• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Efficient and automatic wireless geohazard monitoring

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rubin_mines_0052E_10541.pdf
    Size:
    4.627Mb
    Format:
    PDF
    Description:
    Efficient and automatic wireless ...
    Download
    Author
    Rubin, Marc J.
    Advisor
    Camp, Tracy
    Date issued
    2014
    Date submitted
    2014
    Keywords
    wireless sensor network
    avalanche
    pattern recognition
    lossy compression
    compressive sensing
    seismic
    Avalanches -- Forecasting
    Wireless sensor networks
    Pattern recognition systems
    Machine learning
    Hazard mitigation
    Communication in science
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11124/10629
    Abstract
    In this dissertation, we present our research contributions geared towards creating an automated and efficient wireless sensor network (WSN) for geohazard monitoring. Specifically, this dissertation addresses three overall technical research problems inherent in implementing and deploying such a WSN, i.e., 1) automated event detection from geophysical data, 2) efficient wireless transmission, and 3) low-cost wireless hardware. In addition, after presenting algorithms, experimentation, and results from these three overall problems, we take a step back and discuss how, when, and why such scientific work matters in a geohazardous risk scenario. First, in Chapter 2, we discuss automated geohazard event detection within geophysical data. In particular, we present our pattern recognition workflow that can automatically detect snow avalanche events in seismic (geophone sensor) data. This workflow includes customized signal preprocessing for feature extraction, cluster-based stratified sub-sampling for majority class reduction, and experimentation with 12 different machine learning algorithms; results show that a decision stump classifier achieved 99.8% accuracy, 88.8% recall, and 13.2% precision in detecting avalanches within seismic data collected in the mountains above Davos, Switzerland, an improvement on previous work in the field. To address the second overall research problem (i.e., efficient wireless transmission), we present and evaluate our on-mote compressive sampling algorithm called Randomized Timing Vector (RTV) in Chapter 3 and compare our approach to four other on-mote, lossy compression algorithms in Chapter 4. Results from our work show that our RTV algorithm outperforms current on-mote compressive sampling algorithms and performs comparably to (and in many cases better than) the four state-of-the-art, on-mote lossy compression techniques. The main benefit of RTV is that it can guarantee a desired level of compression performance (and thus, radio usage and power consumption) without subjugating recovered signal quality. Another benefit of RTV is its simplicity and low computational overhead; by sampling directly in compressed form, RTV vastly decreases the amount of memory space and computation time required for on-mote compression. Third, in Chapter 5, we present and evaluate our custom, low-cost, Arduino-based wireless hardware (i.e., GeoMoteShield) developed for wireless seismic data acquisition. In particular, we first provide details regarding the motivation, design, and implementation of our custom GeoMoteShield and then compare our custom hardware against two much more expensive systems, i.e., a traditional wired seismograph and a "from-the-ground-up" wireless mote developed by SmartGeo colleagues. We validate our custom WSN of nine GeoMoteShields using controlled lab tests and then further evaluate the WSN's performance during two seismic field tests, i.e., a "walk-away" test and a seismic refraction survey. Results show that our low-cost, Arduino-based GeoMoteShield performs comparably to a much more expensive wired system and a "from the ground up" wireless mote in terms of signal precision, accuracy, and time synchronization. Finally, in Chapter 6, we provide a broad literature review and discussion of how, when, and why scientific work matters in geohazardous risk scenarios. This work is geared towards scientists conducting research within fields involving geohazard risk assessment and mitigation. In particular, this chapter reviews three topics from Science, Technology, Engineering, and Policy (STEP): 1) risk, scientific uncertainty, and policy, 2) society's perceptions of risk, and 3) the effectiveness of risk communication. Though this chapter is not intended to be a comprehensive STEP literature survey, it addresses many pertinent questions and provides guidance to scientists and engineers operating in such fields. In short, this chapter aims to answer three main questions, i.e., 1) "when does scientific work influence policy decisions?", 2) "how does scientific work impact people's perception of risk?", and 3) "how is technical scientific work communicated to the non-scientific community?".
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2014 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.