Loading...
Thumbnail Image
Publication

Characterization and application of simultaneously spatio-temporally focused ultrafast laser pulses

Greco, Michael J.
Research Projects
Organizational Units
Journal Issue
Embargo Expires
Abstract
Chirped pulse amplication of ultrafast laser pulses has become an essential technology in the elds of micromachining, tissue ablation, and microscopy. With specically tailored pulses of light we have been able to begin investigation into lab-on-a-chip technology, which has the potential of revolutionizing the medical industry. Advances in microscopy have allowed sub diraction limited resolution to become a reality as well as lensless imaging of single molecules. An intimate knowledge of ultrafast optical pulses, the ability to manipulate an optical spectrum and generate an optical pulse of a specic temporal shape, allows us to continue pushing these elds forward as well as open new ones. This thesis investigates the spatio-temporal construction of pulses which are simultaneously spatio-temporally focused (SSTF) and about their current and future applications. By laterally chirping a compressed laser pulse we have conned the peak intensity to a shorter distance along the optical axis than can be achieved by conventional methods. This also brings about interesting changes to the structure of the pulse intensity such as pulse front tilt (PFT), an eect where the pulse energy is delayed across the focal spot at the focal plane by longer durations than the pulse itself. Though these pulses have found utility in microscopy and micromachining, in-situ methods for characterizing them spatially and temporally are not yet wide spread. I present here an in-situ characterization technique for both spatial and temporal diagnosis of SSTF pulses. By performing a knife-edge scan and collecting the light in a spectrometer, the relative spectral position as well as beam size can be deduced. Temporal characterization is done by dispersion scan, where a second harmonic crystal through the beam focus. Combining the unknown phase of the pulse with the known phase (a result of angular dispersion) allows the unknown phase to be extracted from the second harmonic spectra.
Associated Publications
Rights
Copyright of the original work is retained by the author.
Embedded videos