• Login
    View Item 
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2022 Fall Undergraduate Research Symposium
    • View Item
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2022 Fall Undergraduate Research Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Pairwise entanglement networks as a probe into non-equilibirum quantum dynamics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Barton_Brandon_UGRS2022.pdf
    Size:
    2.119Mb
    Format:
    PDF
    Download
    Author
    Barton, Brandon A.
    Advisor
    Gong, Zhexuan
    Diniz Behn, Cecilia
    Carr, Lincoln D.
    Date
    2022-10
    Keywords
    quantum physics
    pairwise entanglement
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/15842; https://doi.org/10.25676/11124/15842
    Abstract
    Following a sudden change of system parameters known as a quantum quench, the state of a quantum system can exhibit out-of-equilibrium dynamics. When the quench is across a critical point, a dynamical phase transition can occur, indicated by non-analytic behavior in a quantity known as Loschmidt echo. However, measuring the Loschmidt echo requires measurement of the entire quantum state, which is experimentally challenging, even for a moderate system size of a few tens of quantum particles. To address the challenge of detecting dynamical phase transitions, we investigate the possibility of using only information from two-body reduced states of a quantum many-body system for identifying dynamical phase transitions. These two-body reduced states allow us to calculate a network of different pairwise entanglement measures, including connected correlations, concurrence, and mutual information. As the measurement of all two-body reduced states only requires resources quadratic in system size, obtaining pairwise networks of these entanglement measures is experimentally practical. Upon attaining the pairwise networks, we directly examine the weighted adjacency matrices using network science and spectral graph analysis. Our results show that concurrence, an entanglement monotone, oscillates in phase with the rate function. As an example of our procedure, we consider a long-range transverse field Ising model with power-law interactions in the coupling strength. We further show that our methods may provide a considerably more efficient method for probing dynamical phase transitions in a large quantum many-body system. This work also paves the way for characterizing the role of pairwise entanglement in identifying critical phenomena.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2022 Fall Undergraduate Research Symposium

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.