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ABSTRACT 

This research investigates the frequent rockfall events in DeBeque Canyon along I-70. It uses 

the multi-epoch photogrammetric monitoring datasets collected by the Colorado Department of 

Transportation between 2014 and 2021. The study aims to assess the effectiveness of the direct 

geo-referencing approach in creating large-scale photogrammetric models without ground 

control points (GCPs). It also aims to develop a workflow for creating a regional-scale rockfall 

inventory and characterize the spatial variability of rockfall characteristics. Furthermore, the 

research seeks to evaluate the impact of pre-existing rockmass structures on rockfall frequencies, 

sizes, and shapes. 

Comparison of the developed photogrammetric point clouds created using a direct geo-

referencing approach to lidar surveys revealed a good matching precision. The precision was as 

good as 0.059 m in terms of root-mean-squared (RMS) difference metric. For efficient handling 

of large-scale, multi-epoch models, the study implemented construction of photogrammetric 

models for only the first and last acquisition. The corresponding image datasets for intermediate 

acquisitions were manually reviewed. This approach enabled rapid identification of the temporal 

occurrence of each rockfall. Segmenting photogrammetric models into smaller segments 

minimized "bowl-effect" distortion and reduced processing time. 

The study revealed that rockfall activity vary along DeBeque Canyon corresponding to 

changes in lithologies, rockmass conditions, and the presence of oversteepened areas. Increased 

rockfall activity can be attributed to factors such as prevalence of weaker rockmasses, increased 

degree of fracturing, human interference, and presence of steeper slopes. The temporal rockfall 

rates increase in years with a higher number of days with snow thickness exceeding 1 inch. The 

study found that pre-existing rockmass structures influenced rockfall failure mechanisms, shapes, 

and scaling exponent of the power-law equation. The scaling exponents of the magnitude-

cumulative-frequency (MCF) curves were found to be impacted mainly by variations in lithology 

and degree of fracturing. The expected range of block volumes obtained based on structural 

mapping was larger than the actual rockfall volumes. This discrepancy occurred due to model 

resolution limitations for structural mapping. It also resulted from the occurrence of smaller 

rockfalls due to intact rock failure between mapped joints and rockfalls not bounded by joint 

sets. 
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CHAPTER 1  INTRODUCTION 

In recent decades, the world has experienced a rapid increase in population from 2.5 billion in 

1950 to an estimated 8 billion in 2022 (United Nations' World Population Prospects, 2022). To 

accommodate this enormous growth, more people have moved and settled in remote 

mountainous areas (Porter & Orombelli, 1981). However, this proximity to mountainous areas 

has made transportation corridors and infrastructures such as highways, railways, bridges, and 

buildings vulnerable to the danger posed by rockfalls (Bunce et al., 1997; Brawner & Wyllie, 

1976; Budetta & Santo, 1994). Rockfalls threaten human lives, cause delays in critical services, 

and disrupt travel. Therefore, conducting research on rockfalls is essential for understanding the 

characteristics and causes of this phenomenon, enabling the development of adequate mitigation 

measures to reduce the associated risk. 

A rockfall is defined as a detached individual rock block or cluster of blocks that travel 

rapidly downslope by free fall, bouncing, or rolling (Varnes, 1978; Cruden & Varnes, 1996). 

Detachment occurs when a block loses contact with bedrock and releases or fails by sliding or 

toppling failure (Hantz et al., 2021). Small-scale rockfalls are the most frequent mass-wasting 

events in high-density urban areas, characterized by unpredictable occurrence and extremely 

high velocity of movement downslope (Hungr et al., 2005). Rockfalls can be triggered by many 

factors, such as volcanic eruptions, earthquakes, and meteorological factors such as precipitation 

and freeze-thaw cycles (Keefer, 1984; Hale et al., 2009; Allen & Huggel, 2013; Delonca et al., 

2014).  

The detailed investigation of rockfalls requires collecting detailed information on their rates, 

spatial distribution, and geomorphological characteristics. Various monitoring techniques have 

been employed for this purpose in the last few decades. The aim of this thesis is to highlight the 

importance of the photogrammetry Structure-from-Motion (SfM) technique in identifying and 

analyzing rockfalls in large-scale rock slopes. To achieve this objective, Unmanned Aerial 

Vehicles (UAVs) were employed to collect high-resolution aerial datasets of rockfall events, and 

an optimized workflow for processing these datasets was developed. Several algorithms were 

utilized for automated processing and analysis of the collected rockfall datasets. The resulting 

inventory and developed algorithms will enable enhanced study of rockfall characteristics and 

patterns on a large scale. It will also contribute to understanding the geological contribution to 
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rockfall occurrences. Furthermore, the developed workflow in this thesis will contribute to 

improved ease of application of SfM in rockfall detection. 

SfM is an effective technique for constructing three-dimensional (3D) models from two-

dimensional (2D) images. Capturing images for the target scene from various viewpoints enables 

algorithms to calculate the 3D positions of the features detected in the images. SfM is cost-

effective and has the advantage of covering large-scale outcrops efficiently, producing high-

resolution models comparable in accuracy to lidar. Moreover, the availability of numerous 

software packages, such as Metashape and Pix4d, which automate most of the SfM process make 

it an accessible approach for handling large datasets. Thanks to its wide range of applications, 

high precision, and affordability, SfM has become a widely accepted tool in geoscience. 

The application of UAVs has become increasingly common for studying rockfall hazards, 

particularly in areas with high, inaccessible, and steep slopes. In these locations, conducting 

traditional field surveys and mapping can be hazardous (Wang et al., 2022; Nesbit et al., 2022). 

The ability of UAVs to fly at different elevations and imaging ranges provides several 

advantages over terrestrial photogrammetry. These include capturing different perspectives of 

the scene and reducing occlusion of objects. The cost-effectiveness, increased safety, and ease of 

application of UAVs allow for repeated surveying of large-scale, steep slopes to be conducted 

over short periods. 

The thesis focuses on rockfalls that regularly occur at the rock slopes of DeBeque Canyon 

along Interstate Highway 70 (I-70) in western Colorado, USA. The I-70 highway is a critical 

transportation route connecting Grand Junction's urban areas to the Denver area (Figure 1.1). 

Due to the high traffic volumes and high speeds on the road, cars in this area are vulnerable to 

rockfalls, which can result in injuries and fatalities. In response, the Colorado Department of 

Transportation (CDOT) has conducted a multi-epoch photogrammetric monitoring campaign to 

cover the area of DeBeque Canyon using UAVs. The monitoring campaign was carried out from 

2014 to 2021, aiming to develop a rockfall database to understand the rockfall behaviors, 

processes, and frequencies along the Canyon. A large-scale rockfall inventory developed from 

long-term monitoring datasets is essential for understanding the spatial variability of rockfall 

characteristics. It also helps in understanding how slopes deteriorate over time along this critical 
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highway section. This information is crucial for evaluating the expected rockfall volumes and 

developing mitigation measures. 

 

Figure 1.1 Location map for the I-70 Highway section from Grand Junction to the Denver 

metropolitan area showing the study site at DeBeque Canyon. 

1.1 Structure from Motion Photogrammetry 

Photogrammetry is a remote sensing technology capable of building a 3D model of an object 

by processing photographs taken of the object at different angles and ranges (Schenk, 2005). The 

perception of human eyes for depths depends on binocular vision, where each eye captures a 

separate image for an object. The brain then converges these images into a single 3D view. 

Based on that, the stereoscope device was used to create a depth illusion for eyes by presenting 

two different images to each eye separately. This gives each eye (left and right) a different view 

of the same object in two images, within overlapping portions, creating a 3D effect with a sense 

of depth. This analog photogrammetry was applied for decades to gather information from pairs 

of overlapping vertical aerial photos. Several measurements were obtained from the 3D view, 
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including distances, elevations, and scales. However, this manual method becomes more time-

consuming when applied to larger scales and more images. 

In the 1980s, digital photogrammetry was introduced. With digital photogrammetry, 

measurements can be made on many images quickly and with less effort. This advancement 

allowed for Digital Elevation Models (DEMs) to be produced for the imaged surfaces based on 

the calculated elevations. However, manual input was still needed for the image location, camera 

orientation, and manual registration of image pixels using Ground Control Points (GCPs) before 

establishing any measurements.  

As technology progressed, digital photogrammetry took advantage of increased computer 

power and the development of sophisticated algorithms leading to the emergence of Structure-

from-Motion (SfM) photogrammetry. SfM detects the camera position and orientation without 

needing GCPs of known coordinates (Westoby et al., 2012). The general process of SfM (Figure 

1.2), typically starts with detecting and matching features in multiple images and obtaining 

camera positions. Subsequent steps involve generating a tie point cloud, geo-referencing, 

building densified point clouds, and mesh generation. (Westoby et al., 2012; Rodgers et al., 

2022). This technique enables more automated acquisition of 3D data than traditional 

photogrammetry techniques. 

SfM depends on computer vision techniques to build 3D models from digital images. The 

SfM process begins by identifying distinctive features in each photo, such as points or lines, and 

matching these features between all images (Snavely et al., 2008). The match is determined by 

comparing the surrounding elements around that feature in all images until finding enough 

correspondence. These correspondences are then used to calculate the camera positions and 

orientations by solving the relative positions of the camera (Hartley & Zisserman, 2003). Adding 

more images to the process will improve the matching and accuracy of camera positions and 

orientations. Once camera positions and orientations are obtained, the tie point cloud can be 

created, which represents the primary 3D model of the scene. Finally, the Multi-view Stereo 

algorithm (MVS) is employed to densify the tie point clouds producing a more detailed point 

cloud or 3D mesh (Rose et al., 2015). 

The SfM workflow consists of a set of progressively developed algorithms, as no single 

algorithm can do all these steps alone (Furukawa & Hernández, 2015). The detection and 
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extraction of distinctive features in images are accomplished using the Scale-Invariant Feature 

Transform (SIFT) algorithm introduced by Lowe (2004). SIFT is the most popular and applied 

algorithm for object recognition and description (Nguyen et al., 2014). The SIFT algorithm 

identifies characteristic key points, under variable scales, rotation, distortion, and illumination 

conditions (Lowe, 2004). 

 

Figure 1.2 The general SfM workflow, adapted from Rodgers et al. (2022). 
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Once the key points in the images are detected and described, the feature descriptor vectors 

are compared to find the best match across images. This comparison and matching step can be 

performed using the approximate nearest neighbor matching algorithm (Arya et al., 1998; Brown 

& Lowe, 2005). The detected correspondences from this step provide an initial estimation for the 

camera position and orientation. This estimation is refined through iterative non-linear least-

squares optimization algorithms to obtain more accurate camera poses (Westoby et al., 2012). 

The precision of the camera pose estimation directly affects the accuracy of the subsequent 

reconstruction of the 3D scene. 

After identifying correspondences and camera pose, the 3D reconstruction of the scene can be 

accomplished. This process can be broken down into two main steps: triangulation and bundle 

adjustment. In the initial triangulation step, the 3D positions of the key points are calculated, and 

the initial 3D model is constructed (Wöhler, 2012). The bundle adjustment step follows, where 

the initial 3D positions are refined by iterative adjustments to reduce the reprojection error of the 

3D points in the image plane (Zhang et al., 2006). The optimal outcome of the bundle adjustment 

is a tie/sparse point cloud (Figure 1.3B) that represents the fine-tuned 3D positions of the key 

points (Westoby et al., 2012). 

After bundle adjustment, the MVS algorithm produces a densified point cloud for the 3D 

scene (Seitz et al., 2006). This generates depth maps for the images, with each pixel displaying a 

depth value relative to the distance from the camera (Fuhrmann et al., 2014). After filtering and 

removing outliers from the depth maps, they are used to generate high-quality 3D meshes, digital 

terrain models, and dense point clouds, as shown in Figure 1.3C (Vollgger et al., 2016).  

The resulting SfM model is referenced to an arbitrary or local coordinate system without real-

world scale. Therefore, geo-referencing brings the 3D model into a standard coordinate system, 

typically using GCPs. These markers can be identified in the photos, and their coordinates can be 

measured using surveying tools to provide real-world scale and orientation for the model (Sanz-

Ablanedo et al., 2018). The accuracy of the resulting 3D models typically increases when an 

increased number of GCPs is used (Harwin et al., 2015; Eltner & Schneider, 2015; Hugenholtz et 

al., 2016; Agüera-Vega et al., 2017).  

GCPs should be placed at the edges of the surveyed scene and distributed evenly across the 

entire area to achieve optimal geo-referencing. However, distributing GCPs along slopes can be 
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time-consuming, labor-intensive, and pose a high risk, especially in steep rock slopes. Therefore, 

a direct geo-referencing approach can be used, in which the coordinates of the camera recorded 

during photo-taking are used directly (Sanz-Ablanedo et al., 2018). This approach saves the 

effort and cost associated with installing and processing GCPs, reducing the processing time. 

 

Figure 1.3 Example of the SfM process results for a rock slope in DeBeque Canyon along I-

70. A) Photograph of the natural scene, B) The tie point cloud, and C) The final densified point 

cloud. 
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1.2 Literature Review and Research Needs 

This section will present a literature review on the application of Structure from Motion in 

geoscience and the areas that require further research. Additionally, it will provide a literature 

review on the structural controls on rockfalls and the utilized methods for assessment. 

1.2.1 Geoscience Applications of Structure from Motion 

While the basic concept of SfM dates back to 1979, publications on its application in 

geosciences emerged in 2010 (Abellan et al., 2016). SfM has become increasingly valuable to 

geoscientists due to its capability to produce high-resolution and precise digital elevation models 

(DEMs). These models enable them to study changes in topographic and geological features with 

a higher level of accuracy (James & Robson, 2012; Fonstad et al., 2013). The availability of 

software capable of automating the SfM processes motivated researchers to collect and work on 

larger quantities of data and analyze earth processes over a more extended period (Nadal-

Romero et al., 2015; Eltner et al., 2016). Furthermore, SfM can also be combined with other 3D 

data acquisition techniques, such as Terrestrial Laser Scanning (TLS) and Infrared 

Thermography to produce even more precise datasets (Warrick et al., 2019; Lim et al., 2005; 

Mineo et al., 2022). 

Given the many strengths of SfM, it has been used in various areas of geoscience to 

investigate a wide range of research questions. For instance, SfM has been implemented to map 

erosion and sediment transportation (d’Oleire-Oltmanns et al., 2012; Pikelj et al., 2015), study 

volcanic areas (Kolzenburg et al., 2016), monitor glacial processes (Piermattei et al., 2016; Ryan 

et al., 2015), and track groundwater flow (Ikkala et al., 2022). It has also been applied to assess 

landslide movements (Peppa et al., 2019; Warrick et al., 2019), analyze rockmass behavior 

(Mineo et al., 2022), and monitor coastal erosion (James & Robson, 2012; Westoby et al., 2020).  

Monitoring rock slopes for rockfall detection requires high-resolution databases that enable 

the detection of minor rockfalls (Dorren, 2003). Recent advances in data acquisition and 

monitoring techniques have enabled the collection of high spatial and temporal resolution 

datasets (Rosser & Massey, 2022). These techniques include ground-based interferometric 

synthetic-aperture radar (GB-InSAR) (e.g. Zhang et al., 2018), real-aperture radar (RAR) (e.g. 

Werner et al., 2008), Satellite InSAR (e.g. Rott et al., 2002), lidar (e.g. Weidner & Walton, 

https://scholar.google.com/citations?user=Zc7JoogAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=txJ6gzcAAAAJ&hl=en&oi=sra
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2021), robotic total station (e.g. Glueer et al., 2021), UAV-photogrammetry (e.g. Sarro et al., 

2018; Graber & Santi, 2022a), and thermal imaging (e.g. Teza et al., 2015).  

SfM-photogrammetry is effective for monitoring rock slopes and detecting rockfalls (Van 

Veen et al., 2017; Gigli et al., 2022). There has been a noticeable increase in published research 

using SfM-photogrammetry in slope monitoring in recent years (Guerin et al., 2020; Giacomini 

et al., 2020; Rossi et al., 2021). UAV-SfM photogrammetry relies on remote data acquisition, 

where the data collection is conducted using high-resolution cameras mounted on UAVs. SfM 

offers faster deployment, relatively lower cost, and better color representation compared to other 

techniques such as aerial and terrestrial laser scanning (Table 1.1). It can also monitor changes 

over large-scale areas with a high spatial resolution, similar to laser scanning (Lato et al., 2015).  

The application of UAVs in rockfall investigation has been widely accepted for different 

aspects of the rockfall hazards assessment (Sarro et al., 2018; Saroglou et al., 2018). UAVs have 

been used to build 3D models for evaluating rockfall risk during emergencies (Giordan et al., 

2015). This approach can be applied to study rockfall trajectories by capturing images of slopes 

from different altitudes. It helps in obtaining high-resolution topographic surveys and identifying 

rockfall source areas (Saroglou et al., 2018).  

Change detection on point clouds from different epochs can help to identify the spatial and 

temporal occurrences of rockfalls and quantify their frequencies, sizes, and shapes. The precision 

of change detection for rockfall was improved by the development of the Multi-Scale Model-to-

Model Cloud Comparison (M3C2) algorithm by Lague et al. (2013). The M3C2 algorithm has 

proven effective in identifying changes across complex terrains. The M3C2 algorithm was first 

applied for change detection along slopes by Stumpf et al. (2015). They endorsed its accuracy for 

change detection applications and volume estimation. It is currently the most widely applied 

approach for rockfall change detection (DiFrancesco et al., 2020; Weidner & Walton, 2021; 

Schovanec et al., 2021). 
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Table 1.1 Comparison between Photogrammetry and Aerial/Terrestrial laser scanning 

(ALS/TLS), adapted from Lato et al. (2015), with lower numbers indicating better performance. 

Highlighted cells indicate where photogrammetry performed better than or comparably to laser 

scanning. 

Task TLS Photogrammetry ALS 

Remote site accessibility 3 2 1 

Speed of deployment 2 1 2 

Ability to map small-scale discrete changes 1 2 3 

Ability to map large-scale discrete changes 1 1 1 

Ease of data collection 1 2 3 

Spatial resolution 1 1 2 

Map small-scale discontinuity features 1 2 3 

Map large-scale discontinuity features 1 1 1 

Full-color 3D data 2 1 3 

Georeferenced spatial accuracy 1 2 3 

Individual point accuracy 1 2 3 

Portability of equipment 2 1 3 

Affordability (small spatial footprint) 2 1 3 

Map vertical topographic features 1 1 2 

Map horizontal topographic features 2 2 1 

 

Owing to the great potential of SfM in slope monitoring applications, researchers have been 

working to provide practical workflows for the efficient employment of SfM. These workflows 

include the acquisition and processing of photo datasets and the 3D scene reconstruction through 

the detection of rockfall locations and volume calculation (Westoby et al., 2012; Kromer et al., 

2019; Graber & Santi, 2022a). However, most of these workflows were designed for small-scale 

datasets and require further development and adjustments to enable their implementation on 

large-scale slopes. 

The application of direct geo-referencing in photogrammetry has been introduced before. 

Efforts have been made to enhance its accuracy compared to using GCPs for traditional geo-

referencing. One of the earliest attempts to apply direct geo-referencing in UAV 

photogrammetry was conducted by Gabrlik (2015). However, the accuracy was unsatisfactory 

due to inaccuracies in camera parameter calculations. These inaccuracies caused errors of several 

tens of centimeters horizontally and even larger errors vertically. Rabah et al. (2018) achieved 
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increased horizontal and vertical accuracy (by 0.034 m and 0.029 m, respectively) by using an 

RTK-GNSS receiver onboard the UAV for positioning the collected images. 

Peppa et al. (2019) proposed a geo-referencing technique that eliminates the use of GCPs in 

multi-epoch datasets. They searched for fixed and stable features “pseudo-GCPs” between 

photos, which can be used as GCPs in geo-referencing the 3D model, given the overall stability 

of the site. Kromer et al. (2019) provided a SfM workflow for model development and change 

detection that does not require GCPs. They found that similar accuracy could be obtained if the 

internal camera parameters were fixed over time (when using a fixed camera system). Recently, 

different approaches were developed for utilizing direct geo-referencing in photogrammetry. 

These approaches depend on the recorded data from the GPS/GNSS receivers installed on the 

UAVs and the subsequent processing steps. Teppati et al. (2020) compared five different 

approaches for recording coordinates using GPS/GNSS and concluded that direct geo-

referencing could obtain an accuracy of a few centimeters without using GCPs. Nesbit et al. 

(2022) found that the precision of photogrammetric models using direct geo-referencing 

increases by using different imaging angles. The obtained precision is similar to models utilizing 

GCPs. 

SfM-photogrammetry has been utilized to monitor rock slopes and characterize rockfalls 

across various spatial scales and over variable time periods. The applications of SfM in small-

scale rock slopes aim to quantify rockfall occurrences, study rockfall dynamics, evaluate rockfall 

hazards, and map rockmass discontinuities (Giacomini et al., 2020; Papathanassiou et al., 

2020; Hayakawa & Obanawa, 2020; Gómez-Gutiérrez & Gonçalves, 2020; Gallo et al., 2021; 

Graber & Santi, 2022a). Most of the existing research on rockfall is focused on monitoring 

small-scale slopes. However, in many cases it is necessary to investigate rockfall occurrences 

over long distances such as highways and coastal cliffs. 

Giacomini et al. (2020) utilized a system of two digital cameras to monitor a 70 m long, 

highly fractured, open pit slope in Australia for seven weeks. The study detected many rockfalls 

(up to 650 events) and small volumes (up to 10-4 m3) with stable Magnitude-Cumulative-

Frequency (MCF) relationships. The results helped to characterize rockfalls and evaluate the 

climatic and geological impact with high accuracy and precision. Graber & Santi (2022a) applied 

the UAV-SfM to study four small-scale, natural rock slopes ranging in area from approximately 

https://sciprofiles.com/profile/188577
https://sciprofiles.com/profile/1184157
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4,500 m2 to 17,000 m2. The four slopes were imaged at approximately one-month intervals to 

detect changes resulting from rockfalls over one year of monitoring. Although there were few 

detected rockfalls, the photogrammetry for these small sections enabled the study of the rockfall 

frequencies and the detection of the triggering factors for rockfalls at the study sites. 

Most large-scale photogrammetric studies are conducted for monitoring cliff erosion (Baily & 

Nowell, 1996; Costa et al., 2004; Moore & Griggs, 2002; Westoby et al., 2012). For example, 

Westoby et al. (2012) utilized MVS-SfM to monitor erosion rates along a one km coastal cliff. 

They used a 14.7 Megabyte digital camera from a distance range of 25-30 m. The study 

demonstrated the capability of the low-cost MVS-SfM monitoring technique to investigate cliff 

erosion and identify rockfall volumes as small as 7.0 x 10-2 m3.  

Other studies on regional-scale rock slope monitoring have been conducted using TLS. These 

studies have investigated the relationship between rockfall occurrences and slope angles. They 

have also studied the long-term behavior of rock slopes, identified potential rockfall sources, and 

observed changes in rockfall frequencies over time (Loye et al., 2009; Benjamin et al., 2020; 

Rossi et al., 2021). Benjamin et al. (2020) found that the magnitude-frequency relationship of 

rockfall occurrences depends on the scale of the monitored section. The study recommended 

monitoring a total of 2.5 km for large-scale slopes; although this length recommendation is likely 

not universal and may depend on site-specific factors, it is used as a basic benchmark for this 

study. This would help obtain a reliable estimate of the relative occurrence of large and small 

rockfall volumes. 

Although numerous studies have investigated slope behavior over time, most of them were 

conducted on a local scale, and a few considered the regional scale context. Furthermore, 

existing processing techniques for regional-scale datasets require optimization to achieve better 

accuracy and efficiency when applied on a large scale.  

1.2.2 Structural Controls of Rockfall 

Many factors affect the initiation of rockfalls, including slope geometry, intact rock strength, 

weathering conditions, and prevailing rockmass structures. The resulting rockfalls can be 

differentiated into structure-driven rockfalls, associated with planar, wedge, or toppling failure, 

and non-structure-driven rockfalls, formed by weathering and raveling (Vandewater et al., 2005). 

In addition to other factors, pre-existing rockmass structures can play an important role in 
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determining slope susceptibility to rockfall. Structure characteristics such as orientation, spacing, 

roughness, and persistence can control the failure mechanism, frequency, size, and shape of 

resulting rockfalls.  

Vandewater et al. (2005) suggested that variations in lithology and the number of joint sets 

are the main factors determining the type and size of resulting rockfalls. Their study indicates 

that increasing lithological variation has the potential to create large, non-structure driven 

rockfalls. Additionally, the existence of more than two sets of discontinuities creates structurally 

controlled rockfalls with varying sizes, depending on the spacing of the discontinuities. Slopes 

with a lower degree of lithological variation and more than two joint sets with spacing larger 

than 1 m are likely to produce large structurally controlled rockfalls.  

Intact rock strength also plays an important role in determining the shapes and sizes of 

rockfalls through rock bridges. Rock bridges can add stability to rock blocks by holding them in 

place along weak surfaces. On the other side, gradual weathering of rock bridges over time might 

increase the risk of rockfalls by introducing weakened surfaces to the rockmass that can lead to 

intact rock failures. Evaluation of the impact of rock bridges on rockfalls has been conducted 

mostly on single cases of large rockfalls rather than large-scale datasets of large number of 

rockfalls (Paronuzzi and Serafini, 2009; Sturzenegger and Stead, 2012). Fewer studies have 

considered the large-scale context (de Vilder et al., 2017). 

The structural controls of rockfall can be evaluated through field investigation, kinematic 

analysis, numerical modeling, rockfall simulation, and structural mapping from remote sensing 

surveys. The most practical discontinuity survey methods of rock exposures are scanline (Priest 

& Hudson, 1976), circular (Mauldon et al., 2001; Sturzenegger et al., 2011), and window 

mapping (Sturzenegger & Stead, 2009). Structure mapping of rock surfaces using the 3D models 

acquired from photogrammetry and TLS has been extensively investigated (Haneberg, 2008; 

Lato et al., 2009; Sturzenegger & Stead, 2009; Ferrero & Umili, 2011; Lambert et al., 2012). The 

accuracy of derived fracture networks and representative fracture characteristics relies heavily on 

the resolution of the 3D models (Sturzenegger et al., 2011). 

Numerical modeling has increasing importance in incorporating rockmass structures and 

modeling rockfall failures. Both continuum and discontinuum models have been applied to 

simulate the behavior of rockmass structures and evaluate the impact of structures on the 
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rockmass stability (Stead & Coggan, 2012; Török et al., 2018). Discrete fracture networks (DFN) 

are increasingly applied in the simulation of rockmass fractures and to obtaining rockfall block 

shapes, sizes, and frequencies (Sturzenegger et al., 2011; Lambert et al., 2012). Lambert et al. 

(2012) conducted detailed window structure mapping on 3D photogrammetry models to assess 

the rockfall hazards using 3D discrete fracture network modeling (DFN). A statistical 

distribution of rockfall volumes was obtained using Monte Carlo simulation based on the 

mapped joint sets. The resulting size distribution was compared to observations from images to 

generate the best representative size distribution. 

1.3 Research Objectives 

To address the knowledge gaps identified in the literature review, the proposed thesis aims to 

investigate the following research objectives and related questions: 

Objective 1: Implement a workflow for creating 3D photogrammetric models for regional-scale 

datasets and evaluate the accuracy of the direct geo-referencing on the scale of the models.  

• How effective is the direct geo-referencing method for creating large-scale (i.e., regional) 

photogrammetric models without GCPs? 

The accuracy of using the direct geo-referencing method is evaluated by comparing 

photogrammetric dense clouds to reference models obtained from lidar surveys. The statistical 

distribution of differences between the two models is used to assess the accuracy of the models 

and provide a quantitative measurement of their similarity. The findings of this comparison will 

help in identifying the potential of this method for producing reliable photogrammetric models. 

Additionally, it will aid in recognizing the enhancements needed to improve the model’s 

accuracy. 

• How can the time of occurrence of each rockfall through the multi-epoch acquisitions be 

identified without having to build several models? 

Building photogrammetric models for multi-epoch acquisitions on a large scale requires 

extensive time and effort. Therefore, the current research focuses on building photogrammetric 

models for the first and last acquisitions. The identification of rockfall events in the intermediate 
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acquisitions is made by manually reviewing the image datasets. The accuracy and limitations of 

this approach are assessed by evaluating the frequencies and sizes of the detected rockfalls.  

Objective 2: Create a regional scale rockfall inventory and characterize the spatial variability of 

rockfall characteristics along DeBeque Canyon. 

• How do rockfall rates, magnitudes, frequencies, and shapes vary along the Canyon?  

The obtained rockfall data are utilized to characterize the rockfall occurrences along the 

Canyon. Several comparisons are conducted between the studied sites to demonstrate the spatial 

variability of rockfalls across the Canyon. The rockfall rates, magnitudes, and frequencies in 

addition to volumes and shapes are compared to evaluate the differences within and between the 

study sites.  

• What are the expected reasons for similarities/differences in rockfall characteristics 

between the studied sites? 

The variability of rockfall characteristics along the Canyon is analyzed and compared to 

changes in geology, rockmass condition, slope aspect, and human activity. Geology varies across 

the Canyon, which can affect the sizes and shapes of rockfalls. Other factors, such as the 

variations in the slope angles and the presence of excavated and steep slopes are also assessed. 

The spatial variability of rockfall activities is compared to these factors to demonstrate which 

factor(s) may have the highest impact on rockfall occurrences across the Canyon.  

Objective 3: Evaluate the structural impact on the rockfall occurrences in terms of intensity, sizes, 

and shapes. 

• How do the pre-existing rockmass structures influence the rockfall mechanism(s) at each 

site?  

Slope-scale mapping is conducted on the photogrammetric models to identify the orientation, 

persistence, and spacing of the joint sets at every site. These data are utilized to determine the 

failure mechanisms of the rockfall. The measured spacings of the joints are utilized to obtain the 

expected range of block volumes using Monte Carlo simulation. This range is then compared to 

the actual rockfall volumes obtained from photogrammetry. 
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CHAPTER 2  STUDY SITES 

DeBeque Canyon is situated in Mesa County in western Colorado, USA. The Canyon has 

been shaped by the natural process of erosion of the Colorado River over several thousands of 

years. The Canyon cliffs consist of sandstone and shale that are susceptible to weathering and 

erosion, leading to rock instabilities and rockfall formation (Figure 2.1). The frequent rockfall 

events have a notable impact on the traffic along I-70 that runs parallel to the Colorado River. A 

photogrammetry monitoring campaign was conducted that covered the entire 22 miles (35.4 km) 

of the Canyon. Specific sites were chosen for this study based on the collected data, which were 

distributed along the entire length of the Canyon. This chapter provides an overview of the 

geology and topography of the Canyon and the selected study sites. It also describes the data 

collection conducted by CDOT. 

 

Figure 2.1 Examples of rockfalls at DeBeque Canyon. A) A large sandstone block detached 

from the top of the slope and fell into the ditch. B) Small rock fragments scattered on the road. 

C) Damage to the road from rockfalls. Photos courtesy CDOT.   

2.1 DeBeque Canyon 

DeBeque Canyon is located within the Colorado Plateau, southwest of the Piceance Creek 

Basin, and occupied by the sedimentary rocks of the Mesa Verde group (Erdmann, 1934). The 

exposed sedimentary rocks at the surface consist primarily of sandstone alternating with softer 
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shale, siltstone, and coal beds. The alternating, gently dipping sedimentary rocks form a 

topographic feature known as a Cuesta (Figure 2.2). This landform is characterized by a cliff 

face (the Book cliff) on one side and a long, gently dipping slope capped by hard rocks on the 

other side. The vegetation in the area includes sagebrush, greasewood, and Russian thistle. 

 

Figure 2.2 Diagram showing the Cuesta landform with a front steep slope or escarpment and 

gentle back dip slope, adapted from Radoane et al. (2020). 

The study site is dominated by three sedimentary formations (Figure 2.3) of the Mesa Verde 

group of Late Cretaceous age: The lower Sego sandstone FM, overlain by the Mount Garfield 

FM and capped by the Hunter Canyon FM along most of the Canyon (Donnell, 1961; Cashion, 

1973; Ellis & Gabaldo, 1989). The Sego Sandstone FM varies from massive to thinly bedded 

marine sandstone with variable thickness and exists at the base of southern slopes. The Mount 

Garfield FM occupies the southern section of the Canyon and consists of sandstone, shale, sandy 

shale, shaly sandstone, carboniferous shale, and coal beds. Most of the Canyon is covered by the 

Hunter Canyon FM, consisting mainly of massive, medium to coarse-grained sandstone, 

interbedded with gray shale and clay shale beds. The Hunter Canyon FM forms medium to high 

cliffs, varying from 375 to 1400 feet (Cashion, 1973). The site is part of a monocline fold that 

dips 6º to 27º towards the northeast, and the exposed rocks are mostly jointed and affected by 

several minor faults. 
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Figure 2.3 Geologic map of the area of DeBeque Canyon, modified after the Geologic Map 

of Colorado (Tweto, 1979). 

2.2 Image Data Collection 

The large extent of the monitored section and the presence of high, steep slopes in the Canyon 

required CDOT to use drone-based photo collection. This allowed them to capture images along 

the steep slopes for rock slope monitoring. The drones were utilized to capture high-resolution 

photographs with a high percentage of overlap between successive photos at different elevations. 

The increase in UAVs survey paths at different heights improves the density of photogrammetric 

models and the accuracy of the collected data while reducing occlusion. An example of the 

conducted photogrammetry at the Canyon is shown in Figure 2.4 with several survey paths at 

different elevations. 



 

29 

 

Figure 2.4 Example of the conducted UAV photogrammetry at DeBeque Canyon. Blue 

rectangles indicate photograph locations along the flight paths, while the black lines indicate the 

imaging direction. 

Organizing the photogrammetric datasets provided by CDOT was a challenging task. After 

thorough inspection, it was found that 41 sites along I-70, from the mile point (MP) 036 to MP 

058_10, were surveyed. The first three acquisitions were conducted from 2014 to 2016 and 

covered all the sites. However, the subsequent acquisitions were focused only on areas 

susceptible to rockfall hazards or were conducted in response to specific rockfall incidents. 

Therefore, the number of acquisitions varies across the different sites. For example, the MP 

036_00 site was only surveyed in the first three acquisitions, and no further surveys were 

conducted after 2016. On the other hand, the MP 048_85 site was surveyed in five acquisitions 

from 2014 to 2021.  

Preliminary data evaluation aimed to assess the coverage extent for each site and identify 

representative sites with the highest number of acquisitions along the Canyon. The selected sites 

are located at MP 042_80, MP 048_85, and MP 056_50, representing the southern, middle, and 

northern sections of the Canyon, respectively (Figure 2.5). The selection of these sites also 
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considered the variation in geology to assess the impact of lithology on the rockfall occurrences. 

The sites differ in topography and extent, where the southernmost site is 575 m long and 163 m 

high and the northernmost site is 1,220 m long and 79 m high. The pre-existing rockmass 

structures also vary within and between the study sites. These variations motivated the selection 

of these representative sites for investigating the variability of rockfall activity throughout the 

Canyon. 

 

Figure 2.5 Location map for the DeBeque Canyon study area and the selected three sites. 

Figure 2.6 summarizes the conducted photogrammetric data acquisitions at the three sites. 

The initial three acquisitions took place in 2014, 2015, and 2016, covering all three sites. Site 1 

was monitored for 74 months through five acquisitions. The time intervals between acquisitions 

varied, and the longest gap was 39 months, between the fourth and last acquisition. Site 2 was 

monitored for 79 months, through five acquisitions. The largest gap between acquisitions was 34 

months. At Site 3, monitoring spanned 79 months, with a maximum gap between acquisitions of 

29 months.  
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Figure 2.6 The conducted photogrammetric acquisitions at the three sites separated by the 

time intervals in days. 

2.3 Site 1 (MP 042_80) 

Site 1 is situated on the western bank of the Colorado River, north of I-70 at MP 042_80 

(Figure 2.7). It is located at the eastern end of the Book Cliff, part of the northeastern, 

southward-facing escarpment of the Grand Valley at the southern entrance of DeBeque Canyon. 

The rock slope has an ESE-WNW orientation, following the alignment of I-70. The site has a 

maximum length of 575 m and a maximum height of 163 m, with a total surface area of 78,200 

m2. The site has varying slope angles, ranging from 51° in the lower shale section to almost 90° 

in the sandstone ledges, with an overall slope angle of 57°. 

Alternating vertical sandstone ledges and shale-bearing strata characterize the rock face of 

this site (Figure 2.8). The exposed rock belongs to the Mount Garfield FM, and consists of 

brown, grayish-white, and buff-color sandstone interbedded with gray-color shale, carboniferous 

shale, and sandy shale. Some layers are carboniferous and exhibit solution cavities. The 

sandstone varies from massive, fresh, coarse-grained to thinly bedded and fine-grained beds. The 

thickness of sandstone layers at the site can reach up to 44 m. These layers are affected by 

different sets of joints, causing detachments of rockfalls that can be observed at the slope face. 

The shale beds at the lower part of the slope are weathered, reaching up to 24 m in thickness and 

interlayered with thin sandstone layers. Some lithological units are concealed due to the 
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accumulation of talus and rock fragments derived from erosion of the sandstone and loose debris 

of shale-bearing beds. Vegetation is sparse along the slope, with some isolated sagebrush. 

 

Figure 2.7 Location map of Site 1. 

 

Figure 2.8 Site 1 at MP 042_80 along I-70 highway. Photo courtesy CDOT. 



 

33 

2.4 Site 2 (MP 048_85) 

Site 2 is situated on the eastern bank of the Colorado River, in the middle section of DeBeque 

Canyon at MP 048_85. The site stretches from 1.5 km northeast of James M. Robb State Park to 

the south to the Plateau Creek tributary of the Colorado River, 0.7 km south of the Grand Valley 

Diversion Dam (Figure 2.9). It is a northwest-facing natural rock slope, oriented NE-SW. The 

photogrammetry data for this site covers 771 m of natural slope. This slope has a maximum 

height of 101 meters and a total surface area of 62,400 m2. Vegetation appears along this slope in 

the form of sagebrush and Russian thistle plants. 

 

Figure 2.9 Location map of Site 2. 

The geology of Site 2 shows less lithological variation than Site 1. The exposed rock at this 

site belongs to the Mount Garfield formation, which is capped by the Hunter Canyon FM. The 

shale layers have limited occurrences and smaller thicknesses compared to Site 1. The southern 

section of the site shows massive rock ledges of sandstone of the Mount Garfield formation 

(Figure 2.10). The height increases in the northern section of the site, characterized by buff-

colored, massive, medium-grained sandstone beds interlayered with gray, thin-bedded shale from 

the Hunter Canyon FM. This area is also covered by thick talus material (Figure 2.11). The 

sedimentary layers at this site are sub-horizontal, dipping 4º - 5º towards the southwest. The 
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thickness of sandstone layers at the site can reach up to 45 m. These layers are primarily massive 

and are cut by one joint set that runs parallel to the vertical slope face, as well as horizontal 

bedding planes. A historical landslide can be observed in the northern section of the site. 

Variable thicknesses of vegetated colluvium deposits and talus materials are present, with an 

increased thickness toward the northern side. 

 

Figure 2.10 The exposed massive sandstone at the southern part of Site 2. Photo courtesy 

CDOT. 

 

Figure 2.11 Exposed rocks at the northern side of Site 2 showing the historical landslide. 

Photo courtesy CDOT. 
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2.5 Site 3 (MP 056_50) 

Site 3 is situated on the eastern bank of the Colorado River, at the northern entrance of 

DeBeque Canyon at MP 056_50, 8 km southwest of DeBeque city (Figure 2.12). It is a 

northwest-facing natural rock slope, oriented at NE-SW direction. The photogrammetry of this 

site covers 1,220 m length of the natural slope with a maximum height of 79 m and a total 

surface area of 89,600 m2. Vegetation is also widespread along this slope with sagebrush and 

greasewood plants. The slope has varying slope angles, ranging from 38° in the northern section 

to nearly vertical in the southern section. 

 

Figure 2.12 Location map of Site 3. 

The exposed rock at the site belongs to the Mount Garfield formation that is capped by the 

Hunter Canyon FM. The Mount Garfield formation consists of fine-grained, grayish-white to 

gray sandstone interlayered with gray, thin-bedded shale. This formation is overlain by a buff-

colored, massive, medium-grained sandstone of the Hunter Canyon FM. The sedimentary layers 

at this site are sub-horizontal, dipping 4º - 5º towards the southwest (Figure 2.13). A slight 

accumulation of colluvium is observed at the toe of the slope along the site. The outcropped 

sandstone beds are cut by multiple joint sets.  
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Figure 2.13 The exposed horizontal sandstone at Site 3. Photo courtesy CDOT. 
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CHAPTER 3  METHODS 

This chapter details the applied workflows for creating photogrammetric models, conducting 

change detection analyses, and obtaining structural data. The applied methodology is based on 

the workflow described by Graber and Santi (2022a), with some modifications (Figure 3.1). The 

creation of photogrammetric models and data processing were limited to the first and last 

datasets (2014 and 2021). With this approach, the total number of rockfalls during the 

monitoring period was identified. Next, the photos of the intermediate image datasets (between 

2014 and 2021) were manually evaluated to determine the time of occurrence of every rockfall.  

The data processing starts with the creation of a high-resolution photogrammetric model from 

aerial photos collected by the UAVs. The Agisoft Metashape Professional software, version 

1.6.1, was utilized for this purpose. The selection of parameters for model creation is based on 

the guidelines provided in the Metashape manual and related studies in the literature (Schwind, 

2016; Brach et at., 2019; Graber and Santi, 2022a). The selected parameters were adjusted based 

on the dataset’s quality and specific site requirements. Table 3.1 demonstrates the image datasets 

and photogrammetric model parameters for the three sites. 

The assessment of the image datasets showed that the conducted photogrammetry acquisitions 

are inconsistent regarding the used camera model, UAVs flight plan, and acquisition timing. 

These inconsistencies resulted in varying data qualities and quantities. For example, Site 1 was 

imaged in 2014 using a NIKON D600 camera with a 50 mm focal lens. In 2021, it was imaged 

using a ZH20 camera with a 10.14 mm focal lens. The range of imaging also varied between 

acquisitions. In 2014, data collection at Site 1 was conducted through three flight lines of 

different ranges and elevations. In 2021, the acquisition was conducted through eight survey 

lines of the same imaging range but variable elevations. This is reflected in the resulting number 

of images, with 59 images collected in 2014 and 623 in 2021 at Site 1. Most acquisitions were 

conducted in clear weather, while some were conducted when snow covered most of the slope. It 

was also noted that geo-reference information was not recorded in all datasets, and only datasets 

from 2017 to 2021 are geotagged. These variations affect the quality of the resulting images, 

which needed extra processing before they could be used to build the photogrammetric models.
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Figure 3.1 The implemented workflow for data acquisition and processing, adapted from Graber and Santi (2022a). Steps with 

numerical order should be executed sequentially.
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Table 3.1 Image datasets and photogrammetric model parameters for the three sites. 

Specs/ 

Parameters 

Site 1 Site 2 Site 3 

2014 2021 2014 2021 2014 2021 

Number of  

images 
59 623 136 381 194 839 

Camera 

Model 

NIKON 

D600 
ZH20 

NIKON 

D600 
ZH20 

NIKON 

D600 
ZH20 

Resolution 
6016 x  

4016 

5184 x 

3888 

6016 x  

4016 

5184 x 

3888 

6016 x  

4016 

5184 x 

3888 

Focal Length 50 mm 10.14 mm 50 mm 10.14 mm 50 mm 10.14 mm 

Pixel Size 

(μm) 
5.97 x 5.97 1.44 x 1.44 5.97 x 5.97 1.44 x 1.44 5.97 x 5.97 1.44 x 1.44 

Align 

Accuracy 
High High High High High High 

Generic  

preselection 
No No No No No No 

Reference  

preselection 
Sequence Source Estimated Source Estimated Source 

Key point 

limit 
40,000 40,000 40,000 40,000 40,000 40,000 

Tie point limit 4,000 4,000 4,000 4,000 4,000 4,000 

Dense Cloud  

quality 
High High High Medium High High 

Filtering 

mode 
Aggressive Aggressive Aggressive Aggressive Aggressive Aggressive 

Tie points 26,461 193,283 62,076 97,798 133,449 251,055 

 

3.1 Photogrammetry Model Construction 

The “Estimate Image Quality” tool in Metashape was used to filter out the blurry and low-

contrast images, which could negatively affect the resolution of the models. A quality threshold 

of 80% was applied, removing lower-quality images. Masks were applied as needed to exclude 

any unwanted portions of the photos from being included in the final models. This helped to 

reduce the processing time by decreasing the number of pixels that to be analyzed for matching 

key points. For close-range image datasets, like 2021, most photos captured the slope face and 

did not require any masking. However, for the distant-range images, like in 2014, the sky was 

captured and had to be removed. If any noisy locations were retained, they were manually 

removed later from the tie or final dense cloud.  

Having no basis to set pre-calibration parameters led to solving for the camera parameters by 

Metashape during model construction. As GCPs were not utilized in the photogrammetry, the 
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direct geo-referencing approach was used in the processing. The position information of the 

camera was obtained from the Exchangeable Image File Format (EXIF) metadata for referencing 

the key points to a global coordinate system. The models without recorded coordinates were 

created in a local coordinate system until being aligned to a geo-referenced model.  

The “Align” step in Metashape was performed after the camera calibration had been set up. 

This step utilized SfM algorithms to obtain the tie/sparse point cloud. In Metashape, the 

identification and description of key features, feature matching, estimation of camera positions, 

triangulation, and bundle adjustment were all applied automatically as part of the 'Align' step. 

Metashape can optimize different accuracy ranges for the image datasets, from lowest to highest, 

depending on the purpose of the model. Producing models for accurately detecting rockfalls 

requires working with high-resolution images. According to the Metashape manual, using the 

“High” option maintains the original resolution of the images. In contrast, the “Medium” option 

reduces the resolution by a factor of four, and the “Low” option reduces it by a factor of 16. In 

this study, photos were aligned using the “High” option to achieve high accuracy while reducing 

the processing time compared to the “Highest” option.  

In order to match image pairs with high accuracy and obtain a greater number of tie points, 

the “Generic preselection” option was not applied. This option typically accelerates the matching 

process by using lower accuracy settings first, which has the potential to return fewer number of 

tie points with lower accuracy. Instead, the “Reference preselection” option was chosen, in which 

different settings were used for construction of the 2021 and 2014 models. For the 2021 image 

datasets with recorded georeferenced information, the “Source” option was used. This option 

expedited the matching process by selecting image pairs based on the calculated camera 

positions. This option was appropriate to use for the 2021 models, where numerous images were 

captured and geotagged, allowing for highly accurate calculation for the camera positions. For 

the 2014 image datasets, lacking georeferenced information, two alternative options were used: 

“Sequence” and “Estimated.” The “Sequence” option relied on the camera order for selecting 

matched images taken sequentially, using the sequence number of images. The “Estimated” 

option was used when the camera positions were not precisely calculated but could be estimated 

from external information such as flight path. 

The "Key point limit" and "Tie point limit" define the maximum number of key points to be 

detected and the maximum number of matching tie points in every image. Defining these 
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numbers depends on the desired quality and processing time. If both parameters are set to zero, 

an unlimited number of points will be detected and matched. This will significantly increase the 

processing time and might produce low-quality tie points that should be excluded from the 

model. The number of tie points affects the quality and resolution of the final dense point cloud. 

The constructed depth maps needed to densify the tie point cloud cannot be generated for images 

with fewer than 100 tie points (Metashape User Manual, 2023). In general, having more tie 

points leads to better depth map reconstruction and, consequently, a more accurate dense point 

cloud. However, the relationship between the number of tie points and model quality is not 

always linear. This is because other factors such as image quality and overlap also contribute to 

the overall quality of the model. As the Metashape manual recommends, the "Key point limit" 

was set to 40,000, and the "Tie point limit" was set to 4,000 points. The settings used ensure that 

the number of tie points is sufficient for creating a high-resolution dense point cloud without 

missing any sections.  

Finally, the tie point clouds were created; these clouds had varying numbers of points, 

depending on the resolution of the image datasets and the selected processing parameters. Table 

3.1 shows the different numbers of points in the tie point clouds for the three sites in 2014 and 

2021. The number of tie points generated in 2021 is higher than 2014, which is consistent with 

the resolutions and number of images in each dataset.  

The resulting tie point clouds were then filtered using iterative error reduction techniques 

based on the reconstruction uncertainty, projection accuracy, and re-projection error to eliminate 

poor-quality tie points. Removal of poor-quality tie points increases the accuracy of the estimated 

internal and external camera parameters. The error reduction process started by applying 

“Reconstruction uncertainty” to filter out points produced from a poor estimation of camera 

locations. This eliminates the poorly estimated points during triangulation and projection steps. 

Removing points with high reconstruction uncertainties reduces the occurrence of noisy locations 

in the model and keeps the accurate points for the subsequent filtering steps. The second step in 

the error reduction process was to exclude points with relatively low projection accuracy. The 

third applied step in error reduction was filtering by “Reprojection error” to eliminate points with 

low 3D projection accuracy onto the images. It represents the actual position of the constructed 

tie point relative to its location on the images.  
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Metashape creates depth maps that will be used along with the camera positions to obtain the 

densified point clouds. The software provides various options for creating depth maps depending 

on the details of the surveyed surface. The quality options for creating depth maps are identical to 

those for the aligning step. For this thesis, the dense clouds were built using the “High” quality 

option to ensure getting high-resolution models necessary for the change detection process. The 

“Depth filtering” options eliminate outliers from the point. The “Aggressive” depth-filtering 

mode was chosen, which is suitable for large-scale models to reduce the number of points and 

speed up processing time. 

The length of the resulting high-resolution dense point cloud varied from 575 m on Site 1 to 

1,220 m on Site 3. Processing the whole site at once created a doming effect in the point clouds. 

This is a common issue in photogrammetric models caused by systematic errors, such as 

inaccuracies in camera calibration and distortion in the images (James and Robson, 2014, Smith 

and Vericat, 2015). As the model size decreases, the overall elevation differences within the 

model decrease, making the distortion and doming effect less significant. In larger models, errors 

propagate across the models, increasing the doming effect. In smaller models, error propagation 

is confined within each segment, minimizing the overall impact of the doming effect. Therefore, 

to reduce the influence of the doming effect on change detection and the computational time for 

future analyses, the point cloud models were divided into several smaller parts. These smaller 

parts were 50-90 m wide each with minimal local distortion prior to further analysis. The number 

of segments for Sites 1, 2, and 3 are 9, 13, and 16, respectively. The subsequent processing 

procedures were conducted on a segment-to-segment basis.  

In order to assess the accuracy of the direct geo-referencing method, the resulting 

photogrammetric point clouds were compared to lidar surveys for Sites 1 and 3. Site 2 did not 

have any lidar surveys available for comparison. For this evaluation, three segments each from 

Sites 1 and 3 (six total) were randomly selected. These segments had lengths ranging from 60 to 

80 m and were distributed along the full extent of each site. The distances between the points 

were calculated to obtain the root-mean-squared (RMS) of the differences, which provided a 

quantitative evaluation of the accuracy of the created point clouds. 

3.2 Change Detection 

All processing steps related to change detection were conducted on the dense point clouds 

using CloudCompare (CloudCompare, 2021) software. The goal was to detect changes between 
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datasets from different epochs and extract the rockfall information such as locations, times of 

occurrence, and volumes. The basic workflow suggested by Tonini & Abellán (2014) and Van 

Veen et al. (2017) was optimized for the site-specific application. First, any visibly noisy or 

unwanted portions of the point clouds were trimmed. Additionally, for each site, the point clouds 

of 2014 and 2021 were trimmed to have the same extents.  

The georeferenced models obtained in 2021 were used as a reference to align the 2014 models 

that do not have position information. The scale and orientation of the aligned models were 

adjusted to match the reference point cloud. The first step of alignment was conducted using 

coarse registration, in which manual point picking was used to match features between the two 

point clouds. The increased number of picked points improves the accuracy of the aligning 

process. A minimum of three points are required for this step. However, 20 to 45 points were 

selected in every segment, depending on the variations along the site and the length of segment 

(Figure 3.2). Although this step was time-consuming, the quality of the coarse alignment is 

critical, as it affects the accuracy of the subsequent steps.  

A further fine alignment was conducted using the built-in Iterative Closest Point (ICP) 

algorithm (Besl & McKay, 1992) in CloudCompare. This algorithm compares the two point 

clouds by checking every point in the reference cloud and searching for the closest point in the 

aligned cloud. Upon detecting the closest point, the algorithm estimates the required translation 

and rotation to be applied to the aligned cloud to match these closest points. The algorithm also 

allows for adjusting the scale of the aligned point cloud to fit the reference one. These steps are 

repeated iteratively until the RMS distance between points falls below a target threshold. 
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Figure 3.2 Example of the conducted coarse registration in CloudCompare. 

The presence of vegetation along slopes can give a false positive or negative indication to 

rockfalls because of the change in density across seasons. Therefore, excluding vegetation from 

the point clouds is preferred before the calculation of change values. Removal of vegetation can 

be done in several ways, including manual segmentation or applying a classification algorithm. 

For this thesis, vegetation was manually cropped out and excluded from the point clouds.  
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The change detection was conducted between the 2014 and 2021 point clouds to identify 

changes over the entire monitoring period. The M3C2 algorithm (Lague et al., 2013) was used to 

compute the differences between the cleaned and aligned point clouds. The algorithm starts by 

defining a neighborhood scale (D) within cloud 1. It then identifies a change direction (N) 

perpendicular to the plane fitted to the points inside the diameter of the neighborhood scale, as 

shown in Figure 3.3 (DiFrancesco et al., 2020). Subsequently, the distance between the average 

point locations within a cylinder (diameter “d”) projected along the change direction in both 

clouds is identified. This projection diameter is chosen based on many factors, such as the 

surface complexity, quality of the data, point spacing, and roughness of the clouds. Using a larger 

scale results in a smoother surface representation, whereas a smaller scale captures minor 

roughness details on the surface. 

DiFrancesco et al. (2020) recommended a projection diameter of one to two times the point 

spacing for working with lidar data. However, preliminary testing showed that using projection 

diameters within this range for the photogrammetry point clouds led to increased levels of noise. 

This noise, in turn, resulted in overestimates of rockfall volumes. In this study, both projection 

diameter (d) and normal scale (D) were assigned values within the range of 0.20 to 0.25 m. This 

range corresponds to point spacing ranging from 0.065 to 0.09 m at the three sites. Using a 

diameter that is two to three times the point spacing achieved a balance between avoiding 

excessive smoothing of rockfall geometries and minimizing noise. All points in each point cloud 

were used as core points (no subsampling was used for the change calculation). 

 

Figure 3.3 Steps of M3C2. a) The selection of the neighborhood scale (D); b) & c) show 

different projection diameters (d) (DiFrancesco et al., 2020). 
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The resulting change detection maps show the distance differences between the point clouds. 

The Limit of Detection (LOD) was obtained based on the normal distribution of these differences 

in areas without observed change. The LOD, equal to ±2 standard deviations of the mean of the 

curve, represents the threshold below which change is not considered significant. The geometric 

distortions in the segmented point clouds are reduced to a level substantially smaller than the 

LOD. This makes them negligible when only considering changes exceeding the LOD. As shown 

in Table 3.2, the standard deviation ranges from 0.08 to 0.11 m, and the corresponding LOD 

ranges from 0.16 to 0.22 m, accordingly.  

Table 3.2 Identified LOD at the three sites. 

Site # Std. Dev. M3C2 

distance (m) 

Empirical limit of 

detection, ± 2σ (m) 

1 0.08 0.16 

2 0.11 0.22 

3 0.11 0.22 

 

The M3C2 change detection was conducted in both the forward and backward directions, 

where the former calculates changes from 2014 forward and the latter from 2021 backward. After 

change calculation, changes below the estimated limit of detection for each site were filtered out. 

Combining the remaining points for both change maps allowed for a single cloud with both the 

front and back faces of rockfalls to be developed. The corresponding change points were then 

clustered using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm (Ester et al., 1996). Prior to clustering, these points were filtered out based on the 

minimum number points and the maximum distance “epsilon” between two points. Preliminary 

testing determined a threshold of 100 points and an epsilon value of 0.5 for the points to be 

considered in each cluster. The resulting clusters were visually inspected to check whether these 

were actual rockfalls or caused by unfiltered vegetation or noise in the cloud. To confirm these 

rockfalls, the photo datasets from 2014 and 2021 were reviewed for each identified rockfall 

location. For cases where rockfall was detected at the edge between two segments, a new smaller 

segment from the original point cloud was created. This new segment included the entire rockfall 

(Figure 3.4). The change detection process was then repeated for these smaller segments. 
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Figure 3.4 Example of a rockfall detected between two segments. A) The rockfall is situated 

between two segments (gray and blue colors). B) A new smaller segment was created that 

encompassed the whole rockfall. 

The time of occurrence of each rockfall was determined by reviewing the photo datasets from 

2015, 2016, 2017, and 2018. This helped to identify when the rockfall occurred without the need 

to build a separate photogrammetric model for each acquisition. Generally, the proposed 

approach for identifying the spatial and temporal occurrence of rockfalls from images proved 

effective and Figure 3.5 shows an example segment along the three sites. 

 

Figure 3.5 Example of the determined time of rockfall occurrences at Site 3. 
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Reviewing rockfall occurrences in photos also allowed for the segmentation of large rockfall 

clusters, which combined different rockfalls that occurred at different times. The rockfalls were 

manually segmented based on spatial extents estimated from the photos and assigned a 

corresponding time range of occurrence. Once the rockfalls were identified, the shape of each 

cluster was reconstructed, and the volume was estimated. The volume calculation was performed 

using the Alpha Solid algorithm (DiFrancesco et al., 2021), using a code developed in Matlab.  

Four cases were observed at the three sites, as summarized in Table 3.3. Figure 3.6 illustrates 

case 3, where the calculated rockfall change region corresponded to two connected smaller 

rockfalls. The larger portion fell during the 2015-16 period, and the smaller portion fell later 

(between 2017 and 2018). The initially obtained total rockfall volume was 6.5 m3. After 

segmentation and recalculating the volumes for the two segments, the resulting volumes were 7.0 

x 10-1 m3 and 5.7 m3. The sum of individual rockfall volumes for the four cases after 

segmentation range from 98 to 100 % of the original volume. This demonstrates that the applied 

manual segmentation approach introduces minimal error into the rockfall volume estimation 

process. 

Table 3.3 Cases for the manual segmentation at the three sites. 

Case # Site # 
Volume before 

segmentation (m3) 

Sum of individual rockfall 

volumes after segmentation (m3) 

Difference 

(%) 

1 1 4.0 3.9 2 

2 2 1.9 1.9 0 

3 3 6.5 6.4 2 

4 3 6.6 x 10-1 6.5 x 10-1 2 
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Figure 3.6 Effect of manual segmentation on the resulting volumes at case 3. A) The original 

cluster between 2014 and 2021. B) The segmented clusters based on the image datasets review. 

3.3 Structural Mapping 

Considering the extensive length of the sites and the consistent distribution of structures at 

each of the sites, comprehensive structural mapping was carried out on representative segments 

from the mapped sites. Structural mapping was conducted for one segment each at Sites 1 and 3. 

Site 2 was not considered for mapping because it consists primarily of massive sandstone with 

limited joints. Visual checking revealed that structural trends were generally similar throughout 

the entire sites. The selected segments at Sites 1 and 3, had the highest number of structures and 

represented all the joint sets in the slope. For each considered segment, all visible structures, 

including joints and bedding planes, were identified and documented. The orientation, spacing, 

and persistence of all structures were recorded. Manual mapping was used as opposed to an 

automated fracture extraction (e.g. Riquelme et al., 2014), as such algorithms typically rely on 

the ability to detect sharp changes in elevation or identify well-defined geological features to 

delineate structures effectively. However, our point cloud data lacks these clear topographical 

differences, making it challenging for automated algorithms to accurately identify and map the 
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geological structures. Ultimately, structural data was collected manually from the point cloud 

using the “Compass” tool in CloudCompare (Figure 3.7). 

During the manual mapping process of structures from point cloud data, key visual criteria 

were employed to distinguish joints and bedding planes from intact rock and other edge-like 

features. These criteria involved observing color variations, smoothness of boundaries, and 

continuity and extent as follows: 

• Color variations: Distinct color contrasts between sedimentary layers, such as shale and 

sandstone, were used as a basis for interpreting the presence of bedding planes and 

differentiating them from intact rock. 

• Smoothness of boundaries: The smoothness of boundaries aided in differentiating joints 

and bedding planes from linear weathering features, which exhibited irregular edges. 

• Continuity and extent: Structures that were continuous and extensive along the mapped 

sites were interpreted as bedding planes, while more localized and discontinuous features 

were interpreted to suggest smaller fractures or joints. This distinction assisted in 

separating joints and bedding from intact rock. 

Two methods were employed to measure the orientations from the point cloud. The first 

involved directly measuring the orientation on visible joint surfaces using the "Plane" tool. This 

was carried out by selecting a group of points on the planar structure, fitting a plane to those 

points, and determining the plane's orientation. The second method involved using the "Trace" 

tool when the joint plane was not directly visible. In this approach, 3D points along the joint trace 

were connected using a polyline. To estimate the plane's orientation, a best-fit plane was 

calculated using the set of 3D points that formed the polyline. The "Trace" tool in CloudCompare 

assumes that the visible joint trace is representative of the overall joint plane orientation. It is 

important to note that this method might not be as accurate as directly measuring the orientation 

when the entire joint surface is visible. Both tools were used to identify orientation depending on 

how the target discontinuity presented in the outcrop.  

The persistence and spacing of each joint relative to its nearest neighbor with a similar 

orientation were measured using the distance-measuring tool in the software. The spacing 

distributions at Sites 1 and 3 were visualized with spacing values binned to the nearest meter, but 

binning was not implemented for analysis/calculation purposes. The collected data were then 
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exported to DIPS software by RocScience (RocScience, 2020) for stereographic projection to 

identify the joint sets. Terzaghi weighting (Terzaghi, 1965) was applied to overcome orientation 

bias in the discontinuities that are sub-parallel to the mapping surface.   

 

Figure 3.7 Example of the conducted structural mapping on the photogrammetric point 

cloud. 

A comparison was carried out between the expected range of block volumes, based on the 

mapped structures, and the identified volumes through photogrammetry. Expected block volumes 

were calculated using the joint spacing (d), and the angle between joints (γ) using the following 

equation provided by Cai et al. (2004). 

𝑉 =
d1 × d2 × d3 

𝑠𝑖𝑛 𝛾1 × 𝑠𝑖𝑛 𝛾2 × 𝑠𝑖𝑛 𝛾3 
 

(3.1) 

 

The Monte Carlo Simulation technique was used to apply equation (3-1). This involved 

randomly selecting a spacing value from the observed range for each joint set in every 
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simulation. The number of simulations was set to match the number of detected rockfalls at each 

site. The MCF curves obtained from the simulations were compared to those of the rockfall 

volumes derived from the change detection process. 

3.4 Evaluation of Rockfall Volume and Shape Trends 

The accuracy of the rockfall detection was evaluated by determining the minimum 

consistently detectable rockfall volume “cutoff” at the three sites. This was conducted using the 

MCF curves obtained from the data and power law distribution analysis. Specifically, the 

Maximum Likelihood Estimation (MLE) method was applied to detect the cutoff volume. This 

method iteratively estimates the cutoff volume that gives a minimum Kolmogorov-Smirnov 

statistic using the MATLAB code provided by Clauset et al. (2009). Rockfall volumes below this 

cutoff were eliminated and the remaining rockfalls were normalized per year and area to estimate 

the power law distribution. The full MCF curves for each site were normalized by the total slope 

area, while the curves for different source zones were normalized based on the exposed area of 

each individual source zone. The exposed areas for the slopes and each source zone were used as 

reported by Metashape based on the densified, georeferenced point clouds after being manually 

clipped to the area of interest. 

Determination of rockfall shapes can be used to understand the structural controls of rockfall 

occurrences. In this research, rockfall shapes were identified according to Sneed & Folk's (1958) 

classification. This classification proposes ten rockfall shapes categorized based on the ratios 

between the longest, intermediate, and shortest axes (Figure 3.8). To identify rockfall shapes, 

Principal Component Analysis (PCA) was used to analyze the x, y, and z coordinates of each 

rockfall cluster. This helped determine the Principal Components, which correspond to the 

eigenvalues of the dataset. The ratios between these components were used as representative of 

ratios between the rockfall axis lengths. 
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Figure 3.8 The Sneed & Folk's classification, adapted from DiFrancesco et al. (2020). 
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CHAPTER 4  RESULTS AND DISCUSSION 

This chapter presents the results for each site followed by a discussion of their significance. 

The results include an assessment of the proposed workflow's accuracy. They also include the 

characterization of rockfall activity along the Canyon and an analysis of the structural impact on 

rockfalls at each site. 

4.1 Site 1 

An example photogrammetric model for Site 1 is shown in Figure 4.1, showing some 

differences in terms of density and point spacing. The densified point cloud of 2014 has 

39,424,291 points, while the point cloud of 2021 has 288,842,277 points. The point spacing of 

the resulting point clouds has an average of 0.06 m. 

 

Figure 4.1 Example of the produced photogrammetric models (2021) at Site 1. 

The accuracy of direct geo-referencing at Site 1 was evaluated by comparing the distribution 

of differences between three photogrammetric segments from the 2021 acquisition to the lidar 

scan. An example segment is shown in Figure 4.2. The resulting RMS difference metric, ranging 

from 0.059 to 0.063 m from the ICP algorithm, indicates that the point clouds are well-aligned. 

According to the M3C2 change map (Figure 4.2), it can be visually observed that there is a 

consistent variation between the lidar and photogrammetry point clouds. A vertical concavity 

“bowl-effect” associated with the photogrammetric model can be seen. This concavity caused a 

vertical variation of distances. The photogrammetric model is “in front of” the lidar point cloud 

at the top and the bottom of the slope and “behind” the lidar point cloud in the middle. This 
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concavity can be explained by several factors, including inaccurate estimation of the camera’s 

internal parameters, image qualities, lighting conditions, and imaging angles and ranges. The 

2021 acquisition was conducted using a fixed imaging angle and range along the whole slope. In 

order to reduce the "bowl-effect" in future models, the flight plan could be adjusted. Various 

imaging angles and ranges could be obtained, which would enhance reconstruction quality and 

reduce geometric distortion (Jaud et al., 2018). 

 

Figure 4.2 The M3C2 differences between a representative photogrammetric segment and a 

lidar survey at Site 1. Some change below the limit of detection is shown to more clearly 

illustrate the subtle distortion effects present. 

To assess the precision of the change detection process, the LOD was computed to determine 

the minimum changes that can be detected through the process. The change detection result for a 
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representative segment at Site 1 is shown in Figure 4.3. This segment is 87 m long and 95 m high 

with a standard deviation of 0.08 m, corresponding to a LOD of ± 0.16 m. 

 

Figure 4.3 The M3C2 results for a representative segment at Site 1. 

The change detection process revealed several types of changes at the site. These include 

detachment of rock fragments from the lower shale bed and the interbedded smaller sandstone 

beds. They also include movement of loose talus materials mixed with rock fragments that 

overlay the shale bed and erosion of surficial material. Changes are more concentrated along the 

lower part of the slope. This part is dominated by shale, thin sandstone layers, and talus material, 

compared to the upper part, which consists of thick sandstone beds. Notably, changes in shale 

layers are large with irregular boundaries, while in talus, they are slightly smaller. Changes in 

sandstone are much smaller, with well-defined boundaries according to the shape of the fallen 

rock. 

The change detection at Site 1 between the first and last acquisition identified 119 rockfalls of 

varying sizes (Table 4.1). These rockfalls originated from the shale, talus, and sandstone layers. 
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The MCF curve (Figure 4.4A) demonstrates that the identified rockfall volumes span over three 

orders of magnitude from 1.0 × 10-2 m3 to 7.8 m3. The curve indicates that for volumes above a 

certain threshold, the data follow a power law distribution. This cutoff threshold, determined by 

the MLE method, is 2.1 × 10-1 m3. Rockfall volumes below this cutoff were eliminated for 

further analysis, leaving 46 rockfalls, which are presented in the MCF curve in Figure 4.4B. 

 

Figure 4.4 MCF curves for Site 1. A) Using MLE method to determine the cutoff volume. B) 

The MCF per year per m2 for volumes > 2.1 × 10-1 m3 at Site 1 using Ranking method and 

showing the power law fitting equation. 

Table 4.1 Summary of the identified rockfalls at Site 1. 

Rockfall 

source 

Total 

rockfalls 

Number of 

rockfalls  

> 2.1 × 10-1 m3 

Maximum 

volume (m3) 

Total volume (m3)  

> 2.1 × 10-1 m3 

Shale 36 13 2.6 9.2 

Talus 38 15 7.8 21.1 

Sandstone 45 18 2.2 12.1 



 

58 

The spatial variability of rockfalls and associated volumes within Site 1 is highlighted in 

Figure 4.5. The variation in lithology at this site influences the occurrence of rockfalls and the 

distribution of volumes. Out of 46 rockfalls, 28 occurred in the lower portion of the slope. This 

portion is characterized by thick shale beds interbedded with thin competent sandstone beds (13 

rockfalls) and covered by talus (15 rockfalls). The remaining 18 rockfalls were encountered in 

the upper jointed sandstone layer. Rockfalls in the lower part of the slope are primarily 

associated with various factors. These include detachments from the thin sandstone beds due to 

differential weathering, detachment of rockfalls from the weathered shale layer, and movement 

of talus material. Large rockfalls are concentrated at the boundary of rock-cut excavation. In the 

upper portion of the slope, rockfalls mainly originated from the detachment of blocks from 

sandstone beds. 

 

Figure 4.5 A top-down view of Site 1 showing the distribution of the 119 rockfalls. Circle 

sizes represent the relative rockfall volumes, while colors represent the acquisition year. 

The maximum rockfall volumes observed in the shale layer, the talus, and in the upper 

sandstone are 2.6 m3, 7.8 m3, and 2.2 m3, respectively. The total rockfall volumes are 9.2 m3, 

21.1 m3, 12.1 m3 in shale, talus, and sandstone, respectively. The largest rockfalls originated from 

the talus section, which is composed mainly of consolidated and compacted soil mixed with large 

rock fragments. On the other hand, rockfalls in sandstone were smaller and confined to dominant 
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of joints. The total volume of rockfall derived from talus is almost equivalent to the combined 

rockfall volumes in shale and sandstone. Initiation of rockfall along the lower section is 

attributed mainly to the excavation of cut-slopes along the road. 

Figure 4.6 displays the MCF curves for three rockfall sources at Site 1 above the identified 

cutoff volume. It can be observed that the frequency of rockfalls in shale is higher than that of 

both sandstone and talus. Talus and sandstone exhibit similar frequencies for smaller rockfalls. 

However, as the volumes increase, the frequency of rockfalls in the sandstone section decreases 

compared to talus, with the largest volumes being observed in the talus. 

 

Figure 4.6 MCF curves for the rockfall sources at Site 1 for volumes > 2.1 × 10-1 m3. Note 

that frequencies are normalized by the areas of each rockfall source (rather than the full slope 

area). 

The structural mapping of 80 m long and 150 m high selected segment from Site 1 identified 

76 discontinuities (Figure 4.7), classified as joints and bedding planes. The bedding planes are 

sub-horizontal and persistent, while the joint planes are less persistent, varying in dip from 

horizontal to near vertical. The stereographic projection of the obtained structural data revealed 

the existence of three joint sets along the sub-vertical slope face, which dips towards the south 

(83/178). The first joint set (J1, 73/178) strikes sub-parallel to the slope face with a steep dip 

angle. The second joint set (J2, 80/229) strikes oblique to the slope face with a sub-vertical dip 

angle. The third joint set (J3, 02/042) is sub-horizontal and dips toward the northeast.   
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Rock blocks that have detached along these three joint sets can be identified from the scars on 

the sandstone ledges (Figure 4.8). Erosion of the small shale layers, which are interbedded with 

the sandstone, has led to the formation of several overhanging blocks. These blocks can fall 

along the encountered joint sets and through intact rock failures (rock bridges). The sub-vertical 

joint set (J1) provides a potential release surface for sliding, while the oblique joint set (J2) forms 

potential lateral release surfaces for the detached blocks. The sub-horizontal joint set (J3) creates 

the upper release surface for the overhanging blocks. The distribution of joint spacing is shown 

in Figure 4.9. 

 

Figure 4.7 Stereographic projection for the mapped structures at Site 1. 
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Figure 4.8 Detachment of blocks along the identified joint sets at Site 1. 

 

Figure 4.9 Distribution of discontinuity spacing by joint set at Site 1. The spacing values are 

binned to the nearest highest number. 

Based on Monte Carlo simulation using the obtained spacing data, the expected range of 

block volumes is between 9.8 × 10-1 m3 to 32.9 m3. This is larger than the detected rockfall 

volumes in sandstone, which ranged from 1.1 × 10-2 m3 to 2.2 m3 (Figure 4.10). The difference 
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between the ranges of the expected block volumes and detected rockfall volumes could be 

attributed to the following: 

1. Mapping structures from the point cloud relies on detecting clear traces of discontinuities 

to measure their orientation and spacing. The lower resolution of the point cloud can lead 

to relatively small and low aperture joints being missed during mapping, resulting in 

larger expected block volumes. This issue is evident in the mapping of J3. The smallest 

features shown in Figure 4.8 were not mapped in the point cloud, causing a larger 

apparent spacing of J3 compared to the actual spacing. 

2. The predominant occurrence of intact rock failures along rock bridges in the sandstone 

likely contributes to the formation of rockfalls that are smaller than the joint-bounded 

block sizes.  

 

Figure 4.10 A comparison between the MCF curves of the identified rockfalls and the Monte 

Carlo fracture-bounded block size simulation results at Site 1. 

The examination of rockfall shapes identified within the sandstone layers showed that they 

fall into three main shape categories: bladed, very bladed, and very elongate (Figure 4.11). The 

distribution of joint sets spacing has a noticeable impact on these shapes. The narrow spacing of 

J1 contributes to the bladed shapes of rockfalls. These shapes shift to very bladed when the J1 

spacing decreases or very elongate when the J3 spacing decreases. 
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Figure 4.11 The identified rockfall shapes for the detected rockfalls in sandstone at Site 1 

corresponding to volumes > 2.1 × 10-1 m3. 

4.2 Site 2 

An example photogrammetric model for Site 2 is shown in Figure 4.12. The dense point cloud 

for 2014 has 69,209,033 points, while the 2021 cloud has 39,299,221 points. The point spacing 

along the slope segments has an average of 0.07 m. Figure 4.13 shows a representative M3C2 

result for a 68 m long and 75 m high segment at Site 2. The standard deviation for this segment is 

0.11 m, corresponding to a LOD of ± 0.22 m. Following a review of the M3C2 change results, it 

was determined that manual vegetation removal along this site was not optimal. This left some 

small unfiltered vegetated areas, which increased the standard deviation compared to Site 1. 

 

Figure 4.12 Example of the produced photogrammetric models (2021) for Site 2. 
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Figure 4.13 The M3C2 results for a representative segment at Site 2. 

The change detection process revealed several types of changes at the slope. These changes 

include rock detachments from the sandstone beds, movements of talus, and erosion of surficial 

weathered material, in addition to changes related to unfiltered vegetation. Changes occurred 

mainly in two parts of the slope. These include the talus materials that overlay sandstone beds at 

the northern part and, to a lesser extent, the massive sandstone beds along the southern part of the 

slope. Changes in the talus materials exhibit irregular shapes, whereas in sandstone, the change 

regions tend to be smaller with well-developed sharp boundaries.  

The change detection process at Site 2 between the 2014 and 2021 acquisition identified 126 

rockfalls (Table 4.2). These rockfalls originated from the talus and sandstone layers. The 

identified rockfall volumes span six orders of magnitude from 3 × 10-4 m3 to 13.5 m3 (Figure 

4.14A). The cutoff volume obtained using the MLE method is 2.0 × 10-2 m3. The number of 

observed rockfalls larger than the cutoff volume is 89 rockfalls (Figure 4.14B). 
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Figure 4.14 MCF curves for Site 2. A) Using the MLE method to determine the cutoff 

volume. B) The MCF per year per m2 at Site 2 using the Ranking method and showing the power 

law fitting equation for volumes > 2.0 × 10-2 m3. 

Table 4.2 Summary of the identified rockfalls at Site 2. 

Rockfall 

source 

Total 

rockfalls 

Number of rockfalls  

> 2.0 × 10-2 m3 

Maximum 

volume (m3) 

Total volume (m3) 

> 2.0 × 10-2 m3 

Sandstone 52 41 13.5 46.4 

Talus 74 48 4.3 12.4 

 

The spatial variability of rockfalls and associated volumes within Site 2 is highlighted in 

Figure 4.15. The variation of exposed materials along the site has a notable impact on the 

rockfall occurrences and distribution of volumes. Out of 89 rockfalls, 41 occurred in the massive 

sandstone with a maximum volume of 13.5 m3, distributed along the site. In the talus, 48 
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rockfalls were observed with a maximum volume of 4.3 m3, concentrated in the high northern 

section of the slope. The presence of steep slip surface, resulting from the landslide in the 

northern section, also contributed to the initiation of numerous rockfalls. The total recorded 

rockfall volumes at Site 2 are 46.4 m3 in the sandstone and 12.4 m3 in the talus section. The 

majority of rockfalls in the talus sections are composed of equal-sized small boulders. The 

rockfalls in the massive sandstone are influenced mainly by two discontinuity sets. These are the 

horizontal bedding and the sub-vertical joints parallel to the slope face with large spacing, which 

form large overhanging blocks. (Figure 4.16). 

 

Figure 4.15 The spatial and temporal distribution of the detected 126 rockfalls at Site 2. Circle 

sizes represent the relative rockfall volumes, while colors represent the acquisition year. 

 

Figure 4.16 The exposed sandstone at the southern section of the slope forming large 

overhangs along the sub-vertical joints. 
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Figure 4.17 illustrates the MCF curves for rockfall sources (Talus and Sandstone) above the 

cutoff volume. The data indicates that rockfalls from Talus exhibit an overall higher frequency 

compared to those from sandstone. As the volume decreases, the frequency of rockfalls from 

talus progressively increases, and the difference in frequency between talus and sandstone 

becomes more pronounced for the smallest volumes. Moreover, the largest volumes are observed 

in sandstone. 

 

Figure 4.17 MCF curves for the rockfall sources at Site 2 for volumes > 2.0 × 10-2 m3. Note 

that frequencies are normalized by the areas of each rockfall source (rather than the full slope 

area). 

The analysis of rockfall shapes within the sandstone beds revealed a high degree of variability 

in their morphology, with a slight concentration in the very bladed shape category (Figure 4.18). 

These rockfalls span across nine of the ten categories defined by Sneed's classification, which 

indicates the wide variety of shapes present in this site. This diversity in rockfall shapes can be 

attributed to the prevailing massive sandstone. The sandstone exhibits a limited number of 

prominent pre-existing structural features, such as joints and bedding planes. The absence of 

well-defined structures contributes to the heterogeneity in the rockfall shapes observed along the 

slope. 
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Figure 4.18 The identified rockfall shapes for the detected rockfalls in sandstone at Site 2 

corresponding to volumes > 2.0 × 10-2 m3. 

4.3 Site 3 

An example photogrammetric model for Site 3 is shown in Figure 4.19. The densified point 

cloud from 2014 acquisition has 149,681,036 points, while the 2021 cloud has 354,156,881 

points. The point spacing for the models of this slope is similar to that of Site 2, with an average 

of 0.07 m. The precision of direct geo-referencing at Site 3 was assessed similar to Site 1, where 

three photogrammetric segments from the 2021 acquisition were compared to the lidar scan. An 

example segment is shown in Figure 4.20. The resulting RMS difference metric at this site was 

found to vary from 0.09 to 0.12 m. This indicates slightly poorer accuracy than what was 

obtained at Site 1. This increase could be attributed to the relatively poor quality of the lidar 

point cloud compared to Site 1, as seen in Figure 4.21. Additionally, it could be due to the 

presence of vegetation missed during manual filtering. 

 

Figure 4.19 Example of the produced photogrammetric models (2021) at Site 3. 
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Figure 4.20 The M3C2 differences between a representative photogrammetric segment and a 

lidar survey at Site 3. Some change below the limit of detection is shown to more clearly 

illustrate the subtle distortion effects present. 

 

Figure 4.21 A) The poor quality of lidar point cloud due to up to 1.4 m gaps between 

vertically aligned points. 

A representative change detection result for a 62 m long and 50 m high segment from Site 3 is 

shown in Figure 4.22. It has a standard deviation of 0.11 m, corresponding to a LOD of ± 0.22 m. 

As in the case of Site 2, manual vegetation removal at Site 3 was imperfect, which increased the 
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standard deviation. The observed changes on the rock slope were primarily associated with the 

prevailing sandstone beds. 

 

Figure 4.22 The M3C2 results for a representative segment at Site 3. 

The change detection process between the first and last acquisition identified 210 rockfalls 

(Table 4.3). These rockfalls originated from the exposed sandstone beds. The identified rockfall 

volumes span over six orders of magnitudes from 4 × 10-4 m3 to 23.1 m3 (Figure 4.23A). The 

detected cutoff volume using the MLE method is 2.9 × 10-1 m3 and the number of observed 

rockfalls larger than this threshold is 31 (Figure 4.23B). 

Table 4.3 Summary of the identified rockfalls at Site 3. 

Rockfall 

source 

Total 

rockfalls 

No. of rockfalls  

> 2.9 × 10-1 m3 

Maximum 

volume (m3) 

Total volume (m3) 

> 2.9 × 10-1 m3 

Sandstone  210 31 23.1 75.1 
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Figure 4.23 MCF curves for Site 3. A) Using the MLE method to determine the cutoff 

volume. B) The MCF per year per m2 at Site 3 for volumes > 2.9 × 10-1 m3 using Ranking 

method and showing the power law fitting equation. 

The lithology variation at Site 3 is limited compared to the other sites. Sandstone beds are 

exposed along the whole site with limited occurrences of thin talus. However, the spatial 

distribution of rockfall volumes displayed in Figure 4.24 shows a concentration of the rockfalls 

along the southern section of the slope. This indicates that other factors control the rockfall 

occurrences along this site.  
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Figure 4.24 The spatial and temporal distribution of the detected 210 rockfalls at Site 3. Circle 

sizes represent the relative rockfall volumes, while colors represent the acquisition year.  

The structural mapping of a 62 m long and 50 m high segment from Site 3 identified 86 

discontinuities (Figure 4.25), classified as joints and bedding planes. The bedding planes are 

persistent and primarily horizontal, while the joint planes are less persistent and vary in dip from 

horizontal to near vertical. The distribution of joint spacing is shown in Figure 4.26. The 

stereographic projection of the obtained structural data revealed the existence of three joint sets 

along the sub-vertical slope face (79/312). The joint set (J1, 75/309) and (J2, 19/310) strikes sub-

parallel to the slope face. Despite the similar strikes for J1 and J2, it was noted that J1 has a 

steeper dip angle. J2 is sub-parallel to the slope face with a gentle dip angle and different 

persistence, such that it was identified as a different joint set. The third joint set (J3, 76/360), 

strikes at a relatively oblique angle to the slope face. Detachment of overhanging rocks along 

steep joint surfaces and toppling along surfaces dipping into the rock face can be observed along 

the slope (Figure 4.27).  

The slope angle along this site varies from 38° in the northern section to nearly vertical in the 

southern section (Figure 4.28). In the northern section, the slope angle is shallower (38°), which 

is less than the steep dip angle of J1 (75°), causing J1 to no longer be exposed. In contrast, in the 

southern section, where slope angle becomes steeper, J1 is exposed, resulting in an increase in 

rockfall rates towards the south. 
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Figure 4.25 Stereographic Projection for the mapped structures at Site 3. 

 

Figure 4.26 Distribution of discontinuity spacing by joint set at Site 3. The spacing values are 

binned to the nearest highest number. 
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Figure 4.27 Example of detached hanging blocks (top) and toppling failure (bottom) at Site 3. 

 

Figure 4.28 Comparison between two cross-sections from the northern and southern slope 

portions of Site 3. 
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Based on Monte Carlo simulation for the obtained spacing, the expected range of block 

volumes is between 4.9 × 10-1 m3 to 173.2 m3. This is larger than the observed rockfall volumes 

in sandstone that ranged from 4 × 10-4 m3 to 23.1 m3 (Figure 4.29). The factors influencing the 

difference between the expected block volumes and detected rockfall volumes are interpreted to 

be similar to those at Site 1. Additionally, the existence of rockfalls that were not necessarily 

fully bounded by joint sets might also contribute to these differences. The geometry of such 

rockfalls could be controlled by other factors, such as weathering or overhanging, rather than the 

presence of joints (Figure 4.30). 

 

Figure 4.29 A comparison between the MCF curves of the identified rockfalls and the Monte 

Carlo fracture-bounded block size simulation results at Site 3. 

 

Figure 4.30 Example for a fallen rockfall that is not fully bounded by joint sets. 
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The examination of rockfall shapes along this site revealed similarities to those found at Site 

1. The rockfall shapes are primarily concentrated in the very bladed and very elongate categories, 

with limited rockfalls having bladed, platy, and very platy shapes (Figure 4.31). The distribution 

of rockfall shapes is affected by the joint sets spacing. The narrow spacing of J1 contributes to 

the bladed and very bladed shapes of rockfalls, which can shift to very elongate shapes when J2 

spacing decreases locally. 

 

Figure 4.31 The identified rockfall shapes for the detected rockfalls in the sandstone layer at 

Site 3 corresponding to volumes > 2.9 × 10-1 m3. 

4.4 Comparisons between Sites 

The detected rockfall volumes were normalized per unit of time and unit slope area to 

compare the rockfall rates between the three sites. A consistent threshold volume of 2.9 × 10-1 m3 

was used when evaluating rockfall count. This corresponds to the highest detected cutoff volume 

across the three sites. Table 4.4 displays the number of detected rockfalls above the unified cutoff 

volume per year per area for each site. The comprehensive rockfall inventory is shown in 

Appendix A.  
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Table 4.4 Geometry and detected rockfalls at every site. 

Site 
Total 

length  

(m) 

Maximum 

height  

(m) 

Area of 

the slope  

(m2)  

Monitoring 

period  

(month) 

No. of 

rockfalls  

> 2.9 × 10-1 m3 

Rate of rockfalls 

/year/m2 

 > 2.9 × 10-1 m3 

1 575 163 78,200 74 37 7.67 x 10-5 

2 771 101 62,400 79 25 6.08 x 10-5 

3 1,220 79 89,600 79 31 5.25 x 10-5 

 

4.4.1 Rockfall Rates 

Variations in rockmass conditions and lithology, and the presence of oversteepened areas at 

the study sites had considerable impacts on rockfall activity, leading to differing rockfall rates. 

The presence of shale, in particular, played a significant role in these variations. Moreover, the 

presence of weaker talus materials with considerable thickness also contributed to the differences 

in rockfall activity. At Site 1, rockfalls originated from three sources: sandstone, thick weathered 

shale, and loose talus material. However, at Site 2, rockfalls were observed in sandstone and talus 

material, while at Site 3, rockfalls were limited to the predominant sandstone beds. The total rate 

of rockfall activity increases as weaker geological units, such as shale, and loose surficial 

deposits, like talus, become more prevalent on the slope. At Site 1, the increase in rockfall rates 

is correlated to the increasing thickness of shale beds, which can reach up to 24 meters, and the 

presence of loose talus. Additionally, the higher rockfall rates at Site 2 compared to Site 3 can be 

attributed to the presence of thick talus material. 

The presence of a steep, excavated slope in the rock-cut at Site 1 and the steep slip surface of 

the historical landslide at Site 2 also likely contributed to triggering more rockfalls. This is in 

comparison to the lower rockfall rates at the natural slopes at Site 3. The exposed steep surfaces 

can disturb the natural equilibrium of rockmass, weakening the slope and increasing its 

vulnerability to weathering and erosion (Fookes, 1997; Graber & Santi, 2022b). These factors 

increase the potential for rockfalls to occur. 

Figure 4.32 illustrates the variations in rockfall rates for volumes greater than 2.9 × 10-1 m3 

throughout the monitoring period at each site. The primary observation from these rates is the 

relatively consistent trends in rockfall rates between the sites. A positive correlation was found 

when comparing these trends to the climate data from the Altenbern Meteorological Station. This 

station is located 22 km northwest of DeBeque city, with coordinates of 39.5008o latitude and -

108.3794o longitude. Specifically, a correlation was found between increased rockfall rates and 
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years with a higher number of days experiencing a snowfall thickness exceeding 1 inch per day. 

Increased snow thickness affects the rockmass strength through the combined impact of ice 

formation and melting processes (freeze-thaw cycles). Numerous studies have confirmed the 

correlation between the frequency of freeze-thaw cycles and rockfall activity (e.g. Strunden et al., 

2015; D’Amato et al, 2016; Pratt et al., 2019; Bajni et al., 2021). 

 

Figure 4.32 Fluctuation of rockfall rates throughout the monitoring period along the three sites 

for volumes > 2.9 × 10-1 m3. Panels A, B, and C display the relationship between rockfall rates 

and the number of days with snow thickness exceeding 1 inch during each monitoring period at 

Site 1, Site 2, and Site 3, respectively. The vertical axes are not uniform across the three panels 

due to the differences in rockfall rates at each site. 
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4.4.2 Magnitude-Cumulative Frequency (MCF) Curves 

MCF curves for landslides generally follow a power law distribution for several orders of 

magnitude above the rollover threshold. The rollover feature is common in the landslide curves 

and aids in identifying the minimum consistently detectable rockfall volume (Hungr et al., 1999; 

Strunden et al., 2015). It can vary based on the data collection methods. Stark and Hovius (2001) 

demonstrated that the under-sampling of small events is controlled by the resolution of the 

datasets. Accordingly, in this case, the primary reason for the observed rollover in the current 

datasets is interpreted to be due to variations in the resolution of the captured images during 

different acquisitions. The 2014 acquisition employed three scan lines and captured images from 

a considerable distance, while the 2021 acquisition utilized eight scan lines and close-range 

imaging (Figure 4.33). As a result, the distant-range images from 2014 limited the ability of 

change detection process to detect all the smaller rockfalls. This discrepancy prevented the 

consistent representation of smaller rockfalls.  

 

Figure 4.33 Difference between the distant-range images of the 2014 acquisition and the 

close-range images captured in the 2021 acquisition. 

Comparison of the MCF curves for the three different sites (Figure 4.34) showed that Site 2 

has the smallest cutoff volume of 2.0 x 10-2 m3, while Site 3 has the largest (2.9 × 10-1 m3). 

However, Site 3 has the highest tie point density of all three sites. This indicates that model 

quality factors other than resolution, which are not captured by tie point density, must be 

influencing the rockfall detection threshold. 
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The power-law equations of the three sites in Figure 4.34 also exhibit different scaling 

exponents, with the highest scaling exponent at Site 1 and the lowest at Site 2. It is interpreted 

that variations in lithologies and rockmass properties (degree of fracturing) represent the primary 

influences on these differences. As discussed in Section 4.4.1, the relatively large number of 

smaller rockfalls at Site 1 can be explained by the relative prevalence of weak shale beds.  

 

 

Figure 4.34 MCF curves above the detected cutoff volume corresponding to each site. 

To isolate the influence of degree of fracturing and eliminate the potential influence of 

variable lithologies between sites on the scaling exponent, MCF curves were generated for the 

sandstone across the three sites (Figure 4.35). These MCF curves revealed similar variations in 

scaling exponent between the sites, with the lowest scaling exponent at Site 2 (0.47). Both Site 1 

and Site 3 exhibit relatively lower overall frequencies and smaller rockfall sizes compared to Site 

2. Effectively, the lower degree of fracturing at Site 2 is interpreted to lead to incerased 

occurrence of larger rockfalls. Based on the manual fracture mapping (described in Section 3.3), 

the degree of fracturing for the sandstone units was quantified using total discontinuity trace 

length per area (P21) for a representative sandstone exposure at each site (Table 4.5). Based on 

fracture intensity (P21), Site 2, which consists of massive sandstone beds, exhibits the lowest 

degree of fracturing. This is interpreted to explain, in large part, sandstone at Site 2 having the 
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lowest scaling exponent of 0.47, as Hungr et al. (1999) previously suggested fracture density acts 

as a major control on scaling exponents.  

 

Figure 4.35 MCF curves above the detected cutoff volume corresponding to sandstone at the 

three sites. Note that frequencies are normalized by the area of exposed sandstone at each site 

(rather than the full slope area). 

Table 4.5 Calculated fracture intensity for the sandstone at the three sites. 

Site 

# 

Length of 

segment (m) 

Width of 

segment (m) 

Area 

(m2) 

Sum of fracture 

lengths (m) 

Fracture intensity 

(P21) 

1 59 38 2242 650 0.29 

2 58 40 2320 205 0.09 

3 60 44 2640 672 0.25 

 

The small difference in P21 between Sites 1 and 3 is not sufficient to explain the large 

difference in scaling exponents for sandstone-source rockfalls between Site 1 and Site 3 (1.06 & 

0.73, respectively). While the cause of this difference is unknown, one potential explaination 

could be differences in slope aspect. The slope aspect influences rockfall rates through factors 

such as temperature fluctuations (Mazzoccola and Hudson, 1996; Watters, 1998) and varying 

vegetation cover (Branson, 1990). Site 1, a south-facing slope, experiences greater temperature 

variations, and therefore potentially more freeze-thaw cycles than Sites 2 and 3, which are north-
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facing slopes. While one might expect this to cause an increase in rockfall activity, the results in 

Figure 4.35 show that the sandstone at Site 1 exhibits an increase rate of rockfall for the smallest 

volumes, but a reduced occurrence of larger rockfalls. This could potentially relate to the 

increased sunlight on the rock slope at Site 1 limiting the length of the average freezing period 

and therefore minimizing the depth of freezing, but further investigation is required to evaluate 

this hypothesized mechanism.  

Variations in data collection frequency have also been shown to affect observed MCF curves, 

with scaling exponents tending to increase with increased scanning intervals due to superposition 

of multiple events into one change cluster (Van Veen, 2017; Williams et al., 2019). However, the 

extent of such an effect as documented in these previous studies is minimal compared to the 

observed variations between sites in this thesis. 

As noted above, the results presented are generally consistent with Hungr et al. (1999), who 

showed that rocks with greater fracturing exhibit higher scaling exponents than those composed 

of massive rock. However, our results are not consistent with the findings of Westoby et al. 

(2020) and the meta-analysis of 32 rockfall inventories conducted by Graber & Santi (2022b). 

These two studies concluded that weaker rockmasses exhibit lower scaling factors compared to 

competent rockmasses. The discrepancy between our findings and those of Westoby et al. (2020) 

and Graber & Santi (2022b) can be attributed to the distinct variables and factors considered in 

each study. Westoby et al. (2020) analyzed changes in rock mineralization, finding that more 

dolomitized rock exhibited higher scaling factors than brecciated rock. Similarly, in their choice 

of rockmass criteria, Graber & Santi (2022b) took into account both the degree of fracturing and 

the degree of weathering when evaluating variations in scaling exponents, finding  that slopes 

with “poor” rockmass condition had lower scaling exponents compared to those with “good” 

rockmass condition. In our study, the primary difference in the exposed sandstones across the 

three sites is the degree of fracturing (independent of weathering/alteration). The presented 

findings are therefore most directly comparable with those of Hungr et al. (1999), who also 

explicitly considered fracture density. However, while their study accounted for both the degree 

of fracturing and changes in rock type, the results in Figure 4.35 are strictly for sandstone, 

effectively isolating the effects of degree of fracturing (and slope aspect).  

As previously mentioned, Benjamin et al. (2020) recommended monitoring a combined total 

length of 2.5 km slopes. This is necessary for acquiring a stable estimate of the relative 
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occurrence of large and small rockfall volumes along large-scale slopes. The combined length of 

the selected study sites exceeds this 2.5 km threshold. Consequently, the total MCF curve for 

DeBeque Canyon was estimated and is presented in Figure 4.36. This summary curve can be 

used for high-level decision making relevant to hazard assessment, risk management, and 

maintenance budgeting. In other words, this data can support CDOT in making well-informed 

decisions about resource allocation. 

However, it should be noted that Benjamin et al.’s (2020) research focused on rockfall 

activities along a coastal strip where the rockfall activities were consistent across the entire 

length of the large-scale study site. In contrast, the present study observed diverse rockfall 

activities and multiple rockfall sources from the southern to the northern section of DeBeque 

Canyon. As a result, the derived MCF curve may not adequately represent the overall activity 

throughout the entire Canyon. 

 

Figure 4.36 MCF for the rockfalls along DeBeque Canyon. 
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CHAPTER 5  CONCLUSIONS 

The photogrammetric datasets acquired in DeBeque Canyon provided an excellent 

opportunity to examine rockfall activities on a large scale. It also helped to assess the 

effectiveness of implementing a suitable approach for handling large datasets. The following sub-

sections summarize the conclusions of this research with respect to each of the research questions 

posed. 

5.1 Effectiveness of Direct Geo-referencing 

This study has demonstrated the effectiveness of the direct geo-referencing approach. This 

approach serves as an alternative to traditional methods using ground control points (GCPs), 

especially for large-scale, high, and steep rock slopes. This approach has reduced the time and 

effort of geo-referencing by directly utilizing the camera coordinates recorded during image 

acquisition. The case studies presented in this research involved the comparison of 

photogrammetric point clouds generated using direct geo-referencing with lidar surveys for Sites 

1 and 3. This offered a quantitative assessment of the method's accuracy. Results showed that 

Site 1 had well-aligned point clouds, with a RMS difference metric ranging from 0.059 to 0.063 

m, while Site 3 had a RMS ranging from 0.09 to 0.12 m. The higher RMS value for Site 3 was 

attributed to the lower quality of the lidar data.  

A geometric distortion "bowl-effect" was observed in the photogrammetric models when 

compared to lidar. This was due to inaccurate estimation of the camera's internal parameters 

because of fixed imaging angles and ranges. To enhance the reconstruction quality and reduce 

the geometric distortion of photogrammetric models, varying imaging angles and different ranges 

of scan lines should be considered (Jaud et al., 2018). To address the "bowl-effect" observed in 

large models, the models were divided into smaller 50-90 m long segments. This approach 

minimized the amount of geometric distortion within each segment used for analysis and 

decreased the processing time needed to handle large models. 

5.2 Identification of Rockfalls in Multi-epoch Acquisitions  

Large-scale multi-epoch models present distinct challenges compared to small-scale models in 

terms of the time needed for model construction and subsequent processing for change detection. 

In this study, the selected sites had lengths ranging from 575 to 1,220 m, necessitating an 
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approach that is time-efficient in constructing models and identifying rockfalls. The proposed 

approach involved constructing photogrammetric models for only the first and last acquisition 

dates. Using these models, rockfalls occurring during the monitoring period were identified and 

recorded. The identification of rockfall occurrences between intermediate acquisitions was 

carried out by manually reviewing the corresponding image datasets. This method avoided the 

time required for building photogrammetric models for intermediate years. Knowing the spatial 

occurrence of every rockfall reduced the number of images to review, which facilitated the 

identification of each rockfall's temporal occurrence. The manual segmentation of rockfalls based 

on their temporal occurrence provided a reasonable approximation of the actual rockfall volumes. 

5.3 Spatial Variability of Rockfalls along DeBeque Canyon 

The conducted study demonstrated that rockfall rates vary along the Canyon. The highest rate 

was observed at Site 1 in the southern section (7.67 x 10⁻⁵ rockfalls/year/m²), followed by Site 2 

(6.08 x 10⁻⁵ rockfalls/year/m²). The lowest rate was observed at Site 3 in the northern section 

(5.25 x 10⁻⁵ rockfalls/year/m²). The detected rockfall volume ranges also exhibited variation 

across the sites: Site 1 (1.0 × 10-2 m3 to 7.8 m3), Site 2 (3 × 10-4 m3 to 13.5 m3), and Site 3 (4 × 

10-4 m3 to 23.1 m3).   

The MCF curves at the three sites followed a power-law distribution after exceeding site-

specific threshold volumes. Site 2 exhibited the smallest cutoff volume of 2.0 × 10-2 m3, while 

Site 1 and Site 3 exhibited cutoff volumes of 2.1 × 10-1 m3 and 2.9 × 10-1 m3, respectively. The 

scaling factor of the power-law equations also varies among the three sites, from 1.02 at Site 1 to 

0.73 at Site 2 and 0.57 at Site 3. The analysis of rockfall shapes above the cutoff volume at each 

site revealed similarities between Sites 1 and 3. Rockfall shapes were mostly bladed, very bladed, 

and very elongate. In contrast, Site 2 has a wide variety of rockfall shapes spanning nine of the 

ten categories defined by Sneed and Folk's (1958) classification.  

At Site 1, most rockfalls are concentrated in the steep rock-cut excavation portion. This 

portion consists of a thick shale layer interbedded with thin sandstone beds and covered by talus. 

The primary triggers of rockfalls in this section are the weathering of the shale layer, differential 

weathering of the thin sandstone beds, and the movement of talus material. Similarly, at Site 2, 

the majority of rockfalls are concentrated at the steep slip surface of the historical landslide that 

consists of weathered sandstone covered by thick loose talus. At Site 3, the spatial distribution of 
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rockfalls is affected by variations in slope angles throughout the site. Steeper slopes expose 

critical joints, leading to increased rockfall formation compared to gentler slopes. 

Variations of rockfall rates across the three sites were influenced by several factors. These 

include differences in lithologies, degree of fracturing, and the occurrence of oversteepened 

surfaces. The overall rate of rockfall activity rises when weaker geological formations, such as 

the thick shale at Site 1, are more widespread on the slope. The presence of a steep, excavated 

slope in the rock-cut at Site 1 and the steep slip surface of the historical landslide at Site 2 also 

likely contributed to triggering more rockfalls. Rocks with greater fracturing such as the 

sandstones at Sites 1 and 3 exhibit higher scaling exponents than those composed of massive 

rock such as the sandstone at Site 2.  

The fluctuations in rockfall rates over the monitoring period at each site were observed to be 

correlated to the prevailing climatic conditions. A positive correlation was observed between the 

temporal variation of rockfall rates and years with a higher number of days with snow thickness 

exceeding 1 inch. The increase in snow thickness influences rockmass strength through the 

combined effects of ice formation and melting processes, such as freeze-thaw cycles. 

5.4 Structural Controls on Rockfall Occurrence  

The influence of pre-existing rockmass structures on rockfalls was observed in the failure 

mechanisms, the rockfall shapes, and the scaling exponent of the power-law equation for each 

site. Pre-existing structures are prominent in Sites 1 and 3, while Site 2 consists of massive 

sandstone with few structures. At Sites 1 and 3, the failed rock blocks are largely delineated by 

the mapped joint sets. The steepness of the semi-orthogonal joint sets provides potential sliding 

surfaces for rockfalls. The impact of the prevailing structures is also evident in the rockfall 

shapes at Sites 1 and 3. Distinctive shapes form according to the orientation and spacing between 

joints. In contrast, Site 2 lacks distinctive rockfall shapes due to the absence of prominent 

structures. The scaling exponent of the power-law equation was correlated to the degree of 

fracturing at Site 2. This site has the lowest fracture intensity in comparison to the other 

locations, which is reflected in its minimal scaling exponent of 0.47. 

The expected range of block volumes was considerably larger than the actual rockfall 

volumes at Sites 1 and 3. These differences are influenced by the model resolution and the 

presence of other factors that trigger smaller rockfalls. The lower resolution of the point cloud 
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led to smaller joints being missed during mapping, resulting in larger expected block sizes. Other 

factors, such as intact rock failures or rockfalls not bounded by joints also contributed to block 

sizes being smaller than those typically estimated based on structural mapping data. 

5.5 Future Research Directions 

The conducted research in this thesis has revealed two main potential areas for future work 

that can be summarized as follows:  

1. One could conduct a more comprehensive study on the relationship between geology and 

rockfall characteristics along the Canyon. This could be done by developing additional 

photogrammetric models to fill the gaps between the models used in the current research. 

This approach could enable the identification of specific geological factors contributing to 

rockfall susceptibility, such as rock type, weathering processes, faults, and slope angles. 

Filling the gaps between the studied sites would provide better spatial coverage and allow 

for evaluation of variations throughout the entire Canyon. 

2. Another interesting approach could also explore the application of machine learning 

techniques for the identification of rockfalls. Machine learning algorithms can be 

employed to automatically detect rockfall events from change maps derived from point 

cloud data, differentiating between rockfalls and other features, such as change clusters 

associated with vegetation. This approach would significantly reduce the time required 

for manual verification of rockfalls. 
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APPENDIX A    ROCKFALL DATABASES 

A.1 Site 1 

Year Volume (m3)  Year Volume (m3)  Year Volume (m3)  Year Volume (m3) 

14-15 2.9 x 10-2  
15-16 3.8 x 10-1  

17-21 1.7 x 10-1  
17-21 9.8 x 10-2 

14-15 8.7 x 10-2  
15-16 9.2 x 10-2  

17-21 9.9 x 10-2  
17-21 8.4 x 10-2 

15-16 9.2 x 10-2  
15-16 4.9 x 10-1  

17-21 1.1 x 10-1  
17-21 9.7 x 10-2 

15-16 5.3 x 10-2  
15-16 3.1  

17-21 3.9 x 10-1  
17-21 5.7 x 10-1 

15-16 2.3 x 10-1  
15-16 4.1 x 10-2  

17-21 1.8  
17-21 2.9 

15-16 6.4 x 10-2  
15-16 1.1  

17-21 2.2 x 10-1  
17-21 6.2 x 10-2 

15-16 2.5 x 10-1  
15-16 7.6 x 10-1  

17-21 7.8 x 10-2  
17-21 1.7 x 10-1 

15-16 6.0 x 10-2  
15-16 2.2 x 10-1  

17-21 6.1 x 10-1  
17-21 1.5 x 10-1 

15-16 3.2 x 10-2  
15-16 4.0 x 10-2  

17-21 1.4 x 10-1  
17-21 8.3 x 10-2 

15-16 4.1 x 10-2  
15-16 1.9 x 10-1  

17-21 5.1 x 10-2  
17-21 8.9 x 10-2 

15-16 2.9 x 10-2  15-16 3.9 x 10-1  
17-21 1.3 x 10-2  

17-21 1.2 x 10-1 

15-16 5.0 x 10-2  15-16 4.4 x 10-2  
17-21 2.0  

17-21 2.9 x 10-1 

15-16 3.4 x 10-1  16-17 1.8  
17-21 1.8 x 10-2  

17-21 2.2 x 10-1 

15-16 1.3 x 10-1  16-17 7.3 x 10-1  
17-21 1.2 x 10-1  

17-21 2.5 x 10-1 

15-16 7.3 x 10-2  
16-17 7.8  

17-21 2.6 x 10-1  
17-21 2.5 x 10-2 

15-16 3.7 x 10-2  
16-17 2.9 x 10-2  

17-21 1.1 x 10-1  
17-21 1.1 x 10-2 

15-16 1.6 x 10-1  
16-17 3.4 x 10-2  

17-21 8.3 x 10-2  
17-21 5.6 x 10-1 

15-16 3.0 x 10-1  
16-17 1.5 x 10-1  

17-21 3.1 x 10-1    
15-16 1.6 x 10-1  

16-17 1.2 x 10-1  
17-21 1.8 x 10-2    

15-16 5.4 x 10-2  
16-17 1.0 x 10-1  

17-21 6.3 x 10-1    
15-16 1.1 x 10-1  

16-17 3.2 x 10-2  
17-21 6.3 x 10-2    

15-16 7.9 x 10-2  
16-17 9.5 x 10-2  

17-21 2.0 x 10-2    
15-16 1.7  

16-17 5.5 x 10-1  
17-21 1.0 x 10-1    

15-16 3.5 x 10-1  
16-17 3.5 x 10-1  

17-21 3.6 x 10-2    
15-16 1.1  

16-17 1.8 x 10-1  
17-21 3.1 x 10-2    

15-16 2.6  
16-17 6.5 x 10-2  

17-21 3.7 x 10-1    
15-16 2.0 x 10-1  

16-17 1.1 x 10-1  
17-21 3.3 x 10-1    

15-16 8.1 x 10-2  
16-17 5.6 x 10-1  

17-21 6.8 x 10-2    
15-16 3.1 x 10-1  

16-17 3.4 x 10-2  
17-21 1.3 x 10-1    

15-16 2.5 x 10-1  16-17 6.9 x 10-2  
17-21 1.3 x 10-1    

15-16 3.4 x 10-2  17-21 1.3 x 10-1  
17-21 2.6 x 10-1    

15-16 9.7 x 10-2  
17-21 1.1 x 10-1  

17-21 5.5 x 10-1    
15-16 4.2 x 10-1  

17-21 8.2 x 10-1  
17-21 3.5 x 10-1    

15-16 5.0 x 10-1  
17-21 2.1  

17-21 1.9 x 10-1    
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A.2 Site 2 

Year Volume (m3)  Year Volume (m3)  Year Volume (m3)  Year Volume (m3) 

14-15 4.1 x 10-1  
18-21 6.5 x 10-1  

18-21 1.4 x 10-2  
18-21 3.6 x 10-2 

15-16 5.2 x 10-2  
18-21 5.1 x 10-2  

18-21 6.9 x 10-2  
18-21 1.3 x 10-2 

15-16 8.8 x 10-2  
18-21 6.6 x 10-2  

18-21 3.5 x 10-1  
18-21 1.6 x 10-2 

15-16 4.4 x 10-1  
18-21 1.0 x 10-1  

18-21 3.5 x 10-2  
18-21 6.1 x 10-2 

15-16 1 x 10-3  
18-21 4.2 x 10-2  

18-21 1.3  
18-21 2.0 x 10-2 

15-16 5.6 x 10-1  
18-21 3.2 x 10-1  

18-21 3.3 x 10-2  
18-21 4.0 x 10-2 

15-16 4.2 x 10-2  
18-21 2.5 x 10-2  

18-21 7.8 x 10-2  
18-21 7.9 x 10-2 

15-16 3.2 x 10-2  
18-21 3.7 x 10-2  

18-21 4.3  
18-21 4.2 x 10-2 

15-16 1.3  
18-21 1.8 x 10-1  

18-21 10.5  
18-21 8.8 x 10-2 

15-16 4 x 10-4  
18-21 2.1 x 10-2  

18-21 7.8  
18-21 7 x 10-3 

15-16 2.1 x 10-2  
18-21 5 x 10-3  

18-21 2.8 x 10-2  
18-21 1.2 x 10-2 

16-18 8 x 10-3  
18-21 3 x 10-3  

18-21 1.6  
18-21 1.0 x 10-2 

16-18 3.4 x 10-2  
18-21 1.1 x 10-2  

18-21 3 x 10-3  
18-21 9 x 10-3 

16-18 2.2 x 10-1  
18-21 6.5 x 10-2  

18-21 1.6  
18-21 8 x 10-3 

16-18 4.9 x 10-2  
18-21 3.4 x 10-2  

18-21 13.5  
18-21 1.0 x 10-2 

16-18 6.5 x 10-2  
18-21 4.1 x 10-2  

18-21 1.5  
18-21 1.5 x 10-2 

16-18 1.4 x 10-1  
18-21 2.5 x 10-1  

18-21 6.3 x 10-2  
18-21 1.8 x 10-2 

16-18 2.4 x 10-2  
18-21 4.1 x 10-2  

18-21 3.0 x 10-1  
18-21 8 x 10-3 

16-18 3.1 x 10-2  
18-21 1.3  

18-21 2.1 x 10-1  
18-21 2.1 x 10-2 

16-18 5 x 10-3  
18-21 5 x 10-3  

18-21 1.5  
18-21 10 x 10-3 

16-18 5.9 x 10-2  
18-21 1.4 x 10-2  

18-21 3.0 x 10-2  
18-21 1.7 x 10-2 

16-18 2.6 x 10-1  
18-21 2.4 x 10-2  

18-21 2.5 x 10-2  
18-21 1.3 x 10-1 

16-18 6.7 x 10-2  
18-21 9.6 x 10-2  

18-21 5.9 x 10-2  
18-21 5 x 10-3 

16-18 2.1 x 10-2  
18-21 1.9 x 10-2  

18-21 6.8 x 10-1  
18-21 9 x 10-3 

18-21 6.4 x 10-2  
18-21 1.4 x 10-2  

18-21 4.0 x 10-2    
18-21 2.3 x 10-2  

18-21 1.6 x 10-2  
18-21 1.1 x 10-2    

18-21 1.1 x 10-1  
18-21 1.3 x 10-2  

18-21 3.5 x 10-2    
18-21 6 x 10-3  

18-21 9.5 x 10-2  
18-21 6 x 10-3    

18-21 2.9 x 10-1  
18-21 5.4 x 10-2  

18-21 3.1 x 10-2    
18-21 9.7 x 10-1  

18-21 5.2 x 10-2  
18-21 2.3 x 10-2    

18-21 1.1  
18-21 1.1 x 10-2  

18-21 5 x 10-3    
18-21 7.2 x 10-1  

18-21 3.2 x 10-2  
18-21 2.6 x 10-2    

18-21 1.6 x 10-1  
18-21 1.2  

18-21 3.7 x 10-2    
18-21 3.1 x 10-1  

18-21 7 x 10-3  
18-21 5.7 x 10-2    
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A.3 Site 3 

Year Volume (m3)  Year Volume (m3)  Year Volume (m3)  Year Volume (m3) 

14-15 2.4 x 10-2  
15-16 5.7  

16-17 1.0 x 10-1  
18-21 1.6 x 10-1 

14-15 1.1 x 10-2  
15-16 2.6  

16-17 3.9 x 10-2  
18-21 6.7 x 10-2 

14-15 2.4 x 10-2  
15-16 9.6 x 10-2  

16-17 5.5 x 10-1  
18-21 1.0 x 10-2 

14-15 1.6 x 10-1  
15-16 3.7  

16-17 1.0 x 10-2  
18-21 4 x 10-3 

14-15 8.6 x 10-1  
15-16 1.9 x 10-2  

16-17 2 x 10-3  
18-21 3 x 10-3 

15-16 2 x 10-3  
15-16 7.6 x 10-2  

16-17 1.8 x 10-2  
18-21 7.8 x 10-2 

15-16 2.6 x 10-1  
15-16 8.9 x 10-2  

16-17 3.5 x 10-2  
18-21 9.4 x 10-2 

15-16 7 x 10-3  
15-16 1.7 x 10-2  

16-17 2.8 x 10-1  
18-21 2.4 x 10-2 

15-16 5 x 10-4  
15-16 5.3 x 10-2  

16-17 2.7 x 10-1  
18-21 4 x 10-3 

15-16 1.7 x 10-2  
15-16 2.2 x 10-2  

16-17 3.2 x 10-1  
18-21 4.2 x 10-1 

15-16 1.2 x 10-1  
15-16 3 x 10-3  16-17 1.7 x 10-2  

18-21 6.1 x 10-2 

15-16 1.8 x 10-2  
15-16 8 x 10-3  17-18 8 x 10-3  

18-21 5.3 x 10-2 

15-16 4.8 x 10-2  
15-16 1.1 x 10-1  17-18 1.4 x 10-2  

18-21 1.8 x 10-1 

15-16 2 x 10-3  
15-16 3 x 10-3 

 17-18 6 x 10-3  
18-21 3 x 10-3 

15-16 2.4 x 10-1  
15-16 2 x 10-3 

 17-18 4.8 x 10-1  
18-21 1.4 x 10-2 

15-16 1.9 x 10-1  
15-16 2 x 10-3 

 17-18 1.4 x 10-1  
18-21 1.4 x 10-2 

15-16 3.0 x 10-1  
15-16 1 x 10-3 

 17-18 3 x 10-3  
18-21 2.8 x 10-1 

15-16 2.8 x 10-2  
15-16 2 x 10-3 

 17-18 2.4 x 10-2  
18-21 4.5 x 10-2 

15-16 5 x 10-3  15-16 5 x 10-4 
 17-18 7.4 x 10-1  

18-21 5.8 x 10-2 

15-16 6 x 10-3  16-17 6.8 x 10-1  17-18 3.3 x 10-1  
18-21 1.0 x 10-2 

15-16 1.5 x 10-2  
16-17 4 x 10-4 

 17-18 8.5 x 10-2  
18-21 6 x 10-3 

15-16 2.1 x 10-2  
16-17 3 x 10-3 

 17-18 4.4  
18-21 2.1 x 10-2 

15-16 6.3 x 10-2  
16-17 1.7 x 10-2  17-18 1.0 x 10-1  

18-21 3 x 10-3 

15-16 3.0 x 10-2  
16-17 2 x 10-3 

 17-18 1.5 x 10-1  
18-21 8 x 10-3 

15-16 4.1 x 10-2  
16-17 2 x 10-3 

 17-18 4.5 x 10-2  
18-21 5 x 10-3 

15-16 5.6 x 10-2  
16-17 1.1 x 10-2  18-21 4.3 x 10-1  

18-21 9.2 x 10-2 

15-16 1.1 x 10-2  
16-17 1.6 x 10-2  

18-21 4 x 10-3  
18-21 2.5 x 10-2 

15-16 4 x 10-3  
16-17 1.6 x 10-1  

18-21 1.0 x 10-2  
18-21 3.4 x 10-2 

15-16 1.7 x 10-2  
16-17 5 x 10-3  

18-21 8.7 x 10-2  
18-21 1.0 x 10-1 

15-16 2.1 x 10-1  
16-17 7 x 10-3  

18-21 2 x 10-3  
18-21 8 x 10-3 

15-16 5.3 x 10-2  
16-17 3.7 x 10-2  

18-21 1.7 x 10-2  
18-21 1.7 x 10-2 

15-16 1.1  
16-17 4.9 x 10-2  

18-21 8.0 x 10-2  
18-21 1.1 x 10-1 

15-16 2.1 x 10-1  
16-17 3.0  

18-21 1.3  
18-21 6.0 x 10-2 

15-16 2.0 x 10-1  
16-17 2.9 x 10-1  

18-21 6 x 10-3  
18-21 1.0 x 10-2 
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Year Volume (m3)  Year Volume (m3)  Year Volume (m3) 

18-21 2 x 10-3  
18-21 4.3 x 10-1  

18-21 3.7 x 10-1 

18-21 7 x 10-3  
18-21 3.4 x 10-2  

18-21 4.5 x 10-2 

18-21 2.0 x 10-1  
18-21 6.4 x 10-1  

18-21 1.4 x 10-1 

18-21 6 x 10-3  
18-21 1.1 x 10-1  

18-21 4 x 10-4 

18-21 1.1 x 10-2  
18-21 2.3  

18-21 1.2 x 10-2 

18-21 2.3 x 10-2  
18-21 2.8 x 10-1  

18-21 2.2 x 10-1 

18-21 5.0 x 10-2  
18-21 1.0 x 10-1    

18-21 7 x 10-3  
18-21 16.1    

18-21 2.8 x 10-2  
18-21 6.6 x 10-2    

18-21 3.8 x 10-2  
18-21 1.6    

18-21 1.2 x 10-1  
18-21 2.8 x 10-1    

18-21 6 x 10-3  
18-21 1.5 x 10-1    

18-21 1.8 x 10-2  
18-21 5.6 x 10-1    

18-21 8.4 x 10-2  
18-21 2.4 x 10-2    

18-21 7 x 10-3  
18-21 4.1 x 10-2    

18-21 8.3 x 10-2  
18-21 4.4 x 10-2    

18-21 1.2 x 10-2  
18-21 1.2 x 10-1    

18-21 8.7 x 10-2  
18-21 7.9 x 10-1    

18-21 2.7 x 10-1  
18-21 3.7 x 10-2    

18-21 4 x 10-3  
18-21 5.3 x 10-2    

18-21 5.8 x 10-1  
18-21 4.4 x 10-2    

18-21 3.9 x 10-2  
18-21 1.1 x 10-2    

18-21 8 x 10-3  
18-21 5.4 x 10-2    

18-21 1.1 x 10-1  
18-21 1.0 x 10-1    

18-21 23.1  
18-21 9.0 x 10-2    

18-21 1.7 x 10-1  
18-21 1.3 x 10-1    

18-21 6 x 10-3  
18-21 6.8 x 10-2    

18-21 4.3 x 10-2  
18-21 1.8 x 10-2    

18-21 1.2 x 10-1  
18-21 2.6 x 10-2    

18-21 1.5 x 10-1  
18-21 3.8 x 10-1    

18-21 9.3 x 10-2  
18-21 3.2 x 10-1    

18-21 4.6 x 10-1  
18-21 9 x 10-3    

18-21 5.7 x 10-1  
18-21 6 x 10-3    

18-21 2.9 x 10-1  
18-21 2.8 x 10-1    

 

 


