• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Effect of heating rate on intercritical annealing of low-carbon coldrolled steel

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thomas_mines_0052E_10877.pdf
    Size:
    26.04Mb
    Format:
    PDF
    Download
    Author
    Thomas, Larrin S.
    Advisor
    Matlock, David K.
    Date issued
    2015
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/166671
    Abstract
    A study was performed on the effect of heating rate on transformations during intercritical annealing of cold-rolled low-carbon sheet steels. Two sets of experiments were developed: 1) a series of alloys (1020, 1019M, 15B25) with two different cold reductions (nominally 40 and 60 pct) were heated at different rates and transformation temperatures were determined using analysis of dilatometry and metallography of intercritically annealed samples, allowing the study of the impact of composition and cold work on transformation behavior with different heating rates. 2) A cold-rolled C-Mn-Nb steel was tested with different heating rates selected for different degrees of recrystallization during austenite formation to test the impact of ferrite recrystallization on austenite formation. Heat treated samples were analyzed with SEM, EBSD, dilatometry, and microhardness to study the changes in transformation behavior. The results of this study were extended by adding step heating tests, heat treatments with an intercritical hold, and secondary ion mass spectrometry (SIMS) measurements of Mn distribution. Austenite transformation temperatures increased logarithmically with heating rate. Greater degrees of cold work led to reduced transformation temperatures across all heating rates because the energy of cold work increased the driving force for austenite formation. The relative effects of alloying additions on transformation temperatures remained with increasing heating rate. Rapid heating minimized ferrite recrystallization and pearlite spheroidization. Austenite formation occurred preferentially in recovered ferrite regions as opposed to recrystallized ferrite boundaries. Martensite was evenly distributed in slowly heated steels because austenite formed on recrystallized, equiaxed, ferrite boundaries. With rapid heating, austenite formed in directionally-oriented recovered ferrite which increased the degree of banding. The greatest degree of banding was found with intermediate heating rates leading to partial recrystallization, because austenite formed preferentially in the remaining recovered ferrite which was located in bands along the rolling direction. Holding at the intercritical annealing temperature led to somewhat reduced martensite banding vs directly quenched specimens due to austenite growth along recrystallized ferrite boundaries. Ferrite-spheroidized carbide microstructures had somewhat reduced martensite banding when compared with ferrite-pearlite steel because austenite nucleation was not restricted to former pearlite colonies elongated in the rolling direction.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2015 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.