Loading...
Thumbnail Image
Publication

Effect of low angle boundary misorientation on creep deformation in the superalloy CM 247 LC, The

Kirsch, Mathew S.
Research Projects
Organizational Units
Journal Issue
Embargo Expires
Abstract
The effect of low angle boundary misorientation on the creep properties of superalloy CM 247LC bicrystals has been investigated in the medium temperature - medium stress creep regime. Constant load tensile creep tests were performed on mixed Low Angle Boundary (LAB) samples with misorientations ranging from 3[degrees]-16[degrees]; the LABs where the boundaries were oriented approximately transverse to the tensile axis. Five repeats of each LAB sample were ruptured with an initial stress of 300 MPa and three repeats of each LAB sample were ruptured with an initial stress of 200 MPa, both at 950 [degrees]C. A drastic decrease in creep rupture life and strain to failure was observed in bicrystals with misorientations greater than ~10[degrees]. Fractography of the fracture surfaces indicated that a transition from ductile transgranular fracture to intergranular fracture coincided with the decrease in creep properties. The decrease in strain to failure was correlated to a decrease in the slip compatibility factor m'. Specimens of several misorientations were also interrupted prior to failure at strains of 2%, 5% and 10% and examined by electron microscopy techniques in an effort to better understand the sequences leading to failure. For samples that fractured intergranularly, voids formed adjacent to large MC carbides located at the LABs and propagated along the boundary, ultimately linking to cracks that initiated at the specimen edge. Electron Back Scattered Diffraction (EBSD) scans were performed and Crystal reference Orientation (CO) maps were generated from the partially crept specimens. An increase in misorientation from the crystal reference orientation was observed with increasing LAB misorientation for a given interrupted strain level indicative of the poorer slip compatibility at the higher misorientations Two bicrystals with nearly identical scalar misorientation, both ~10[degrees], exhibited surprisingly different behavior with one failing intergranularly at low strain to failure and the other failing transgranularly at high strain to failure; these differences were related to the different slip compatibilities as determined by an analysis of the nature of their misorientations. In addition, grain boundary migration was prevalent in the samples that fractured transgranularly, but was rarely observed on any specimen that fractured intergranularly. Based on the collective observations, it is concluded that (1) it is necessary to consider more than just the scalar misorientation when considering whether a single crystal containing LABs should be rejected and (2) characterization of the properties of superalloy bicrystals grown using traditional Bridgman methods is difficult due to the complex, non-planar nature of the resulting LABs that is associated with their dendritic growth.
Associated Publications
Rights
Copyright of the original work is retained by the author.
Embedded videos