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ABSTRACT

Several logic mazes and their state graph representations are defined with the goal of

generating additional instances of each maze. As Local Search proved to be an effective

mad maze generation method, we focused on defining an objective function that considers

maze characteristics. By representing logic mazes as state graphs, it becomes possible to

employ the same objective function for scoring, generating, and contrasting various maze

types. This not only simplifies implementation, but also enables the creation of common

characteristic state graphs for completely unique and separate high-level puzzles. We

outline desired maze features, provide implementation details, and present example

objective functions for generating mazes with the targeted attributes.
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CHAPTER 1

INTRODUCTION

1.1 Mazes

Mazes have long fascinated humanity. In one of the world’s first civilizations in Sumer,

we have discovered mazes and labyrinths. Millennia ago, isolated civilizations resulted in

unique alphabets, languages, and cultures, yet mazes and labyrinth designs existed across

many civilizations: from rock carvings in Sardinia (2500-2000 BC) to Padugula in South

India (circa 1000 BC) to Val Camonica in Italy (750-550 BC) (Fisher and Gerster, 2000,

12). Mazes and labyrinths have inspired stories and legends, such as Daedalus, Theseus,

and the legendary labyrinth in Greek mythology. The prevalence of mazes across history

speaks to their extraordinary presence: “Once seen, a maze cannot be ignored. It draws

you into it like a magnet, then proceeds to puzzle, infuriate, and delight in turn until its

goal is reached. Mazes have been exerting this maddening fascination for thousands of

years, and evidence of them is to be found in different civilizations all over the world

(Fisher and Gerster, 2000, 12).”

This work explores a newer development in the history of mazes: the Mad Maze, also

known as a logic maze.

1.2 “Mad” Mazes

The term “Mad” maze was coined by Abbott in his 1990 book of the same name. A

more widespread and common term is logic mazes (Abbott, 1999, 1). These mazes

introduce additional rules to become more like logic puzzles. They are also known as

“Multi-state” mazes because it is possible to revisit the same location multiple times in

different “states” (in many logic mazes, it is required to do so).

Consider the first maze in Abbott’s Mad Mazes. It is a classic maze with two additional

rules: after passing through a red location, one must pass through a blue location and

alternate colors until reaching the exit, and one cannot turn around in place and retrace

one’s steps.
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Figure 1.1: A maze with a similar structure as maze #1 of Mad Mazes (Abbott, 1990, 5).

The lower loop (highlighted above) that alternates red and blue is the defining feature.

Despite appearing superfluous, it is actually required to pass through this lower loop to

reach the finish. Abbott noted this when designing the maze (Abbott, 1990, 38). Adding

such rules turns classic mazes into logic puzzles and makes them much more engaging.

Logic mazes such as these can be modeled as graphs and solved, which leads to the

purpose and motivation of this work.

1.3 Preview

Chapter 2 provides the background and motivation for this work, as well as state graph

models for some logic mazes. Chapter 3 discusses several maze characteristics that can be

used in an objective function to rate state graphs and high-level instances of each logic

maze. Chapter 4 introduces implementation details, search strategies such as simulated

annealing and stochastic local search, and an example objective function to generate mazes

with specific attributes. Chapter 5 presents puzzle instance terms added to the state graph

objective function for each maze along with the resulting maze instances generated. In

Chapter 6, we summarize the paper and conclude with potential future work.

2



CHAPTER 2

BACKGROUND

2.1 Mad Mazes Project

Graph theory is a fundamental component of the undergraduate Algorithms class at

Colorado School of Mines, and one of the most critical concepts covered is “graph

modeling”, which involves taking an unknown problem that one does not know how to

solve, modeling it as a graph, and then applying a well-known graph algorithm (ideally

without modifications) to solve the problem. For instance, consider the following example

problem:

You are provided a set of movies M1,M2, . . .Mk and a set of customers, each of whom

indicates two movies they would like to see this weekend. Movies are shown on Saturday

and Sunday, and multiple movies may be screened at the same time. You must decide

which movies should be televised on Saturday and which on Sunday, so that every

customer gets to see the two movies they desire. Is there a schedule where each movie is

shown at most once? Design an efficient algorithm to find such a schedule if one exists

(Skiena, 2008, 188).

This problem can be solved by modeling it as a graph. Model movies as vertices and

preferences as edges. If a person wants to watch movies M1 and M2, let there be an edge

(undirected, unweighted) between M1 and M2. After creating this graph, attempt a

2-coloring using a BFS.

Graph modeling is a crucial concept, which led to the development of the Mad Maze

project. While teaching the class, Dr. Mehta came across Robert Abbott’s book, Mad

Mazes. This work (which appears to have been designed as a puzzle book) contains 20

logic mazes that serve as an excellent tool to teach graph modeling, and thus the Maze

project was born. Students are given a maze from the book with its additional rules and

complexity beyond a classic maze, asked to model it as a graph, and run a well-known

graph algorithm completely unmodified (students are encouraged to use a graph library to

3



this end) to solve the maze, which equates to finding the shortest path from the start to

the finish. However, Abbott provides only one instance of each maze in the book, and

solving Abbott’s instance by hand is a grueling task. From a pedagogical perspective, it

would be better to have smaller instances of each maze to introduce students to the rules,

and additional instances to test each student’s implementation, which was the direct

motivation for this work: how can one generate logic mazes of a desired size and difficulty?

2.2 Modeling

As mentioned in the previous section, all mazes (classic and logic) can be modeled as a

state graph where each vertex represents a state and each edge denotes a possible

transition between two states. In classic mazes, one’s location is the only state that needs

to be tracked, and there are several methods to track the state and create vertices. One

method involves modeling each “decision point” (typically intersections) as a vertex and

corridors between the decisions points as edges connecting the vertices (Fig. 2.1). Classic

mazes are undirected—it is always possible to retrace one’s steps. However, this is often

not the case with logic mazes.

The state graph representation abstracts away the visual structure of the maze. A

maze’s shape can impact its difficulty and confuse its solvers, especially with life-size mazes

such as those found in theme parks. However, in this work, we focus on the structural

elements of the maze encoded into its state graph. The physical shape of the maze and its

effect on the human psyche fall outside the scope of this work.

2.2.1 Classic Maze State Graphs

As stated previously, classic mazes can be solved by modeling them as a graph and

using a BFS to find the shortest path through the maze. The shortest path through the

maze illustrated in Fig. 2.1 is S, 1, 3, 5, 8, 10, 12, F. This path is a simple path because it

does not repeat any vertices.
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S

1

2 3

4 5

6 7 8

9 10

11 12

F 13

Figure 2.1: A classic maze and one possible graph representation.
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2.2.2 Jumping Mazes and Variants

Jumping mazes are a common type of logic maze. The first jumping maze Abbott

introduces is maze #7 Jumping Jim (Abbott, 1990, 14-15)—this simple version of a

jumping maze consists of a simple numeric grid. The grid has a number on each cell that

indicates how far one must move (horizontally or vertically, but not diagonally) from that

cell. Starting from the upper left hand corner, the goal is to reach the bottom right hand

corner in the minimum number of “jumps” (note it is the number of jumps that we try to

minimize and not the total length of the jumps).

Figure 2.2: A basic jumping maze.

The classic jumping maze has a simple model. Create an unweighted, directed graph G.

Add vertices representing each cell on the grid and directed edges from each vertex to the

cells that can be reached. For example, the vertex for (1, 1) in the grid shown in Figure 2.2

would have directed edges to (4, 1) and (1, 4). Since the graph is unweighted, a BFS is

sufficient to find the shortest path from the start to the finish, and there is no need to use

Dijkstra’s or another weighted graph algorithm.

Due to this puzzle’s simple state graph reduction, classic jumping mazes were not used

for the graph modeling project. Instead, the jumping maze variant introduced in maze #15

Jumping Jim’s Encore was used (Abbott, 1990, 26-27). This variant introduces circled

numbers that change the direction of movement. If one lands on a circled number while

moving horizontally or vertically, then one’s movement direction changes to diagonal until
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reaching another circled number, at which point it reverts to vertical/horizontal. This

small change introduces a concept of “movement state” into the maze, making it possible

to visit the same cell multiple times, once in the state of vertical/horizontal movement,

(which we refer to as cardinal movement) and again in the state of diagonal movement.

Figure 2.3: A jumping maze with red, circled numbers that change the direction of
movement.

To handle this new complication, we must modify the model or the algorithm.

Modifying the algorithm would involve adding conditional statements to the BFS to allow

vertices to be visited twice, once cardinally and once diagonally. However, we prefer to

modify the graph instead of the algorithm, for several reasons. The concept of “modeling”

a logic maze can also be viewed as a reduction to a state graph (or a maze without state).

This facilitates the use of similar components in the maze design function and enables the

consideration of similar traits when rating the difficulty of multiple logic mazes, which is

discussed in detail in Chapters 3 and 4. Additionally, there is no need to “reinvent the

wheel” by creating a new algorithm, as there are already existing graph algorithms that

can be used to solve and study maze characteristics. Hence, modifying the graph is more

efficient and attractive compared to the alternative of re-implementing every graph

algorithm with small modifications.

Combining the modeling concept with a graph library greatly simplifies

implementation, enabling one to use all the conveniences that come with graph libraries.

This includes treating the graph as an abstract object along with a bug-free
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implementation of numerous common graph algorithms. Moreover, as previously

mentioned, we emphasize graph modeling and in our instruction we require students to

modify the graph instead of the algorithm. To this end, we encourage students to employ a

graph library when solving these logic mazes.

Given that we are modifying the graph and not the BFS, consider the following model

for the diagonal jumping maze variant M :

Let G be a directed, unweighted graph. For each cell s on the grid with uncircled

number n in M , create two vertices in G, s1 and s2, with s1 representing the cardinal state

of s and s2 representing the diagonal state of s. Add directed edges from s1 to the cardinal

vertices of distance n from s considering cardinal movement. Add directed edges from s2

to the diagonal vertices of distance n considering diagonal movement. The process is

similar for circled numbers, except the outgoing edges connect vertices in the two different

movement mazes. In this case, add directed edges from s1 to the diagonal vertices of

distance n considering diagonal movement. Add directed edges from s2 to the cardinal

vertices of distance n considering cardinal movement.

In the grid, there will be one cell without a number; this is the goal cell. In this variant,

the goal cell is always the bottom right corner (though this is flexible and may not be the

case in other variants). Create only one vertex to represent the goal. When it is possible to

reach the goal in one move whether in the cardinal state or the diagonal state, add an edge

to this single goal vertex.

To remove the notion of “state”, which is the movement type, we have expanded the

number of vertices in the graph relative to the number of grid cells. There are two states

per cell, and thus double the number of vertices in the state graph (minus one for the

goal), two for each location on the grid/one for each possible state. In effect, we have

created two distinct mazes, the cardinal maze and the diagonal maze, with circled numbers

serving as connections between the two. This technique is common for logic mazes with

state changes. We often increase the number of vertices in the graph relative to the puzzle

in order to encode its complexity. This expansion requires a constant amount of additional
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space per cell, which is not true for all logic mazes; in some cases, the expansion requires a

polynomial additional space instead of a constant (see later sections on step-change (Alice)

mazes or multi-player mazes).

After constructing the graph, a BFS will find (one of) the shortest path(s) from the

start to the goal vertex (the start is always the upper left cell in the cardinal state in this

variant). A sample graph is shown in Fig. 2.4, where the vertices are named (state, row,

column) where 1 indicates a cardinal state and 2 indicates a diagonal state. The colors and

shapes of the vertices will be explained in a later chapter.

(1, 1, 1)

(1, 1, 3)

(1, 3, 1)

(2, 1, 1)

('goal', 3, 3)

(1, 1, 2)

(1, 2, 2)

(2, 1, 2)

(2, 2, 1)(2, 2, 3)

(2, 3, 1)

(2, 1, 3)

(1, 2, 1)

(1, 2, 3)

(2, 2, 2)

(1, 3, 2)

(2, 3, 2)

Figure 2.4: Graph model of the jumping maze instance shown in Fig. 2.3.
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2.2.3 Arrow Mazes and Variants

Another common logic maze is the arrow maze. Similar to jumping mazes, the maze is

constructed on a grid with the start as the upper left hand cell and the finish as the lower

right cell. Instead of numbers on the cells; however, there are arrows. There are eight

possible orientations of an arrow, and they are usually denoted using the eight principal

directions, with an arrow pointing “North” indicating an upwards arrow, and the other

directions can be inferred from this.

Figure 2.5: A simple arrow maze.

The movement in arrow mazes is determined by the direction of the arrow in each cell.

As seen in Fig. 2.5, the top left arrow points downwards, thus it is possible to move from

the top left cell to any other cell in the first column.

Arrow mazes are modeled in a similar manner to jumping mazes. Let G be a directed,

unweighted graph. For each cell s on the grid of arrow maze M , add a vertex representing

this cell and directed edges from this vertex to the vertices representing the cells pointed at

by the arrow in s. This reduces the arrow maze to a state graph, and we can run a BFS

from the start to find a shortest path from the start to the finish.

Abbott presents several variants of the basic arrow maze, including Apollo and Diana

and Apollo’s Revenge (Abbott, 1990, 16-17). Apollo and Diana introduces a coloring

scheme to the basic arrow maze, in which the arrows are colored red and blue, and the
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solver must alternate between red and blue arrows while moving through the maze. Adding

a coloring scheme of any kind (red-blue, red-green-blue, etc.) does not change the model

significantly—when iterating over the cells pointed at by the current arrow, an edge is only

added from the current vertex to the vertex representing the child if the color is valid.

Figure 2.6: The left shows a colored arrow maze. Solvers must alternate colors when moving
through this maze. The right instance depicts a colored arrow maze with movement state
changes.

Apollo’s Revenge introduces a state change similar to the circled numbers in jumping

mazes (see Fig. 2.6), where circled arrows change the direction of movement from forward

to backward. When a player lands on a circled arrow while moving forward, they start

moving out of the tails of the arrows, that is, backward, until reaching another circled

arrow, at which they resume forward movement. This variant combines a coloring rule

with a state-change.

To model a state-changing arrow maze, we can follow a similar approach as for a

state-changing jumping maze. Specifically, using the graph model described earlier for

jumping mazes with state changes, create a subgraph for each type of movement; the

circled arrows connect the two subgraphs to form the overall state graph for the maze.

Abbott introduces what he considers the best of his arrow mazes in SuperMazes, the

sequel to Mad Mazes, and he coins this variant “Arrow Hockey.” In an Arrow Hockey

maze, the rules of a basic arrow maze apply, except that there is a dime on one of the cells.
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The goal of the maze is to bump the dime from cell to cell until moving it onto the goal

cell. Movement rules are identical to a basic arrow maze (one can move to any cell that the

current cell’s arrow points at) except that one may not travel over the dime. Although one

cannot travel over the dime, the solver can bump the dime by ending a move on the same

cell as the dime. In this case, the dime is bumped one cell forward in the direction the

solver came from when landing on the cell with the dime. For instance, if the dime was at

cell (3, 3) and the player was at (3, 1) with a rightward pointing arrow, moving onto cell

(3, 3) would bump the dime to cell (3, 4).

The location of the dime changes the rules of the maze. Therefore, each possible

location of the dime represents a different maze. To entirely remove state and reduce this

maze to a state graph, we will have n subgraphs, one for every possible location of the

dime (which is assumed to be every cell in the maze). This means the graph representation

of an arrow hockey instance will have n2 vertices, where n is the number of cells in the

original maze. If we consider a n× n grid version of the arrow hockey maze, it will have n4

vertices. This reduction expands the number of vertices and edges, and hence the memory

consumption by a polynomial factor based on the size of the original maze, unlike the

constant factor observed for previous state-changing mazes. Due to the size of the state

graph, arrow hockey mazes with only a thousand cells can become difficult to work with.

Mazes like arrow hockey raise the question of whether it is better to modify the

maze-solving algorithm to simulate the maze directly instead of creating a state graph. In

contrast to direction state-changing mazes, the separate subgraphs in an arrow hockey

instance are very similar, differing only in the location of the dime and the cells pointing at

it. Consequently, it may be unnecessary to perform the state graph reduction, which

results in consuming a much larger amount of (mostly wasted) space.

2.2.4 Connections Mazes

Another maze often used in the undergraduate algorithms class is Grandpa’s Transit

Map (Abbott, 1990, 18-19), also known as a “Connections Maze” or an “Either-Or maze”
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(Abbott, 1997, 28-29). Connections mazes resemble a graph and have vertices (villages)

and edges (transit lines). The objective is to travel from the start (Startsburg) to the goal

(Endenville). From the starting village, one can choose any outgoing transit line (in

Abbott’s connections mazes, the start only has a single line connecting it to another

village, so this is a simple extension of his rules) to take to a connecting vertex, but from

that point on, the line on which one chooses to exit a circle must have the same type or the

same color (a “free transfer” in Grandpa’s Transit Map) as the line used to enter the

village. Additionally, this maze has a no-U-turn rule, meaning that one cannot leave a

village on the same line used to enter it, even though it (trivially) has the same color

and/or type as the line used to enter the village.

A

B

C

D

E

F

G

Figure 2.7: Connections maze with two colors and four line types.

In the connections maze depicted in Fig. 2.7, the goal is to move from the starting

village (A) to the ending village (G). It is possible to move from the starting vertex (A) to

either B or C. If one chooses to move to C from A, then the only option (given the rules

above) is to take the red arrow line to B, then to D, then the path splits and one could

choose to move to either E or F.

In the model for connections mazes, the transit lines become vertices (two vertices per

line in the original maze) and the villages become edges. Consider an arbitrary connections

maze M . Let G be a directed, unweighted graph. For every line L that connects villages v1

and v2 in M , create two vertices in G, one which represents “boarding” transit line L from
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village v1 and another which represents boarding transit line L from village v2. For the

vertex that represents boarding L from v1, add directed edges to the vertices that

represent boarding transit lines at v2 with the same color or the same type as L, except

the vertex that represents boarding L at v2 because of the no-U-turn rule. For the vertex

that represents boarding L from v2, add directed edges to the vertices that represent

boarding transit lines at v1 with the same color or type as L, except the vertex that

represents boarding L at v1 because of the no-U-turn rule.

Because it is possible for multiple transit lines to connect to the starting village A, add

a unique starting vertex and connect it to the vertices representing boarding any transit

line at village A. Similarly, add a unique finish vertex and add edges from the vertices

representing the transit lines boarded at all villages that connect to the finish village to

this new finish vertex. The state graph representation of the connections maze given in

Fig. 2.7 is shown in Fig. 2.8.

Traveling one direction along a transit line is completely different than traveling the

opposite direction on the same transit line (these are separate vertices in the state graph

representation). This property can be exploited to design clever and challenging mazes

that require retracing many of the same transit lines in reverse order.

2.2.5 Multiplayer Mazes and Variants

Many logic mazes involve multiple players, which Abbott calls “pointers.” Some

examples from Abbott’s work include Spacewreck, Meteor Storm, and Theseus and the

Minotaur (Abbott, 1990, 32-35). In the undergraduate algorithms class, we use

Spacewreck, which has two players, but the model for two players generalizes to mazes

with n players.

Spacewreck involves a graph-looking maze with rooms (vertices) and corridors (edges),

each with specific associated colors. The corridors can only be traversed in one direction in

this variant, and one of the two players must reach the room marked “Goal” to complete

the maze. Player 1 starts in room A and player 2 starts in room B.
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Startsburg

1A

3A

Endenville

2B

1B

4D8D

2D

9B

9C

3C

5E

4E 8F

5F

6F

7G6G

10F

7E

11E

10C11C

Figure 2.8: State graph model of Fig. 2.7
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A

D

B

C

E

F

GOAL

Figure 2.9: An example Spacewreck maze.

Only one of the two players can move at a time. If player 1 is in a room with color c,

then player 2 can move through an adjacent corridor of color c to a new room. Similarly, If

player 2 is in a room with color c, then player 1 can move through an adjacent corridor of

color c to a new room.

Consider the instance shown in Fig. 2.9 where players 1 and 2 start in rooms A (red)

and B (blue), respectively. Both players can move, and there is no requirement for them to

alternate moves. Player 1 can move down the blue corridor to D because player 2 is in a

blue room, or player 2 can move down the red corridor to A because player 1 is in a red

room. However, this move results in both players being in room A, which is a dead end

because A has no outgoing red corridors. A good notation system to keep track of the

maze state is the locations of the two players in alphabetical order. Since the players do

not have to alternate and only one of them must reach the goal, it is unnecessary to track

which player is where. The two players start in position AB. Player 1 moves to D, resulting

in position BD; after which player 2 moves to A, leaving the players in position AD.
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AB → BD → AD → AE → AC → CD → DD → DE → EE → EC → GOAL is one

possible path to reach the goal.

The state graph model for multiplayer mazes is polynomial in the number of players.

All possible locations of each player/pointer must be included as vertices, with edges

representing the movement of one player. In the case of Spacewreck, the notation system

introduced previously is used to denote each vertex - AA, AB, AC ... AF BB BC BD ...

FF. We give the two letters that represent each player’s location in lexicographic order to

avoid repetition of vertices. The vertices are generated by iterating over all pairs of rooms

in the original maze in lexicographic order.

In the rules of this multiplayer maze, only one of the players must reach the goal

vertex. Therefore, when generating the state graph, any vertex that has one of the two

players in the goal room is the same state, which is denoted “GOAL GOAL.” For example,

“A GOAL”, “B GOAL”, would be one vertex in the state graph model, “GOAL GOAL.”

Let G be a directed, unweighted graph with rooms R. Iterate over the rooms in

pairwise fashion to generate all vertices AA, AB, etc. For each vertex, check if the color of

room one matches any outgoing corridors from room two. If a match is found, add an edge

from the current vertex to the vertex that represents the player moving down that corridor.

The same process is repeated for room two and outgoing corridors from room one. If both

players are in the same room, then the same edges could be added multiple times, but this

graph representation simply ignores duplicate edges (it is not a Multigraph). If the

outgoing corridor leads to the GOAL room, then add an edge from the current vertex to

“GOAL GOAL,” assuming the colors match properly. See Fig. 2.10 for the graph

representation of the Spacewreck instance given in Fig. 2.9.

This model is polynomial in the number of players. It has on the order of np vertices

where p is the number of players. If there was a Spacewreck variant with three players,

then the model would contain vertices AAA, AAB, AAC, etc. This maze has no “turns”,

i.e., any player can move at any time instead of alternating. If there were turns; however,

this would add a constant factor onto the number of vertices in the state p ∗ np.
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A A B D

GOAL GOAL

A C

A D

C D

A E

A F

B B

B C

C C

B E

B F

D D

C E

D E

C F

D F

E E

E F

F F

Figure 2.10: State graph model of the maze in Fig. 2.9
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2.2.6 Misc. Other Mad Mazes

All logic mazes (that we have found) can be modeled as a state graph and solved with a

BFS. Theseus and the Minotaur (Abbott, 1990, 34-35) involves a model similar to

Spacewreck, with the additional complexity of determining which player’s turn it is at each

location pair. Alice in Mazeland (Abbott, 1990, 28-29) is played on a grid similar to arrow

and jumping mazes, except the arrows point in multiple directions that indicate the

allowed directions of movement. The player’s step length starts as one, but certain squares

increase the step length by one and others decrease it by one. This model is similar to the

state-changing Apollo’s Revenge and Jumping Jim mazes—create a separate subgraph for

each possible step length, and connect the subgraphs with edges to and from the vertices

that change the step length. This model is polynomial in the side length of the grid

because the step length can be anything from 1..s− 1 where s is the maximum side length

of the grid. Dice mazes (or Rolling-cube mazes as they are often called) are also played on

a grid and have 24 vertices in the graph model per square: six different numbers can be on

top of the die, and for each of those six numbers, four different numbers can be facing the

bottom (or equivalently, the top) of the grid (Abbott, 1990, 37).

To summarize, all mazes that we have encountered so far can be represented as a state

graph using polynomial additional space compared to simulating the maze directly. While

it is theoretically possible that a maze exists that requires exponential space and time to

perform this reduction, we have not found one yet. It is worth noting that Rolling-cube

mazes in which one must visit a subset of squares exactly once have been proven

NP-Complete (Buchin et al., 2007, 8-9), but this is fundamentally a different problem than

the mazes we have considered, as we attempt to find any path from the start to the goal in

our puzzles rather than a Hamiltonian path, which is the case in Buchin et al. (2007).
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CHAPTER 3

MAZE CHARACTERISTICS

3.1 State Graph Characteristics

The primary objective of this research was to create logic maze instances of varying

sizes, both small enough to serve as instructional examples for students to become familiar

with the rules of the maze, and large enough to test their implementations.

The state graph reduction applied to all mazes in this work allows for analysis of both

the underlying graph representation and the high-level problem instance, as they are

reduced to an unweighted directed graph. This unique approach enables the use of an

identical objective function when calculating the score of state graphs, regardless of maze

type, which is a significant contribution of this work. Additional qualities can then be

applied to the higher-level problem instances individually.

A local search implementation resulted in the highest-quality mazes. This is discussed

in detail in Chapter 4, but the main purpose of this chapter is to explain and highlight

important maze qualities that can be incorporated into an objective function for local

search.

Neller et al. (2011) discuss some desired maze attributes that will be introduced, along

with additional characteristics identified in our original work. Abbott also outlines several

metrics by which he designs his mazes, which will be mentioned as well. We found some

additional maze qualities to be challenging based on personal experience, but these have

not been verified with human testing. To our knowledge, none of the mazes presented have

been used in a study to determine their true difficulty, instead we have selected metrics

from Abbott, Neller et al. (2011), and personal experience.

Before delving into specific maze characteristics, it is essential to note when designing a

maze for humans to solve, a common solving method is to work backward from the goal

instead of forward from the start (Abbott, 1999, 38). Therefore, it follows that the maze

ought to be equivalently difficult when attempting to solve it forward or backward,
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otherwise it will be easily solved through back-tracing. Considering not only the state

graph but also its transpose is critical when evaluating the following maze characteristics.

A practical method to enforce the same difficulty in the transpose is to compute the metric

value for for both the state graph and its transpose, and add the minimum (maximum)

value to the objective function, assuming maximizing (minimizing) the objective function

is the goal. For the remainder of this chapter, it is assumed maximizing the objective

function is the goal.

Fig. 2.8 is the state graph of Fig. 2.7 based on the reduction given in Chapter 2. An

explanation of the colors and shapes in the state graph diagram is given below.

• Shapes

– The start and goal vertices are star-shaped.

– Diamond-shaped vertices are unreaching, meaning that it is impossible to reach

the finish from them.

– Vertices on the shortest path (only one path if multiple shortest paths) are

circular shaped.

– Required vertices are double-circled. This means that any path from the start to

the finish must pass through these vertices.

– Edges between vertices on the shortest path are bolded for convenience.

• Color

– Vertices are shaded according to the distance from the start vertex.

– Vertices with a higher degree of red coloration indicate shorter distances from

the start.

– Vertices colored similar to the goal vertex are at about the same distance from

the start as the goal vertex.

– Vertices colored a darker blue than the goal are farther away from the start than

the goal vertex.

– Uncolored vertices are unreachable from the start.
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3.1.1 Paths, Shortest Paths, and Number of Vertices

The complexity of a maze can be indicated by the number of vertices in its graph

representation. Mazes with more vertices tend to be more challenging due to larger traps

(explained in a later section), longer true and false paths (the true path leads to the

solution while a false path does not), and increased decision points. However, simply

adding more vertices without consideration for other aspects of the maze does not

necessarily make it more difficult. Therefore, the number of vertices should not be directly

included in the objective function, but can be used to adjust the weight of other terms in

the function to accurately reflect the size of the maze.

Abbott suggests leaving a substantial amount of space for several long false paths when

deciding what portion of the vertices should be involved in the shortest path (Abbott,

1997, 27). From experience with our program, a good number is 15-35%, but exceeding

35% could limit the potential for other characteristics that increase maze difficulty. If a

majority of the maze is involved in the shortest path, then over 50% of vertices are

“correct” and cannot contribute to other maze traits. To account for this in the objective

function, a deduction is applied to the score if the shortest path involves less than 15% or

more than 35% of the vertices.

In addition to the length of the shortest path, the existence of multiple shortest paths

can affect the solver’s motivation. Neller et al. (2011) find that there is a level of

satisfaction achieved when one discovers the shortest (or best) solution, and the existence

of a unique shortest solution can motivate solvers to continue working on a maze even after

solving it (Neller et al., 2011, 193). Therefore, our objective function includes a bonus if

there is one shortest path (with some exceptions, see specific maze qualities below).

3.1.2 Branching

Branching is a relatively intuitive characteristic that refers to the number of different

locations one could be in after exactly X moves from the start. It is similar to the idea of a

“branching factor” in the growth of a search tree/space, and is used to ensure there are no
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sections of forced moves at the beginning or end of the maze, at which point the maze

might as well start after the forced moves. It also helps to confuse solvers working both

forward and backward if one could be in 14 different possible locations after only three

moves.

When calculating the branching score, it is necessary to determine, how many possible

moves to take into account. An effective method to calculate a branching score is to adjust

the number of moves considered from the start position based on the length of the shortest

path. The longer the shortest path, the higher the values of X when calculating the total

number of possible locations after X moves from the start. 10-15% of the shortest path

length is a good starting point.

An additional aspect to take into account when calculating branching is if repeats will

be considered (e.g. there is a vertex that can be reached after either 2 or 3 moves from the

starting vertex). Typically, vertices should not be double counted when calculating

branching because a human maze solver who is less than 10% into a reasonably sized maze

will likely notice they are revisiting a state they could have reached from the start in fewer

moves, and thus choose an alternate path. While it is possible to consider repeats,

branching scores that include them tend to disproportionately impact the overall maze

score.

3.1.3 Reachability

A reaching vertex v is a vertex from which it is possible to reach the goal g. A

reachable vertex is a vertex that can be reached from the start s (Neller et al., 2011, 192).

A traversal from the start (finish) on the state graph (transpose) can be used to calculate

the portion of reachable (reaching) vertices. Sixty percent is a good minimum portion of

the maze to be reachable (reaching) from the start (finish). This restriction can greatly

influence the creation of traps, as traps are often only accessible when moving in one

direction through the maze.

Reachability also measures the efficiency of a maze because the number of vertices in
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the state graph is a function of the puzzle size, which usually does not change while

generating an instance. Often, one chooses a size (e.g., 30 rooms and 72 corridors in a

Spacewreck maze) and the generator does not modify the size, it merely changes the other

properties of the maze (colors, which rooms the corridors connect, etc.). Using the formula

for combinations with replacement with n = r − 1 and k = 2, and then adding one for the

goal, a state graph of a Spacewreck maze with r rooms will have
(
r
2

)
+ 1 vertices. A 30

room instance will have 436 vertices. If only 200 of these vertices were reachable and/or

reaching, this would be a poor use of resources.

Vertices that are both unreachable and unreaching are denoted isolates, and these

represent wasted resources—vertices in the state graph that cannot be reached from the

start nor backward from the finish. The puzzle instance ought to be redesigned so these

are included as a part of the maze. Isolates negatively influence the score of the maze in

objective functions as a result.

If a logic maze allows bidirectional movement and the state graph is undirected (similar

to a classic maze), all reachable vertices will also be reaching (even if one must pass

through the start to reach them in the opposite direction or vice versa). In this case, there

will only be isolates and vertices that are both reachable and reaching.

3.1.4 Traps, Holes, and Whirlpools

From the definitions of reachable and reaching vertices, we can define several different

traps to confuse and hinder the maze solver. A dead end of a maze is a set of one, or many

reachable, unreaching vertices. A reverse dead end is a set of reaching, unreachable vertices

in the state graph.

A black hole is a set of strongly connected, reachable, unreaching vertices in the state

graph. In effect, it is a false path that ends in loop(s) instead of at a singular dead end.

Black holes, especially large black holes, can significantly increase a maze’s difficulty

because a maze solver may spend a lot of time in the trap before realizing there is no

escape. This definition is slightly different than the one given in Neller et al. (2011)
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because we wanted to focus on the strongly connected vertices, which is the core of the

trap, and neglect the fringes. Black holes usually force the solver to restart the maze once

they realize there is no path to the solution because the solver does not remember how

they initially entered the black hole (Neller et al., 2011, 193).

A white hole is a set of strongly connected, reaching, unreachable vertices in the state

graph. It is identical to a black hole when considering the transpose of the state graph

(with the start becoming the finish and vice versa). Only maze solvers working backward

from the solution can find themselves in white holes. Again, these increase the difficulty of

a maze and help confuse backward-minded maze solvers, but not to the extent of black

holes. Fig. 2.8 has a small white hole: the vertices 10F, 11C, 7E, and 6G make up a four

vertex white hole.

In general, black holes make a maze more difficult than white holes because if the maze

cannot be easily solved in a brute-force manner by moving forward or backward, most

maze solvers will use analytical/systematic techniques to solve the maze. These techniques

are almost always applied to the maze when solving forward from the start rather than

backward from the finish.

These types of traps only affect one direction of solving the maze. Reverse dead ends

and white holes have no impact on individuals solving the in the forward direction because

they cannot be reached when moving forward. Similarly, dead ends and black holes do not

impede solvers attempting to move backward from the solution. These traps directly

conflict with the reachability score, as their existence implies that there are vertices that

cannot be reached when moving in both directions. However, the state graphs of many of

these puzzles, especially if the puzzles are reasonably sized, contain enough vertices (100+

vertices in the state graph) that the increase in difficulty from the traps is worth sacrificing

reachability in one direction for a subset of vertices.

A whirlpool is a set of strongly connected, reaching, reachable vertices. In effect, it is a

hole that can be reached in both directions, and the placement of such traps is more

difficult and important. A whirlpool located near to the start is vulnerable to back-tracing
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from the finish, and the same can be said of a whirlpool close to the finish. This is because

a solver can often see a path to the goal state when within a few moves of it, even if they

have to pass through a large trap to reach it.

When assessing maze difficulty, it is preferred to include some type of hole instead of a

dead end. Holes are inherently more troublesome than a simple dead end that halts all

progress—one often wastes considerable time moving around a hole and must restart the

maze. In contrast, at simple dead ends one can usually retrace their steps before that

decision was made.

It is important to avoid overly large black/white holes that make one direction of

movement much easier than the other. Typically, reachability constraints prevent a maze

from having a single large hole that can be easily solved through back-tracing and vice

versa, and applying the method discussed above (taking the minimum of the black and

white hole scores before adding onto the objective function) often results in a balanced

maze with sizeable black and white holes, or neither.

In a logic maze with bidirectional movement, such as Meteor Storm (Abbott, 1999, 33),

there cannot be black holes and white holes. Instead, the only type of trap that can exist

are whirlpools.

3.1.5 Decisions, Required Vertices, Bridges/Dominance

The presence of traps such as black/white holes and whirlpools in a maze does not

guarantee it is difficult to solve. We have generated many mazes where multiple traps

exist, but a solver may not encounter them unless they are unlucky while a lucky solver

may never encounter these traps.

We want to maximize the chances for a solver to become lost in traps for them to truly

increase the maze’s difficulty. The first solution that comes to mind is to consider the

decisions that a maze solver must make along the shortest path. Consider each vertex on

the shortest path n. From n, there are several cases for each immediate descendent d (the

resulting vertex of each outgoing edge of n):
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• d is the next vertex on the shortest path.

• d is in an unreaching trap (black hole/dead end).

• d is in a reaching trap (whirlpool) or on a suboptimal path to the solution.

• d is a previous vertex on the shortest path.

We aim to have as many decision points as possible that lead into reaching/unreaching

traps or suboptimal paths. However, there are several issues with merely counting the

number of outgoing edges from each vertex on the shortest path that satisfy this

requirement. The simplest problem would be (depending on the maze) the decisions within

a few vertices of the solution vertex are often irrelevant because it is clear by inspection

what decisions to make when one is only a few moves away from the solution. This can

vary depending on the maze. For instance, in the connections mazes shown previously, it is

easy to see the path to the solution when one is within 3-4 vertices of the goal, but in

jumping mazes it is not as clear and one may need to be within 1-2 vertices of the solution

to see the path. Not considering decisions for vertices within three moves of the solution is

a good rule of thumb to use in this context. When creating an objective function that

considers decisions, it is up to the designer to choose the move cutoff. However, the mazes

presented in this work are at a level of difficulty such that most if not all solvers will

attempt back-tracing, which means that they will be at least somewhat familiar with the

paths of length 3-5 working backward from the finish.

Another consideration is that not all decision points should be weighted equally. If one

edge leads into a five vertex black hole and another into a 30 vertex black hole, the latter

should have a more significant impact on the score. Various method can be used to address

this issue which will be discussed further in the next section.

Decisions are one of the primary factors in determining the difficulty of a maze (Neller

et al., 2011, 194). To ensure that decisions factored into the score of a maze are relevant to

all solvers, it is important to consider only the decisions that every solver, regardless of

path chosen, must make. However, if there are multiple shortest paths or multiple paths to

the solution, not all solvers may have to consider every decision, which could falsely
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increase the perceived difficulty of a maze. Therefore, we need to determine which vertices

are “required” vertices R that are present on all paths from the start vertex s to the goal

vertex g. Removing any vertex in R would result in no path existing from s to g.

This question has been studied and solved in theory related to control-flow graphs, and

is referred to as Dominance. A vertex v dominates another vertex u if v lies on every path

from the entry vertex to u.

We need to determine which vertices dominate the goal vertex with an entry node of

the starting vertex. Let D denote the vertices that dominate the goal with an entry point

of the start vertex. If a vertex n ∈ D (n dominates the goal vertex), then any dominator d

of n also dominates the goal vertex, that is, d ∈ D. Thus, we can construct a dominator

tree of all vertices that dominate the goal. The immediate dominator is the parent of a

vertex in the dominator tree. We calculate the dominators of the goal vertex by calculating

the immediate dominator of the goal vertex idgoal and then the immediate dominator of

idgoal, etc., until reaching the start vertex.

Dominance has been used to show the safety of code-reordering operations and can be

used in control flow graphs to determine which lines of code must execute before others.

Cooper et al. (2006) give a O(V 2) algorithm that in practice runs faster on graphs with

less than 1000 vertices than the classical O(E log(V )) Lengauer-Tarjan Algorithm (Cooper

et al., 2006, 1-2). State graphs of typical mazes do not usually exceed this number of

vertices. After computing the dominator tree, we can identify the vertices that dominate

the goal vertex. By only including the decision scores associated with these vertices, we can

ensure the mazes perceived difficulty is based on decisions that all solvers must consider.

3.1.6 Long False Paths (Decisions continued)

Abbott directly mentions leaving space for what he denotes “long false paths”

repeatedly in his work on designing mazes (Abbott, 1997, 26-27), (Abbott, 1990, 36-40). A

false path is a path that does not lead to the goal. Holes, whirlpools, and forks from the

solution path that waste time are all considered false paths.
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Long false paths correspond well to suboptimal decisions at the required vertices. To

score these decisions, it is important to consider the degree of incorrectness. When a

suboptimal decision is made, the resulting vertex d can fall into one of three categories:

1. d is a previous vertex on the shortest path.

2. d is in an unreaching trap (black hole/dead end).

3. d is in a reaching trap (whirlpool) or on a suboptimal path to the solution.

The score associated with the first case should be minimal, as many solvers will

remember their previous 10-20 moves, so a decision that leads backward on the correct

path to an already-encountered vertex does not make the maze particularly more difficult.

Even if the shortest path is of length 80 and the 50th vertex has an edge to the 5th vertex,

a solver is likely to recognize the vertex is close to the start and not choose this edge.

In the second and third cases, the score associated with the decision is based on the

amount of time a solver spends moving through the trap without making progress. For an

unreaching trap, the score is relative to how long it takes the solver to realize they are

repeating the same path and need to restart. The algorithmic approach is to determine the

maximum distance a solver can move in the trap without retracing their steps. Once the

solver starts retracing their steps, they will realize they are stuck and need to find a way

out, probably by restarting the maze.

In the third case, the solver has entered a reaching trap, and the score is determined by

calculating the furthest distance the solver can move without getting closer to the solution

than the vertex at which they made the suboptimal decision, and without retracing their

steps further back along the shortest path. For example, consider a solver at a vertex on

the shortest path that is 20 moves away from the goal. They make a suboptimal decision

and move to a vertex that is 40 moves away from the goal. The maximum score that could

be added as a result of this decision is 40− 20 = 20. Alternatively, if the new vertex leads

into a trap without retracing the solver’s steps, we could potentially add the trap score

here as well.

Based on the discussion in the previous section, we will apply these decision scoring
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criteria to only the required vertices, that is, the vertices that dominate the goal vertex,

and we will not include required vertices that are three moves away (or less) from the goal

vertex.

3.2 Mad Maze Instance Characteristics

Mazes often have characteristics unique to the problem instance itself that ought to be

included in the objective function. Because the state graph abstracts away some qualities

of the maze instance, these characteristics cannot be captured by the state graph and must

be separately included in the objective function of each specific maze type.

3.2.1 Color

An even distribution of colors is often desired in logic mazes that have multiple colors,

such as Connections or Spacewreck mazes. For instance, if a Connections or Spacewreck

maze had four colors, it would be undesirable for most of the rooms/villages and

corridors/transit lines to be the same color. To ensure an even distribution, the number of

appearances of each color can be counted, and the difference between the minimum and

maximum number of appearances deducted from the score, and this difference can be

squared or cubed if necessary. However, in Spacewreck mazes, an even distribution of

colors may lead to additional isolates because it limits possible moves. Thus, the designer

must decide which is more important.

3.2.2 State Changes

To increase the difficulty of mazes that involve state changes, such as jumping and

arrow mazes, it is important to maximize the number of state changes that occur along the

shortest path (or perhaps maximize the number of state changes between successive

vertices in the dominator tree). It would be undesirable to not require the solver to change

the movement direction between cardinal/diagonal and forward/backward. Thus, we can

count the number of state changes along the shortest path/required vertices, and add the

product of this quantity and a multiplier (5-10 is usually sufficient) to determine the

additional score that results from a state change.
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Figure 3.1: A jumping maze generated by a function that maximizes state changes without
limiting the number of circled cells.

However, this can result in mazes with a large majority of the grid squares being circled

(all of them in some cases), which is suboptimal as shown in Fig. 3.1. To encourage both

state changes along the required vertices and that an optimal portion of the grid squares

become locations of state changes, we choose a desirable portion of the grid squares (such

as 20%) to be state changes. Then calculate the difference between the actual number of

state-change grid squares and the desired portion. Square (or cube) this difference and

subtract it from the score in the objective function.

3.2.3 Doubling Back and U-turns

In all of the mad mazes presented in Chapter 2, it is possible to revisit the same

location in the maze multiple times, and this has been previously explained for jumping,

arrow, and connections mazes. In Spacewreck mazes, because state is determined by the

locations of both Lucky and Rocky, one player can revisit the same location (such as A)

multiple times in an entirely separate section of the state graph. This can disorient and

confuse solvers because it feels like they are retracing their steps even though they are not.

In the Spacewreck maze instance shown in Fig. 3.2, Abbott designed the maze so the

solver must trace around one initial loop (A-J-O-N-H-D-A) two times with one pointer,
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another loop (B-G-K-F) three times with the other pointer, and only one exit from these

dual loops leads to the solution (Abbott, 1990, 37).
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Figure 3.2: A maze depicting the Spacewreck instance given in Mad Mazes (Abbott, 1990,
32).
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The concept of “state” that logic mazes introduce enable this re-visitation, or doubling

back, which Abbott uses in many of his mazes to confuse the solver (Abbott, 1990, 36). In

the case of Spacewreck, we can track the visited vertices and count the number of times

the players revisit them. In connections mazes, we can keep track of the visited villages

and count the number of times a village is revisited. An especially tricky aspect of

connections mazes is that traveling one direction on a transit line is an entirely separate

vertex in the state graph than traveling the other direction on the line. This idea enables

one to create entertaining mazes where one traces a large path out into the maze, makes a

u-turn in some fashion, follows the same exact transit lines back to near the starting

village, and then finds a short path to the finish that is now possible. Abbott uses this

concept in his Grandpa’s Transit Map instance.

Figure 3.3: The top section of Abbott’s Grandpa’s Transit Map connections maze (Abbott,
1990, 19). The arrow points to the village mentioned when discussing transit lines exited
from the start.

The solver begins the maze at Startsburg on the red curvy line, and can transfer to

either the blue curvy line to the west or the red straight line south at the next village

intersection (indicated with a black arrow in Fig. 3.3). However, any path to Endenville

(the goal) must return to this village intersection and take the blue straight line to the

east, the one line that cannot be accessed when entering the maze from Startsburg.

Therefore, the solver must initially move out into the maze, make a u-turn, and retrace

their steps back to this village, where they can board the blue straight-line transit line and
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continue eastward towards the goal.

One caveat of this maze structure is that there will always be two possible shortest

paths—the transit lines that one uses to make the u-turn can be traversed in both

directions. For this type of maze, it is recommended to allow for two or less shortest paths

so these u-turn type instances can be generated.

In jumping mazes, specifically with cardinal/diagonal state changes, it can be especially

desirable to double back to the start square along the shortest path (or as a required

vertex) but in the diagonal state instead of the cardinal state. Typically, a modest increase

to the score equal to the number of squares in the grid is a good amount to reward for this

occurring. However, this cannot occur in arrow mazes because the starting square arrow

must point onto the maze, causing its tail to point off the maze.

The concept of u-turns is similar to doubling back, except that it is more unique to the

grid mazes discussed (arrow and jumping mazes) because it involves a disorientation of the

solver not from revisiting the same square in multiple states, but rather multiple repeated

movements in the same row, column, or diagonal. Abbott uses this concept in many of his

grid mazes. In the Apollo’s Revenge Maze, the shortest path moves up and down a

column, reverses direction, and then moves up and down the same column again (Abbott,

1990, 36). Given the shortest path (or adjacent required vertices), it is possible to calculate

the amount of moves that require u-turns, moving either up and down the same column

repeatedly, or along the same diagonal. The jumping maze given in Fig. 3.4 makes use of

many u-turns.

The maze given in Fig. 3.4 begins at (1,1). The path to the goal then moves south to

(7,1), northeast to (6,2), east to (6,6), and then doubles back for the next 6 moves along

the main diagonal: (6,6) to (2,2) to (5,5) to (1,1) to (7,7) to (4,4) to (6,6). These u-turns

along the main diagonal will confuse many solvers, and it also brings a degree of surprise

and enjoyment to solving the maze not present in other mazes.
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Figure 3.4: Jumping maze with an abundant quantity of u-turns.

3.3 Component Graph

Generating the component graph or condensation of the state graph becomes useful as

mazes grow larger and it becomes difficult to identify the state graph characteristics by

inspection. The component graph is created by contracting each strongly connected

component into a single vertex. Edge labels are then added to show the number of

inter-edges between the components in the original graph, and self-loop edges are added to

show the number of intra-edges in each component: edges that are between vertices within

each component. The same coloring and shape rules that were applied to the complete

state graph are also applied to the component graph.

In the first maze given in Fig. 3.5, the component graph reveals two small strongly

connected components, or two smaller mini-mazes, with a four vertex white hole. For the

second maze, the component graph does not tell us a whole lot, other than the maze solver

starts within an 18-vertex strongly connected component with 29 intra-edges and two

possible ways out (edges) that lead to the solution vertex.
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Figure 3.5: Component graphs of the connections and spacewreck mazes given in Figures
2.7, 2.8, 2.9, 2.10.

While these component graphs are simple, they are for smaller maze instances. Larger

mazes such as the jumping maze in Fig. 3.4 or the Spacewreck instance in Fig. 3.2 have

component graphs that are too unwieldy and large to be shown in this paper. Removing

all single-vertex strongly connected components from the condensation that are

unreachable or unreaching and do not have both incoming and outgoing edges leads to

component graphs that can be shown in this paper. The simplified component graph for

Fig. 3.4 (the u-turn jumping maze) is provided in Fig. 3.6.

In Fig. 3.6, the maze solver starts the puzzle in a 40 vertex strongly connected

component with 68 intra-edges, with exactly one edge that leads out of this whirlpool to

the goal vertex. There is a 30-vertex black hole with 15 direct entrances (edges) from the

starting scc and additional entrances that pass through other unreaching sccs. There is
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also a 25-vertex white hole with five direct entrances and around four times that number of

indirect entrances through other unreachable sccs. The major challenging in solving this

maze arises from the sole edge that connects the starting scc to the goal and the presence

of two significant holes.
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Figure 3.6: Component graph of Fig. 3.4 with single-vertex unreachable or unreaching sccs
removed that did not have both incoming and outgoing edges.
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CHAPTER 4

IMPLEMENTATION AND SEARCH

4.1 Implementation

The implementation of mad mazes is well-suited for an object-oriented approach, which

allows for the sharing of common characteristics, such as being played on a grid or color

constraints. The root object contains the state graph logic because all mazes have a state

graph representation. More specific types of mazes can either inherit from this object or

add components that they use, such as a grid, colors, etc. See Fig. 4.1 for a UML

representation of the architecture that we used for this implementation.

Figure 4.1: Potential inheritance scheme

The root logic maze object contains the state graph objective function while the objects

that pertain to each specific maze puzzle call their parent’s objective function to rate the

state graph, and themselves have operations to consider the attributes of the higher-level

puzzle instance (such as an even distribution of colors). The root also contains the state

graph visualization and comparison functionality, state graph analysis, and abstract

methods for reading input, outputting solutions and generation that the children

implement.

38



4.1.1 Program Structure

One efficient way to implement the detection of attributes discussed in Chapter 3 is to

use the state graph reduction combined with a robust graph library such as Networkx in

Python 3. This library includes pre-implemented versions of all the necessary functions to

detect and score state graph attributes, such as dominance, traversals, and distance

calculations. The nodes in Networkx can be any object with user-defined attributes. The

library also includes algorithms for traversals, immediate dominators, shortest path

lengths, flow, descendants, ancestors, bfs/dfs trees, and more. Additionally, Networkx

provides visualization capabilities, allowing for graphs to be exported to Graphviz for

visualization purposes. For more information on Networkx, refer to its documentation

(Hagberg et al., 2008, 11).

Functions that operate on mazes to rate attributes (beyond the graph library functions)

should be implemented as helper functions that are given the maze instance and the maze

start and finish. This enables reuse of the same function when considering both the

forward and transpose of the state graph by passing in the transpose, the finish as the

start, and vice versa.

4.2 Fully Random Generation

A purely random generator was attempted for each logic maze. We chose the size of the

maze and randomly generated the characteristics of each location/edge in the maze (grid

number, arrow direction, color, type). Overall, this method produced unsatisfying results.

In most instances generated in this manner, there was no path from the start to the finish,

and even when a solution path existed, it was often trivial, and large portions of the maze

were unreachable and unreaching. We omit details on this generation type because the

results were unfruitful.

4.3 Intelligent Random Generation

These methods of generation do have random components, but are designed to be more

intelligent than the fully random generation—rather than generating an entire puzzle
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instance from scratch, we focus on improving certain aspects of a maze.

4.3.1 Automation of manual generation

Abbott discusses several methods of maze generation in both Mad Mazes and

SuperMazes. Besides focusing on the traits (long false paths, decisions, etc.) introduced in

Chapter 3, Abbott gives more direct instructions on generating a rolling cube maze.

He suggests first laying out the “true” path, or the solution path through the maze

from start to finish. This true path should not take up the majority of the maze to leave

room for false paths; Abbott directly mentions that a maze “won’t be interesting” unless it

has several complex false paths. After completing the true path, Abbott recommends

laying out several long false paths. Finally, the maze is completed by choosing numbers for

the remaining squares that create the “most and longest false paths” possible (Abbott,

1997, 27).

The first attempt at “intelligent” random maze generation was to automate algorithms

such as the one introduced in the previous paragraph, and we first tried this for 8× 8

jumping mazes with a diagonal state change.

Inputs: Minimum shortest path length, Start, Finish, Probability of circling.

Output: A jumping maze instance with circled squares for diagonal state changes.

1. True path generation: The truth path was generated using a backtracking search. A

randomized traversal was conducted from the starting point to generate the true

path through the puzzle.

a) When choosing numbers for squares in jumping puzzles, the numbers must be

sufficiently small to allow movement in ideally both the cardinal and diagonal

states.

b) The random numbers that ensure movement is possible are iterated over, then

all reachable square locations (children) after one move are calculated.

c) These children are randomized then iterated over.

d) We randomly determine if this square will be circled, then loop over all possible
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numbers (in a random order) that ensure there are reachable locations from this

square in both cardinal and diagonal movement.

e) If the number we have chosen to put onto a child would create a new shortest

path to the parent or a path to the solution that is shorter than the minimum

desired length, then that number is skipped. If all numbers would cause this to

happen, then we change the child to circled (assuming it was uncircled) and vice

versa, then attempt all possible numbers again. If it is still impossible to add a

number to this square, then we backtrack to the parent and try adding a

different child to the solution path. If we cannot add any of the current children

to the solution path, then we try a different number for the parent.

We have a backtracking solution for generation of the shortest path. The worst

case complexity of this algorithm is certainly exponential and it would never finish in

some instances, but in practice it quickly terminates.

2. False paths

a) To attempt to create false paths from the start and the finish as Abbott

mentions, we calculate all squares that can be reached from the starting point

but are not on the shortest path and do not yet have numbers. Then, we

attempt to number these squares and then the subsequent children in such a

manner that the shortest path is not intersected. We do this both moving

forwards from the starting point of the maze and backwards from the finish of

the maze, considering distances of five from the start/finish.

After creating these false paths, we attempt to number the remaining squares

using the possible number and circle combinations that would not create a new

shortest path to the finish.

While this algorithm resulted in mazes that were certainly improved from the randomly

generated mazes, the inconsistent run times and variability in the difficulty of results was

undesirable. It was at this point that the authors found the paper by Neller et al. (2011)
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that recommended the use of local search with an objective function that highlighted maze

qualities, and we found this method to be much more successful.

4.3.2 Local Search

As mentioned previously, this type of maze generation does not start from scratch but

rather takes a currently generated maze instance and makes small modifications that

increase the value of an objective function. When defining local search solutions to

problems, there are generally three items to define:

1. An objective function that returns a score given a solution instance to the problem.

We seek to either minimize or maximize this function.

2. A notion of a neighborhood, or a set of small modifications made to a given solution

to turn it into another solution then rated by the objective function. Typically, a

solution has multiple neighbors.

3. A search algorithm, that is, a method to choose between the neighbors of a given

solution.

In the context of maze generation, the objective function will be as defined in

Chapter 3 and contain metrics to rate both the state graph and the maze instance. The

neighborhood definition turns one maze instance into another, which involves making a

small change to the maze that is simultaneously reflected in the state graph. We

considered generating an ideal state graph and turning it back into a maze, but it is

difficult and challenging to determine the minimum requirements for a state graph to be

able to map it to a maze instance.

Consider a jumping maze with diagonal state changes. If we take an arbitrary state

graph and try to determine if it is a jumping maze state graph with diagonal state changes,

there are several requirements that we must have. In effect, we will determine if it is

possible to map the state graph onto a grid.

1. We must be able to partition the state graph into two equal-sized partitions (except

for the solution/goal, which should have no outgoing edges) such that all edges are
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within each partition except for the edges outgoing from what would be considered

the “circled” nodes, which must all point into the other partition.

2. Let p1 denote the cardinal partition and p2 denote the diagonal partition.

3. All outgoing edges from each node must travel the same “distance” when mapped

onto the grid, so that a number can be placed onto the grid square.

4. Each vertex in p1 must have an equivalent vertex in p2 (the cardinal and diagonal

versions) that has outgoing edges that represent diagonal movement with the proper

distance.

5. Circled grid squares must have edges from p1 travel diagonally into p2 and edges

from p2 travel cardinally into p1.

Attempting to generate the state graph without taking the puzzle rules into account

and then trying to map it onto the maze is likely to fail due to the strict conditions.

Hence, a better approach is to consider the puzzle rules and define neighbor states based

on the puzzle rather than the state graph.

4.3.3 Search Options

There is a plethora of search algorithms that one can use to select neighbor states, all

with some measure of success. We focused on two primary search methods: stochastic local

search (with random restart) and simulated annealing. Stochastic local search (sls)

involves iterating over ones neighbors in a random order, and accepting the first neighbor

encountered with a higher score or rating (according to the objective function) than the

current state. If all neighbors result in the same or a worse state, the algorithm terminates.

We used a fully random algorithm to generate a maze instance, then applied the sls search

algorithm, and took the best result. Also, starting the search from the maze instances

provided in Mad Mazes and SuperMazes proved successful as well. Sls often results in

being stuck in local maxima/plateaus in the search space because it cannot, at any point in

the algorithm, accept a worse state than the current, unlike simulated annealing (Russell

and Norvig, 2022, 111-114).
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Simulated annealing (sa) is similar to sls in that it involves iterating over one’s

neighbor’s in a random order and always accepts better neighbors, but it also may accept

inferior neighbors. The probability of acceptance is based on how poor the neighbor state

is (a lot worse is less likely to be accepted) combined with a “temperature.” The

probability of acceptance is given by the following formula P (A) = e∆S/T where ∆S

represents the difference in value between the neighbor state and the current state and T is

the temperature. When ∆S is negative, that is, the neighbor state is worse than the

current state, at high temperatures there will be a high probability of accepting this worse

state. However, at low temperatures, it is unlikely that this worse neighbor would be

accepted. As T → 0, the probability of accepting a worse state approaches zero (Russell

and Norvig, 2022, 114-115).

Typically, the temperature starts at a maximum value then decreases as the algorithm

runs (with each iteration), so near the start of the algorithm it behaves similar to a

random walk before starting to climb to higher states. We implemented a decreasing

temperature schedule based on the number of iterations. For the first 500 iterations the

temperature is 100, then decreases by half every thousand iterations until reaching 5000, at

which point it is set to 0.01 (so close to zero that the algorithm behaves like a stochastic

local search and only accepts higher or same-rated states).

The temperature is very flexible. It should not be set too high to avoid simulating a

fully random walk because that would defeat the purpose of starting from an already

excellent maze, but outside of this constraint, as long as the temperature decreases over

time, the algorithm finds good results.

With both sa and sls, we run the search until it terminates: sls when all neighbor states

are worse than the current, and sa when the temperature has become zero, the algorithm is

essentially sls and terminates in the same fashion.

Another search option is to generate all neighbor states and accept the one that leads

to the highest score, but the overhead in computing all neighbor states is very high and

this algorithm was often too slow in practice to yield useful results, especially as puzzle
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instance size increased.

4.3.4 Neighbor States

We define the neighbor states for each type of maze introduced in Chapter 2 below.

These are implemented in Python using generator functions, so we iterate over all possible

neighbor states as they are generated one by one; thus, when we choose to accept a state

as a successor we have not done the work of generating all neighbor states, only those that

were evaluated before accepting a successor.

1. Jumping Mazes

For jumping mazes, a neighbor state is simply changing the number and/or the

circling of a particular square on the grid. We iterate over the squares in a random

order, followed by the numbers and the two circling options. There is an 80% chance

to try not circling before circling to help avoid an excess of circled grid squares.

Once a square is chosen, a new number and circling option are selected, and the

outgoing edges from each vertex in the state graph corresponding to that square are

removed and stored. Then, we calculate the edges that would result from the new

square, number, and circling option and add them to the state graph. Next, we run

the objective function to score the new state graph and maze instance. Depending on

the search function being used, we may accept or reject this neighbor state. If we

accept it, we move to the next iteration immediately. However, if we reject it, we

remove the new edges added to the state graph, re-add the old edges, and reset the

grid square back to its original number and circling.

2. Arrow Mazes

Arrow maze generation is nearly identical to jumping mazes. A random square,

arrow direction, color (if present), and circling option are selected (i.e. iterated over

in a random order within the neighbor generator function). The state graph and

maze are updated with the change, the new instance scored with the objective

function, and if accepted we move to the next iteration, otherwise all changes are

reset before moving onto the next neighbor.
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3. Connections Mazes

Connections maze generation is more complex. In order for the mazes to

viewable and solvable by humans, a grid structure is enforced in the maze instance

(not the state graph) so that transit lines are only between adjacent vertices in this

grid structure (up to 8 adjacencies for each location).

Because the state graph is defined by the transit lines and not the villages

themselves, we select a random transit line, color, and line type. Then we choose

which village to keep the transit line connected to (one of the two villages to which it

is currently connected), and randomly choose a new successor village from the grid

structure. Note that two villages can only be connected by at most one transit line.

We store the original characteristics and make the modifications to the state graph

and puzzle instance before using the objective function to obtain a new score. This

score is passed to the search function which determines if we accept or reject the new

state. Accepting leads to another iteration of search, rejecting leads to resetting all

changes before generating the next neighbor.

4. Multiplayer/Spacewreck/Meteor Storm Mazes

Similar to connections mazes, a grid structure is enforced in the puzzle instance

so that the generated maze is clean and easily viewable by humans. We randomly

choose a corridor and a corridor color, then randomly choose one of the two rooms to

keep this corridor connected to (call this room R), randomly choose a new room from

the adjacencies of R that this corridor will now connect to. We also choose new

colors for these two rooms. Make the changes in the puzzle instance and state graph,

get a new score from the objective function, determine if we accept or reject, reset for

next neighbor or move onto the next iteration as mentioned in the other three mazes.

We discard neighbor states that result in the same current puzzle instance and state

graph.
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4.4 Example Objective Function

In this section, we will provide an example search function used for state graph

generation that focuses on decisions. Let n denote the number of vertices in the state

graph. It is best (if possible) to try and scale terms using n to provide weightings that

represent importance. Note that we will be attempting to maximize the score of the maze

(and not minimize).

The score is initialized to zero. We define the following function to score the state

graph:

1. If there does not exist a path from the start to the finish, then subtract n3 from the

score.

2. Otherwise, count the number of shortest paths from the start to the finish. If there is

only one, add 10 ∗ n to the score. If there are multiple, do not add 10 ∗ n.

3. If the length of the shortest path(s) is greater than n ∗ 0.35 or less than n ∗ 0.15,

subtract n2 from the score. This ensures that the path does not consume too much of

the state graph so we can use other parts of it for false paths, and also that we do

not have a trivial solution path.

4. For the following characteristics, they must be calculated for both the state graph

and its transpose to ensure adequate difficulty when moving forwards from the start

and backwards from the finish. Thus, calculate both cases and take the minimum of

the two, and add that to the score.

5. Next we consider the branching and reachability scores. Using a BFS, calculate all

descendant vertices and categorize them by distance from the starting vertex. Then,

calculate the sum of vertices cr that are reachable after a certain number of moves,

(10-20% of the shortest path length is a good starting point). Add cr to the score

(after calculating crt and taking the minimum of cr and crt, where crt is the same

statistic but calculated on the transpose with the finish as the starting point).

For reachability, count the number of vertices r reachable from the start. As

mentioned previously, we calculate the proportion reachable from the finish in the
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transpose graph. Call this rt. Add the minimum of r and rt to the score. Then,

union the results, which gives all vertices that are reachable or reaching. Add the

number of vertices that are either reachable or reaching to the score. Determine all

vertices that are in the state graph that are neither reachable nor reaching. Subtract

this quantity squared from the score—these represent wasted vertices (isolates).

6. The most important factor in determining the difficulty of a maze, given all other

traits are equal, is the decision score that determines exactly what decisions every

maze solver must make. Compute the required nodes that every path from the start

to the finish must go through using the dominance algorithm discussed in Chapter 3

and given in Cooper et al. (2006). Then, evaluate the decisions at these vertices in

both the state graph and its transpose, as discussed in Chapter 3, take the minimum

of the two, multiply by two, and add to the score.

7. Now we consider dead ends. A dead end is a reaching or reachable vertex in a state

graph that does not have any outgoing edges, (or equivalently in the transpose, does

not have any incoming edges). Holes make better traps than dead ends, as mentioned

in Chapter 3. Subtract the number of dead ends times five from the score.

This objective function generates state graphs that focus on maximizing the decision

score. The higher-level maze instance terms along with generation results are presented in

Chapter 5.
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CHAPTER 5

GENERATION RESULTS

Although we use the objective function defined in Chapter 4 to rate the state graphs,

we still need to consider the higher-level maze instances when generating, and these

additions onto the objective function are defined below for each different type of mad

maze, followed by the generation results.

The size of the puzzle instance was chosen for each maze so the state graph has ≈ 128

vertices to enable comparison across the different mazes. This means an 8× 8 grid for the

grid mazes (jumping and arrow), a connections maze with ≈ 63 transit lines (this will have

63 ∗ 2 = 126 vertices in the state graph, plus two for the start and end vertices). There will

be 32 villages to maintain a similar transit line : village ratio as in Grandpa’s Transit Map,

which has 36 villages and 70 transit lines. The Spacewreck instances will have 16 rooms,

which equates to 121 vertices. Seventeen rooms would result in 137 vertices.

5.1 Jumping Maze - Jumping Jim’s Encore

The instance objective function terms are defined as follows:

1. It is undesirable to have large areas of the grid that share the same number (Neller

et al., 2011, 194-195). Initialize adj-num and adj-circle to zero. Iterate over the grid

and calculate the following: for every grid square, evaluate its (eight) neighbors. For

each neighbor that shares the same number, add one to adj-num. If the current node

is circled and encounters a neighbor that is also circled, add one to adj-circle. Count

the number of circled grid cells as well.

2. Subtract adj-num and adj-circle2 from the score. Calculate the desirable number of

grid squares to be circled (we used 20%). Subtract the difference between the desired

number of circled locations and the number of circled locations cubed from the score.

3. Now we consider doubly visiting grid squares, u-turns, and state changes (from

cardinal to diagonal to cardinal, etc.). These traits are defined in Chapter 3. We

calculate the number of squares that are visited in both the cardinal and diagonal
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states, the number of u-turns along the shortest path, and the number of state

changes between diagonal and cardinal. Add the number of state changes times five

and the sum of u-turns plus doubly visited squares times 10 to the score.

4. Subtract n2 from the score if the starting vertex is circled. If this is allowed, remove

this term.

Table 5.1: Jumping generation maze results are shown below with the primary components
of the scores highlighted in bold. SP = shortest path, BH = black hole, WH = white hole,
R or R = Reachable or Reaching, R and R = Reachable and Reaching. The hole entrances
are only to the largest hole. The required decisions is the sum of the required vertices
out degrees, which represents the minimum quantity of choices maze solvers will consider.
Fwd and bwd decisions are the forward and backward decisions, and the other metrics are
previously specified in this chapter and Chapter 2.

Metric/Maze 1 2 3 4 5 6 7 Avg.
SP Length 36 38 34 27 22 36 43 33.7
SP Quantity 1 1 1 1 1 1 1 1
SP Score 1270 1270 1270 1270 1270 1270 1270 1270

Branching Score 24 31 31 15 15 15 17 21.1
Reachable (%) 68.5 66.9 72.4 72.4 69.3 88.2 91.3 75.6
Reaching (%) 62.2 66.1 74.0 89.0 92.9 89.8 90.6 80.7
R or R (%) 98.4 99.2 99.2 100 98.4 99.2 100 99.2
R and R (%) 32.3 33.9 47.2 61.4 63.8 78.7 81.9 57.0

Reachability Score 199 208 216 218 208 236 241 218
Required Vertices 36 38 33 26 20 32 39 32.0
Required Decisions 82 87 78 60 50 70 84 73.0

Largest BH 35 30 22 8 2 2 2 14.4
BH Entrances 18 16 15 2 1 1 1 7.7
Largest WH 25 24 22 4 17 2 2 13.7

WH Entrances 25 23 14 10 18 6 1 13.9
Fwd Decisions 1024 902 834 832 794 558 418 766
Bwd Decisions 1046 990 850 834 794 560 418 784.6

Decisions Score 1024 902 834 832 794 558 418 766.0
Dead End Score -50 -50 -60 -50 -80 -60 -60 -58.6

State Graph Score 2467 2361 2291 2285 2207 2019 1886 2216.6
Circled (%) 23.4 21.9 25 21.9 23.4 21.9 23.4 23.0

State Changes 7 7 10 4 6 12 12 8.3
Double Visited 8 10 6 4 3 8 11 7.1

U-turns 9 9 10 9 5 15 17 10.6
Instance Score 143 186 137 99 54 235 276 161.4
Overall Score 2610 2547 2428 2384 2261 2254 2162 2378
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This function yields excellent jumping puzzle instances and state graphs. Table 5.1

shows the results of several mazes generated using this objective function and simulated

annealing with random restart.

Table 5.1 offers several items to consider. The path score (SP score) is the same for

each instance. Every maze has a single shortest path, and thus all have the 10 ∗ n resulting

SP score. We purposefully included the 10 ∗ n to enforce this condition, and we appear to

have been successful. In effect, we can consider the base score for all of these mazes to be

1270, which is 10 ∗ n.

The branching score gives a small bonus onto the score as desired to help prevent long

sections of forced moves. If one was generating instances where a large branching factor is

more important, then one could add a constant to this term, square it, or multiply it by n,

depending on its relative importance.

There are less reachable/reaching vertices as a result of holes in the highest rated

mazes. This is a common theme we have noticed when generating instances: one can

maximize reachability at the cost of traps, which results in a higher reachability score at

the cost of a lower decisions score, or one can maximize hole sizes, which results in a higher

decision score at the cost of a lower reachability score. In this objective function, we are

more heavily weighting the decisions score—it has a constant factor of two applied to it,

and the way we are calculating it generally leads to higher numbers than the reachability

score, hence, the best mazes sacrifice reachability for traps and a higher decisions score.

Compare maze one to maze seven. Maze seven has the highest reachability score (241) of

the instances presented in Table 5.1 with the highest proportion of reachable (91.3%),

reaching (90.6%), and both reachable and reaching (81.9%) vertices. However, it has the

lowest decision score.

The decision score dominates the overall score, usually representing about 40%. We

claimed previously that decisions are the most important factor when considering the

difficulty of a state graph, and this principle is reflected in the scoring criteria we have

adopted.
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The highest rated mazes generally have a combination of the most required decisions,

(which may or may not be the most required vertices), large black and white holes, and

many entrances to these traps from required vertices (which is the BH/WH entrances table

entry). The top two mazes exhibit these traits, and both have the highest decision scores.

A very low R and R score is indicative of mazes with large unreaching/unreachable traps;

in the most optimal version of these mazes (according to this objective function), only the

shortest path vertices are reachable and reaching, and all other vertices are part of large

strongly connected holes.

However, large holes are not required to have a large decision score, as maze four shows.

Maze four combines several small white holes (of sizes three, three, and four) with one

medium size black hole and a large whirlpool. When suboptimal forward decisions do not

lead into the black hole, they lead into a whirlpool that costs the solver a lot of time while

suboptimal backward decisions lead into false paths and unreachable traps. The higher R

and R score indicates the presence of a large portion of vertices that are reachable and

reaching, that is, a whirlpool in this case.

We can see the constraint of subtracting (squared) the difference between the desired

(20%) and actual number of circled grid cells has been very successful in constraining the

instances to ±5% of the desired value. Adding a bonus for state changes, doubly visited

squares, and u-turns has led to their prevalence in the generated instances, with averages

of 8.3, 7.1, and 10.6 respectively. The additional bonus for doubly visiting the start square

was also successful with nearly every instance doubly visiting the starting square. Adjacent

and circled overlap (not shown in the table) have been sufficiently avoided as well.

As designed, the state graph score plays a much larger role than the instance score.

When using the same objective function to generate multiple different mazes, it would

defeat the purpose of sharing a state graph objective function if it did not play a more

significant role than the individual maze instance terms.

The most exceptional of these mazes is depicted in Fig. 5.1 and its component graph is

shown in Fig. 5.2. The state graph has the following statistics.
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Figure 5.1: Exceptional jumping maze instance.

• n = 127 vertices.

• One shortest path of length 36/127 = 29% of the state graph.

• After five moves from the start//finish, one can be in 11//7 distinct locations not

considering repeats.

• 87/127 = 68% of vertices are reachable from the start.

• 79/127 = 62% of vertices are reaching (reachable moving backwards from the finish).

• 125/127 = 98% of vertices are reachable or reaching, so there is only two isolates.

• 41/127 = 32% of vertices are reachable and reaching: there are only five vertices that

are not on the shortest path that can be reached in both movement directions, all

other vertices are part of holes. This indicates near-maximal hole sizes.

• Every vertex on the shortest path dominates the goal. Thus, shortest path vertices

and required vertices are synonymous for this puzzle instance, maximizing the

possible decision score.

• The largest black hole is 35 vertices with 18 total entrances.
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Figure 5.2: Component graph of the excellent jumping maze instance.
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• The largest white hole is 25 vertices with 25 total entrances.

This state graph is exceptional according to the metrics we have defined. It has

substantial branching, an optimal number of required vertices, massive black and white

hole traps and false paths with many entrances, near-perfect reachability given the large

traps, and a near-optimal shortest path length. The higher-level maze instance is excellent

as well, with the following statistics:

• 15/64 circled grid cells = 23%.

• There are seven swaps between diagonal and cardinal movement, eight grid squares

visited in both diagonal and cardinal states, and nine u-turns.

Almost exactly 20% of the grid squares are circled, which was the percentage chosen when

generating this maze in the objective function, and there are few areas with large groups of

the same number or circling (compare to Fig. 3.1). The shortest path requires seven state

changes on a path of length 36, averaging one every five moves. Eight grid squares are

visited both diagonally and cardinally, including the starting square (1, 1), and there are

nine u-turns along the shortest path, both of which are outstanding for a path of length 36.

This instance is exceptional and it is unrealistic to expect such outcomes on every

generation. The problem is over constrained due to the many conflicting traits, which

makes optimization particularly difficult. However, the instances presented in Table 5.1

plus 30 additional instances with an average score of about 2250 were generated within an

hour, thus demonstrating this method’s consistency.

5.2 Arrow Maze - Apollo’s Revenge

The objective function is identical to the jumping maze, including the puzzle instance

terms. Because both of these mazes are played on a grid, the puzzle instance metrics

optimized in the jumping mazes have a near-identical definition once we consider arrow

directions instead of numbers. Circling percentage, state changes, doubling back, and

u-turns are identical, and we want to avoid large groups of arrows pointing the same

direction and large groups of circled grid cells.
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The generation results are shown in Table 5.2. Similar to jumping mazes, we generated

many instances and tabulated the statistics for seven, all within the top 25%.

Table 5.2: Apollo’s Revenge generation maze results are shown below with the primary
components of the scores highlighted in bold. SP = shortest path, BH = black hole, WH
= white hole, R or R = Reachable or Reaching, R and R = Reachable and Reaching.

Metric/Maze 1 2 3 4 5 6 7 Avg.
SP Length 30 31 31 35 37 32 31 32.4
SP Quantity 1 1 1 1 1 1 1 1
SP Score 1270 1270 1270 1270 1270 1270 1270 1270

Branching Score 30 32 37 15 26 31 36 29.6
Reachable (%) 70.1 69.3 70.1 94.5 78.0 90.6 67.7 77.2
Reaching (%) 59.8 63.0 61.4 79.5 77.2 76.4 59.8 68.2
R or R (%) 95.3 98.4 96.9 99.2 96.9 97.6 96.9 97.3
R and R (%) 34.6 33.9 34.6 74.8 58.3 69.3 30.7 48.0

Reachability Score 160 200 184 225 204 211 182 195.1
Required Vertices 30 31 31 35 36 28 31 31.7
Required Decisions 83 83 88 95 89 68 82 84.0

Largest BH 14 14 14 1 1 1 5 7.1
BH Entrances 14 18 23 0 0 0 15 10.0
Largest WH 24 15 25 1 12 1 19 13.9

WH Entrances 20 24 20 0 13 0 18 13.6
Fwd Decisions 836 718 708 488 494 456 490 598.6
Bwd Decisions 840 734 766 494 494 440 578 620.9

Decisions Score 836 718 708 488 494 440 490 596.3
Dead End Score -160 -115 -130 -140 -130 -145 -130 -135.7

State Graph Score 2136 2105 2069 1858 1864 1807 1848 1955.3
Circled (%) 21.9 23.4 21.9 21.9 20.3 23.4 23.4 22.3

State Changes 10 9 14 13 12 13 14 12.1
Double Visited 3 2 4 5 7 4 4 4.1

U-turns 10 6 4 9 9 9 4 7.3
Instance Score 105 65 79 146 138 117 66 102.3
Overall Score 2241 2170 2148 2004 2002 1924 1914 2057.6

Arrow mazes are similar to jumping mazes in most traits, but they generally have lower

scores (2058 average vs 2378 average). The ability to pick any descendant the current

arrow points at significantly limits the ability to create traps without an escape. From the

statistics in Table 5.2, one can see that only the best of the mazes generated have

nontrivial black and white holes, which can substantially increase the decision score. As a

result, arrow mazes have lower decision scores on average when compared to jumping
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mazes, even though there is on average a higher number (about 10 more on average) of

required decisions—these decisions do not carry as much weight as they do not usually lead

into large traps.

Due to the forward and backward movement, it is impossible to move out of both

vertices in the state graph that represent the corners. It is similarly difficult for other

squares on the edges of the grid unless they point directly North or South. This leads to a

much larger dead ends penalty when compared to jumping mazes (-135.7 average vs -58.6

average). The best instance generated (Fig. 5.3 and Fig. 5.4) follows the paradigm of large

holes with many entrances, and thus a poor R and R score. However, it has much fewer

holes and more dead ends when compared to the exceptional jumping maze instance, which

follows from the properties of the maze.

Figure 5.3: Best Apollo’s Revenge maze instance.
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Figure 5.4: Component graph of the best Apollo’s Revenge instance. Compared to the
jumping maze instance in Fig. 5.2, it has many more dead ends and smaller holes.

5.3 Connections Maze - Grandpa’s Transit Map

Three terms are added to the objective function to account for the higher level traits of

connections mazes. Firstly, we add 10 ∗ n to the score if there are two or less shortest

paths. This enables us to generate the interesting mazes as mentioned previously that

trace a long path out into the maze, turn around, and follow the same transit lines in

reverse order. There will always be two possible ways to traverse this loop, so we allow for

two shortest paths. Additionally, we count the number of times we visit the same village

multiple times and when we use a transit line in both directions (these account for

doubling back in connections mazes). We add three times the number of same village visits

and 10 times the number of double line visits to the score.

Lastly, we want to ensure there is an equal distribution of village line types and colors.

Count the number of each type/color, calculate the difference between the most prevalent

and least prevalent line type, multiply this difference by the number of different line types,

and finally subtract this number from the score. Repeat for the line and village colors.
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Table 5.3: Grandpa’s Transit generation results are shown below. There are 128 vertices in
each state graph, and SP Addback is the 10∗n given from having two shortest paths. When
a line/village is visited multiple times, this is counted in Village/Line Doubling. The color
traits penalize the score for unequal color distributions.

Metric/Maze 1 2 3 4 5 6 7 Avg
SP Length 39 40 38 38 29 30 35 35.6
SP Quantity 2 2 2 2 2 2 2 2
SP Score 0 0 0 0 0 0 0 0

Branching Score 26 35 28 31 7 10 30 23.9
Reachable (%) 69.5 70.3 68.0 68.8 88.3 96.9 64.1 75.1
Reaching (%) 69.5 70.3 69.5 70.3 88.3 95.3 69.5 76.1
R or R (%) 100 100 100 100 100 100 100 100
R and R (%) 39.1 40.6 37.5 39.1 76.6 92.2 33.6 51.2

Reachability Score 216 217 214 215 240 249 209 222.9
Required Vertices 36 37 35 35 26 27 32 32.6
Required Decisions 92 91 90 88 51 53 71 76.6

Largest BH 29 29 29 28 4 3 30 21.7
BH Entrances 35 32 36 31 5 1 28 24
Largest WH 29 29 29 28 4 1 30 21.4

WH Entrances 35 31 37 32 5 2 29 24.4
Fwd Decisions 1922 1776 1768 1522 1362 1148 1228 1532.3
Bwd Decisions 1916 1760 1814 1602 1546 1148 1166 1564.6

Decisions Score 1916 1760 1768 1522 1362 1148 1166 1520.3
Dead End Score -25 -25 -15 -20 -15 -20 -35 -22.1

State Graph Score 2133 1987 1995 1748 1594 1387 1370 1744.9
Village Doubling 21 21 19 19 12 12 14 16.9
Line Doubling 14 14 13 13 9 8 10 11.6
Village Colors -32 -12 -12 -4 -8 -4 -36 -15.4
Line Colors -15 0 -6 -6 0 0 -9 -5.1

Instance Score 156 191 169 177 118 112 97 145.7
SP Addback 1280 1280 1280 1280 1280 1280 1280 1280
Overall Score 3569 3458 3444 3205 2992 2779 2747 3170.6

A primary feature of connections mazes is connectivity and reachability. It is often the

case that nearly 100 percent of the vertices are both reachable and reaching, leading to the

maximum possible reachability score. This can conflict with the potential decision score

that would result from large traps, however. When generating connections maze instances

with this objective function, there is a large group of local maxima that result from

maximizing the reachability score, and it can be difficult for the search to instead find an

59



instance with large traps, which leads to a much larger decision and overall score. After

generating many mazes using simulated annealing and random restart, we found several

mazes with large traps (about 1 in 10 had large traps).

Another possible method is to run simulated annealing with random restart until it

creates a maze with some traps, and then running simulated annealing on that instance

with a restricted temperature (say, only 5-10), encouraging only small steps down to avoid

the large local maxima.

The results for this objective function are given in Table 5.3. All of the mazes have two

shortest paths and line doubling, which means they all have some form of loop that can be

traced in multiple directions as discussed previously.

The reachability score average is 223, higher than jumping and arrow mazes, indeed

every maze has zero isolates and this score is below 210 for only one instance. The

bidirectionality inherent within transit lines enables better reachability, which is why we

see this general increase in both the reachability statistics and scores. Even the mazes with

large holes have better reachability scores and statistics when compared to the jumping

and arrow mazes with similar characteristics. Similarly, the dead ends penalty is much

lower on average (-22.1 compared to -135.7 and -58) for the same reasons.

We see the same two paradigms of this objective function emerge in the connections

maze results as with the grid mazes. The highest-scoring mazes (top four) have large holes

with many entrances and required decisions that lead into the holes. The average to

medium scoring mazes (five to six) exhibit excellent reachability and few unreaching traps

although some have whirlpools.

The highest-scoring maze generated by this algorithm is nearly optimal when

considering its characteristics. The state graph in Fig. 5.6 has sufficient branching to avoid

forced moves at the start (we can see that one edge leads directly into the black hole, so

there is a 50% chance of a solver immediately entering it), two shortest paths (so it gets

the 10 ∗ n SP Addback), zero isolates, and still a substantial reachability score (216).
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Figure 5.5: Granpa’s Transit Map instance one. Note that E is an isolated village without
any transit lines. This means we could potentially increase the number of transit lines when
generating these instances. One of the two shortest paths is A F L Q M L R N S R W X S
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The largest contributor to the score is the decision score, and we can see why this is the

case from the state graph. Of the length 39 shortest path, 36 are required vertices. At

these 36 vertices, every incorrect decision leads either into the black hole or requires many

steps to be retraced in the whirlpool, and when retracing these steps one can easily end up

in the black hole as well.

The decision score is not the only exceptional trait: this maze also exhibits the tricky

property mentioned previously: the shortest path retraces 14 of the same lines in both
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directions. It traces out a path into the maze, turns around, and then traces the same lines

in the reverse order before turning towards the solution.
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Figure 5.6: Maze one of the connections mazes - exceptional holes and a whirlpool combined
with a large number of required decisions.
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5.4 Multiplayer Maze - Spacewreck

The additional objective function terms for Spacewreck are similar to Grandpa’s Transit

Map. We start by counting the number of rooms and corridors of each color. However,

unlike the previous maze, we must strictly enforce an even color distribution or the search

will result in 90% of the rooms and corridors being the same color. One can understand

intuitively based on the rules of this maze that a nearly monochromatic maze will have the

highest reachability and the fewest isolates. However, this often leads to long sequences of

forced (or obvious) moves. Consider the case where both players are in rooms of the most

prevalent color (which happens often), and the outgoing corridor(s) from p1 are not the

most prevalent color. P2 must find a path to a less prevalent-colored room following edges

of the most prevalent color. This often leads to long sequences of forced and obvious moves.

However, enforcing the even color distribution too strictly can result in a large number

of isolates, which is wasted space in the state graph as mentioned previously. Thus,

calculate the difference between the least prevalent color and the most prevalent color for

both rooms and corridors separately. Subtract each of these values cubed from the score to

enforce equal coloring. Cubing this term instead of multiply by n allows there to be small

differences in color distribution without a large penalty, but the penalty grows rapidly as

the differences increase. This results in mazes with color differences of 1-4, which is ideal.

Similar to doubling back in previous mazes, we count the number of times that a

repeated room appears in the shortest path and add this quantity times three to the score.

A tricky aspect of this maze is it is possible for both players to be in the same room, which

may seem counterintuitive at first to human solvers. We count the number of times both

players are in the same room and add this number times 20 to the score.

We used the state graph objective function modified with these additional instance

terms to generate many Spacewreck instances. The statistics of seven instances are

presented in Table 5.4.
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Table 5.4: Spacewreck generation maze results are shown below. Num Colors is the number
of colors used in creation of the maze instance (two or three). Room repeating is the count
of the same room being visited multiple times, Same Room is the count of the number of
times the two players must be in the same room, and the colors are penalties for uneven
color distributions.

Metric/Maze 1 2 3 4 5 6 7 Avg.
Num Corridors 42 42 42 42 42 31 42 40.4
Num Colors 2 3 3 2 3 2 2 2.4
SP Length 26 22 27 23 31 31 25 26.4
SP Quantity 1 1 1 1 1 1 1 1
SP Score 1210 1210 1210 1210 1210 1210 1210 1210

Branching Score 28 13 25 21 24 25 17 21.9
Reachable (%) 56.2 59.5 63.6 71.9 63.6 73.6 86.8 67.9
Reaching (%) 71.1 57.9 62.0 73.6 65.3 81.8 93.4 72.1
R or R (%) 99.2 96.7 97.5 100.0 95.9 99.2 97.5 98.0
R and R (%) 28.1 20.7 28.1 45.5 33.1 56.2 82.6 42.0

Reachability Score 186 170 183 207 167 207 213 190.4
Required Vertices 26 22 27 21 31 31 24 26.0
Required Decisions 78 48 57 61 68 73 68 64.7

Largest BH 16 28 28 21 20 14 3 18.6
BH Entrances 29 20 18 8 21 11 2 15.6
Largest WH 23 27 26 8 23 12 3 17.4

WH Entrances 31 20 25 17 24 11 5 19.0
Fwd Decisions 814 866 854 778 646 546 506 715.7
Bwd Decisions 918 858 886 772 740 618 504 756.6

Decisions Score 814 858 854 772 646 546 504 713.4
Dead End Score -55 -70 -105 -45 -85 -30 -50 -62.9

State Graph Score 2183 2181 2167 2165 1962 1958 1894 2072.9
Room Doubling 11 10 10 10 13 14 10 11.1
Same Room 2 3 1 1 5 1 2 2.1
Room Colors -1 -8 0 -27 0 -1 -1 -5.4

Corridor Colors 0 -8 -8 -8 0 -1 0 -3.6
Instance Score 72 74 42 15 139 60 69 67.3
Overall Score 2255 2255 2209 2180 2101 2018 1963 2140.1

The results are similar to the other mazes with the two paradigms (reachability vs

holes) although most of the mazes fall into the holes category. Compared to the other

maze types, the scores are generally lower, similar to arrow mazes. These mazes are

slightly handicapped by having seven fewer vertices in the state graph, which would be an

increase of 70 on the SP Score and lead to increases in other categories as well.
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The top two mazes are tied. It is interesting that the first maze has a lower decisions

score, but makes up the difference with a combination of reachability and branching. Maze

three also has a larger decision score than maze one, but maze one makes up this difference

through less dead ends and a higher instance score. Maze one demonstrates that even the

lower magnitude point metrics can significantly impact the score.

There is a difference in the number of corridors and also the number of colors in many

of these instances, and yet they all scored well. Two mazes tied for the highest score of

2,255, one with two colors and one with three colors. Choosing the number of colors for the

rooms and corridors was challenging. Abbott uses four colors for 28 rooms and 40

corridors, but his Spacewreck instance has many isolates. Minimizing isolates and having

an even color distribution is difficult, especially with only 16 rooms. With two colors, we

were able to get good results with 31 corridors (maze six), but with three colors, it was not

possible to find a maze over 2000 with only 31 corridors. Thus, we elected to use the

largest number of corridors the grid structure underneath would allow, which was 42, given

that we were not allowing multiple corridors between two rooms, even if the corridors were

in opposite directions with different colors. The results demonstrate that it is possible to

have a high scoring maze with three colors, 42 corridors and 16 rooms.

Due to having two players, small changes to the maze instance can result in large

changes to the state graph, which makes local search more difficult for this type of maze.

The instance scores are lower as well, and this is due to the color constraints and generally

fewer notions of “doubling back” to increase the score.

It seems most natural for this type of maze to generate holes of substantial size; all of

the results except for maze seven have substantial holes. Abbott noted in his description of

this problem that it has an “abundance of loopiness” (Abbott, 1999, 37). Perhaps the two

player color constraints, especially when the board is more monochromatic, enable this

behavior.

The topologies of the top mazes are similar to the previous mazes - one large black and

white hole combined with a whirlpool of the required vertices (see Fig. 5.8). Additionally,
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an incorrect choice (one of two) from the starting vertex leads directly into the black hole,

similar to Fig. 5.6.
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Figure 5.7: The best Spacewreck instance (three color).
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5.5 Comparison to Abbott’s Instances

5.5.1 Jumping Jim’s Encore

The Jumping Jim’s Encore instance Abbott provides has an overall score of 1438. It is

an 8 x 8 instance, so it is the same size as the instance generated in the previous section.

The shortest path of Abbott’s instance is length 17, which is only 13.3% of the vertices;

however, we do not apply the n2 penalty for comparison purposes (this would result in a

score of less than -14000). It has a path score of 1270, a branching score of 13, a decision

score of 108, a reachability score of 144, and a dead end score of -105. It has 11 circled

cells, five state changes, two doubly visited squares (one of them being the start square)

and two u-turns. We can see, by this scoring metric, that the instances we have generated

are generally higher-rated than Abbott’s. This is due to several factors: only 58% of the

vertices are reachable, 94% are reaching, and 94% are both reachable and reaching, so 5%

of the vertices are isolates. The larger number of isolates combined with the small

reachable portion of the maze limits the reachability score. There are no black or white

holes although there are several long reverse false paths, indicated by the much larger

portion of reaching vertices. The circling percentage is fine, and there are fewer swaps,

doubling backs, and state changes when compared to our instances. Generally, the

statistics are all lower, which is why the score of Abbott’s instance is lower overall.

5.5.2 Apollo’s Revenge

Abbott’s Apollo’s Revenge instance is 7 x 7 instead of 8 x 8, which makes a direct

comparison with the results generated above more difficult because the state graph has

only 97 vertices instead of 127. However, we generated several 7 x 7 instances for

comparison purposes, and we found a similar result to Jumping Jim’s Encore.

Abbott’s instance has substantial dead ends (even more than the instances with 127

vertices), a low decision score of 26, no holes, a negative reachability score due to 15%

isolates, and generally poorer instance terms, for an overall score of 869.

By comparison, we generated instances with scores of over 1500, with half as many dead
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ends, sizeable holes, and decision and reachability scores over 400 and 100, respectively.

5.5.3 Grandpa’s Transit Map

The Grandpa’s Transit Map instance in Mad Mazes has 142 vertices, which is more

than the ones we generated previously, but has a lower score of 1708. Similar to the

jumping mazes, the shortest path is just over 35% of the vertices (36%), so we modified the

restriction placed previously for easier comparison. This instance has a branching score of

24, a 265 reachability score, a dead end score of -65, and a decision score of 28. These

traits are similar with some being better than some of the instances we generated except

for the decision score. Abbott’s instance does not have any large holes, and the backward

decision score is only 28, compared to the forward decision score of 116. There is a

whirlpool that contributes to the decision score when moving forward, but this whirlpool is

close to the start and is vulnerable to back-tracing, hence the forward decision score is

much higher than the backward. Additionally, although Abbott’s instance has a large

shortest path, many of the decisions are forced, that is, there is only one outgoing edge and

no decision must be made.

5.5.4 Spacewreck

The Spacewreck instance in Mad Mazes has 379 vertices; however, it scores very poorly

due to a large quantity of isolates. 30% of the vertices are reachable, 22.43% are reaching,

and 40% are both reachable and reaching. This means that 60%, of the vertices, or

0.6 ∗ 379 = 227 vertices are both unreachable and unreaching, i.e. 60% of the maze is

wasted space. This results in a large negative score because 2272 is subtracted from the

score. The forwards decision score is 194 due to a black hole; Abbott directly references

this black hole in the description of the maze where he gives a sequence of moves and

concludes with “alas, if you continue with this example, you’ll find that both space

travelers will soon be trapped in endless loops” (Abbott, 1990, 32). The black hole consists

of 12 vertices, and there are six entrances to it along the shortest path. However, the

backward decision score is only two. Only a tiny portion of the maze is reaching, making it
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extremely vulnerable to back-tracing. Considering backwards movement from the finish,

there are 25 options for the first move, but all of them are immediate dead ends except for

the correct move. After this move, one can easily back-trace to the start because all of the

decisions are either correct or immediately dead end after one move.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Future Work

6.1.1 Human Maze Solving

We create mazes to be difficult for humans because they are simple to model and solve

on a computer. Our approach consisted of creating objective functions and maximizing

their value based on maze characteristics. However, these objective functions need to be

validated. One possible approach is to simulate how a human would solve these mad mazes

and compare the simulation results to the objective function.

There is a plethora of research on human methods to solve classic mazes, but none that

we have found on mad mazes. Thus, we have looked into the classic maze methods to find

potential similarities to mad maze solving methods. Determining human methods to solve

mad mazes and extrapolating classical maze human interaction to logic mazes both need

further research.

Zhao and Marquez (2013) identify two “stages” of human maze solving: exploration

and guidance. In the exploration phase, the solver’s eyes rapidly trace potential paths

through the maze. Once a path has been chosen, the path is traced out (this study was

performed digitally, so the guidance phase was the subject guiding the mouse along the

chosen path). Complex mazes lead to often multiple stages of exploration and guidance

(Zhao and Marquez, 2013, 6-8). On smaller mazes, some solvers attempted a brute force

method, tracing paths through the maze continually until they found the solution, but this

makes mistakes very costly and a more analytical approach was often used on larger mazes.

Karlsson used a DFS to simulate human maze solving, although he mentioned a DFS is

not a perfect simulation because human choices at intersections are non-deterministic

(Karlsson, 2018, 2). Although we are running this human-simulated algorithm on the state

graph, it is as if we implicitly discover the state graph, as a human would not enumerate

the entire state graph before solving the maze. We ultimately decided to use a randomized

71



DFS with many runs, and the average number of moves before reaching the solution was

used as the difficulty metric. The results were somewhat similar to the objective functions

that we created, but often were more ordered by the number of vertices in the state graph,

which naturally leads to longer average DFS completion times. Additional work to identify

a suitable algorithm that sufficiently models human state-space exploration could be used

as another difficulty rating for state graphs.

It is possible for games such as Sudoku to be modeled as constraint satisfaction

problems, and Pelánek (2011) has been able to model human Sudoku solving behavior with

success. However, comparisons to games such as Sudoku are difficult in this context

because they are fundamentally different problems. Sudoku is a constraint satisfaction

problem and has been proven to be NP-Complete in the general case. An analysis of

Sudoku difficulty presented by Pelánek showed an excellent correlation with human solving

of 0.85 (Pelánek, 2011, 2-6), but additional work is necessary to determine if this could be

mapped to logic mazes.

6.1.2 Additional Logic Mazes

This work could be continued for several other types of mad mazes presented by

Abbott, such as Alice/Step Change Mazes, Rolling Cube Mazes, Theseus and the

Minotaur, and more. Theseus and the Minotaur has been turned into a game and

monetized as a mobile app (Abbott, 2010, 1). One could theoretically create such an app

to test the difficulty of multiple different logic mazes with human players.

6.1.3 State Space Puzzles

Any game that can be modeled as a state space can be represented using this model,

and its characteristics and traits rated by the scoring methods we have developed. This

has potential for applications in the gaming industry (a multi-billion dollar industry that

continues to grow). Modeling a game as a state space and identifying qualities the space

must contain to be entertaining and challenging for humans to solve is a potential

application. Generally, the state space should look like a state space of a maze, especially
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in puzzle games. Many other games such as Sokoban can be represented as state spaces

(Jarusek and Pelánek, 2010, 2) and rated in such a fashion as the logic mazes presented in

this work.

6.1.4 Exploring Additional Optimization Techniques

There is an abundance of literature in the AI based searches; we used a relatively

simple search method as a proof-of-concept. Other methods may produce better results

with certain state graphs or mazes. Additionally, it may be possible to reduce the

maze-generation problem to SAT or ILP, and then use an SMT solver such as Z3 or an ILP

solver. This is another potential avenue for future research.

6.1.5 State Graph to Maze Instance

As noted in Chapter Four, it is theoretically possible to build a perfect state graph that

has all of the necessary properties of the puzzle instance, and invert it back to the puzzle.

Whether it is possible to formally characterize such a state graph in graph theoretical

terms is itself an interesting research question. If the answer is yes, the next research task

would involve developing algorithms to generate such state graphs.

6.1.6 Applications in Pedagogy: Puzzle-based Learning

Puzzle-based learning is a pedagogical strategy which teaches problem-framing and

problem-solving for unstructured problems (Meyer et al., 2014, vi). The authors of this

work claim these skills are generally lacking in today’s students. A possible area of future

work would involve a more formal pedagogical exploration of mad mazes as part of a

puzzle-based learning strategy that assumes students have background in basic graph

algorithms and concepts.

6.2 Conclusions

We have answered the research question of how to intelligently generate mad maze

instances: using state graph representations, objective functions, and local search. It is

vital to consider not only the state graph’s characteristics, but also the qualities of the

maze instance itself to avoid undesirable properties such as monochromatic puzzle
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instances that are designed to be poly-chromatic. Both stochastic local search and

simulated annealing provided desirable results in the mazes that were generated. The most

notable contribution of this work is that the same objective function can be used to rate

any mad maze state graph, and potentially even outside mad mazes, to any game that can

be modeled as a state graph.
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