• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2017 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Non-stoichiometric magnesium aluminate spinel: microstructure evolution and its effect on properties

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Miller_mines_0052E_11226.pdf
    Size:
    3.387Mb
    Format:
    PDF
    Download
    Author
    Miller, J. Aaron
    Advisor
    Reimanis, Ivar E. (Ivar Edmund)
    Date issued
    2017
    Keywords
    armor
    spinel
    transparent
    hardness
    alumina
    toughness
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/170972
    Abstract
    Magnesium aluminate spinel is a material of interest for transparent armor applications. Owing to its unique combination of transparency to large portions of the electromagnetic spectrum and mechanical robustness, spinel is among the front runners for applications including transparent armor windows for military vehicles and space craft windows, missile radomes, and infrared windows. However, failure in such applications may lead to severe outcomes, creating motivation to further improve the mechanical reliability of the materials used. In this thesis, potential toughening mechanisms that utilize unique control over the evolution of second phase particles are explored. Al-rich spinel (MgO•nAl2O3) with a composition of n = 2 is investigated. First, it is demonstrated that precipitation of second phase Al2O3 from single phase spinel can be achieved by modifying the densification routines typically used to produce transparent spinel. Subsequent heat treatments in air and in vacuum result in varying amounts of precipitation, demonstrating that the single phase is stabilized by the creation of oxygen vacancies during densification, and a modified defect reaction for precipitation is proposed. The location of precipitation can be varied by controlling the reintroduction of oxygen, which is beneficial for toughening specific locations of material with complex shapes, such as toughening the surface of a curved missile radome. The fracture toughness ranges from 0.88 – 2.47 MPa√m depending on the local microstructure. Improved toughness within precipitated regions is due to increased crack tortuosity at phase boundaries. However, precipitation from the spinel matrix causes local volume contraction, creating porosity and residual tensile stresses in regions immediately adjacent to precipitated regions. The light scatter caused by porosity is detrimental to the transmission properties of the material, especially for precipitation layers greater than 60 m. The dissolution of second phase Al2O3 particles into a stoichiometric spinel matrix is also investigated. Complete dissolution of all Al2O3 demonstrates the capability to control the size of the second phase particles, limiting light scatter at phase boundaries. Furthermore, dissolution results in compressive, rather than tensile, stresses within the composite material. A maximum toughness of 4.34 MPa√m was measured in the two-phase composite compared to 2.26 MPa√m once complete dissolution had occurred. However, the toughness of the dissolved specimen is still an improvement from 1.72 MPa√m measured for single-phase, Al-rich spinel of the same overall composition as densified by traditional methods. The observed enhancement in toughness is attributed to a combination of residual stresses that arise from the coefficient of thermal expansion mismatch between particle and matrix, crack deflection caused by second phase particles, and the volume expansion as Al2O3 dissolves into the spinel matrix.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2017 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.