• Login
    View Item 
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2022 Fall Undergraduate Research Symposium
    • View Item
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2022 Fall Undergraduate Research Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Nanostructured titanium for medical devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ferro_Kelsey_UGRS2022.pdf
    Size:
    1.038Mb
    Format:
    PDF
    Download
    Author
    Ferro, Kelsey R.
    Advisor
    Campbell, Connor
    Lowe, Terry C.
    Date
    2022-10
    Keywords
    nanostructures
    titanium
    medicine
    annealing
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/15848; https://doi.org/10.25676/11124/15848
    Abstract
    The bulk and surface properties of pure titanium can be enhanced by nanostructuring to create a new generation of metals for medical implants. The healing response of bone to nanostructured titanium implants can be accelerated 20-fold by altering the metal's crystal size and grain boundary density. In addition, the strength of nanostructured titanium compared to conventional titanium can be increased between 30% to 100%. To incorporate these benefits into medical implants such as spinal rod or dental implants, nanostructuring must be applied to long rods or bars of titanium. One method of nanostructuring titanium is to subject long rods to high shear deformation. However, while this deformation creates nanoscale grains, it also imparts some residual stresses, which must be removed by annealing. In my research, we evaluated the annealing response of nanostructured titanium. Bars of pure titanium nanostructured by High Shear Deformation (HSD) were subjected to 1 hour annealing treatments between 200°C and 375°C. We evaluated the annealing response by measuring the microhardness. We confirmed the unusual phenomenon of "annealing hardening" that is unique to nanostructured metals. Generally, annealing reduces the hardness and strength of pure metals. But in the case of nanostructured titanium annealing can increase the strength. We were able to determine an optimum annealing temperature of 275°C.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2022 Fall Undergraduate Research Symposium

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.