• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2016 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2016 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Experimental study of true triaxial stress-induced deformation and permeability anisotropy in sandstones, An

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Baizhanov_mines_0052N_11176.pdf
    Size:
    4.706Mb
    Format:
    PDF
    Download
    Author
    Baizhanov, Bekdar
    Advisor
    Tutuncu, Azra
    Date issued
    2016
    Keywords
    sandstone deformation
    stress anisotropy
    true triaxial
    sandstone permeability
    Buff Berea
    stress-induced anisotropy
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/170647
    Abstract
    Determination of stress-induced anisotropy of reservoir mechanical properties is essential for a number of areas that can be collectively termed as drilling risk reduction and optimization of well and reservoir productivity. Borehole stability, well completions, hydraulic fracturing, and production operations require correct analysis of deformational behavior under a general stress state (σ_1≥σ_2≥σ_3). Current attempts to capture the effect of stress state on rock deformational characteristics typically consist of conventional triaxial testing of core samples. However, there still remains an absence of experimental results on stress-induced anisotropy of deformational properties performed under true triaxial stress state. Such stress conditions allow for independent manipulation of three principal stresses and consequently, studying of the stress-induced anisotropy of static deformation, acoustic wave velocities, permeability, resistivity, and other anisotropic properties under a variety of stress states and magnitudes. A novel true triaxial testing apparatus was designed and built by Dr. Ali I Mese of Geomechanics Engineering and Research, PLLC, and has been loaned to UNGI to conduct measurements under realistic in-situ reservoir conditions using cylindrical cores samples. This study was performed to capture the true triaxial stress effects on the deformational and flow behavior of reservoir rocks. The apparatus has been calibrated and used to study the influence of realistic stress anisotropy on static deformation, acoustic wave velocity, and permeability in sandstone core samples. Through shear stress cycling at various b parameter values and octahedral normal stresses, it was determined that stress-induced anisotropy is a function of closing and opening of microfractures oriented normally to increasing stresses. Changes in the nondimensional stress parameter b, signifying the relative magnitude of intermediate principal stress to maximum and minimum stresses, influence the mechanical behavior of rock in both dry and water-saturated conditions. Permeability measurements in the axial direction also display a dependence on magnitude and state of stress.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2016 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.