• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system, The

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Wilson_mines_0052N_10905.pdf
    Size:
    7.399Mb
    Format:
    PDF
    Download
    Author
    Wilson, Paul Nathaniel
    Advisor
    Kaufman, Michael J.
    Date issued
    2015
    Keywords
    combinatorial material science
    concentrated complex alloys
    diffusion multiples
    high entropy alloys
    multi-component alloys
    rapid alloy development
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/170003
    Abstract
    High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. The system chosen for this experiment is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were created by this method. An auxiliary method named differential melting liquid impingement (DMLI) was developed that created diffusion multiples using liquid processing methods that will be described. After creation of these multiples, the ternary and quinary interface regions were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent to the interface decomposed into BCC + σ. In contrast, the Cr/FeMn interface region developed a layered structure of FCC/σ/BCC suggesting that σ is stable at 1200 °C in contradiction to the published 1200 °C ternary phase diagram. Upon cooling, the σ present at 1200 °C decomposed into FCC + σ, except in samples that were contaminated with C; in those cases, FCC + M23C6 was observed as the decomposition product. The quinary regions were evaluated using the various HEA parameters, namely, ΔSmix, ΔHmix, Ω, Δχ, and δ. No strong correlations with phase stability were found using these parameters in contrast to expectations based on the literature. It was found that Cr solubility in the quinary disordered FCC varied linearly between the two ternary system endpoints (Co-Cr-Ni and Cr-Fe-Mn) Additionally, while nano-hardness maps did not support the severe lattice distortion hypothesis proposed for HEAs, a comparison of different solid solution strengthening mechanisms suggests that elastic modulus mismatch and a change in the lattice friction stress were the most likely contributors to strengthening.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2015 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.