• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Development of a safeguards process simulation for open and closed nuclear fuel cycles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shugart_mines_0052E_11252.pdf
    Size:
    2.196Mb
    Format:
    PDF
    Download
    Author
    Shugart, Nicolas
    Advisor
    King, Jeffrey C.
    Date issued
    2017
    Keywords
    nuclear
    simulation
    safeguards
    modeling
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/170997
    Abstract
    SafeGuards Analysis (SGA) is a computational toolbox able to simulate different safeguards scenarios across a number of different fuel cycles and at many different scales within a Matlab Simulink framework. SGA functions by simulating Material Balance Areas (MBAs) under safeguards materials control and accountability and allows the user to define the uncertainty parameters of the associated flow and inventory measurements. The simulated safeguard system uses the uncertain measurement estimates to calculate mass-balance across the MBA. This mass balance is then evaluated by one or more of a number of different statistical tests to determine if a significant amount of material has been removed from the MBA. This thesis describes the development of SGA, and presents a number of example scenarios consisting of one or more MBAs. The goal of each of these scenarios is to determine the ability of SGA to calculate the Type I (false detect) or Type II (missed detection) error probability of the scenario. In each of these example scenarios, SGA generated reasonable results. To fully demonstrate SGA’s capabilities, the thesis also examines a more complicated scenario representative of a closed fuel cycle. This examination is paired with the operations research NUclear Measurement System Optimization (NUMSO) toolbox which calculates the best configuration of measurements based on a user-defined set of objectives. The two toolboxes allow a user to develop quickly develop a potentially optimal safeguards system with NUMSO, and then use SGA to examine the detailed behavior of that system. In every example considered in the thesis, SGA performs as designed.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.