• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Physically based dynamic modeling of planar anode-supported SOFC cogeneration systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Albrecht_mines_0052N_10324.pdf
    Size:
    7.367Mb
    Format:
    PDF
    Description:
    Physically based dynamic modeling ...
    Download
    Author
    Albrecht, Kevin J.
    Advisor
    Braun, Robert J.
    Date issued
    2013
    Keywords
    system
    solid oxide fuel cell
    modeling
    dynamic
    Solid oxide fuel cells
    Energy consumption
    Energy conversion
    Electric power production
    Electrochemistry
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/12075
    Abstract
    Solid oxide fuel cells (SOFC) have been a key area of academic research interest over the past decade due to their high electrical efficiency, fuel flexibility, and high quality waste heat. These benefits suggest that SOFCs could play a significant role as a future distributed generation, combined heat and power source if life cycle cost can be reduced or significant incentives such as a carbon tax are implemented. At the current point in SOFC development, degradation effects limit the operational lifetime of SOFCs. Other research efforts have suggested that the dynamic operation of SOFCs could improve the economics in addition to reducing degradation. Thus the development of high fidelity modeling tools for the assessment of dynamic SOFC system operation is important to determine the potential load-following ability of SOFC systems. One of the goals of this research is to identify the required level of fidelity necessary for a dynamic SOFC system-level simulation tool. The channel-level steady-state simulation and dynamic response to step changes in current density are presented for a one-dimensional and 'quasi' two-dimensional model. The results indicate the predicted temperature gradient is less severe when implementing a higher fidelity 'quasi' two-dimensional model. Additionally, the modeling and sizing of the balance of plant components to simulate off-design and system dynamics are presented. The effects of dynamic balance of plant components are compared to the typically accepted steady-state models. The incorporation of the dynamic balance of plant components are shown to have a significant effect on the dynamics of the waste heat recovery, where the power dynamics are only minimally affected. Finally, the steady-state performance at off-design conditions and dynamic response to step changes in the net system power are presented to assess the potential load-following ability of a combined heat and power SOFC system.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.