• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2022 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2022 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Elastic time-reverse imaging and transmission tomography for microseismic and DAS VSP data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Oren_mines_0052E_12345.pdf
    Size:
    10.47Mb
    Format:
    PDF
    Download
    Author
    Oren, Can
    Advisor
    Shragge, Jeffrey
    Date issued
    2022
    Keywords
    computational seismology
    distributed acoustic sensing
    elastic wave propagation
    microseismic
    seismic imaging
    seismic tomography
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/15380
    Abstract
    Wavefield migration and tomography are considered to be state-of-the-art methodologies used for subsurface geological characterization. Seismic tomography produces accurate velocity models that commonly serve as input into seismic migration algorithms that produce high-quality passive-source (e.g., microseismic) images or structural images of geological interfaces constructed using controlled-source energy (e.g., vibroseis truck or dynamite). Most existing wavefield migration and tomography techniques employed in the oil and gas industry are well-developed under the acoustic assumption. One of the main shortcomings of this assumption is that conventional acoustic imaging algorithms generally use single-component P-wave data and thus do not account for multicomponent elastic (P- and S-mode) data that can provide additional subsurface information such as fracture distributions and elastic properties. To account for more accurate wave physics in passive and active seismic scenarios, I propose a suite of novel full-wavefield methods for imaging and multiparameter (i.e., P- and S-wave) model estimation in elastic media. Passive-style image-domain elastic tomography operates with multicomponent P- and S-wave first-arrival waveforms of a microseismic event and optimizes the background velocity model by improving the quality of source images constructed by a procedure called time-reverse imaging (TRI). To formulate a robust image-domain inversion framework, I develop a 3D extended imaging condition for surface-recorded microseismic data based on the correlation of individual P- and S-wavefield energy as well as the energy norm. The proposed PS energy imaging condition not only effectively locates microseismic events for complex isotropic/anisotropic models but also provides useful information about P- and S-wave velocity model as well as anisotropy parameter $[\epsilon,\delta,\gamma]$ accuracy. Based on the kinetic energy term of the PS energy imaging condition, I propose an image-domain elastic wavefield tomography framework to build plausible P- and S-wave velocity models that improve the quality of microseismic event images. I present synthetic numerical experiments to demonstrate that the estimated model parameters result in enhanced source images, which greatly reduce event mispositioning errors. Finally, I apply the developed image-domain elastic inversion method on an active-source distributed acoustic sensing 3D vertical seismic profiling data set acquired in the North Slope of Alaska to investigate potential methane gas hydrate reservoirs. I exploit source-receiver reciprocity to create an acquisition configuration that resembles passive-seismic surface monitoring scenarios. I first validate the accuracy of the inverted elastic velocity models using a TRI-based source location analysis. Next, I construct numerous 3D structural images of the area of interest through elastic reverse time migration (RTM). The elastic RTM results exhibit coherent reflectivity associated with a complex near-surface ice-bearing permafrost zone, as well as two gas hydrate reservoirs that satisfactorily match the existing log data in well-ties due to the improved velocity model estimates.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2022 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.