Loading...
Preliminary calibration of a numerical runout model for debris flows in southwestern British Columbia
Zubrycky, Sophia ; Mitchell, Andrew ; Aaron, Jordan ; McDougall, Scott
Zubrycky, Sophia
Mitchell, Andrew
Aaron, Jordan
McDougall, Scott
Citations
Altmetric:
Advisor
Editor
Date
Date Issued
2019
Date Submitted
Research Projects
Organizational Units
Journal Issue
Embargo Expires
Abstract
Debris-flow hazard and risk assessments require reliable estimates of inundation area, velocity and flow depth to evaluate spatial impact and impact intensity. Semi-empirical numerical runout models that simulate bulk flow behavior with simple rheological models are useful in forecasting these parameters, however, they require calibration by back-analyzing past events. This paper presents the back-analysis of six debris flows in southwestern British Columbia using a novel automated calibration approach that systematically optimizes the Dan3D runout model to fit field observations. The calibration method yielded good simulations of runout length, but under-predicted flow depths in some cases, and over-predicted velocities in all cases. The best-fit Voellmy rheology parameters for the studied cases ranged from 46 to 531 m/s2 for the turbulence coefficient and 0.08 to 0.18 for the friction coefficient. There is a potential inverse correlation between friction coefficient and event volume. Calibrated parameters were compared to morphometric parameters for the study sites, which may be useful for guiding parameter selection once a larger dataset is calibrated. Ongoing work is focused on refining the calibration technique, including standardization of input parameters more relevant to debris flows. The long-term goal is to apply the technique to a larger dataset of debris-flow cases and provide practitioners with better guidance on the selection of model input parameters for forecasting purposes.
Associated Publications
Rights
Copyright of the original work is retained by the authors.