• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Creation of "bonding structures" on nanoparticles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zheng_mines_0052N_10326.pdf
    Size:
    1.920Mb
    Format:
    PDF
    Description:
    Creation of "bonding structures" ...
    Download
    Author
    Zheng, Wan
    Advisor
    Liang, Hongjun
    Date issued
    2013
    Keywords
    Nanoparticles
    Nanostructures
    Colloids
    Polymerization
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/11974
    Abstract
    Nanoparticles can be used as a new type of fundamental building blocks to construct macroscopic materials, and hierarchically organized nanoparticles often show enhanced properties originated from the collective interactions among these individual nanoscale building blocks. Taking one step further, colloidal molecules with well-defined architectures made by directed assembly of nanoparticles could serve as the basic structural units of more complex functional materials. This is highly desirable but challenging due to the lack of "bonding structures" on nanoparticles. In this thesis, we aim to create "bonding structures" on nanoparticles by modifying them with heterogeneously functionalized polymers bearing "click" moieties. We hypothesize that by controlling the location of "click" recognition pairs on nanoparticles, well-defined polymer linkers, nanoparticle geometry and reaction stoichiometry, the "directionality", "bonding length", and "valency" characteristics of real chemical bonds could be introduced on as-synthesized nanoparticles, which will help organize nanoparticles into colloidal molecules via highly specific and efficient "click" reactions. Using gold nanoparticles as models, we show here that well-defined, heterogeneously functionalized polymer chains bearing "click" recognition pairs can be prepared, and subsequently used to modify gold nanoparticles at controlled locations. Our future work is to study the broad utility of this strategy on creating "bonding structures" on nanoparticles to transform them into "artificial atoms", as well as the system design to assemble these nanoparticles into well-defined colloidal molecules.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.