• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2021 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2021 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Thermal and thermal electric measurements in superconductor-ferromagnetic heterostructures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Blagg_mines_0052E_12310.pdf
    Size:
    27.43Mb
    Format:
    PDF
    Download
    Author
    Blagg, Kirsten Elizabeth
    Advisor
    Singh, Meenakshi
    Date issued
    2021
    Keywords
    cryogenic
    ferromagnet
    superconductor
    thermal transport
    thermoelectric
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/14295
    Abstract
    Electrical and spin transport measurements at cryogenic temperatures have powered new arenas of research and applications. However, exploration into thermal effects at cryogenic temperatures has only just begun. Recent thermal transport measurements at low temperatures have led to interesting novel physics in the fields of quantized heat flows, quantum thermodynamics, thermal Josephson effects, quantum heat engines, and thermoelectric materials. In particular, superconductor-ferromagnetic (S-F) systems have recently been proposed as effective thermoelectric devices. While conventional superconductors are known to be poor thermoelectric materials, the combined effects of spin splitting and spin filtering provided by an external magnetic field and magnetic material are predicted to create an asymmetry in the superconducting density of states and generate thermoelectric effects. These S-F systems have been predicted to have a thermoelectric figure of merit (zT) of 1.8, far exceeding any other thermoelectric materials at cryogenic temperatures. If these predictions hold true, S-F thermoelectrics could have applications in nanoscale cooling and as radiation or single photon detectors. In this thesis, we have directly measured the Seebeck voltage in S-F structures down to 8 mK and developed the hardware and techniques necessary to make such a measurement at cryogenic temperatures. First, we review the background and theoretical underpinnings which inform and motivate the study of S-F systems as thermoelectric materials. Second, we report our development of methods for the electrodeposition of superconductor and ferromagnetic nanowires, including the first fabrication of niobium nanowires via electrodeposition. Third, as methods of thermal measurements at cryogenic temperatures are not well established, we have developed an experimental platform for low dimensional temperature measurements. Our experimental advances in this area include the development of an on-chip cryogenic thermometer that is sensitive down to 8 mK and can be placed on the chip with 100s of nm precision in a lithography free process. We also have quantified local, on-chip heating using AC and DC power as a function of distance, power, frequency, and sample configurations. Finally, we directly measure the Seebeck coefficient of Al, Ni, and an Al-Ni junction below 1 K.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2021 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.