• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Harvesting bioenergy with rationally designed complex functional materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kuang_mines_0052E_10546.pdf
    Size:
    13.22Mb
    Format:
    PDF
    Description:
    Harvesting bioenergy with ...
    Download
    Author
    Kuang, Liangju
    Advisor
    Liang, Hongjun
    Date issued
    2014
    Date submitted
    2014
    Keywords
    microalgae
    biohybrid photoconversion
    bioenergy
    amphiphilic block copolymer membranes
    polymer brush
    Biomass energy
    Polymerization
    Membranes (Technology)
    Separation (Technology)
    Block copolymers
    Microalgae
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11124/10632
    Abstract
    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the final product, and present a major bottleneck. We propose to solve the microalgae dewatering problem in the context of controlling colloidal stability, where inter-algal potential is tuned via surface engineering of novel coagulation agents. We report here a nanoparticle-pinched polymer brush design that combines two known colloidal destabilization agents (e.g., nanoparticle and polymer) into one system, and allows the use of an external field (e.g., magnetic force) to not only modulate inter-algae pair potentials, but also facilitate retrieval of the coagulation agents to be reused after algal oil extraction. We will discuss our extensive data on the preparation of well-defined nanoparticle-pinched polymer brushes, their structure-dependent coagulation performance on both fresh water and marine microalgae species, and their re-suability for continuous cycles of microalgae farming and harvesting.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2014 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.