• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2016 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2016 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Introducing nanovalve technique for natural gas storage

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Tate_mines_0052N_11120.pdf
    Size:
    1.276Mb
    Format:
    PDF
    Download
    Author
    Tate, Kirby L.
    Advisor
    Carreon, Moises A.
    Date issued
    2016
    Keywords
    methane
    natural gas
    adsorption
    storage
    nanovalve
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/170440
    Abstract
    In order for natural gas vehicles to be economically feasible in residential consumer sector, the limitations of the current natural storage approaches (Compressed Natural Gas and Liquefied Natural Gas) must be overcome. Advances in the Adsorbed Natural Gas storage approach have been made, however, these advances do not fit within the parameters (storage pressure of 35 bar) set by Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy (DOE). The research presented here establishes a novel technique to effectively store methane. This nanovalved technique involves loading a pelleted adsorbent at high pressure, sealing a layer coated on the adsorbent pellet, and reducing the storage vessel to a low pressure. Using zeolite 5A beads as a model adsorbent and MCM-48 as a nanovalving layer, >50% of the maximum methane capacity of zeolite 5A (73 V/V) was able to be maintained after being reduced to a pressure of 1 bar. After establishing the feasibility of the nanovalving technique with MCM-48, again using zeolite 5A beads a model adsorbent, the impact of coordinating metal of MOF nanovalve layers was assessed. This study was to aid in designating material properties of the nanovalving layer that allow for better sealing and better performance. Aluminum was established as a desirable component in the nanovalving layer (two layers of Al-MOF on zeolite 5A beads was able to maintain 46% of the maximum methane capacity). The work herein illustrates the nanovalving technique can store a high percentage of loaded methane at low pressure. With a high methane capacity adsorbent and an optimized nanovalving layer, the possibility of achieving the storage targets set by ARPA-E is promising.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2016 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.