Loading...
Thumbnail Image
Publication

Real-time monitoring of debris-flow velocity and mass deformation from field experiments with high sample rate lidar and video

Rengers, Francis K.
Rapstine, Thomas D.
Allstadt, Kate E.
Olsen, Michael
Bunn, Michael
Iverson, Richard M.
Kean, Jason W.
Leshchinsky, Ben
Logan, Matthew
Sharifi-Mood, Mahyar
... show 2 more
Citations
Altmetric:
Advisor
Editor
Date
Date Issued
2019
Date Submitted
Research Projects
Organizational Units
Journal Issue
Embargo Expires
Abstract
Debris flows evolve in both time and space in complex ways, commonly starting as coherent failures but then quickly developing structures such as roll waves and surges. These processes are readily observed, but difficult to study or quantify because of the speed at which they occur. Many methods for studying debris flows consist of point measurements (e.g., of flow height or basal stresses), which are inherently limited in spatial coverage and fail to fully capture the spatiotemporal evolution of a flow. In this study, we use terrestrial lidar to measure debris-flow profiles at high sample rates to examine debris-flow movement with high temporal and spatial precision and accuracy. We acquired measurements during gate-release experiments at the USGS debris-flow flume, a unique experimental facility where debris flows can be simulated at a large scale. In this study, the laser scanner was placed at the bottom of the steep flume and recorded topography of the entire flume bed and debris flow at a rate of 60 Hz along a narrow profile (~1mm in width), providing a detailed, two-dimensional cross-section of the debris flow through time. The high- resolution profiles enabled us to quantify flow front and surge velocities of the debris flow and provide an unprecedented record of the development and evolution of the flow structure over time. The profiles also preserve a record of the highly variable deposition pattern of the debris flow on a downstream fan with a time resolution of hundredths of a second. In addition, video imagery from the experiment was used to track debris-flow movement through time. By acquiring high-resolution topographic data and video imagery during a controlled experiment, we have been able to obtain unusually complete quantitative measurements of debris-flow movement. Such measurements may help constrain future modeling efforts.
Associated Publications
Rights
Copyright of the original work is retained by the authors.
Embedded videos