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ABSTRACT

The Silurian-Devonian Bootstrap limestone unit hosts Carlin-type gold deposits.
Although the structural controls for Carlin-type gold deposits can vary significantly, ore
bodies located in the Bootstrap limestone occur predominately in silicified breccias. The
objectives of this study were to describe in detail the alteration in the Bootstrap
limestone, determine paragenesis of the different alteration events, and identify the
pattern of alteration surrounding Bootstrap-hosted deposits. The objectives were met
through detailed logging of drill-hole cores, as well as standard petrography,
cathodoluminescence microscopy, and stable isotopic analysis.

The study area focuses on the northern Carlin trend, located approximately 27
miles (43 km) northwest of Carlin, NV. This area includes the deposits of Meikle, Ren,
Dee-Rossi (Storm), and South Arturo. The relevant stratigraphy in the area consists of the
massive Bootstrap limestone platform unit and the time-equivalent Roberts Mountains
Formation and slope and basinal facies of the Popovich Formation.

Six major carbonate components of the Bootstrap limestone were recognized in
the study area: limestone, diagenetic-planar dolomite, saddle dolomite, ferroan dolomite,
zebra texture dolomite, and calcite. The limestone experienced pervasive early diagenetic
calcite cementation that sharply lowered porosity and permeability of the unit. The
resulting restriction of fluid flow resulted in a condensed sequence of later hydrothermal
dolomitization.

The diagenetic-planar dolomite represents a regional dolomitization event that
was localized along the lower contact of the Bootstrap limestone. The fluids necessary for

dolomitization were probably sourced from compaction of the adjacent mud-rich Roberts



Mountains and Popovich Formations. The resulting dolostones extend from west of
Meikle to the Ren area.

Non-planar saddle, ferroan, and zebra texture dolomites are the result of
hydrothermal dolomitization. Curved boundaries of the dolomite crystals, associated
sulfides, and calculated temperatures from isotopic data, support a hydrothermal source
for these dolomites. Through cross cutting relationships between diagenetic planar
dolomite and non-planar dolomites were not observed, the available evidence suggests
non-planar dolomite post date planar dolomite. Non-planar, commonly ferroan dolomite
at Meikle is spatially associated with a Paleozoic age base-metal mineralization event.
Non-planar, generally non-ferroan at Storm and Dee-Rossi are spatially associated with
Jurassic to Eocene intrusions suggesting they formed due to much later hydrothermal
events. Thus, there are two possible generations of hydrothermal dolomite, one in the
Paleozoic and another associated with Jurassic to Tertiary igneous activity.

In the study area, the complex nature of the breccia bodies and/or the permeability
of the host rock limit the lateral extent of the carbonate alteration. However, based on the
samples analyzed in this study, and recognition of the processes that form dolomite, a
pattern of dolomitization can be predicted for Carlin-type deposits in this study area.
Extending away from a fluid pathway, ferroan dolomite forms first, followed by saddle
dolomite, which is in contact with unaltered limestone. Zebra texture dolomite forms at
the transition between ferroan and saddle dolomites, or it can extend throughout the zone
of ferroan dolomite. The dolomite zonation pattern, as well as the different generations of
dolomite, should be considered in the exploration for Carlin-type deposits hosted in

massive limestone units. Each dolomite generation may reflect the potential for gold



mineralization, with the Paleozoic iron-rich hydrothermal dolomite being the most

favorable host.
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INTRODUCTION

The Carlin trend is a 60 km-long, northwest-trending linear alignment of
approximately 42 disseminated gold deposits located in northeastern Nevada (Figure 1).
The trend contains 5,000 Mt of gold and contributes ~9% of the world’s annual gold
production, with annual production of 4 M oz (Hofstra and Cline, 2000).

“Carlin-type” refers to sedimentary rock-hosted disseminated gold deposits.
Though some deposits were mined in the early 1900s, this deposit type was first
recognized with the 1961 discovery of the Carlin deposit. The deposits have a range of
characteristics, including differing structural and stratigraphic controls. The variance
between individual deposits in the trend results in varying Au tonnages and grades
ranging from 100 t Au to >250 t Au (at >30 g/t), but Au deposits are also as small as 1 t
Au or less (and grades as low as 1 g/t) (Cline et al., 2005).

There is evidence of three separate mineralization events in the northern Carlin
trend, including a Paleozoic base-metal event with possible Au deposition, a Cretaceous
porphyry related event, and the primary gold event that occurred from ~42 to 36 m.y. ago
(Hofstra et al., 1999; Ressel et al., 2000; Arehart et al., 2003; Emsbo et al., 2003).

In the northern Carlin trend, calcareous rocks that comprise the Devonian-Silurian
Roberts Mountains Formation and the Devonian Popovich Formation are the primary
deposit hosts. Gold is typically associated with disseminated arsenic-rich pyrite. The
alteration that extends laterally from these deposits through the carbonate host rocks is
visually subtle. The intensity of the Au-bearing fluid interaction and porosity of the host

rock control the extent of alteration (Cline et al., 2005).
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Figure 1: Location map of the Carlin Trend, Nevada showing deposit locations and fault
occurrences. The study area is in EIko County and includes the Meikle, Ren and Dee-
Rossi deposits (from Teal and Jackson, 2002).



The objective of this project is to describe the alteration associated with the pre-
and syn-gold mineralization of the Bootstrap limestone subunit of the Roberts Mountains
Formation, continuing the work on the Meikle deposit by Evans (2000). This project
consists of detailed petrographic descriptions and isotopic analysis to describe and
determine extent of the carbonate alteration in the Bootstrap limestone unit.

Objectives

The objectives of this research are as follows:

e Describe the carbonate alteration in the Silurian-Devonian Bootstrap limestone

(e.g., cementation, dolomitization, calcite precipitation, silicification)

o Determine the paragenesis of different alteration events and separate the

Paleozoic and Tertiary events

e |dentify alteration vectors for Carlin-type gold deposits in the Bootstrap limestone

Research Methods

A combination of field and laboratory studies was used to meet the objectives of
this project. Two summer field seasons, 2005 and 2006, were spent in the Barrick
Exploration office in Elko, Nevada and at the Barrick Goldstrike Mine.

The fieldwork portion of this project involved the selection of drill holes that
intersected Bootstrap limestone exhibiting varying alteration intensities. This included
samples of Bootstrap limestone that were relatively fresh and unaltered, diagenetically
dolomitized, and hydrothermally dolomitized. Seventeen drill holes were logged in detail
and hand samples were collected for later petrographic analysis. Logging focused on

identifying and sampling different areas of limestone and dolomite from the Bootstrap.



Carbonate staining of the core was employed to make field-based observations of
carbonate composition.

The laboratory portion of the research consisted of petrographic and isotopic
analysis. Ninety-seven thin sections were prepared and examined. Detailed petrographic
descriptions utilizing standard transmitted light and cathodoluminescence microscopy
were conducted. The detailed descriptions focused on the percentage, type, and texture of
dolomite in the samples. Classification of the samples followed the carbonate rock
classification scheme of Dunham (1962), and dolomite crystal fabrics were described
using terminology of Sibley and Greg (1987).

Isotopic study was conducted on 78 samples from 11 drill holes. The samples
represented limestone, diagenetic-planar dolomite, saddle dolomite, ferroan dolomite,
light and dark bands of zebra texture dolomite, and late calcite. The isotopic data were
used to separate and distinguish each carbonate phase. Approximately 90 ug of carbonate
was reacted on-line at 90°C and analyzed using traditional dual-inlet techniques on a GV
Instruments I1soPrime mass spectrometer in the Colorado School of Mines Stable Isotope
Laboratory. Standard ion corrections were made and data are reported as a per mil
difference from the VPDB standard reference. External precision, based on blind

duplicate samples is 0.05%o for carbon and 0.08%o for oxygen.



GEOLOGIC BACKGROUND
Tectonic History

The Carlin trend sits in an area with a complex geologic history. The tectonic
events that occurred from the Proterozoic to Eocene (Figure 2) were responsible for
developing the necessary fluid pathways and traps to form subsequent gold deposits in
the region.

The early tectonic history includes rifting of the Archean and Proterozoic
basement in the late Proterozoic (John et al., 2003). This rifting produced significant
basement faults that served as the major controls on the north-northwest direction of the
trend. Archean crust currently underlies the deposits in the northern Carlin trend (Tosdal
et al., 2000).

A period of late Proterozoic rifting was followed by several compressional events
associated with an east-dipping subduction zone from the middle Paleozoic to early
Tertiary. The compressional events were related to the Antler, Humbolt, Sonoma,
Nevadan, Elko, Sevier, and Laramide orogenies (John et al., 2003; Cline et al., 2005).

The late Devonian through early Mississippian Antler orogeny was responsible
for forming the Roberts Mountains thrust. Eugeoclinal sedimentary rocks were thrusted
eastward onto sedimentary rocks of the continental shelf from the west (Roberts et al.,
1958; Stewart, 1980), leading to the development of a foreland basin. The foredeep of the
basin was filled with early Mississippian and Pennsylvanian sedimentary rocks (Poole et
al., 1992).

Thrust faults are an important control on the location of deposits in the Carlin

trend. Most giant deposits in the trend are found within 100 m of a thrust or its projection
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(Cline et al., 2005). Synsedimentary faults that developed during the Paleozoic are
probably a reactivation of earlier basement faults. These faults sometimes spatially
control abrupt facies changes. They also appear to have formed significant fluid conduits
that were sporadically utilized by diagenetic and hydrothermal fluids from the Paleozoic
to the recent. Normal faulting uplifted the platform margin during deposition, creating
shallow-water conditions resulting in carbonate sediments/rocks being exposed to
dolomitization in a sabkha environment under arid conditions, or to karsting and collapse
under more humid conditions. This exposure would have led to increased permeability
and porosity, which are necessary for later fluid flow and mineralization (Armstrong et
al., 1998; Cline et al., 2005).

The Humbolt and Sonoma orogenies occurred during the Pennsylvanian to early
Triassic, resulting in shortening, extension and the emplacement of the Golconda
allochthon (Ketner, 1977; Theodore et al., 2004).

By the middle Triassic, an east-dipping subduction zone was located along the
western margin of North America, resulting in the beginning of volcanic activity in north-
central Nevada (Stewart, 1980). As calc-alkaline, back-arc volcanic complexes and
lamprophyre dikes were emplaced in the middle Jurassic, the Elko orogeny produced
east-verging folds and thrusts (Thorman et al., 1991). Magmatism continued until 65 Ma
and plutons evolved from I-type granitoids to S-type peralumininous granites in the late
Cretaceous. The late Cretaceous Sevier and Laramide orogenies resulted in overall
thickening of the crust (Barton, 1990).

Beginning in the late Eocene, extensional deformation was the dominant tectonic

regime in the region. The direction of extension shifted from northwest-southeast in the



late Eocene to middle Miocene, to west-southeast-east-northeast in the middle Miocene.
These changes were followed by another shift to the northwest-southeast in the late
Miocene to present (Zoback et al., 1994).

High K calc-alkaline magmatism began ~42 Ma as the Farallon plate retreated
and the hot asthenosphere mantle regained contact with the base of the North American
lithosphere (Armstrong and Ward, 1991; Seedorff, 1991; Henry and Boden, 1998). This
last extensional period resulted in the current Basin and Range province, as well as the
crustal fluid flow responsible for the majority of gold mineralization in the Carlin trend

between ~42 and 36 Ma (Evans, 1980; John et al., 2003).

Stratigraphy

Sedimentary rocks located in the northern Carlin trend can be divided into two
main sequences separated by the Roberts Mountains thrust: 1) the lower plate
autochthonous rocks; and 2) the upper plate allochthonous rocks. The autochthonous
rocks are the main hosts of gold deposits and include the Roberts Mountains Formation,
the Popovich Formation, and the Rodeo Creek unit (Figure 3).

The Silurian-Devonian Roberts Mountains Formation ranges in thickness from
1100 to 1500 ft. (340 to 460 m) and has several members and units. The members include
a Laminated Micritic Limestone member and an Apron Facies member (Furley, 2001).

The Laminated Micritic Limestone member consists of a thick sequence of
alternating light and dark, laminated silty limestone to calcareous siltstone with the
laminations ranging in thickness from less than one inch (2.5 cm) to several inches. The

Apron Facies contains three units similar to the Laminated Micritic Limestone member
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described above, but with increasing occurrence of thin to thick debris flows containing
reef, shoal, and slope-derived sediments, along with interbedded wispy textures due to
bioturbation and eventual loss of laminations (Furley, 2001).

The Bootstrap subunit, a massive, shallow-water limestone, is contemporaneous
with the upper part of the Roberts Mountains Formation (Upper Silurian) and the
Popovich Formation (Middle Devonian) (Jory, 2002). The Bootstrap limestone is
composed of two facies representing deposition along a platform margin: a massive
limestone with visible crinoids and ooids (shoal facies), and a massive light to dark gray
limestone with visible crinoids, corals, bryozoans, mollusks, gastropods and algae (reef
facies) (Figures 4 and 5) (Furley, 2001). The Bootstrap limestone is up to 2000 feet (610
m) thick at the northern end of the Carlin trend and thins to the south (Jory, 2002).

This project focuses on the Bootstrap limestone, with samples collected from
around four deposits (Figure 6). This unit can be a significant ore host as the Meikle,
Bootstrap-Capstone, Storm (Dee-Rossi) and recently discovered South Arturo deposits
are all hosted in a silicified breccia within the Bootstrap limestone or at the upper contact
of the Bootstrap (sections, Figure 7).

The Bootstrap was chosen for study because of its low original porosity and
permeability that should have restricted the flow of hydrothermal fluids. Such restricted
flow should have resulted in a condensed sequence of hydrothermal alteration in
comparison to coeval units with higher porosities and permeabilities (i.e., Roberts
Mountains and Popovich Formations).

The Devonian Popovich Formation is a 500 to 800 foot (150 to 250 m) thick unit

containing several members. Overall, the unit is a dark gray to black mudstone to
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Figure 6: Geological map of the Carlin trend with an enlarged area indicating the study
area and a simplified map illustrating deposit locations (Moore, 2002; Barrick Gold
Corporation, 2005). Purple circles on the geologic map show the locations of drill holes
logged for this study. Main units of the geologic map include Miocene Carlin
Formation (tan), Devonian Slaven Chert and Silurian Elder Formation (light purple),
and Ordovician Vinini Formation (purple). This study focuses on the region near the
deposits of Meikle, Ren, South Arturo, and Dee-Rossi (Storm).
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Figure 7: Cross sections from three deposits near which samples were collected. Cross
sections show the relationship of the Bootstrap limestone unit relative to mineralization
(a) Storm deposit (modified from Dobak et al., 2002); (b) Meikle deposit (modified from
Emsbo et al., 2003); (c) South Arturo deposit (modified from Barrick Gold Corporation,
2005).
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siltstone with textures varying from wispy to thinly interbedded with debris flows
containing fossil hash to soft-sediment deformation to very common thinly laminated
units. The sequence of units indicates deepening throughout deposition (Furley, 2001).

Conformably overlying the Popovich is the dark gray Devonian Rodeo Creek unit
composed of gray siltstone, mudstone, chert and argillite along with upper units
composed of siliceous mudstone, siltstone and calcareous siltstone. The unit is 800 feet
(250 m) thick, although there are areas where the entire upper part of the unit has been
removed by the Roberts Mountains thrust (Teal and Jackson, 1997).

Above the thrust, the allochthonous sequence is primarily composed of the 5,000
foot (1500 m) thick Vinini Formation consisting of Lower Ordovician to Middle Silurian
sedimentary chert, mudstone, siliceous mudstone, and minor greenstone. This unit hosts

small, fault-controlled, vein deposits (Jory, 2002).

Structure

The north-northwest trend in mineralization reflects the young north-trending
Basin and Range topography intersecting a pre-existing zone of crustal weakness. These
structures controlled mineralization throughout the Carlin trend in various forms. The
dominant controlling structures are northwest faults, northeast faults, anticlinal folds, and
collapse breccia bodies.

In the Carlin trend, northwest-striking, high-angle structures are the dominant
feature and served as primary fluid conduits for the Tertiary hydrothermal systems.
Lamprophyric and monzonitic dikes commonly fill these faults (Teal and Jackson, 2002).

In the study area, the Ren, Post, Dee, and Hinge structures are the main faults.
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Northeast-striking faults are particularly important where they intersect
northwest-striking faults, as they acted as structural fluid traps, focusing gold
mineralization. Dikes rarely fill these faults (Teal and Jackson, 2002).

The general trend of folds in the region is northwest, although some are north- or
northeast-trending (\VVolk et al., 1996; Teal and Jackson, 2002). The north-south trending
faults are less common and are related to thrust faulting. Folds have broad to moderate
amplitudes with mesoscopic northwest-southeast-trending hinges. These folds are well
developed in the Rodeo Creek and Vinini Formations, possessing intensely fractured and
veined fold hinges (Volk et al., 1996). These mesoscopic folds are associated with
northwest-trending anticlines and synclines that acted as traps for migrating fluid on a
regional scale (Teal and Jackson, 2002).

Collapse breccia bodies have various interpretations, but mainly are responsible
for an increase in permeability for gold-bearing fluids, regardless of the formation
mechanism for the breccia (Teal and Jackson, 2002). Evans (2000) explored progressive
brecciation events at the Meikle deposit, where five separate brecciation events occurred,
including brecciation related to early karsting of the massive limestone by meteoric

water, followed by hydrothermal dissolution and subsequent collapse.

Paleozoic Mineralization Event
Following initial diagenesis and brecciation of the Bootstrap limestone, a
Paleozoic mineralization event resulted in early ferroan dolomitization and silicification

of the limestone. The base-metal event at Meikle is fault controlled and is interpreted as
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being a Mississippi Valley-type deposit. This alteration was followed by late base-metal
mineralization and barite precipitation (Evans, 2000).

Ferroan dolomite alteration occurred with minor disseminated pyrite * sphalerite
along with silicification of the early dolomite. Zebra texture, alternating white and black
bands of dolomite, formed during this event. The black bands are typically ferroan and
the white bands can range from non-ferroan to ferroan. Silicification was pervasive
during this stage, replacing the majority of limestone with quartz. The location of this
jasperoid indicates that silicification was peripheral to dolomite alteration (Evans, 2000).

Base-metal mineralization preferentially replaced ferroan dolomite with
sphalerite, minor galena, chalcopyrite, and pyrite. Following base-metal mineralization,
the formation of veins of barite + dolomite, calcite, quartz, and honey-colored sphalerite
veins occurred (Evans, 2000).

The base-metal event was followed by silicification, hydrocarbon migration, and
stylolitization. Veins that contain bitumen, quartz and/or calcite cross-cut massive
limestone, dolomitized limestone, and jasperoids. The timing of these brecciation and
mineralization events are constrained by cross-cutting relationships with Jurassic dikes

(Evans, 2000).

Cretaceous Mineralization Event

During the late Jurassic there was a period of igneous activity, polymetallic
mineralization and alteration of intrusive rocks. Mineralization included quartz veins with
galena, bournonite, freibergite, pyrite, sphalerite, chalcopyrite, covellite, minor

bismuthinite, and illite (Emsbo et al., 2003).
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The alteration associated with this event is principally preserved in the intrusive
rocks. Alteration in the monzonite dikes was most pervasive, and included feldspar
altering to illite and kaolinite, quartz precipitation, and replacement of sphalerite by
pyrite. Lamprophyre dikes contain calcite, dolomite, magnesite, chlorite, quartz, illite,
and talc as alteration products (Evans, 2000; Emsbo et al., 2003).

A second Cretaceous hydrothermal event is more common in southern portions of
the Carlin trend and is characterized by Cu mineralization and sericitic alteration (Arehart

et al., 1993; Drews-Armitage et al., 1996; Teal and Branham, 1997).

Tertiary Mineralization Event

Gold in the Carlin trend occurs primarily in the lattices of pyrite and arsenian
pyrite as submicron particles with concentrations as high as ~9,000 ppm (Wells and
Mullens, 1973; Emsbo et al., 2003; Palenik et al., 2004; Reich et al., 2005). The gold-
bearing pyrite and marcasite typically occur as discrete grains a few micrometers in
diameter or as rims on earlier-formed pyrites. The types of deposits in the trend vary
greatly with structural controls to lithologic controls to breccias with great range in terms
of grade and deposit size (Emsbo et al., 2003).

The mineralizing fluids that precipitated gold were probably low to moderate
temperature (180-240°C), low salinity (~2-3 wt % NaCl equivalent), aqueous fluids
containing CO- (<4 mol %) and CH, (<0.4 mol %), and 10™%-10m H,S (Cline and
Hofstra, 2000; Hofstra and Cline, 2000; Lubben, 2004). Precipitation of Au and
formation of pyrite are considered to have been controlled by the reaction of sulfur in the

fluid with Fe in the host rocks. Though sulfidation is commonly described as the most
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important control on Au mineralization, the presence of bitumen in high-grade ore
indicates a reaction between the bitumen and Au-bearing fluids (Kuehn and Rose, 1992;
Stenger et al., 1998; Hofstra and Cline, 2000; Fortuna et al., 2003). However, alternate
possibilities for the precipitation mechanism are necessary because the sulfidation of Fe-
rich host rocks does not produce enough acid to be responsible for the intense
mineralization in high-grade ore (Emsbo et al., 2003).

Varying 6Dy values of the ore fluid indicate three possible origins. Possible
sources include meteoric, magmatic or metamorphic fluids (Hofstra et al., 1999; Cline
and Hofstra, 2000; Emsbo et al., 2003; Lubben, 2004). The range of values may be
explained by mixing among all three or that different regions of the trend have different
sources. Sulfur in the ore-stage fluid has a broad range of isotopic values, indicating a
sedimentary source that utilized several pathways to derive H,S (Hofstra and Cline, 2000;
Emsbo et al., 2003). H,S could have been produced by dissolution of pyrite, destruction
of organosulfur compounds, thermochemical sulfate reduction, and/or desulfidation of
pyrite to pyrrhotite. As the principle transporter of Au in fluid, the source of S could give
insight to the source of Au (Cline et al., 2005).

The timing of mineralization has been cautiously agreed upon as Eocene (~42 Ma
to 36 Ma), although constraining the age has been a subject of debate (Ressel et al., 2000;
John et al., 2003; Cline et al., 2005). Some authors suggest that the varying ages from the
region indicate multiple periods of gold mineralization (Teal and Jackson, 1997).

The lack of evidence for fluid boiling and ore-fluid phase-equilibria parameters

constrain the possible depth for ore deposition. Depth of gold deposition is thereby
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constrained to a minimum depth between ~1.7 km and 6.5 km and a maximum depth no
greater than 5 to 8 km (Hofstra and Cline, 2000).

The multiple possibilities for the origin of the ore-bearing fluid and source of gold
create several possible genetic models. These include a meteoric water model with lateral
flow of meteoric water or deep crustal meteoric convection (llchik and Barton, 1997;
Emsbo et al., 2003); an epizonal intrusion model that relates Carlin deposits to epizonal
plutons (Sillitoe and Bonham, 1990; Johnston and Ressel, 2004); and a deeply sourced
ore-fluid model that requires a magmatic or metamorphic water source (Seedorff, 1991,
Hofstra and Cline, 2000). Although still debated, the genetic model for these deposits
probably consists of a combination of elements from the previously mentioned three
models (Cline et al., 2005).

Cline et al. (2005) suggested a genetic model for Carlin-type deposits that
involves hydrothermal fluids exsolved from lower crustal melts formed by mafic magmas
injected into the lower crust during the Eocene. This hydrothermal fluid, along with
possible metamorphic fluids, scavenged Au and other trace metals from the
Neoproterozoic rocks as it moved upward.

Agueous hydrothermal ore fluids became enriched in H,S through interactions
with wall rocks as they flowed along faults, causing the scavenging of Au. These ore
fluids were then diluted by deeply convecting meteoric waters (Figure 8). The ore fluids
collected along the boundaries of stocks and in structural traps. The fluids increased
permeability through decarbonatization and argillization of wall rocks through which

they flowed. This interaction with the wall rocks also exposed available Fe, which led to
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Figure 8: Genetic model for Carlin-type deposits combining elements from magmatic
and meteoric models to explain how hydrothermal fluids evolve to become ore fluids
and possible sources for Au (from Cline et al., 2005).
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sulfidation and pyrite precipitation. Precipitation of pyrite decreased the aH,S in the ore
fluids and Au was co-precipitated with pyrite.

The final stages of fluid flow in the Carlin trend included a reduction in ore fluids
and mixing and cooling of fluids caused by the collapse of unexchanged meteoric fluids

into the system (Cline et al., 2005).

Alteration

Characteristic alteration of Carlin-type deposits includes decarbonatization,
argillization, silicification, and sulfidation. Alteration of the carbonate host rocks includes
dolomitization, ferroan dolomitization, cement precipitation, and silicification.

Decarbonatization is common for all deposits in the trend and the degree of
decarbonization was controlled by the fluid acidity, the amount of cooling, and the degree
of fluid-rock interaction (Hofstra and Cline, 2000; Cline et al., 2005). Dissolution of
carbonate host rocks possibly led to collapse breccias prior to gold mineralization to form
high-grade ore in some deposits (Emsbo et al., 2003).

Assemblages of kaolinite + dickite + illite formed where older alumino-silicate
minerals and acidic ore fluids interacted. Argillization is uncommon in the carbonate
rocks, but is intense in basalts, lamprophyres, and other igneous rocks (Hofstra and Cline,
2000).

Silicification is widespread in the form of jasperoids and drusy quartz-lined vugs.
The occurrence of jasperoids appears to be associated with the presence of ore, although
jasperoids can range from barren to high-grade ore (Bakken and Einaudi, 1986; Ye et al.,

2002). The vugs that are later lined by quartz formed by dissolution of the carbonate host
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rocks. The lack of quartz as an ore-stage mineral probably reflects the low temperature of
mineralizing fluids, given that quartz precipitation is inhibited below ~180 °C (Rimstidt,

1997; Cline et al., 2005).
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RESEARCH RESULTS
This study compiled detailed hand specimen, petrographic, cathodoluminescent
(CL), and isotopic descriptions of carbonate alteration occurring within the Bootstrap
limestone formation. Samples from 11 drill holes throughout the study area were used in
the descriptions (Figure 9; Table 1). Six carbonate phases were found to be important
variations in the Bootstrap limestone. This included original limestone, diagenetic-planar

dolomite, saddle dolomite, ferroan dolomite, zebra texture dolomite, and late calcite.

Limestone

Two facies are recognized within the Bootstrap limestone unit: a shoal facies and
a reef facies. Samples for this study came from a large area, but are predominantly from
the shoal facies. The best samples of least-altered limestone are from near the Meikle
deposit. Completely unaltered limestone was unavailable in the study area because of the
presence of early diagenetic cementation.

In core, the Bootstrap limestone shoal facies is a massive, light- to medium-gray
limestone with visible ooids and crinoids (Figure 10). The reef facies is also medium-
gray, but with visible crinoids, corals and reported mollusks, bryozoans, and gastropods
(Furley, 2001).

Thin-section analysis shows the shoal facies is dominated by coarse-grained,
well-sorted oolitic to peloidal grainstone with low porosity (<3%), 3-5% early dolomite,
and rare stylolites. The matrix is a coarsely crystalline equant calcite spar cement (Figure

11).
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Figure 9: Locations of the 11 drill holes sampled are marked by green circles (modified

from Moore, 2002). The drill holes were selected for their intervals of Bootstrap

limestone. All samples in this study come from these drill holes and four deposit areas.
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Deposit Description Logged Drill Holes
Silicified breccia-hosted

Meikle deposit (Emsbo et al., Ex-21c; MST-1; GA-65c;
2003) U17-M05-3
Active exploration:

Ren possible breccia-hosted RU-8

similar to Meikle,
historically, mineralized
dike, stratabound
mineralization in Popovich
Formation (Farquharson et
al., 2004)

Dee-Rossi (Storm)

Silicified heterolithic
breccia-hosted (Dobak et
al., 2005)

D2-100-2; D0-100-1

South Arturo

Active exploration:
Breccia-hosted, oxide gold
deposit (Hipsley et al.,
2007)

BD-131; BD-181; BD-177;
BD-178

Table 1: Deposit areas, type of deposit, and drill holes that were used in this study. The
four deposits are similar in that they are hosted in breccia bodies within or at the top
contact of the Bootstrap limestone. South Arturo and Ren deposits are still being actively
explored and deposit types are not fully established.



Figure 10: Core of the massive, gray, oolitic grainstone with calcite veining from the
shoal facies of the Bootstrap limestone.
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Figure 11: Typical limestone samples from the Bootstrap limestone. (a) Sample from
Evans (2000), Photomicrograph showing a peloidal grainstone with micritized peloidal
grains and early equant calcite cement; plane-polarized light. (b) U17-M05-3, 382’,
Photomicrograph of an oolitic grainstone with early calcite cement; plane-polarized
light.
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The reef facies is a coarse-grained, moderately sorted oolitic grainstone to
fossiliferous boundstone with possible skeletal grains including crinoids, bryozoans,
gastropods and brachiopods (Furley, 2001).

Cathodoluminescence imaging shows dully luminescent grains with locally
brightly luminescent rnombohedral dolomite crystals along the edges of grains, dull early
calcite cement, and destructive, brightly luminescent calcite veins (Figure 12).

Stable isotopic data for limestone samples mainly fall between §'20 values of -
11.0 to -6.7 %oPDB (mean -8.8 %oPDB) and & *3C values of 0.7 to 2.3 %.PDB (mean 1.4

%.PDB) (Figure 13).

Diagenetic-Planar Dolomite

Complete replacement of the limestone by diagenetic-planar dolomite only is seen
in the deeper drill holes near the Meikle and Ren deposits (Figure 14). These drill holes
do not intersect any degree of mineralization, but do extend through a thick section of the
Bootstrap limestone unit. In vertical drill holes GA-65¢, U17-M05-3, and RU-8, the top
of the Bootstrap is limestone with the percentage of dolomite increasing with depth. In
GA-65c diagenetic-planar dolomite begins at an elevation of ~2450 ft, in U17-M05-3 at
~2950 ft., and in RU-8 at ~1950 ft.

In core, there is very little variation between the appearance of limestone and
diagenetic-planar dolomite (Figure 15). Diagenetic-planar dolomite is typically non-
mimetic, although locally ooids are still visible in hand specimens. Overall, diagenetic-

planar dolomite is medium-gray, giving it a slightly darker appearance than the



Figure 12: U17-M05-3, 6°, Cathodoluminescence image of limestone showing dully
luminescent calcite cement and peloids, and brightly luminescent dolomite crystals.
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Figure 13: Plot of isotopic data for limestone samples. Samples representing the end-
member limestone values are circled.
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Figure 14: Location map for drill holes with diagenetic dolomite occurrences marked
by blue circles (modified from Moore, 2002). Notice that diagenetic dolomite is not
encountered near South Arturo or Dee-Rossi.
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Figure 15: Core of the contact between limestone and diagenetic dolomite in U17-
MO05-3. There is a slight color change to darker gray, but otherwise limestone and
diagenetic dolomite look very similar in core.
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limestone. The dolomite is also commonly stylolitic. In hand sample, use of HCI is the
easiest way to distinguish between limestone and diagenetic-planar dolomite.

The dolomite that occurs in these holes is rhombohedral (planar-e) with cloudy to
clear centers, and is medium to finely crystalline with low porosity (2-3%), and stylolites
occurring locally to commonly (Figure 16). Most limestone samples have at least a small,
scattered occurrence of dolomite crystals that do not have a preference to replace grains
or cement. The dolomite also occurs as very finely crystalline replacement in the original
grains. Overall, this dolomite replacement is destructive of the original fabric, but sample
U17-MO5-3, 820.5’ is completely dolomitized with the ooid structure clearly preserved
(Figure 16c).

Cathodoluminescence imaging reveals consistently brightly luminescent
dolomite. In limestone that has not been completely replaced by dolomite, dolomite
rhombs are concentrated primarily around the edges of original grains as seen in
limestone samples discussed above (Figure 17).

Diagenetic-planar dolomite isotopic data have a moderate range for §*°0 from -
11.8 to -4.2 %oPDB (mean -8.4 %.PDB) and 5'*C from -0.4 to 1.6 %PDB (mean 0.8
%.PDB). There are three apparent groupings in the data. The three clusters of data have
similar '*C values, and 5'®0 averages for each group are about -5.0 %.PDB, -8.0
%0oPDB, and -11.0 %.PDB (Figure 18). These clusters reflect, respectively, samples with
complete recrystallization, partial recrystallization and those trending towards saddle

dolomite.



Figure 16: Photomicrographs of diagenetic samples illustrating partial (a, b, d) and
complete replacement (c, e) of limestone. (a) U17-M05-3, 785, Photomicrograph of
planar-e diagenetic dolomite with cloudy centers filling space occupied by calcite
cement (stained pink); plane-polarized light; (b) GA-65c, 3703’, Photomicrograph of
planar-e dolomite rhombs with cloudy centers in limestone with original grains and
calcite cement (stained pink); plane-polarized light; (c) U17-M05-3, 820’,
Photomicrograph of mimetic, planar-s to planar-e dolomite replacing oolitic grainstone,
with dead oil in pore space; plane-polarized light; (d) RU-8, 3502°, Photomicrograph of
a contact between finely crystallized, planar-s to planar-e dolomite and calcite (stained
pink); plane-polarized light; () U17-MO5-3, 1380’, Photomicrograph of complete
replacement of limestone with medium to finely crystalline, planar-s to planar-e
dolomite; plane-polarized light.
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Figure 16
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Figure 17: Cathodoluminescence images of uniformly, brightly luminescent diagenetic
dolomite. (a) U17-M05-3, 382’, CL image showing diagenetic dolomite brightly
luminescent crystals along the edges of peloids and calcite cement as dully luminescent;
(b) U17-M05-3, 820°, CL image of mimetic dolomite brightly luminescent and dead oil
in the center of a relic ooid; (c) U17-MO05-3, 785’, CL image of planar-e dolomite
rhombs moderately to brightly luminescent; (d) RU-8, 3502°, CL image of dolomite
brightly luminescent; calcite dully luminescent.
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Figure 18: Isotopic data for diagenetic dolomite samples with three clusters of values
circled. Circle (a) are samples with complete replacement of limestone; circle (b) are
samples with partial replacement of limestone and circle (c) are samples with curved crystal
boundaries (saddle-type dolomite).
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Saddle Dolomite

Saddle (or baroque) dolomite occurs in drill holes near the Dee-Rossi, Meikle,
and South Arturo deposits (Figure 19). The amount of saddle dolomite observed in each
drill hole increases in brecciated areas and areas proximal to Jurassic igneous intrusions.
Saddle dolomite can occur as cement or as a replacement of precursor carbonate.

In core, coarse saddle dolomite ranges in color from white to gray to light pink.
Core containing saddle dolomite is pervasively fractured or occurs in breccias with thin
(<1 mm wide) black, sooty sulfide fracture fill or 1 mm wide calcite veins with vugs
common in the center of the veins (Figure 20). Saddle dolomite occurs commonly in
close proximity to igneous clasts.

In thin-section, samples of saddle dolomite from the study area range from clear
to light brown in plane-polarized light, and contain polymodal, non-planar, saddle
dolomite with strong sweeping extinction, to planar-s saddle dolomite with weak
sweeping extinction. Rock samples with abundant saddle dolomite display low porosity
(~5%) and very few stylolites (Figure 21).

Cathodoluminescence analysis shows dissolution areas of the saddle dolomite and
moderately to brightly luminescent saddle dolomite with common calcite veining (Figure
22).

Isotopic data for saddle dolomite shows values from the Dee-Rossi area in ranges
of 3'%0 from -14.1 to -9.5 %oPDB with a mean of -11.2 %oPDB and 5 **C from 0.3 to 1.1

%0PDB with a mean of 0.6 %.PDB. Outliers on the plot are from near Meikle and Ren
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Figure 19: Locations of saddle dolomite are marked by blue circles proportionally sized
to amount of saddle dolomite recognized in the core (modified from Moore, 2002). The
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largest circles are closest to structures and/or ore bodies with the smallest circles

representing occasional occurrences in drill holes that are not near structures or ore

bodies.
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Saddle dolomite vein

Early zebra texture
development?

(b)

Figure 20: Hand samples of saddle dolomite occurring as a vein (a) or pervasively
fractured (a) Core of GA-65c, 1825, massive, gray styolitic limestone with white saddle
dolomite vein; (b) Core of U17-M05-3, 116°, intensely fractured saddle dolomite with
the beginning of zebra texture and sooty fracture fill.
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Figure 21: Photomicrographs illustrating the texture of saddle dolomite. (a) U17-MO05-3,
116’, Photomicrograph of non-planar, polymodal saddle dolomite with strong sweeping
extinction; crossed-polarized light; (b) U17-M05-3, 116°, Photomicrograph of weak
development of coarse and finely crystalline bands of saddle dolomite occurring with
sulfides; plane-polarized light; (c) D2-100-2 150.3’, Photomicrograph of planar-s to
non-planar, polymodal saddle dolomite with weak sweeping extinction; Typical
example from Dee-Rossi area; crossed-polarized light.
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(a) (b)

(d)

Figure 22: Cathodoluminescence microscopy reveals dissolution textures and intense
calcite veining of saddle dolomite. (a, b) U17-M05-3 116°, CL images showing
dissolution texture and veining in a moderately to brightly luminescent saddle dolomite;
(c) U17-M05-3, 150.3’, Moderately luminescent saddle dolomite with bright calcite
veining; (d) MST-1 1214: CL image of moderately to brightly luminescent saddle
dolomite and dull calcite, which is replacing the saddle dolomite.
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and have 5'®0 %oPDB values averaging -16.4 %oPDB and light 8 *C values average -2.7

%.PDB (Figure 23).

Ferroan Dolomite

Ferroan dolomite occurs in drill holes intersecting or near the Meikle or Dee-
Rossi deposits (Figure 24). Ferroan dolomite is discontinuous in the drill holes sampled
for this study and most occurs in or within several feet of brecciated zones. Such breccia
zones can be one or two hundred feet in vertical extent.

In core, ferroan dolomite is similar in texture and in color to saddle dolomite.
However, ferroan dolomite is most common in rocks with quartz flooding. Zones
containing ferroan dolomite are commonly intensely fractured with sooty black sulfide
fracture fill. Ferroan dolomite in these zones is white to pink in color and is commonly
intergrown with quartz (Figure 25).

Thin-section analysis shows the ferroan saddle dolomite is texturally very similar
to saddle dolomite. Ferroan dolomite is non-planar, polymodal and has sweeping
extinction, but tends to occur with quartz (up to 60% quartz) more commonly than non-
ferroan saddle dolomite. Rocks containing ferroan dolomite have 5-10% porosity and few
stylolites (Figure 26).

Cathodoluminescence images for ferroan dolomite are almost identical to CL
images taken of saddle dolomite. Ferroan dolomite is moderately luminescent with
pervasive dissolution and corroded crystal edges (Figure 27).

Ferroan dolomite isotopic data show most samples clustering between §*°0 values

-10.2 and -13.5 %oPDB (mean -12.9 %.PDB) and & **C values -2.0 to 1.6 %oPDB (mean -
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Figure 23: Plot of values for saddle dolomite isotopic data illustrating the close clustering
of the majority of samples with a trend towards depleted §'*C values.
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Figure 24: Locations of ferroan dolomite occurrences recognized in this study are
marked by blue circles proportional to amount of ferroan dolomite observed (modified
from Moore, 2002). Similar to saddle dolomite, ferroan dolomite only occurs near
structures or ore bodies.
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Figure 25: Hand samples of various ferroan dolomite samples. The samples vary
significantly in color from gray to pink to white and in fracture intensity. (a) Ex-21c,
1024°, Core of finely crystalline, dark ferroan dolomite, coarse, white quartz, and gray
to white saddle dolomite vein; (b) D0O-100-1, 109’, Core of fractured ferroan dolomite
with iron oxidation of the fractures; (c) D2-100-2, 266.4’, Core of off-white ferroan
dolomite with calcite veining; (d) D2-100-2, 4°, core of fractured, stylolitized, breccia
ferroan dolomite with muddy clasts and silica flooding (blue coloring is stain).



Figure 26: An example of the fabric and texture of ferroan dolomite. D0-100-1, 109’,
Photomicrograph of planar-s to non-planar, polymodal ferroan saddle dolomite; cross-
polarized light.

50
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Figure 27: Cathodoluminescence analysis illustrates the dissolution and fracturing of
ferroan dolomite. (a) D2-100-2, 4’, CL image of ferroan dolomite, moderately
luminescent, brightly luminescent material is calcite; (b) BD-52, 1238°, CL image of
moderately luminescent ferroan dolomite with dissolution vugs; (c) D0-100-1, 109, CL
image of moderately luminescent ferroan dolomite with quartz vein (nonluminescent)
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0.8 %oPDB) (Figure 28). A few samples from the Meikle area show depleted values for

both & 3C and §%0.

Zebra Dolomite

Zebra dolomite is not well represented by the samples in this study. Only two
samples were collected: one from the Dee-Rossi area and the other from Meikle (Figure
29). In these samples, zebra texture is not particularly well developed. To supplement
isotopic data, samples from Dane Evans’ master’s thesis (Evans, 2000) on the Meikle
deposit were used.

The alternating white and gray bands that characterize zebra dolomite are
typically irregular and vary in width. The dolomite is coarse, non-planar saddle dolomite
in the white bands, and is fine, non-planar dolomite occurring with sulfides and organic
matter in the gray bands. In the sample with poorly developed zebra texture, the bands
are thin and irregular (gray bands <0.5 mm; white 1 mm wide), and the saddle dolomite is
finer, planar-s with weak sweeping extinction. The zebra dolomite that is better
developed has thicker bands (gray up to 4 mm; white up to 5 mm wide) and is non-planar
with strong sweeping extinction and void space associated with the white bands. Rocks
containing zebra dolomite samples have 10% quartz, ~3% porosity and typically have
few stylolites, although stylolites are common in the poorly developed zebra texture from
Dee-Rossi (Figures 30 and 31).

Cathodoluminescence images show the gray bands with gray, non-luminescent
material and the white bands as brightly luminescent with bright crystal edges on the

dolomite filling the vugs (Figure 32).
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Figure 28: Isotopic data for ferroan dolomite samples showing a trend from more enriched
8"3C values to depleted values.
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Figure 29: Location of zebra dolomite in drill hole core indicated by blue circles
proportional to amount of zebra texture observed (modified from Moore, 2002). Zebra
texture is only observed in drill holes directly penetrating ore bodies.
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Figure 30: Hand samples of zebra texture dolomite samples illustrate the variation in
band thickness and continuity. (a) D0-100-1, 312°, Core of poorly developed zebra
texture bounded by stylolites with iron oxides, (b) Ex-21c, 1065’, Core of zebra texture
with irregular banding, (c) Sample from Evans (2000), Core of zebra dolomite with
thick gray and white bands of saddle dolomite.
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Figure 31: Photomicrographs of zebra textures illustrate the range of fabric and texture
seen between poorly developed zebra texture (a, b) and well-developed zebra texture (e,
). (a, b) D0O-100-1, 312’, Photomicrograph of poorly developed zebra dolomite with
coarse, planar-s saddle dolomite and finely crystalline planar-s saddle dolomite
occurring with sulfides; (a) plane-polarized light; (b) crossed-polarized light; (c,d) Ex-
21c, 1065’, Photomicrograph of zebra dolomite with non-planar, coarsely and finely
crystalline saddle dolomite; (a) plane-polarized light, (b) cross-polarized light; (e,f)
Sample from Evans (2000), photomicrograph of well-developed bands of coarse and
fine, non-planar, saddle dolomite with high percentages of sulfides and bitumen
occurring with the finely crystalline; (a) plane-polarized light, (b) cross-polarized light.
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Figure 32: Ex-21c, 1065, CL images of zebra dolomite: white bands are moderately
luminescent with bright edges on the saddle dolomite crystal as the crystals extend into
void spaces. The gray bands are the non-luminescent gray areas.
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Isotopic data for each zebra dolomite sample are divided between light and dark
bands. The data for each band of one sample plot very closely to each other (Figure 33).
The range of 5'%0 values is small (-15.9 to -11.9, mean -14.2 %PDB), but the values for
83C have a wide range from -3.8 to -0.09 %oPDB (mean -2.2 %.PDB). Depleted & **C

values correspond to the samples with well-developed zebra texture.

Calcite

There are several calcite precipitation events evident from petrographic
observations and isotopic data. The earliest calcite is related to early cementation of the
limestone, with bladed to equant calcite cementation of grains; this is discussed under the
limestone section.

Two more calcite generations are recognized following the early cementation
event, and both consist of coarsely crystalline sparry calcite. These generations of calcite
occur throughout the study area, although calcite veining is most common in limestone as
compared to the dolomites.

In core, calcite fills vugs with crystals up to 5 mm in size, forms large veins
several mm wide, and can be the matrix of breccia where coarse calcite supports clasts of
limestone (Figure 34).

Thin-section analysis shows that calcite can occur as a cement of coarsely
crystalline calcite spar overprinting or destroying original grains. The calcite can also
form in veins, fill void spaces and replace skeletal grains (Figure 35a). However, there is
significant variation in appearance of calcite veins at this scale. In some samples, the

calcite spar is twinned or has clearly defined crystal edges (Figure 35d). In other calcite
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Figure 33: Zebra texture dolomite isotopic data plot illustrates that the samples with the
most developed zebra texture have the most depleted 520 and §*°C values. For each
sample, there is a value for white (light) bands and for gray (dark) bands, which plot
directly next to each other.
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Figure 34: Hand sample illustrating the void-filling late calcite event. U17-M05-3, 122,
Core of vug filling late calcite in gray limestone. Calcite is also replacing the crinoid
fossils in the limestone.
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Figure 35: Late calcite photomicrographs show a wide range of fabrics. (a) BD-178,
1436°, Photomicrograph of an edge of a fossil replaced by sparry calcite; crossed-
polarized light; (b) GA-65¢ 3703, Photomicrograph of crossing veins of sparry calcite
stained pink; plane-polarized light; (c) U17-M05-3, 122°, Photomicrograph of a calcite
vein stained pinked and the surrounding fine-grained quartz; cross-polarized light; (d)
U17-M05-3, 580°, Photomicrograph of twinned sparry calcite filling space between
grains as well as destroying original limestone texture; cross-polarized light; (e) D2-
100-2, 266’, Photomicrograph of a calcite vein stained purple and saddle dolomite;
plane-polarized light; (f) BD-178, 1318’, Photomicrograph of a calcite vein (stained
purple) and quartz; crossed-polarized light.
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samples, the veins of calcite appear to have undergone partial dissolution that has created
irregular crystal shapes (Figure 35c). Calcite can also occur as a replacement of saddle
dolomite (Figure 22d).

Cathodoluminescence images of calcite samples show a great variation in CL
appearance of individual samples. Calcite is present as brightly to dully luminescent, and
can vary from red to yellow in color. CL analysis reveals compositionally zoned cavity-
filling calcite, zoned veins, and dissolution features (Figure 36).

Calcite isotopic data show two clusters of values (Figure 37). The first cluster
ranges in &'%0 values from -13.6 to -4.7 %PDB (mean -10.0 %oPDB) and §**C values
from -0.9 to 2.2 %.PDB (mean 0.5 %oPDB). The second cluster has more depleted values
with 80 values from -28.7 to -21.0 %PDB (mean -24.5 %oPDB) and "C from 0.4 to
3.3 %oPDB (mean 0.9 %0PDB). The cluster of enriched values represents a cement that is
commonly twinned. The depleted group of calcite samples appears to have undergone

more dissolution or is vug-filling.



65

@) T (b)

Pl i

© T (d)

(e)

Figure 36: CL images show a wide range of luminescence colors and zoning
patterns, reflecting the fabric variations seen in plane-polarized light. (a) GA-65c
3703’, CL image of brightly luminescent red and yellow late calcite; (b) BD-177,
1133’, CL image of void filling late calcite with compositional zoning; (c) D2-100-
2, 266.4°, CL image of late calcite vein with zoning; (d) D2-100-2, 266.4’, CL image
of the edge of a late calcite vein (yellow) and saddle dolomite; (¢) BD-178, 1318’,
CL image of late calcite vein with possible zoning that is now destroyed.



66

¢ Late Calcite

8°C % PDB

-40.0 -30.0 -20.0 -10.0 0.0

%0 %, PDB

Figure 37: Calcite isotopic data plot in two distinct groups of values, each is circled.
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DISCUSSION
The detailed petrographic and analytical work described in the previous section
provides insight to the formation of Carlin-type gold deposits. Most notably, data from
this study indicate that (1) the majority of the limestone was not altered to a dolostone
before hydrothermal dolomitization and precipitation, (2) there may be two hydrothermal
dolomitization events within the area: a Paleozoic dolomitization event at Meikle and a
Jurassic-Tertiary hydrothermal dolomitization event at Dee-Rossi, and (3) a pattern of

hydrothermal dolomitization can be predicted for Carlin-type deposits.

Limestone Interpretation

Field and laboratory studies show that samples of the Bootstrap limestone are not
truly unaltered because of the occurrence of early cementation. The oolitic grainstones
have bladed calcite on the surfaces of grains and a blocky, equant calcite cement between
grains. These calcite cements are interpreted to represent precipitation from marine fluids
penecontemporaneous with deposition, and precipitation in the meteoric phreatic zone or
shallow burial environment shortly after deposition, respectively (James and Choquette,
1990; Tucker and Wright, 1990). These early cements would have significantly reduced
porosity and permeability in the Bootstrap limestone unit.

Authigenic quartz and dolomite are also present in the limestone. The quartz and
dolomite occur as disseminated crystals in the limestone, crosscutting both grains and
cement. These disseminated dolomite crystals were likely precipitated deep in the

subsurface by formation fluids (e.g., Cantrell and Walker, 1985).



68

Isotopic data from limestone samples (Figure 38) reflect early cementation of the
oolitic grainstones and subsequent calcite precipitation events. These subsequent calcite
events caused slightly depleted 820 values because of precipitation under higher
temperatures or from depleted meteoric waters. Using the calcite equation from Friedman
and O’Neil (1977), a Devonian seawater range of 0 to -1%. SMOW Gao (1993), and
assuming a normal temperature range for the seawater (20-30 °C), the limestone 520
values before calcite cementation range from -4.0 to -0.9 %.PDB.

Four isotope samples have §'20 values of -15.0 %oPDB or lower, and have either
been recrystallized and/or have contamination from a later sparry calcite event (Figure
38). Recrystallization and late sparry calcite events would be related to higher

temperature fluids which are reflected by the depleted 50 values.

Dolostone Interpretation

Diagenetic-planar dolomite occurs in two distributions in the Bootstrap limestone:
(1) as disseminated dolomite rhombs as described in the previous section, and (2) as
medium-crystalline replacement of limestone.

Dolomite is formed by the addition of Mg?* into CaCOs.

2CaCOj; + Mg®* = CaMg(CO3), + Ca®* (Tucker and Wright, 1990).

The formation of dolomite is not well understood mainly because ordered dolomite is
slow growing, making it difficult to precipitate in laboratory studies at surface
temperatures and one atmosphere pressure. The main discussions regarding
dolomitization models focus on the source of Mg?*. Seawater is Mg®*-rich, but kinetic

parameters prevent dolomite precipitation in normal marine environments (Tucker and



Figure 38: Isotopic plot with associated photomicrographs illustrating the textural
differences between samples with varying §'°0 values. Two samples (a) and (b) have
depleted values reflecting a late calcite event and recrystallization, respectively. The
third sample (c) is a typical calcite cemented, peloidal limestone. (a) D0-100-1,
358.57, Photomicrograph of destructive late calcite spar (stained pink); plane-
polarized light; (b) U17-M05-3, 291’, recrystallized limestone (stained pink)
surrounding a saddle dolomite rhomb, plane-polarized light; (c) Sample of Evans
(2000). Photomicrograph of peloidal grainstone with equant, blocky calcite cement,
plane-polarized light.
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Wright, 1990). There are several models for dolomitization, including a sabkha reflux
model, a seepage-reflux model, a marine-freshwater mixing zone model, a burial
compaction model and a hydrothermal convection model (Tucker and Wright, 1990).

Armstrong et al. (1998) suggested that the Bootstrap dolostones formed in either
an evaporative environment, from burial, or from hydrothermal fluids. Although sabkha
structures, such as algal mat laminations, rip-up clasts and intraformational
conglomerates, are recognized in limestone portions of the Bootstrap limestone in the
Ren area, the dolostones described below the sabkha structures were not likely the result
of sabkha-style dolomitization. The location of the dolomite below the sabkha structures
does not fit the description of dolomite occurring as a surficial deposit in supratidal
zones. The dolomite also does not have evidence of intertidal-supratidal facies or
features, such as evaporate pseudomorphs, although these are not always preserved
(Tucker and Wright, 1990). In addition, the limestone contains fossils such as corals and
bryozoans that represent an open-water environment, not a sabkha depositional
environment. The fabric of the dolomite with planar crystal boundaries and lack of high-
temperature minerals likewise suggest that a predominantly hydrothermal event was not
responsible for this dolomitization.

The burial compaction model is consistent with data from this study. In this
model, Mg?*-rich dolomitizing fluids are expelled from adjacent basinal mudrocks and
they flow through platform-margin limestones. The temperature of the limestone and
associated fluids increases with burial. Many dolomites form between 80-90 °C because
higher temperatures reduce kinetic inhibition for dolomitization (Usdowski, 1994).

Proximity of the mudrocks of the Silurian-Devonian Roberts Mountains Formation and
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the Devonian Popovich Formation relative to the platform fits the burial compaction
model as the source for the necessary Mg?*-rich fluids expelled by compaction (Figure
39). The Roberts Mountains and the Popovich Formations represent deeper water
deposition along the slope of the shelf. The Roberts Mountains Formation contains
laminated, silty limestone representing slope to base-of-slope to distal deposition whereas
the Popovich Formation contains debris flows and is dominated by calcareous mudstones
and represents deposition in an anoxic, deep-water environment (Furley, 2001).

In the study area, the elevation of the top of the dolostones recognized in the three
drill holes is fairly uniform (Figure 40). The percentage of dolomite in each drill hole
slowly increases with depth until complete replacement of the limestone is present. This
likely represents a diagenetic front whereby ascending fluids expelled from the basin
penetrated the Bootstrap limestone. The graditioanl increase of diagenetic dolomite
down section in the Bootstrap limestone probably resulted from increasing amount of
available fluid and increasing temperatures. The transition from limestone to complete
replacement by dolomite extends over a stratigraphic interval approximately 300 feet (92
m) in thickness. The apparent regional distribution of dolomite fits the predicted dolomite
pattern in the limestone unit in a burial compaction model (Machel, 2004, 2005). The
predicted pattern for burial dolomitization on a regional scale is a broad area of
dolomitization near the base of a limestone unit with a limited vertical extent. The
location of the dolostones at depth in the drill hole GA-65c, which intercepts the top and
bottom contact of the Bootstrap unit, supports that it is the base of the limestone that is
dolomitized. The continuation of the dolostone from three drill holes extending west of

Meikle to north of Meikle suggests a broad area of dolomitization. The burial model is
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Figure 39: The burial compaction model applied to the study area showing the
relationship of the mud-rich Roberts Mountain and Popovich Formations and
dolomitizing Mg®*-rich fluids relative to the Bootstrap limestone. The Roberts
Mountains and Popovich Formations are mud-rich deposits along the slope of the shelf
and in the adjacent basin and are the source of dolomitizing fluids. The fluids are
expelled by tectonic compression and dolomitize the base of the Bootstrap limestone
over a broad lateral area, but are limited vertically (modified from Tucker and Wright,
1990; Furley, 2001; Machel, 2005).



Figure 40. Schematic cross section with the top elevation of dolostone Bootstrap
in GA-65¢, U17-M05-3, and RU-8 relative to each other. The slow increase of
dolomite percentage with depth as well as the uniform, regional nature of the
dolostone horizon supports a burial compaction model for dolomitization. RU-8
has been interpreted as faulted by Armstrong et al. (1998), which may explain
why the top contact of the dolostone is higher than in the other two drill holes.
Upper and lower contacts of the Bootstrap limestone unit are not shown. Cross
section location shown in figure 9.

74



75

also supported by the uniform CL luminescence of the dolostones. This indicates the fluid
forming the dolomite had a relatively uniform chemical composition.

Isotopic data for diagenetic-planar dolomite samples show variations related to
the degree of replacement by dolomite (Figure 41). Samples of complete dolomite
replacement (Figure 41b) plot with the most enriched 5'°0 values, indicating a moderate
fluid temperature. Using the dolomite fractionation equation from Land (1983), the
average 5'®0 value for diagenetic-planar dolomite (-5.0 %oPDB), and assuming the fluid
composition near Devonian seawater values (0 to -1 %SMOW; Gao, 1993), the
temperature of the dolomitizing fluids was between about 61 °C and 55 °C. This moderate
fluid temperature supports a burial model (Muchez and Viaene, 1994).

Data for partial replacement of the limestone (Figure 41a) plot in the center of the
data range, reflecting a physical mix of calcite and dolomite. Samples that are actually
borderline saddle dolomite (or non-planar) have depleted §*°0 values, probably reflecting
a later hydrothermal fluid that is unrelated to the Mg?*-rich fluids released from

compaction of the adjacent basinal mudrocks.

Saddle and Ferroan Dolomite Interpretation

The majority of non-planar dolomite in the study area is saddle dolomite, which is
enriched in calcium with variable amounts of magnesium and iron; it typically forms
between temperatures of 80-150 °C (Radke and Mathis, 1980). The dolomite mineral
lattice has alternating layers of Ca and Mg cation sites with Ca substituting for Mg in the
Mg layers of the crystal lattice in the formation of saddle dolomite. This substitution

induces dislocations that form a warped lattice because Ca ions are larger than Mg ions.



Figure 41: Isotopic plot for planar dolomite values with photomicrographs
illustrating the fabric variations. Photomicrographs (a) and (b) show the difference
in 8*%0 values for partial replacement and complete replacement of limestone. The
photomicrograph for (c) illustrates the correlation between depleted §*20 values
and nonplanar fabric. (a) U17-M05-3, 785’, Photomicrograph of partial planar-e
dolomitization and calcite (stained pink); plane-polarized light; (b) RU-8, 3520°,
Photomicrograph of non-planar dolomite unrelated to burial dolomitization;
crossed-polarized light; (c) U17-MO5-3, 1380’, Photomicrograph of complete
replacement; plane-polarized light.
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This warped lattice results in the curved crystal shapes and sweeping extinction that are
characteristic of saddle dolomite (Searl, 1994). Saddle dolomite commonly occurs with
solid bitumen and elemental sulfur, has depleted carbon isotope ratios and is commonly
associated with Mississippi Valley-type Zn-Pb deposits (Machel, 2004). In the study area,
saddle dolomite occurs as a replacement, as a cavity-fill, in veins, and as scattered
rhombs.

Hydrocarbons and dissolved sulfate are thermochemically unstable together so
sulfate is reduced by hydrocarbons via thermochemical sulfate reduction (Machel, 2004).
The presence of dissolved sulfate inhibits the replacement reaction of calcite to dolomite
(Baker and Kastner, 1981; Morrow and Abercrombie, 1994). The sulfate reduction
reaction produces alkalinity, which promotes dolomitization and, with high temperatures,
can result in the formation of saddle dolomite (Lippman, 1973).

Saddle dolomite takes up Ca, but Fe is closer in size to Mg, so Fe is preferentially
partitioned into the dolomite lattice where available (Tucker and Wright, 1990; Searl,
1994). Where the amount of Fe partitioned into the dolomite lattice creates more than 2
mole % FeCOs, it is considered ferroan dolomite. Ferroan dolomite forms under reduced
conditions because only ferrous iron is partitioned into the carbonate lattice. This is
because ferrous iron has the same valence state as the Mg ion it is replacing. Ferroan
dolomite is relatively unstable and subject to dissolution (Purser et al., 1994); during
dissolution, Fe is liberated for the sulfidation that accompanies gold mineralization.

Saddle dolomite in this study varies in terms of degree of lattice distortion. The
samples with the greatest curved boundaries typically occur near Meikle and with high

concentrations of organic matter. This is related to the Paleozoic base-metal
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mineralization event and the role of hydrocarbons as discussed above. In the study area,
saddle dolomite differs by deposit area, with the non-planar saddle dolomite occurring
near Meikle and the planar-s to non-planar saddle dolomite occurring near Dee-Rossi.

Ferroan dolomite samples are similar to saddle dolomite sample in terms of
texture and fabric. This is expected because of the similar relationship between the Ca
and Fe ion substituting for Mg. Ferroan dolomite is not common in the drill holes
examined in this study but occurs more rarely than saddle dolomite. Its relative rarity
most likely reflects a lack of available Fe for formation of ferroan dolomite. The greatest
difference between the saddle and ferroan dolomite samples is the affiliation of ferroan
dolomite with high concentrations of quartz.

Cathodoluminescence images of saddle and ferroan samples are almost identical.
Both are moderately luminescent and commonly have brightly luminescent calcite
veining. The ferroan dolomite samples should have a dull luminescence, because
significant amounts of Fe tend to quench the luminescence. However, the lack of royal
blue stain on hand samples and moderate luminescence indicate Fe values are relatively
low in the samples collected for this study.

Cathodoluminescence analysis also reveals that the saddle and ferroan dolomite
samples have undergone significant dissolution. The unstable nature of these dolomites
from cation substitution makes them susceptible to dissolution. This is one process that
has created secondary porosity in the tight Bootstrap limestone unit.

Isotopic compositions of well-developed saddle dolomite samples are similar to
the samples that do not have well-developed curved boundaries or sweeping extinction

(Figure 42). The values that plot with depleted 5'*C represent samples from near Meikle,
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Figure 42: Isotopic data for saddle dolomite with photomicrographs show a relationship
between isotope values and fabric variations. The samples with more enriched §'°0 and
8*3C values have non-planar-s crystals and weak sweeping extinction; samples with
depleted isotopic values have increasing curved crystal boundaries and strongly
developed sweeping extinction. (a) U17-M05-3, 116°, Photomicrograph of non-planar
saddle dolomite with strong sweeping extinction, crossed-polarized light; (b) D2-100-2,
150.3’, Planar-s to non-planar, saddle dolomite with weak sweeping extinction; crossed-
polarized light.
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with higher concentrations of organic matter. There is an apparent relationship, based on
this isotopic data, that the boundaries of saddle dolomite are increasingly curved if
associated with hydrocarbon migration and base-metal mineralization, and this event is
more pronounced in the area of Meikle than Dee-Rossi.

Ferroan dolomite isotopic values plot closely to saddle dolomite values, but
display a trend toward lighter 5*C values that correlates to samples with more organic
matter (Figure 43). The trend reflects the observation that organic matter makes more Fe
available for substitution in the dolomite lattice and/or reduces sulfate, which encourages
dolomite formation. These depleted 8*3C ferroan dolomite samples are from near the
Meikle deposit where the hydrocarbon event and base-metal mineralization are clearly
recognized (Evans, 2000). Samples with depleted §*C values are also those that stain
bluer in hand sample, qualitatively indicating a higher Fe concentration. The differences
in 8"3C values for samples from Meikle and Dee-Rossi also suggest that the fluids
responsible for dolomitization in each area resulted from two separate events. The §°C
and 80 values for samples near Dee-Rossi are similar to the values for the limestone
wall rock, suggesting that the dolomitizing fluids had extensive interaction with the host
material. For saddle and ferroan dolomite, 520 values are depleted, reflecting
precipitation from higher temperature fluids.

The temperature at which saddle dolomite forms and the curved crystal
boundaries can both indicate that saddle dolomite is formed by hydrothermal processes.
Hydrothermal dolomite is traditionally defined as forming at a temperature 5-10 °C above
the temperature of surrounding host rocks (Stearns et al., 1935; White, 1957). Calculation

of the temperature of the dolomitizing fluids associated with the saddle, ferroan, and
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zebra dolomites using isotopic data yielded temperatures ranging from 89 °C to 166 °C.
Because the composition of the dolomitizing fluids is not known, a range of 5'20 values
from +2 to -2 %SMOW was assumed and the dolomite fractionation equation from Land
(1983) was used. Even with a wide range of values used, the data support that this
dolomitizing event was at least 20 °C warmer than the previously mentioned diagenetic-
planar dolomite event that occurred at a maximum of 61 °C. A 20 °C difference between
diagenetic and saddle, ferroan, and zebra dolomites clearly classifies these dolomites as
hydrothermal. This calculated temperature difference is supported by the (1) proximity
of saddle dolomite, ferroan dolomite, and zebra dolomite to igneous intrusions and faults;
(2) the curved crystal boundaries and sweeping extinction of these dolomite types, as well

as (3) the occurrence of associated sulfides.

Zebra Texture Dolomite Formation

The alternating white and gray bands of saddle dolomite and ferroan dolomite that
comprise the zebra textures in this study are similar in texture and fabric to the saddle and
ferroan dolomites described above. This indicates similar conditions for dolomitization of
all three types. Although samples in this study do not exhibit well-developed zebra
textures or stain a royal blue in hand sample, the finely-crystalline gray bands are inferred
to be ferroan dolomite based on work by Emsbo (1999), who found that the gray bands
have 5-10 wt. % FeO, while the white bands contained only 0.01 to 1 wt %FeQ. Dull
luminescence of the gray bands in CL also supports the conclusion that the gray bands
are ferroan. Cathodoluminescence observation also reveals that crystal edges of the white

bands are brightly luminescent and extend into void space, indicating that the dolomite
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crystals were growing into open space. Zebra textures are commonly associated with
dolostone host rock. However, the fact that zebra texture dolomite is in direct contact
with unaltered limestone, as well as recognition of the dolostone horizon near the base of
the Bootstrap unit, is evidence that formation of dolostones before zebra texture is not
necessary.

The pattern of alternating white and gray bands has several possible explanations,
including precipitation within karst cavities (Horton and De Voto, 1990), early diagenetic
environments (Fontboté and Amstutz, 1983), replacement of host rock (Wallace et al.,
1994; Leach et al., 1996; Nielsen et al., 1998), or the pattern may represent displacive
veins (Merino et al., 2006). Although karsting is common in the region and creates
secondary porosity at the upper contact of the Bootstrap limestone, zebra texture does not
seem to be filling karst cavities. Zebra texture is not formed early in the diagenetic
history either, as demonstrated by unaltered limestone in sharp contact with zebra texture,
and also because of the presence of saddle dolomite. Displacive veins may explain the
texture forming in this area, but the lack of associated stylolites with zebra texture and the
lack of evidence indicating that ferroan dolomite bands are veins discourage this model.

Data from this study support a model for zebra development involving
replacement of host rock and/or displacive veins. Replacement can mimic original
stratification of the host rock (Leach et al., 1996). However, this cannot be the case in the
massive Bootstrap limestone that has no bedding features. VVugs that are in the center of
the white bands indicate that the dolomite has filled into open pore space. Nielsen et al.
(1998) suggested a model where the gray bands represent replacement and the coarsely

crystalline white bands fill fractures related to tectonic compression. This model seems to
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be supported by a sample from drill hole Ex-21c, in which finely crystalline ferroan
dolomite with associated sulfides is cut by a coarsely crystalline, white saddle dolomite
vein (Figure 44). Zebra textures in this area suggest that ferroan dolomitization occurs
first and then undergoes saddle dolomite vein formation. Evans (2000) studied the zebra
texture that occurs at the Meikle deposit and observed that the zebra texture did not fit
current models, but neither did he suggest a model for their formation. The author did,
however, relate formation of zebra texture to the alteration of the limestone by
hydrothermal fluids associated with a base-metal mineralization event.

Isotopic data for samples displaying zebra textures correlate with the degree of
development of the zebra texture (Figure 45). Heavier 8*3C values are associated with a
poor development of the texture near Dee-Rossi. Samples with strong zebra texture from
near Meikle plot with lighter §*3C values (Figure 46). The depletion of §*C values again
correlates with a greater concentration of organic matter near Meikle, as well as
substitution of Fe and Ca into the dolomite lattice. Values for the zebra texture plot very
closely to the values for samples of saddle dolomite and ferroan dolomite, suggesting that
the fluids responsible for creating all three dolomite types were closely related.
Therefore, however zebra texture forms, it is not very different from saddle and ferroan

dolomitization that does not form bands.

Calcite Generations
There are at least two sparry calcite events that are not related to early diagenetic
events. The first event overprints original texture and/or replaces skeletal grains in the

limestone and is destroyed by hydrothermal precipitation of dolomite. The second is the
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Ferroan dolomite

Figure 44: Core of Ex-21c, 1024’ illustrating the cross-cutting relationship of a white
saddle dolomite vein across finely crystalline, grey ferroan dolomite. This relationship
may play a role in understanding how zebra textures form.
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Figure 45: Isotopic data for zebra dolomite correlates with the development of the
alternating bands and fabric. Reflecting data from saddle and ferroan dolomite samples,
photomicrograph (a) illustrates the relationship between depleted isotopic values and non-
planar crystal boundaries; photomicrograph (b) reflects the non-planar to planar-s
dolomite crystal associated with more enriched isotopic values. (a) Ex-21c 1065’,
Photomicrograph of poorly developed zebra; crossed-polarized light; (b) D0-100-1, 312°,
Photomicrograph of well-developed zebra texture; crossed-polarized light.
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[

Figure 46: Photomicrographs of (a) D0-100-1, 312’ and (b) Ex-21c, 1065’ coarsely-
crystalline white saddle dolomite bands in zebra texture emphasizing the difference in
samples without a hydrocarbon association (a) and a sample that does occur with
hydrocarbons (b). Sample (a) does not have as well as developed curved crystal
boundaries or sweeping extinction as sample (b).
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youngest hydrothermal event in the region and is related to the precipitation of coarsely
crystalline calcite into voids, and cross-cuts hydrothermal dolomites. This young
hydrothermal calcite also occurs in veins that clearly show zoning in CL. These veins can
stain purple indicating elevated Fe concentrations, and they exhibit dissolution fabrics
petrographically and in CL. The calcite events have a wide range of luminescence colors
varying from bright reddish to bright orange. The late hydrothermal calcite is also
responsible for calcification of saddle dolomite (dedolomitization). Most likely, the
material necessary for both calcite events comes from dissolution of the host rock; this
cycle of dissolution and precipitation continues to the present.

Isotopically, the early sparry cement is represented by moderate 5'%0 values
relative to early diagenetic calcite cement, and the strongly depleted §'%0 values (-20 to -
30 %o) represent the late void-filling sparry cement (Figure 47). The depleted values of
vein- and void-filling calcite cements represent a very high temperature fluid. Using the
Friedman and O’Neil (1977) calcite fractionation equation, assuming a depleted
meteoric-derived fluid of -10%. SMOW, and using the average of the second calcite
generation (-25%o. PDB or 5.1%. SMOW) yields a calculated temperature of 120 °C. This

calculated temperature suggests the water source is deeply convecting meteoric water.

Generations of Silica Deposition

There are several quartz-emplacement events recognized in this study, but the
timing of silicification of the limestone is not well constrained. Quartz ranges from fine-
grained to coarse-grained drusy crystals and occurs in veins as well as a destructive,

massive flooding event. Observations from this study corroborate the two quartz events



Figure 47: Isotopic data for the two recognized calcite generations with associated
photomicrographs. Sample (b) illustrates the destructive calcite veining common in
limestones and sample (a) illustrates the second calcite generation of late calcite veins
that post-date hydrothermal dolomitization and has severely deplete §*%0 values. (a)
D2-100-2, 266°, Late calcite vein (stains purple) and saddle dolomite; plane-polarized
light; (b) GA-65c, 3703, Crossing veins of late calcite (stained pink); crossed-polarized
light

92
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described by Evans (2000), with drusy quartz representing the later of the two. The quartz
seems to have an important relationship to ferroan dolomite, as ferroan dolomite occurs
with a high percentage of quartz. The majority of the timing relationships observed place
the silicification event after ferroan dolomitization. The ferroan dolomite that occurs near

quartz has dissolution features on the boundaries of crystals and in CL shows zoning.

Hydrocarbon Migration

Bitumen is concentrated along stylolites in massive limestone and in pore spaces
of dolomitized ooids; it is most evident in the samples from near Meikle, but is not
recognized near Dee-Rossi or South Arturo. Timing of hydrocarbon migration may not
be as well constrained as previously thought. Barnicoat et al. (2005) suggested
hydrocarbon migration in the Jerritt Canyon and Screamer (directly south of Meikle on
Barrick property) deposits occurred during Eocene mineralization, but Evans (2000) and
Emsbo and Koenig (2005) showed paragenetic relationships that constrain hydrocarbon

migration to the Paleozoic base-metal mineralization.

Paragenesis

Detailed petrographic analysis provides a paragenetic sequence with respect to
carbonate types and associated events (Figure 48). Early cementation of limestone is
evident by the fabric of the calcite cement seen in the limestone samples and represents
the first stage of diagenetic alteration of the Bootstrap limestone.

Diagenetic-planar dolomite predates and shows no genetic relationship to

hydrothermal dolomitization. Diagenetic-planar dolomite is cut by stylolites, indicating it
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formed during an early dolomitization event. Furthermore, stylolites in the limestone and
diagenetic-planar dolomite concentrate dolomite rhombs and bitumen. This relationship
places hydrocarbon migration before stylolitization.

The brecciated nature of the saddle, ferroan, and zebra texture dolomite places
clasts of these in sharp contact with limestone. These dolomites are destructive in nature,
and saddle dolomite veins cut stylolites. The lack of stylolites and the similarity in texture
and fabric of these three dolomite types constrains the timing of hydrothermal
dolomitization to post-stylolitization events. The isotopic data indicate that there are two
hydrothermal dolomitization events. The event associated with the saddle, ferroan, and
zebra dolomites at Meikle is constrained by relationships observed by Evans (2000) to a
Paleozoic base-metal mineralization event. The isotopic data for samples from near Dee-
Rossi are closely related to the data for the host limestone. At the Storm Deposit (Dee-
Rossi area), hydrothermal dolomite is associated with Jurassic igneous fragments in the
silica-sulfide breccia that hosts ore. There also is a later brecciation event that contains
Eocene basalt fragments and cross-cuts the limestone wall rock. The contact between the
limestone wall rock and breccia is marked by a ferroan dolomite selvage (Dobak et al.,
2002). In the Twin Creeks deposits, the iron for ferroan dolomite is interpreted to have a
basaltic source (Fortuna et al., 2003). These relationships, in combination with the
isotopic data, indicate a Jurassic to Tertiary hydrothermal dolomitization event at Dee-
Rossi that was related to igneous activity.

Quartz and calcite both formed repeatedly through time beginning with early
diagenesis. There are calcite events before and after hydrothermal dolomitization, and

there are several pulses of quartz deposition after hydrothermal dolomitization as well.
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Pattern of Dolomitization

The areal extent of the various carbonate types was difficult to map. The areas
with hydrothermal dolomites are clearly related to structures, breccia bodies, and igneous
intrusions. Structural complexity and brecciation causes hydrothermal dolomitization to
be recognized only in short, alternating intervals in the examined drill core. Figure 49
illustrates the distribution of limestone, dolostones, saddle dolomite, ferroan dolomite,
and zebra texture dolomite as related to key drill holes in each deposit area. Distribution
of the carbonate types is partially related to the original permeability of the limestone.
The low porosity and permeability of the limestone prevented regional replacement of the
limestone by hydrothermal dolomite. Dolomitizing fluids and late gold-bearing fluids
were focused by the fabric of the limestone created by deposition and early diagenesis,
and by secondary porosity in the limestone created by dissolution, brecciation, and
faulting.

In the adjacent basinal rock units of the Roberts Mountains, Popovich and Rodeo
Creek Formations, it can be assumed that the original porosity and permeability of the
host rock was greater than in the Bootstrap limestone because of their mud-rich
composition and debris flow sections. In the former units, dolomitizing fluids would have
not been impeded to the same degree, allowing for a larger area over which
dolomitization could occur. The age and the relationship of the units suggests that fluids
responsible for dolomitizing the Bootstrap limestone were probably the same as those
responsible for dolomitizing the basinal units.

For the hydrothermal dolomite types, it is predicted that if the Bootstrap had

contained higher porosity and permeability at the time of Paleozoic base-metal



I Iinntitrn]l
_?_“ "r'lme J

arv (I

" Limestone

I Planar Dolomite

" Saddle Dolomite

I Ferroan Dolomite

] Zebra texture Dolomite

Figure 49: Map showing the occurrences of different carbonate types in key drill
holes from each of the four deposits in this study. The map illustrates how
restrictive the occurrence of ferroan and zebra dolomite can be. The wedges of
each circle do not represent proportion of carbonate type recognized in the core,
merely presence of the carbonate type.
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mineralization, then the idealized dolomitization pattern away from a fluid pathways such
as a fault would be as follows: ferroan dolomite, zebra texture dolomite, saddle dolomite,
limestone (Figure 50). The reasoning for this pattern is that ferroan dolomite is more
easily formed than saddle dolomite so the dolomitizing fluid would become quickly
depleted in Fe as ferroan dolomite is formed. The depleted Fe-bearing fluid would then
form saddle dolomite. If zebra texture is formed by saddle dolomite veins in ferroan
dolomite, zebra texture would occur throughout ferroan dolomite. The saddle dolomite
would become increasingly planar-s as the temperature of the fluid cooled and reached
the farthest extent possible from the fluid pathway. This pattern would apply to the
Jurassic to Tertiary hydrothermal dolomitization event as well, although the extent of
dolomitization would be more limited than the dolomitization associated with the
Paleozoic event. As demonstrated by samples in this study, diagenetic-planar dolomite is
not recognized in areas with hydrothermal dolomite. No cross-cutting observations were
made of the planar and hydrothermal dolomites, but the regional distribution of the
diagenetic-planar dolomite indicates that these events were probably not time equivalent.
The lack of diagenetic-planar dolomite in areas of hydrothermal dolomitization suggests
that as the hydrothermal dolomitizing fluids moved through the host limestone, they must
have experienced a decrease in the availability of Mg?* before the fluids cooled to
temperatures associated with diagenetic-planar dolomite formation.

The average isotopic values for each carbonate type show the relationships
between all the carbonate types (Figure 51). The difference between limestone and
dolomite falls within the anticipated 2 to 4%. 8*%0 enrichment described by Land (1980)

and McKenzie (1984). Carbonate phases with negative §*3C values reflect carbon derived
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Figure 51: Combined isotopic data for all carbonate types. The values plotted are the
average end-member values for each type with the range of values marked by black lines
extending from the average value. Saddle dolomite, ferroan dolomite, and zebra texture
dolomite are separated into the average values for samples near Meikle and Dee-Rossi.
The data show the burial trend from limestone to planar dolomite (yellow arrow) and the
differences in 5'2C values for samples from Dee-Rossi to samples from near Meikle
(green arrow). The burial trend fits the anticipated 2 to 4 %o 5'°0 enrichment predicted by
Land (1980) and McKenzie (1982) for dolomite replacement of limestone. The trend from
Dee-Rossi area to Meikle reflects depletion of §*°C values related to decomposition of
organic matter and probably represents two separate dolomitization events.
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from decomposition of organic matter, whereas normal marine values are 0 to 3%o 8°C
(Hoefs, 1997). On the plot of isotopic values, saddle dolomite, ferroan dolomite, and
zebra dolomite are divided into two groups: samples near Dee-Rossi and samples near
Meikle. This clearly shows the depletion of *3C values in the area of Meikle. This
reflects the high proportion of organic matter observed in that area. The organic matter is
available for sulfate reduction, which, in turn, can drive dolomitization. The presence of
organic matter, therefore, can influence the amount and/or ease of ferroan dolomitization.
Ferroan dolomite, in turn, provides the Fe that reacts with sulfur in the gold-bearing
fluids to form pyrite. The removal of reduced sulfur from the mineralizing fluid causes
gold to deposit as the dissolved gold bisulfide complexes become unstable (Fortuna et al.,
2003). Depleted §*3C values represent the Paleozoic base-metal event that is not well-
developed in the area of Dee-Rossi. Therefore, the base-metal event influences the
availability of Fe which partially controls the grade of gold deposits and it can be
estimated that areas that experience the base-metal event will have greater potential to

host large gold deposits
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SUMMARY AND CONCLUSIONS

The influence of different carbonate rock types on gold deposition in the
Bootstrap limestone began with early diagenesis. Early cementation of the limestone
decreased both the porosity and permeability, which created a unit that restricted fluid
flow. Dolomitizing fluids were active at least three times. The first dolomitization event
was due to a relatively low-temperature fluid (55 to 60°C) related to burial and
compaction that dolomitized lower portions of the Bootstrap limestone on a regional
scale. The second dolomitizing fluids were hydrothermal in nature and they directly
dolomitized limestone near areas of increased porosity and permeability, such as faults
and/or breccias. These fluids were responsible for a Paleozoic base-metal event. The third
dolomitizing event is a hydrothermal fluid associated with Jurassic to Tertiary igneous
activity in the region.

Separation of these events is possible from stable isotopic data. Values for the
limestone and early, diagenetic-planar dolomite support a burial-compaction model for
dolomite formation. Isotopic values for saddle dolomite, ferroan dolomite, and zebra
texture dolomite samples are similar, indicating a similar fluid compositions and
temperatures for the formation of all three. The §'°C values for saddle, ferroan, zebra
texture dolomite samples near Dee-Rossi are similar and represent dolomitization
associated with igneous activity.

The isotopic data, in combination with petrographic descriptions, also indicate a
clear relationship at Meikle between hydrocarbons, well-developed hydrothermal
dolomites, and a Paleozoic base-metal event. This relationship reflects the positive

influence hydrocarbons and base-metal mineralization have on dolomitization. The
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increase in dolomitization may also play a role in the size of the gold deposits with
greater amounts of gold precipitation possible in areas that are more completely
dolomitized. This is related to the concept that the higher the amount of Fe that is
available for ferroan dolomite formation, the more it substitutes for Mg and distorts the
crystal lattice; thus, there is more Fe available for sulfidation and resulting gold
deposition. The extent of the Paleozoic base-metal related dolomitization is greater than
the igneous-related dolomitization.

The data collected in this study, along with known properties of dolomitization,
reveal a possible dolomitization pattern for Carlin-type gold deposits in the Bootstrap
limestone or equivalent massive limestone units. Observations of the various
hydrothermal dolomite phases indicate an outward change from the fluid source (a fault,
fracture, or breccia) of ferroan dolomite to zebra texture dolomite to saddle dolomite, and
finally to limestone.

Exploration strategies for Carlin-type gold deposits hosted in massive limestone
should include considerations of the possible dolomitization methods discussed in this
study. Diagenetic-planar dolomite has the largest distribution, but has no correlation to
later gold mineralization. Saddle, ferroan, and zebra texture dolomites can all host gold
mineralization. However, it is the hydrothermal dolomites associated with the Paleozoic
base-metal event that are the most favorable hosts for gold mineralization because they
can contain higher concentrations of Fe for later sulfidation than the hydrothermal
dolomite associated with Jurassic to Tertiary igneous events. The presence of well-
developed zebra dolomite is the best way to recognize the Paleozoic event in core.

Otherwise, the degree of curvature of the dolomite crystals may separate Paleozoic and
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Jurassic to Tertiary events, with the more curved boundaries representing the Paleozoic
event. Isotopic values can also be a useful tool in identifying the dolomite events. The
characteristics most useful in identifying the different dolomite types in core, thin-
section, and isotopically are listed in Table 2. The Paleozoic dolomites will be depleted in
8*3C and the Jurassic to Tertiary dolomites will have values similar to the limestone host

rock.
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Table 2: This table summarizes the three generations of dolomite: diagenetic-planar
dolomite, Paleozoic hydrothermal dolomite, and Jurassic-Tertiary hydrothermal dolomite.
Described and illustrated by photos are the most common properties used for recognizing
each dolomite in core and thin-section as well as average isotopic values. The potential
for each dolomite type as a host for gold mineralization is also listed with deposit
examples.
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APPENDIX A -GEOLOGIC MAP

Appendix A is located on the CD and contains the GIS files for the complete

geologic map of the northern Carlin trend (Moore, 2002).
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APPENDIX B--DATA

Appendix B is a spread sheet of the log data collected during this study. The
spread sheet is divided into B.1 and B.2. Appendix B.1 contains drill holes that were
examined only in the available logs and photos. Appendix B.2 consists of the drill holes

containing core that was logged in detail for this study.
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APPENDIX C—CORE LOGS

Appendix C is representative core logs constructed for the drill holes that were
used in this study. The logs are generalized to show lithology, overall descriptions, and

list samples taken for petrographic and isotopic analysis.



Appendix C.4: BD-52¢

Depth (ft) Lith Description
1210 O
Dv Silicified breccia, pyrite is present, some
A A desilicification, box-work vugs until 1238’
<
12201 2
N
DA
<
1230—<] A
N
DA
<
1240
Silicified dolomite with pervasive calcite veining
contact with limestone below is gradual
I
I
I
I
I
I
I
1300 _ . ) _ .
1302’Medium gray limestone with late calcite veining,
dark fractures, occasional stylolites, end logging at
1340’
1310 Thin sections prepared from samples taken
at 1222’; 1238.2°; 1317’
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Appendix C.3: EX-21C

Depth (ft)

Lith

Description

940—

950—

1270

1280 —

Medium gray dolomite with light red oxide, thin
stylolites; core is poorly preserved and occurs in
broken, small pieces Occasional monzonite porphyry
intrusions about 10 ft thick

Zebra textures begins at 959 as small occurrences,
dolomite and calcite veining of ferroan dolomite begins
at 1013’ as well as decalcification; At 1065’ solid zebra
dolomite with occasional areas of silicified breccia and
calcite veining. Ended logging at 1280’

Core missing 1075-11107; 140-1250°; 1255-
1259’; zebra dolomite heavily sampled by
previous studies; TD 2046’

Thin sections prepared from samples taken
at 1024’; 1065’; 1584’; 1624; 1845’
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Appendix C.1: U17-M05-3

Depth (ft) Lith Description
0 —
ZEA
>
10
<
Massive, medium to light gray limestone with
occasional preserved crinoids and ooids; common area
of brecciation; very common calcite veining and filling
I of vugs; occasional monzonite porphyry intrusion;
: occasional stylolites
I
I
I
I
I
I
I
I
I
I
780 —
I
I
I
790 —
785’ Medium gray dolomite with rare preservation of
original ooids, occasional stylolites and fractures
800 —
Thin sections prepared from samples taken at 6, 116,
122.5, 255, 291.9, 382.9, 397.9, 405.8, 484.3, 580.9,
656.5, 732.3, 785, 820.5, 864, 898.7, 974.85, 1144,
810 1146.5, 1380.35’, 1065’, 1584°, 1624, and 1845’
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Appendix C.2: GA-65c

Depth (ft) Lith Description
1620
Massive, medium to light gray limestone with
1630 occasional stylolites and common calcite veining
|
|
1
|
|
1
|
|
1
|
|
1
|
3040— !
3044’ Medium gray dolomite with occasional stylolites,
calcite veining and common areas of brecciation—ends
at 3718; TD 3748’
3060
Thin sections prepared from samples taken at 1605’,
1825, 2138’, 2314.5’, 3081’, 3511.6°, 3650’ and
306 — 3703.7°
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Appendix C.5: DO-100-1

Depth (ft)

Lith

Description

O_

50

A
<]V

A<]>A
V >
YANWAN

60 —

100 —

110 —

340 —

350 —

Silicified breccia with medium gray sub-angular
dolomite clasts, dark gray matrix, vuggy until 48.5’

Silicified, white dolomite with pervasive fracturing (fraction
of a mm wide); stains purple; ends at 60’

Silicified gray breccia with occasional white dolomite
areas until 103’

103’ pinky-tan dolomite with pervasive fractures with
sooty fill, low quartz content, occasional stylolites;
occasional pyrite-rich areas

140’ dolomite is more gray to tan in color and more
silicified, areas of brecciation, possible cavity fill, and
sulfides occurring with the dark breccia

209’ Medium gray dolomite, late calcite veining, 231’ to
247’ poor recovery of core, pyrite veinlets followed by
massive gray dolomite until 258.5° where limestone begins
to appear in sections 1 to 2 feet long and alternating with
the dolomite

Poorly developed zebra texture at 312° with dolomite and
limestone immediately below (starting at 313”) ; all
limestone at 344.3’

Thin sections prepared from samples taken at 109’, 219.5’,
312’, and 258.5’
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APPENDIX D—STABLE ISOTOPE DATA

Appendix D consists of a spread sheet containing the 5"*C and 80 isotopic data

collected in this study.
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