• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Lumley_mines_0052N_10344.pdf
    Size:
    1.081Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Thumbnail
    Name:
    Lumley_mines_0052N_316.zip
    Size:
    450.0Kb
    Format:
    Unknown
    Description:
    Data
    Download
    Author
    Lumley, Nicholas P. G.
    Advisor
    Porter, Jason M.
    Date issued
    2013
    Keywords
    techno-economic analysis
    sewage sludge
    ASPEN Plus
    thermochemical conversion
    gasification
    Sewage sludge
    Sewage disposal plants -- Economic aspects
    Sewage disposal plants -- Environmental aspects
    Thermochemistry
    Biomass gasification
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/12062
    Abstract
    Wastewater sludge management is a significant challenge for small-scale, urban wastewater treatment plants (WWTPs). Common management strategies stabilize sludge for land disposal by microbial action or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers sludge to be a fuel which can be used on-site to produce electricity. Electrical power generation fueled by sludge may serve to reduce the volume of hazardous waste requiring land disposal and create economic value for WWTP operators. To date, no detailed system designs or techno-economic analyses have been found for small scale sludge fueled power plants. Fortunately, a literature base exists describing the fundamentals of applying thermochemical conversion (TCC) technologies to sewage sludge. Thermochemical conversion of sludge is established for large WWTPs, however large system design techniques may not be applicable to small systems. To determine the feasibility of small scale power generation fueled by sludge, this work evaluates several thermochemical conversion technologies from the perspective of small urban WWTPs. Literature review suggests wet oxidation, direct combustion, pyrolysis, and gasification as candidate front-end TCC technologies for on-site generation. Air and steam blown gasification are found to be the only TCC technologies appropriate for sludge. Electrical power generation processes based on both air and steam blown gasification are designed around effective waste heat recovery for sludge drying. The systems are optimized and simulated for net electrical output in ASPEN Plus[Registered Trademark]. Air blown gasification is found to be superior. Sensitivity analyses are conducted to determine the effect of fuel chemical composition on net electrical output. A technical analysis follows which determines that such a system can be built using currently available technologies. Finally, an economic analysis concludes that a gasification based power system can be economically viable for WWTPs with raw sewage flows of 0.115 m[superscript 3]/s, or about 2.2 million gallons per day.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.