• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2016 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2016 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Analyzing the potential for unstable mine failures with the calculation of released energy in numerical models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Poeck_mines_0052E_11143.pdf
    Size:
    3.054Mb
    Format:
    PDF
    Download
    Author
    Poeck, Eric C.
    Advisor
    Ozbay, M. Ugur
    Date issued
    2016
    Keywords
    failure
    rockburst
    unstable
    modeling
    energy
    UDEC
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/170605
    Abstract
    Unstable failure in underground mining occurs when a volume of material is loaded beyond its strength and displaces suddenly. It is recognized on various scales, from small rock bursts to the collapse of pillars or entire sections of a mine. The energy that is released during smaller scale events is manifested through the ejection of material, which can pose a hazard to the safety of miners. Larger scale events generate seismic waves as mine workings are damaged and may entrap miners or terminate production. This dissertation focuses on the analysis of unstable failure in an underground room and pillar mining environment. The potential for violent pillar failure is assessed using numerical modeling techniques and a parametric approach to loading conditions and material strength properties. The magnitude of instability is quantified by calculating the release of kinetic energy that occurs as failure progresses in each simulation. Fundamental mechanisms associated with the release of kinetic energy are analyzed in a series of finite difference models, and the results are compared with analytical solutions to illustrate the applicability of the energy calculations to increasingly complex modes of failure. Back analyses are performed on two room and pillar mine collapse events from the western United States by constructing large-scale models and reproducing widespread failure. The values of energy released in two-dimensional models are extrapolated by assuming a depth of failure in the third direction, and the total energy values are compared to the documented seismic magnitudes from each collapse through empirical equations. With further development of this numerical modeling approach, energy consideration may be used to study the potential for instability in a wide variety of mining excavations and identify the associated range of hazards.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2016 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.