on a horizontally layered VTI medium and the VTI Marmousi model. Application of a temporal correlation-based objective function significantly improves recovery of the long-wavelength $\eta$-component, as demonstrated on the Marmousi model.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.