• Login
    View Item 
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2022 Fall Undergraduate Research Symposium
    • View Item
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2022 Fall Undergraduate Research Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Nanoscale rock-salt structured high-entropy metal oxides for catalysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kelly_Zek_UGRS2022.pdf
    Size:
    610.9Kb
    Format:
    PDF
    Download
    Author
    Kelly, Zek E.
    Advisor
    Richards, Ryan
    Brim, Elliot
    Date
    2022-10
    Keywords
    metal oxides
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/15850; https://doi.org/10.25676/11124/15850
    Abstract
    High-entropy materials are a new class of solids that are rapidly growing in scientific interest differ because they are formed and stabilized by the large configurational entropy generated by their multi-elemental composition. Due to the large range of possible multi-elemental configurations, it is possible to tune the chemical and physical properties for specific electronic and catalytic purposes. The focus of this research is the wet chemical synthesis and characterization of nanoscale high-entropy metal oxides with a rock-salt structure. Specifically, this research focuses on high-entropy oxide nanomaterial catalysts that are made from earth-abundant and inexpensive precursor metals. Although there have been recent reports regarding very interesting catalytic properties, the ability to control the structure of this class of materials on the nanoscale remains a challenge. If this class of materials can be tailored in terms of both composition and nanoscale morphology, they offer a path using earth abundant systems to replace current catalytic materials which are generally rare and expensive metals such as platinum, iridium, and rhodium.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2022 Fall Undergraduate Research Symposium

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.