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ABSTRACT

We are concerned with numerical methods for partial differential equations by
finite element methods. The finite element method (FEM) is an efficient and widely
used numerical technique for complex systems governed by a system of partial dif-
ferential equations. The FEM consists of two basic steps: derivation of variational
formulations and construction of finite element approzimating functions. Although
the quality of a finite element scheme is equally affected by each of the two steps, the
derivation of variational formulations often plays a decisive role in the discovery of a
new and innovative FEM for the complex system under consideration.

A new finite element method is proposed and analyzed for second order elliptic
equations using discontinuous piecewise polynomials on a finite element partition
consisting of general polygons. The new method is based on a stabilization of the well-
known primal hybrid formulation by using some least-squares forms imposed on the
boundary of each element. Two finite element schemes are presented. The first one is
a non-symmetric formulation and is absolutely stable in the sense that no parameter
selection is necessary for the scheme to converge. The second one is a symmetric
formulation, but is conditionally stable in that a parameter has to be selected in
order to have an optimal order of convergence. Optimal-order error estimates in some
H'-equivalence norms are established for the proposed discontinuous finite element
methods. For the symmetric formulation, an optimal-order error estimate is also
derived in the L? norm. The new method features a finite element partition consisting

of general polygons as opposed to triangles or quadrilaterals in the standard finite
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element Galerkin method.

Our method using discontinuous finite elements with stabilization is applied
to convection dominated convection-diffusion problems. In general, the standard
Galerkin finite element methods applied to such problems exhibit a variety of defi-
ciencies, including high oscillations and poor approximation of the derivatives of the
solutions. A new stabilization technique, which features a non-symmetric formulation
using discontinuous piecewise polynomials, is presented and analyzed for such prob-
lems. Error estimates in some H'-equivalence norm is established for the proposed
discontinuous finite element methods.

The construction of stiffness matrices of the finite element schemes is presented.
For the symmetric formulation, a system of linear equations with symmetric and
positive definite coefficient matrix is derived. Implementation of the finite element
schemes is carried out. An numerical solver is developed using C++, and tested on
some examples. The resulting numerical solutions have shown the desired accuracy

and properties of the true solutions.
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Chapter 1

INTRODUCTION

1.1 Problem statement and main approach

The finite element method (FEM) is an efficient and widely used numerical technique
for complex systems governed by a system of partial differential equations. The FEM
consists of two basic steps: derivation of variational formulations and construction
of finite element approximating functions. Although the quality of a finite element
scheme is equally affected by each of the two steps, the derivation of variational
formulations often plays a decisive role in the discovery of a new and innovative FEM
for the complex system under consideration.

Many complex systems in practice involve systems of partial differential equations
for which the solutions either are discontinuous or have a sharp-changing front. The
standard continuous Galerkin FEM may fail to provide any physically-meaningful
numerical solution for such systems. As a result, various discontinuous Galerkin
methods [2, 4, 5, 16, 17, 26, 40] have evolved over the last several years to tackle
physical problems with non-smooth solutions.

The discontinuous Galerkin methods use discontinuous piecewise polynomials on
finite element partitions to approximate the solutions. They are often derived from

testing the governing equations locally on each element. To illustrate this, we first



consider a model second order elliptic problem which seeks u = u(z) satisfying

-V-(kVu) = f inQQ, (1.1)
u = g on 01, (1.2)

where K = (Ki;)dxq is symmetric and uniformly positive definite over an open bounded
domain Q C R4(d = 2,3), f € L%(Q) is given, and g € H2(9%) is the given boundary
data.

Let 7, = {K} be a quasi-uniform partition of € with non-overlapping elements
K where h is the mesh-size of the partition 7,. To obtain a weak formulation of

(1.1)-(1.2), we introduce two function spaces,

V = {v:ivlg € H(K),VK € T}, (1.3)

M = {ﬂ  lox € H™3(0K),YK € T, 3q € H(div;Q),q - ng = ulax} , (1.4)
where ng is the outward normal direction on 0K. H(div; ) is defined as
H(div; Q) = {v e (L*(Q)% V- -ve L*(Q)}.

[t can be verified (see [15] Ch. 7) that there exists a unique pair (4, A) € V x M such

that

Z/nVﬂVvdK— Z/ v ds = Z/ffudK, Yo €V, (1.5)
K oK K

KeTy KeTh KeTy

Z / ap ds = Z / guds, Yu e M. (1.6)
oK OKNAN

KeTn KeTp



It is not hard to show that
a=wu, and M\sx =~rVu-ng, VK € Tp, (1.7)

where u is the solution of (1.1)-(1.2).
The variational form in (1.5)-(1.6) gives a natural mixed finite element formula-

tion. To simplify the notation, let

a(u,v) = Z /K/cVqu dK, u,v €V,

KeTy,
b, )) =Y [ dvds, wveV,AeM,
KeT, IK
(1.8)
flv) = Z/fvdl(, veY,
KeT, VK
gw) = gnds peM

KeT, GKNIN

be four bilinear/linear forms. Then (1.5)-(1.6) can be rewritten as the following mixed

form:

a(u,v) =b(v,\) = f(v), Yv eV,
blu, ) = g(), Vi € M.

The primal hybrid finite element method is a Galerkin procedure based on the

(1.9)

variational form (1.9). In this method, the unknown u is approximated by discontin-
uous finite elements over the partition 75, and the normal component of the flux kKVu
is approximated on the element boundaries by a different set of discontinuous finite
elements. Due to the saddle-point property of the formulation (1.9), the two discon-
tinuous finite element spaces must be constructed so that the inf-sup condition of
Brezzi [12] and Babuska [2] is satisfied. The requirement of the inf-sup condition im-

poses two difficulties. The first is that the two finite element spaces are not naturally



correlated and thus are hard to construct. The second difficulty involves the saddle-
point nature of the resulting matrix problem. Solving a matrix problem with a strong
saddle-point property is a difficult task from a computational point of view. Details of
this approach can be found in [33, 34]. In fact, Raviart and Thomas [34] showed the
following results in the two-dimensional case when the model problem (1.1)-(1.2) has
a homogeneous Dirichlet boundary condition. The finite element spaces are defined

as:

V, = {U €V:vlg € P(K),VK € 771},
M, = {u€M: ulox € Pi(e),¥Ye C 0K, K € Ty, (1.10)
and ﬂle,Kl -+ ule,Kz = O,if@ =K N KQ,VKl,KQ € 771},

where e denotes a boundary edge of element K. £ > 1 and [ > 0 are integers, and
Py(K) and Pj(e) stand for the spaces of polynomials of degree no more than k£ and
[ on the element K and the boundary edge e, respectively. Let (up, Ap) be the finite

element approximation satisfying

a(up,v) — b(v, \p) = f(v), Yv € V,
b(“h)“) = 07 V/'L € Mh.'

(1.11)

Then, one has the following estimate once Brezzi’s inf-sup condition [12] is satisfied:

1/2
(Z llu = wnll B gy + b Z 1A - Ah“%%ax)) < O Julls+1.0, (1.12)

KeTy KeT,

with s = min(k,[+1). In particular, this happens when k& > [+1,l even, or k > [+2,1
odd.

Notice that in the spaces V and Vj,, no continuity on u or uy is required a prior.



However, the exact solution u has to be in H}(Q2). The finite element approximations
can be discontinuous along K. Since the finite element space is not contained in

H'Y(Q2), this method is regarded as non-conforming.

One of the main objective of this thesis is to present and analyze a new and
innovative discontinuous finite element scheme by using the stabilization method.
The method of stabilization [18, 20, 25] is a systematic procedure that provides new
and stable variational formulations by using various least-squares forms associated
with the governing equation.

Our stabilized discontinuous finite element method will be demonstrated first for
the second order elliptic problem (1.1)-(1.2). As a matter of fact, we shall show that
the saddle-point problem (1.9) can be stabilized by using the following least-squares

term:

ah Z /fm()\ — kVu - ng)(n— Vv - ng) ds, (1.13)

KeTh
where a > 0 is an arbitrary, but fixed, real number. By adding this term into the
finite element formulation, we can show that the resulting finite element scheme has
a unique solution. Two finite element schemes will be presented. The first is a
non-symmetric formulation and is absolutely stable in the sense that no parameter
selection is necessary for the scheme. The second is a symmetric formulation, but
is conditionally stable in that a parameter has to be chosen in order to produce a
convergent scheme. Both schemes preserve the mass conservation property locally on
each element. We also introduce stabilized discontinuous finite element formulations

with the least-squares term (1.13) as well as the following jump term:

Bhty /a [l s (1.14)



where [-] is the notation for the jump across an edge e that will be defined later, and
B > 0 is an arbitrary, but fixed, real number.

Optimal-order error estimates in some H!'-equivalence norms are established for
the proposed discontinuous finite element methods. For the symmetric formulation,
an optimal-order error estimate is also derived in the L? norm. The new method fea-
tures a finite element partition consisting of general polygons as opposed to triangles

or quadrilaterals in the standard finite element Galerkin method.

1.2 The convection-diffusion problem

Another objective of the thesis is to consider efficient numerical solution of the
convection-diffusion problem

-V - (aVu —bu) + cu = in €,
( ) d (1.15)

u=gyg on 0f2.

If the coeflicient of the diffusion term is small, the problem is said to be convection-
dominated. Such convection-diffusion problem has a lot of applications in practice.
Many physical processes, in particular those arising from fluid flow problems, can
be modeled by convection-dominated convection diffusion problems. For instance,
analysis and simulation of oil and gas reservoir, ground water transportation, and
weather modeling, require good and accurate solutions of such problem. But it has
been well known that standard numerical methods often fail to work well because of
the sharp-changing front and/or discontinuity of the true solution. In this section we
give a brief review of previous work in the area. Extensive discussions are given in
the books of [30] and [35].

The Finite Difference Methods approximate the solution of the strong form of



the equation by replacing the derivatives of the unknown by some approximation
involving values of the unknown at some node points. An equation is generated
at each node and then the solution is found by solving a linear system of these
equations. The classical central difference scheme is to replace the derivatives by the
central difference formulas. It is well known that when the mesh size of the partition
is greater than the so-called Péclet number, which is almost always the case for
computational reasons, the scheme produces wild and non-physical oscillations. The
Upwind Methods employ a common technique to overcome the numerical instability
by taking a one-sided approximation of the convection term in the upstream direction.
Analysis [37] shows that the resulting scheme is stable independent of the mesh size.
However, one order of accuracy is lost comparing to the central difference scheme.
The Artificial Diffusion Method is an approach to solve a modified version of the
equation in which the diffusion coefficient is replaced by some term of order h.

The Finite Flement Methods aim to find the best approximations in certain finite
element spaces, defined over finite element partitions. Finite element methods have
been a very efficient and widely used numerical technique for solving systems gov-
erned by partial differential equations. The standard Galerkin finite element method
looks for finite element approximations of piecewise polynomials satisfying the weak
forms of the equations. It is well-known that when convection-diffusion problems are
discretized using the standard Galerkin finite element method, non-physical oscilla-
tions can occur in the discrete solution whenever convection is the dominating term.
To remedy this convective instability, different approaches have been developed. The
method of artificial diffusion modifies the Galerkin finite element scheme, where the
diffusion parameter is replaced by some term of order h. This method, which results

in extra diffusion that smears out the sharp fronts in the solution, is at best first



order accurate due to this order h perturbation. The Streamline Diffusion Methods
is an extension of the artificial diffusion idea. Extra diffusion is added only in the
streamline direction, and therefore introduces less crosswind diffusion. We refer to
[24] and [27] for more details. The generalized hierarchical basis multigrid methods
deals with the convection-diffusion problem in a multiscale approach. The idea is to
construct solvers based on special (and problem-dependent) hierarchical multiscale
decompositions of the trial and test function spaces. This approach [3, 22, 32, 38, 39]
can give robust yet efficient solver to the convection-diffusion problems.

The Finite Volume Methods is a technique to solve the equation in conservation
(i.e. integral) form. The domain is divided into subdomains and the integral form of
the equation is posed on each of the subdomain. Then the volume integrals in these
equations are converted to surfaces integrals by the Gauss Theorem. Finite volume
methods have been very successful in the numerical solution of partial differential
solutions and is highly suitable for diffusion problems. One class of finite volume
methods, the cell-vertex methods have been very useful for the convection-diffusion
problems. However, using such methods encounters difficulties such as ’'counting’
problems. For more details, we refer to [29].

The Transient Methods is a general approach to the solution of steady state
problems by solving a spatially discretized transient equation (i.e., with a u; term).
The accuracy of the time stepping is not too important long as the convergence to
the steady state solution is achieved. Methods that do not perform well on steady
state problems can be treated in this way. However, it is obvious the cost will be
much greater if a transient method is used on a steady state problem.

Our approach here is to apply the idea of stabilized discontinuous finite element

method to the convection-diffusion problem. This is a non-conforming finite element



scheme which shares the idea of upwinding. A new stabilization technique, which
features a non-symmetric formulation using discontinuous piecewise polynomials, is
presented and analyzed for such problems. Error estimates in some H'-equivalence
norm are established for the proposed discontinuous finite element methods.
Discussions on the matrix problems and results of numerical computations are
presented. The construction of stiffness matrices of the finite element schemes is
proposed. For the symmetric formulation, a system of linear equations with a sym-
metric and positive definite coefficient matrix is derived. Implementation of the finite
element schemes is carried out and is tested on some numerical examples. Some nu-
merical solutions are compared with true solutions to show the desired accuracy of

our finite element schemes.

1.3 Thesis outline

We outline the thesis as follows. In Chapter 2, we give some preliminaries in Fi-
nite Element Methods. In Chapter 3, we introduce symmetric and non-symmetric
formulations for elliptic problems. We also establish the error estimates for some
H'-equivalence norms as well as the usual L? norm for the symmetric formulation.
In Chapter 4, we present the application of stabilized discontinuous finite element
method to convection-diffusion problems. A non-symmetric formulation is proposed
and analyzed, and an H'-equivalence norm error estimate is derived. In Chapter
5, we discuss the matrix problems and present the numerical technique that we use
to solve the resulting systems of linear equations. In Chapter 6, several numerical
examples are given. Numerical solutions with high accuracy will be illustrated. We

summarize and give some future research directions in Chapter 7.
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Chapter 2

PRELIMINARIES IN FINITE ELEMENTS

In this chapter, we give some preliminaries in finite element methods, especially in
applications to second-order elliptic problems. Some useful inequalities are also pre-

sented.

2.1 Interpolation theory in Sobolev spaces

The Sobolev space W™?(§2), where integer m > 0 and 1 < p < o0, is defined as
wm™P(Q) ={v e LP(Q); 9% € LP(Q), V|a| < m}. (2.1)

It is a Banach space, equipped with norm

1/p
olnpa=| 3 [lowPda) 1<p<os,
|a|Sm Q (22)
1Vl 000 = lIrllgx {esssup|0®v|}, p = 00.
We also use the semi-norms
1/p
thopa= | X [107oPda) . 1<p<oo,
jof=m * & (2.3)

I
8

[V|m o0 = max {esssup|0“v|}, D
laj=m
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Notice that H™(Q) = W™2(Q). For H™(Q), || llma = | llmp., and |- |ma = | |mpa-

For more details on the Sobolev spaces, we refer to [1].

Now we give a general definition of a finite element. A finite element in R% is a

triple (K, P,¥) where:

e K is a closed subset of R" with nonempty interior and a Lipschitz-continuous

boundary.
e P is a space of real valued functions defined over K.
e Y is a finite set of linearly independent linear forms defined over the space P.
Two finite elements (K, P,3) and (K, P, %) are said to be affine equivalent if there
exists an invertible affine mapping:

F:3€R"— F(&)=Bi+be R",

such that the following relations hold:

A

K = F(K),
P={p:K—R; p=p-F 1 pe P},
CL:"—"F(&;), 7":071)27

1 __ nel 2 _ D2 2 __ &2
ik_Bik’ ik—B@ka fil_Bil?

(2.4)

AT 1 ¢2 ¢2 FL£2 £2 ; P
whenever the nodes a}, @] and vectors &, &, &5, and &, &, & occur in the definition

of ¥ and 3.

We now proceed to the most important result in this section. It can be found

in [15] (Theorem 3.1.5).
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Theorem 2.1 Let (K, P, f)) be a finite element, for which s denotes the highest order

of the partial derivatives occurring in the definition of 5.

WkLP(K) < C*(K),
WL (K) s W™4(K), (2.5)
P.(K) c P c wmi(K),

hold for some integers m > 0 and k > 0 and for some numbers p,q € [1,00]. Then
there exists a constant C(K , P, fl) such that, for all affine-equivalent finite elements

(K,P,X), and all functions v € W*+bP(K),

. hk+1
[v — g v|mqx < C(K, P, E)(meaS(K))l/q_l/p ;{ V41,0, (2.6)

m
K

where Iyv denotes the interpolation of a function v in P, and

meas(K) = measure of K,
hx = diam(K),
pi = sup{diam(S); S is a ball contained in K}.

We say that a family of finite elements (K, Pk, X k), where K is viewed as the
parameter of the family, is shape-regular if there exists a constant o > 0 such that
for all K, hi/px < 0. Moreover, the partition 7 is said to be quasi-uniform if it is

shape-regular and there is a constant C' > 0 such that

h < Chg, VK € Th.

We shall assume that our partition is quasi-uniform in the remainder of this thesis.
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For such families, the interpolation error estimates in Theorem 2.1 can be given

as in the following theorem.

Theorem 2.2 Assume that the reference finite element (K, P, %) of a shape-regular
affine family of finite elements (K, Pk, Y k) satisfies (2.5). Then there exists a con-
stant C(K, P, %) such that, for all elements K, and all functions v € W*12(K),

lo = Mivllmai < C(K, B, ) (meas(K) /= PhE " ol . (27)

In the special case in which p = ¢ = 2 and m = 0, we obtain
lv — Ogvllmx < Chi [vleerx (2.8)

Proofs of Theorem 2.1 and 2.2 can be found in [15]. For more details of the

material in this section, we refer to [8], [9], and [10].

2.2 Application to second order elliptic problems

Now let us consider the following abstract linear variational problem arising from the
weak formulation of some second order elliptic problems (e.g. (1.1)-(1.2)) that seeks
u € V satistying

a(u,v) = f(v), Yv eV, (2.9)

where V is a Hilbert space, a is a continuous V-elliptic bilinear form on V x V, and
f is a linear form on V. On the finite element space V;, C V, the discrete solution

up, € V,, is an approximation of u that satisfies

a(un,vn) = f(va), Yon € Vi (2.10)
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We denote by || - || the norm on V. We have the following basic error estimate, which

is due to Céa [14].

Theorem 2.3 (Céa’s lemma) There exists a constant C' independent of Vi, such that
llu —unll < C inf flu—vp. (2.11)
v €V

Proof: It follows from (2.9) and (2.10) that a(u — us, ws) = 0 for all wy, € Vj. For

any v, € Vj, set wy, = up — vp,. Therefore,
a(u — up,u — up) = alu — up, v — up) + alt — up, up — V) = alu — up, w — vp).

By the fact that a(-,-) is V-elliptic and continuous, one can easily see that there exist

some constants o« and M such that

aflu —up)* <alu—up,u—up) =alu—up,u—vp)

< Ml — upl|[}u — vall.
Then the theorem follows with C = M/«. ]
The following theorem establishes the estimate of ||u — up||1 0.
Theorem 2.4 Assume that for a shape-regular affine family of finite elements, there
ezists an integer k > 1 such that Po(K) ¢ P ¢ HY(K) and H*'(K) C C°(K), where

s is the mazimal order of partial derivatives occurring in the definition of set £. Then

if the solution u of the variational problem is also in H*t1(Q2), there exists a constant
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C independent of h such that
lu = unllo < Ch*|ulks1,0, (2.12)

where uy, 18 the corresponding discrete solution.
Proof: First we set p = ¢ = 2 and m = 1 in (2.8) with v = u. Then in addition we

use Céa’s lemma (Theorem 2.3), which yields

lu —unllie < C inf |lu—wallie < Cllu — Maullig
VR EVy

S Chk|u|k+1,g.

2.3 Useful inequalities

The first inequality that we introduce is the inverse inequality.

~

Theorem 2.5 Assume that the reference finite element (K, P, ) of a quasi-uniform
affine family of finite elements (K, Px,Xg) in R® satisfies (2.5). Let (I,7) and (m, q)

be two pairs with [,m < 0 and (r,q) € [1,00] such that
I <m and P c WY (K)UW™I(K).

Then there exists a constant C = C(o,v,l,r,m,q) such that for all v, belonging to

the finite element space,

\ 1/q c ) 1/r
Z |Uh|ma4=k < hdmax{0,1/r—1/g}-+m—1 Z |Uh|l77'>K (213)
K

K
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if p,q < 0o, with

1/q
m}gx|vh|m,w,K in lieu of (Z Ivhlfn,q,k) if g =00

K

1/r
m}E{LX’Uhll,oo,K in lieu of (Z Ivhl?,r,k) if r = oo,

K

In the special case in which r = ¢ =2, m =1 and [ = 0, one has that for all v

in the finite element space,
lunlli,e < Ch™Howlog.- (2.14)

The inverse inequality can be found in many places. Here we refer to [11] and

[15).

Next we give a useful trace inequality in Sobolev spaces. For an H' function, the
inequality bounds its L? norm on the boundary of an element by some norms inside

the element.

Lemma 2.1 If the triangulation Ty, is shape-reqular, we have
18150 < CRTHIYIG & + CRIVYIG &, V¥ € H'(K), (2.15)
where C > 0 is a constant independent of h. Moreover, for ¢ € P*(K),

[¥l50x < CRTHIWIG & (2.16)

with again constant C' independent of h.
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Proof: Let A = (¢;) be an arbitrary point in K and B = (f;) be an arbitrary point

on 0K. By the Fundamental Theorem of Calculus,

d Bi o
w(A)_l/}(B) :Z/ a;/).(/ﬁla'"7/Bi—1’s)ai+1a"'7ad) ds.
i=1 V@i '

Squaring both sides, and using the Cauchy-Schwarz inequality,

2

Y2(A) + ¥2(B) — 26(A)(B) = (2; / ﬂ g;/’ ds)
> ([ 5ea) v
d 2
Sdh;/j g;/’i s,

Integrating B over 0K and then integrating A over K, we obtain that

nwmme¢%K+mwameﬁM~z[Q@LKwSdhmmdemvw%K.ain

Since the triangulation is shape-regular, meas(K) is of order h¢ and meas(0K) is of

order h%!. By using the Cauchy-Schwarz inequality,

1/2 1/2
2 2 /2
ng(ﬁw) (L;) < CH|[p ok, (2.18)

W < ChED2(y|lg ok, (2.19)
oK

and similarly,
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where C is a constant independent of h. Substituting (2.18) and (2.19) into (2.17)
gives

R0 i + B 05 < CR2[%llo k1900 + CA*H [V 5 & (2.20)
Using the Cauchy-Schwarz inequality again,

R Ml lWlloan < SHABIR oxc + ORI
Therefore, it is not hard to see from (2.20) that
SR B oxc < OR 1R + ORIV

and (2.15) is obtained. In the case where v belongs to the finite element subspace,

one can use the following inverse inequality (see (2.14)):

IVllo.x < Ch7HIYllox,

and (2.16) is obtained directly from (2.15). O

A similar version of the trace inequality and a different proof can be found in

[11].
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Chapter 3

STABILIZED DISCONTINUOUS FEM FOR ELLIPTIC PROBLEMS

In this chapter, two stabilized discontinuous finite element schemes for elliptic prob-
lems are presented. The first one is a non-symmetric formulation and is absolutely
stable in the sense that no parameter selection is necessary for the scheme to con-
verge. The second one is a symmetric formulation, but is conditionally stable in that
a parameter has to be selected in order to have an optimal order of convergence.
Optimal-order error estimates in some H'-equivalence norms are established for the
proposed discontinuous finite element methods. For the symmetric formulation, an
optimal-order error estimate is also derived in the L? norm. We also discuss briefly
finite element schemes using a jump term. The main results of this chapter is sum-

marized in Ewing, Wang, and Yang [19].

3.1 A stabilized non-symmetric formulation

Let us recall that we are concerned with stabilized discontinuous finite element pro-
cedure for the model problem (1.1)-(1.2). {K} = 7, is a non-overlapping partition
of the region under consideration €2 into polygonal elements that has a mesh size of
h and is quasi-uniform. For simplicity, we only discuss the case in which § is in R?.
The results can be extended to the three dimensional case without any difficulty.

In addition, we assume that the common boundary of any two adjacent elements

is a straight line segment; i.e., e = 0K; NOK, is either an empty set or a line segment
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for any K, K5 € T,. Thus, the boundary of each element K € 7T, consists of line

segments as follows:
m(K)

0K = | ] eix. (3.1)
i=1
We emphasize that each element K may not necessarily be a triangle or quadrilateral
as commonly seen in the standard Galerkin finite element method.
In Chapter 1, the model problem (1.1)-(1.2) was rewritten in a weak form given
in (1.9). We show that the saddle-point problem (1.9) can be stabilized by using the

following least-squares term:

ah Z /aK()\ — kVu-ng)(p— &V - ng) ds, (3.2)

KeTy

where a > 0 is an arbitrary, but fixed real number. To this end, let us introduce two

functional spaces as follows:

X = {v: viKeH%(K),VKefrh}, (3.3)

Y = {M € H LZ(BK),,U,L')KI -l—uia}(z =0 ondK; ﬂ@KZ} . (34)
KeTy

On the space X x Y, we define a bilinear form as follows:

L& (u, N, p) = Z/Kn-VqudK— Z/BK)\vds—i- Z/BKuuds

KeTy, KeTy KeTy, (3 5)

+ah Z (A — kVu - ng)(u— Vv - ng) ds,
Ken oK

where the superscript ™) stands for stabilized non-symmetric. It is easy to see that

L™ (.;+) is non-symmetric. The non-negativity can be seen by letting v = u and



21

= A in the bilinear form £6™(+;+):

LE (v, v, ) = > /K kVoVv dK +ah ) /a K(u — kVv-ng)?ds. (3.6

KeTy, KeTh

The bilinear form £6™(-;+) is a modification of the forms associated with (1.9)
by adding the least-squares term which plays the role of stabilization. The stabilized
problem seeks (w, A) € X X Y such that

LEM (w, Ayv, p) = L(v,p), WEX,peY, (3.7)

where

o) =3 ([ som@ar + [ gautaas) (55)

KEeT,
is a continuous linear functional on the space X x Y. The derivation of (3.7) can be

shown as follows. First, we start with the elliptic equation
-V - (kVu) = f.
Multiplying by v and then integrating over K we obtain

/ kVuVv dK — kVu - ngv ds :/ fvdK.
K K

9K

Using A = kVu - ng and sum for all K we have

;/KnVqu dK—;/aK/\v ds:;/Kfv dK. (3.9)

Next, when e = K; N K3 is an interior edge, fe o, Wb+ fe x, i = 0. Therefore, by
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the boundary condition (1.2) we have

up ds = / gu ds. (3.10)
% /BK ZI; OKNAN

Finally, from A = kVu - ng we obtain
ahZ/ (A= &Vu-ng)(p—kVv-ng)ds = 0. (3.11)
= Jox

Adding (3.9), (3.10), and (3.11) together we arrive at (3.7).
The problem (3.7) is called a stabilized non-symmetric formulation for the model

problem (1.1) and (1.2).
Lemma 3.1 If the variational problem (3.7) is solvable, then the solution is unique.

Proof: If (u;, ;) € X x Y are two solutions of (3.7) for i = 1,2, then the difference

(w, A) = (uy — ug, Ay — Ag) is a solution of the following homogeneous problem:
L™ (w, A v, 1) = 0, YVwe X,ueY. (3.12)

By letting v = w, u = A in (3.12), we have from (3.6) that

> (/KandeKvLah,/

(A — kVw-ng)? ds) = 0.
KET, oK

The above equality implies that A = 0 and w has constant value on each element K.

Now we let v = 0 in (3.12) and obtain:

Z/BK wpds=0, VueY. (3.13)
K



23

Recall that the values of p differ only in sign on the interior edges. The equation (3.13)
then indicates that the jump of w across each interior edge must be zero. Thus, w is
a constant on the domain €). Since w = 0 on the boundary of €2, then we have w = 0

on €. This completes the proof of the lemma. a

Let v = u(z) be the exact solution of (1.1)-(1.2) such that u € H3%(2). By
letting w = u and A = kVu - ng, we see that (w, \) € X x Y solves the variational

problem (3.7). The following lemma shows that the converse is true also.

Lemma 3.2 Let (w,\) € X XY be a solution of the variational problem (8.7). Then

the pair (w,\) also solves the saddle-point problem (1.9).
Proof: Assume that (w,)\) € X x Y is a solution pair of (3.7). For any element
K € Ty, by letting u = 0 and v € C°(K) we have from (3.7) that

-V - (kVw) = f in K, (3.14)

where C°(K) is the set of C*°(K) functions with proper compact support. Next, let
e = 0K; N 0K, be any interior edge of the partition 7. In (3.7), we choose u such

that u = 0 everywhere except on e to obtain

ah (Me— — Mex — 6VW - ng, + kVW - ng,) + Wle g, — Wer, =0, (3.15)

where A|._ and A|.. are the values of A as seen from the element K; and K>, respec-
tively. Similarly, w| k, (w|ex,) stands for the trace of w on the edge e as taken from

the element K; (K3). Recall that Al = —A|cy. Thus,

ah (2M|e- — kVw - ng, + kVw - ng,) + [w] =0, (3.16)
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where

l]:w]] = wle)Kl - wlerKZ

is the jump of the function w = w(x) on the edge e. If e C dK; NI is a boundary
edge, then (3.15) must be modified as follows:

ah (Me— — kVw  ng,) + wlex, — gle = 0. (3.17)

Let X, be a subspace of X consisting of functions with the following properties:
e veE H(OQ)
e Vv is continuous in the normal direction across each interior edge e.

By letting = 0 and v € X, in (3.7), we arrive at

> (/K KVwVvdK—ah/aK()\—/in-nK)(va-nK)ds) = /va a0 (3.18)

KeTy,

for all v € X,. Substituting (3.16) and (3.17) into (3.18) yields

Z (/ /@VwV'vdK-i—/ w an-ans) =/fvd(2+/ g kVv - nds.
K oK Q o9

KeTh

Furthermore, we apply the Green’s formula to the first term

kVw - ng vds+/

w kVv - ng ds)
9K

> (/K(—V-/-ch)'udK—i-/

KeTh oK

:/fvdﬂ-f—/ g kVv - nds,
Q o0
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which together with (3.14) gives

Z(/ me-nK'uds—l—/ an%ans):/g/{Vv’nds. (3.19)
oK oK 89

KeTy

The last equation implies that Jw] = 0 on each interior edge and w = g on the
boundary of 2. In addition, the flux kKVw - n is continuous across each interior edge.

Thus, equation (1.1) and the boundary condition (1.2) are both satisfied. O

The stabilized problem (3.7) can be approximated by a finite element method
using discontinuous elements. To this end, we introduce two finite element spaces as

follows:
X, = {v: v|lg € P(K)},

m(K) (3.20)
Vi = queY: pox € [[ Pleix), VK €Ty g,

=1
where P.(K) and Ps(e; i) denote the space of polynomials of degree no more than
r > 1 and s > 0 on K and its boundary piece e; x respectively. Our stabilized

discontinuous finite element method seeks u, € Xj and A, € Y} satisfying
L8 (up, Az v, 1) = (v, 1), Vv € Xp, u €Y. (3.21)

Theorem 3.1 The discontinuous finite element scheme (3.21) has one and only one

solution in the finite element space X X Y.

Proof: 'The numerical scheme (3.21) comprises a system of linear equations where
the number of equations is the same as the number of unknowns. Therefore, it is
sufficient to show the uniqueness of solution for (3.21). To this end, let £(v, u) = 0

for all (v, u) € X;, X Yy, and (up, \p) € Xp, x Y}, be the corresponding solution. By
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letting v = uy, and g = Ay in (3.21) we arrive at
LE™ (up, A up, An) = 0.

Using the definition of the bilinear form L&) (-;.), it is easy to see that

Z/ kVupVuy, dK + Z/ [An — kVuy - ng|* ds = 0. (3.22)
= JK = JoK

Equation (3.22) implies that A\, = 0 and u; is a constant on each element K. Next,

we let v = 0 in (3.21) to obtain
Z/ uppds =0,  Yp €Y. (3.23)

Since the values of u differ only in sign on the interior edge of element boundaries.
The equation (3.23) then shows that the jump of uy is zero across each interior edge
and uj, = 0 on each boundary edge. Thus, u; = 0 on the domain 2. This completes

the proof of the theorem. a

3.2 A stabilized symmetric formulation

In this section, our objective is to present a stabilized symmetric formulation for (1.1)-
(1.2) which is conditionally stable. To this end, we consider the following symmetric

bilinear form on the space X x Y:

L9 (u, \u,p) = Z/K/cVqudK— Z/@K)\vds— Z/@Ku,uds

KeTy KeTy KeTy (324)
—ah Z (A= kVu-ng)(up— kVv-ng) ds,

KeET;, oK
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where o > 0 is an arbitrary, but fixed real number. In this case the superscript (s5)
stands for stabilized symmetric. The bilinear form £%)(-; ) is clearly symmetric and
is a stabilized version of the bilinear form for the saddle-point problem (1.9). The

stability term is given by

—ah Z / (A= &Vu-ng)(p— Vv -ng) ds,
oK

KeTy

which vanishes if (u, A) is the exact solution of (1.9) and is sufficiently smooth.

The variational problem associated with £&%)(-;-) seeks (w, A) € X xY satisfying
LO(w, Ayv, p) = Lv,p), YweEX,peY, (3.25)

where

=3 ([ rop@ar- [ g@u@as) 6

KeTs
is a continuous linear functional on the space X x Y. The derivation is similar to the
derivation of the stabilized non-symmetric formulation (3.7). In fact, (3.25) can be
obtained by subtracting (3.10) and (3.11) from (3.9). The problem (3.25) is said to
be a stabilized symmetric formulation for the model problem (1.1)-(1.2). Similar to

Lemma 3.2, the following result can be proved without any difficulty.

Lemma 3.3 If (u, \) is the ezact solution of (1.9) such that u € H2(Q), then (u, \) €
X XY is a solution of the variational problem (8.25). Conversely, if (w,A) € X XY
is a solution of the variational problem (3.25), then the pair (w, \) also solves the

saddle-point problem (1.9).

Let X, and Y}, be the pair of finite element spaces defined in (3.20). The stabilized

ARTHUR LAKES

COLORADO sOp(
GOLDEN, co 22‘23 1L OF MINES
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discontinuous finite element method seeks u, € Xj and A, € Y}, such that
L8 (up, Ay v, 1) = L(v, i), V(v,p) € Xp x Yy (3.27)

To study the finite element scheme (3.27), we need the trace inequality estab-
lished in (2.15). Let K € Tj be an element in the finite element partition 7. There

exists a constant C > 0 such that for any v € H'(K), we have

91120 < C (A7H[1E &« + BIVYIE k) - (3.28)

The following lemma, characterizes a useful property of the bilinear form (3.25)

in the finite element space Xj X Yj.

Lemma 3.4 There exists a constant ag > 0 independent of the mesh size h such

that, for any a € (0, ),

L£E (v, 30, —p) = C Y (/ vaVvdKJrah/ u2d8>, (3.29)
K

KETs 0K

for all (v, pu) € Xp X Y.

Proof: From the definition of £&9)(;-), we have

(u? — (Vo - nK)2)ds> . (3.30)

LE) (v, s v, —p) = Z (/K HV’UV’UdK—l—ah/

Now using the trace inequality (3.28), we can estimate the boundary integral of (3.30)
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as follows:

/ (kVv -ng)’ds < C (h_I/ kVuVudK + h/ |D2v|2dK) ,
oK K K

where D?v represents all the partial derivatives of v of order 2. It then follows from

the inverse inequality that

/ (&Vv-nK)zdsgCh_I/ kVoVudK.
oK

K

Substituting the above estimate into (3.31) yields

L8 (v, v, —p) = (1 — aC) Z /K kVoVudK + ah Z /ax p2ds,

KeTs, KeTy

which implies the existence of an oy with the desired property. a
One important application of the inequality (3.29) is in the solvability of the

numerical scheme (3.27). The result is stated as follows.

Theorem 3.2 There ezists a constant g > 0 independent of the mesh size h such
that for any a € (0, ay), the discontinuous finite element scheme (8.27) has a unique

solution in the finite element space Xy X Yj.

Proof: The numerical scheme (3.27) is a system of linear equations where the number
of equations equals the number of unknowns. Thus, it is sufficient to prove the
uniqueness for (3.27). To this end, let £(v,u) = 0 for all (v,u) € X, x Y}, and
(un, Ap) € Xp x Yy, be the corresponding solution. By setting v = uj, and = -\, in
(3.27), we obtain

L85 (up, My un, — M) = 0. (3.31)
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It follows from Lemma 3.4 that there exists a constant ag such that, for any o €
(0, ap), the inequality (3.29) is satisfied. Thus, with this choice of «, we have from

(3.31) that

Z (/ kVupVuy dK+/ |An|? ds) <0.
K oK

K

This implies that A\, = 0 and wy is a constant on each element K. Next, we let v =0

in (3.27) and obtain:
= Z/ upppds =0,  Vu € Y. (3.32)
< Jox

Since the values of p differ only in sign on the interior edge of element boundaries.
The equation (3.32) shows that the jump of uy, is zero across each interior edge and

up, = 0 on any boundary edge. Thus, u, = 0 on the domain Q. O

3.3 Error estimates, I: non-symmetric formulation

In this section, we derive some error estimates for the stabilized non-symmetric finite
element scheme (3.21). For simplicity of notation, we introduce some Tp,-dependent
norms. Let H(K) be the standard Sobolev space of order j > 0 over K € T;. For
each ¢ € [[xcr HY(K), define

1/2
8]l = (Z ”¢H2',K> , (3.33)

KeTy

where ||-||; x denotes the usual Sobolev norm in H’(K). For each x € [[xc7. L*(0K),
define

1/2
lIxllo;on = <Z Hxllﬁ,ax> , (3.34)

KeT
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where ||x|/o.sx is the standard L?-norm of x on L?*(0K). We also introduce a semi-

norm on the space X x Y as follows:

(v, )|l = ( Z / kVuVvdK + ah|p— kVv - nK||g;ah) . (3.35)
KeT, Y K

Let u = u(z) be the exact solution of the problem (1.1)-(1.2). Assume that u is
sufficiently regular that u € X. By letting A = kVu-ng, we see that (u,\) € X xY is
a solution of the stabilized variational problem (3.7). Consequently, if (us, Ay) is the

finite element solution given by (3.21), then the following error equation is satisfied:
L5 (4 — wp, A — Ap; v, ) = 0, V(v, ) € Xp X Yp. (3.36)

Let @, be the L? projection from Y to Y. The following is our first error estimate

for the finite element solution (us, Ax).

Lemma 3.5 Assume that the solution u of (1.1)-(1.2) is sufficiently smooth such
thatu € XNHY(Q). Let A € Y be given by Nox = cVu-ng. If (up, An) € Xp X Yy 18
the stabilized discontinuous finite element approzimation obtained by solving (3.21),

then there is a constant C such that

I(w = un, A= Al < inf [I(w = ¢, A = QuAl (3.37)

+C jnf (= gllin+ 57> = @ll5n + AN = QA on)

[(VIE

Proof: Let ¢ be any function in the finite element space Xj. Using the triangle
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inequality, we have

I(u = wn, A = M)l < W(w — ¢, A = QuA)l + [(un = &, An — @rA)]l- (3.38)

It suffices to establish an estimate for the second term of the right-hand side of (3.38).

To this end, we use the non-negativity relation (3.6) to obtain
ICun — 6, 2 = QuAI? = LEV (un = 6,20 = QuAsun — ¢, = @nd). (3.39)

By letting
(v, ) = (un — &, An — QnA), (3.40)

we have from (3.39) and the error equation (3.36) that

I (un — &, An — QuA)||? = LE™ (v, p; v, p) = LEV (u — ¢, A — QrA; v, 1)

Z/wu— VvdK+Z/aKv()\—Qh/\)ds

KeTy, KeTp,
-3 / ¢)u ds (3.41)
KeTy
+ah Y (A= Qud = £V (u— @) - ng)(n — £Vv - ng) ds.
KeTy,

=10+ 1L+ I3+ Iy,

where I; are defined accordingly fori=1,---,4.

The two terms I; and I4 can be estimated using the Cauchy-Schwarz inequality

as follows:

11+ Is] < Cli(u = ¢, A = QuA)| I (v, - (3.42)
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As for I3, the Cauchy-Schwarz inequality can be employed to give

5] < Z lu — Bllo,ox ll1ello,ox

KeT

1 1 (3.43)
< (Z “U—¢”g,ax> (Z “M”g,aK) .

KeTy KeTy

Next, we use the trace inequality (3.28) to obtain
lu = @ll50x < C(A lu— oI5 & + llu — 6117 &)- (3.44)
It follows from the triangle inequality and the trace inequality (3.28) that

||M||g,al< < 2llp—kKVy- nK“g,aK +2||xkVv - nK|'(2),aK

(3.45)
< Ch! (hllu — &V - nglls ox + / kVv - Vv dK) .
K
Substituting (3.44) and (3.45) into (3.43) yields
%
Ll < C ( D=}k + llu - ¢I|ix)) Il (v, - (3.46)
KeTy

It remains to deal with I, = Y . [ox v(A — @A) ds. Since @y is the L*-
projection operator onto Y; and Y} consists of discontinuous piecewise polynomials,

then
/ v(h — Qn\) ds = / (I = Qn)v (A= Qu)) ds.
oK

oK

By using the Cauchy-Schwarz inequality and the standard interpolation error estimate
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(2.8) with k = 1, we obtain

1

|| < ( > - Qh””%,ax) (Z A — Qh)‘“g,aK)

KeTh . KeTh . (3.47)
7 2
< Ch (Z IUI%,8K> (Z |A — QhMl&fm) )
KeTy, KeTh

where |v[? ;5 stands for the H' semi-norm of v on the boundary K. Since v is a

polynomial on the element K, there exists a constant C' such that

|'U iaK S Ch_l/ kVv - VudK. (348)
K

Substituting (3.48) into (3.47) gives

N =

Ll < C(Z/mVu-V’udK) (hz ||A_QhAng,aK>
KeT, VK

KeT,
1

< Cl(w, Wl (h Yo Ia- Qn/\H%,aK) : (3.49)

KeTn

Finally, we combine (3.41) with (3.42), (3.46), and (3.49) to obtain

[l (. — ¢, An — Qu )P (3.50)

which, together with (3.40), implies (3.37) and therefore, completes the proof of the

lemma. a

The error estimate (3.37) provides a measure of the error u — uy, in the H' semi-
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norm. Since the finite element solution wuy is discontinuous, the estimate (3.37) does
not give any information about the level of continuity of w,. The next lemma intends

to address this concern.

Lemma 3.6 Under the assumptions of Lemma 8.5, there exists a constant C inde-

pendent of the mesh size h such that

ht Z / [Qn(u — up)]?ds < 4a? 1nf l(w =, A — Q)| (3.51)

KeTh
+Ca? ¢i€n)£h (lu = @lIZn + h72{lu — @15, + AlIX — QuAlEon) »

where [-] stands for the jump on interior edges. On boundary edges, [-] should be

understood as a one-sided trace of the function under consideration.

Proof: By taking v = 0 in the error equation (3.36), we obtain

Z / (u—up +ah(A =Xy — kV(u—uy) ng))pds=0 (3.52)

for all 4 € Y},. This implies that
[[Qh(u — uh)]] = —ah Qh[[/\ - )\h — HV(U - Uh) . 'I’LK]]. (353)
Using the fact that @}, is the L? projection operator, we have from (3.53) that

Z [Qn(u — up)]Pds < 2a°h2 Z A= An + &V (u—un) ngllox- (3.54)

KeT;, Y OK KeTh

The right-hand side of (3.54) is related to the semi-norm given by (3.35). In particular,
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it is easy to see that

RS [@n(e — un)[Pds < 20| (w — wn, A = M), (3.55)
which, together with Lemma 3.5, completes the proof of the lemma. 0

In the rest of this section, we are concerned with applications of (3.37) and (3.51).
Assume that the finite element partition 7} is regular such that there exists a constant

C satisfying
Pty (A Hlw = llon + llu = dlln + Allu = dllzin) < CR™|[ullmssins (3.56)

for0<m<randue€ H H™Y(K). Next, we provide an estimate for | A—QpnA|[o,a%
KeTy

if A = kVw - ng for some smooth function w defined on K.
Lemma 3.7 Let K € Ty, be an element in the finite element partition T,. Let A =
kVw-ng be the normal component of the flur ¢ = kVw. Then there exists a constant

C > 0 such that
1A= QuAlloox < CR 3 |lwllesre, 0<L<s+1.

Proof: Let TI,w € Py;1(K) be the L:-projection of w in the polynomial space Ps;1(K)

and

A= HV(HhU)) *NK. (357)

Then,
A= Qrr ==X+ —Qn)) + Qn(A = A). (3.58)



37

It follows that

IN=QuMlopr < 11X = Moo + 1A — @uMlloox + [|Q(A — X)llo.ox

2A = Alo,ox + 1A — @nAllo,oxc (3.59)

VAN

Since A = kVw - ng and A = sV (Il w) - ng, the trace inequality (3.28) and the

standard interpolation error estimate (2.8) implies

A= Ao = / A= A2ds = / 6V (w — ) - nxc|%ds
oK . oK
C (W HV(w — Myw)l[§ x + BIID*(w — Tw) |} «)

VAN

A

Ch* wllfy x,  VI<L<s+1. (3.60)

As for the second term of (3.59), we use the interpolation error estimate to obtain

m(K)
“/\ - Qh/\HU,aK < th Z ”)\Hl,ei,K’ 0<f<s+ 1, (3'61)
=1
where || - [|ge;  is the norm in the Sobolev space H(e; k). To estimate each term

Al te;.x» We assume that the coefficient tensor « in (1.1) is sufficiently smooth on the

element K. Using the trace inequality (3.28) and (3.57), we obtain
HS‘“ZQ,K < C (W Mpw||3yr & + hlﬂhw|%+2,1<) ) (3.62)

where |II,w|e42 k is the Sobolev semi-norm of II,w on the element K. It follows from

the standard inverse inequality (2.14) that

h|th|%+2,K < h_IHHhU’“?H,K- (3.63)
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Thus, substituting (3.63) into (3.62) we have

IMze, . < CRHMhwllFs ke < O w3k (3.64)

where we have used the boundedness of the L2-projection II, in H*"1(K). Substitut-

ing (3.64) into (3.61) leads to

1A = QuMloox < Ch 3 lwllesrk, 0<L<s+1. (3.65)
Now combining (3.59) with (3.60) and (3.65) we arrive at

1A= QiMoo < ChEHlwllerw, 0< L s+1, (3.66)

which completes the proof. 0

We are now in a position to state the main result of this section regarding the

accuracy of the finite element method (3.21).

Theorem 3.3 Under the assumptions of Lemma 3.5, there exists a constant C such

that

m@—UmA—MMHJF%(Z:Agmﬂu—wmma

KeTp
< C (W™l + Bllullesr) (3.67)

forany1 < m < r andl < ¢ < s+ 1, provided that the solution u is sufficiently

smooth.

Proof: The proof is essentially an application of the interpolation error estimate
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(3.56) and the results developed in Lemmas 3.5-3.7. In fact, it follows from Lemmas

3.5 and 3.6 that

l(w — up, A= M) + h72 (Kze;h /aKl[Qh(u —uy)] ds)

< jnf I(u=¢,A = QuN)]

+C jnf (Ihu = gllun + 57 llu = @llow + A3 1A = QuMloan) -

Since
=62 = QP = Y [ #V(-¢)- Viu- ¢)aK
KeT, U K
+ ahl]A = QuA — &V (u — @) - nkll3.on;
then

I(w =@, 2= QuNI* < CIV(u— )5 + hllX — QuAll3on

+ ahl||&kV(u~—¢)- nKHg;Bh)'
Using the trace inequality (3.28), we obtain
16V (u = ¢) - nxllgox < C (R7HIV(u = O)lg x + RIVA(u—d)5 k) -
Substituting (3.70) into (3.69) yields

e =@, A= QuNI* < Clllu = ¢llin + h?llu - ¢li5
+ Oéh“/\ - QhA“g;ah)a

(3.68)

(3.69)

(3.70)
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which, together with (3.68), leads to

1
2

(= wn, A = M)l + 2% (X gers Sorc[Qn(u — wn)]?ds)
< Chi||A — QA3 o (3.71)

+Cinfyex, (A lw = Pllon + llu = lln + Pllu = dllzn) -

Finally, the desired error estimate (3.67) can be obtained by combining (3.71) with

Lemma 3.7 and the interpolation error estimate (3.56). O

3.4 Error estimates, II: symmetric formulation

Our objective in this section is to derive some error estimates for the symmetric finite
element scheme (3.27). Due to the inequality established in Lemma 3.4, a natural
“energy” norm associated with the symmetric bilinear form £%)(-;-) can be defined

by
1
2
(v )]s = ( > / KVuVudK + ahnunaah) : (3.72)
KeT, U K
In fact, following the proof of Theorem 3.3, it is not hard to establish an error estimate

for the symmetric formulation in the “energy” norm || - ||s. The result is stated as

follows.

Theorem 3.4 Assume that the solution u of (1.1)-(1.2) is sufficiently smooth such
thatu € XNHY(Q). Let A € Y be given by Nox = «Vu-ng. Let (up, Ap) € Xpx Y} be
the stabilized discontinuous finite element approzimation obtained by solving (8.27).

There exists a constant g > 0 independent of the mesh size h such that, for any
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o€ (07 aO);

I = un, A = il + A ¢11Qa(u = w)Tloon < inf Iu = 6,2~ QuM

+C jnf (llu = @llin + A2 llu = @llgn + AlIA = QuAllGon)*

where C is a constant independent of the mesh size h. Moreover, there exists a

constant C such that, foranyl < m<randl1 <£<s+1,

(= wny A = A)ls + h™2[1[@n (v = wa)lloson

< C (W™ [ullmssin + hlullerin) | (3.73)

provided that the ezact solution u is sufficiently smooth.

The inequality (3.73) provides an optimal-order error estimate for u — uy, in the
H'-norm and A — ), in the L2-norm on interior edges. In the rest of this section, we
establish an error estimate for u — uy, in the L?-norm by using the well-known duality

argument. To this end, we consider a dual problem which seeks 1 € H3(Q) such that

=V (kVY) = u— uy, in Q, (3.74)
v = 0, on 0f)

Assume that the H?-regularity holds true for the dual problem (3.74). In other words,

the solution of (3.74) is in H%(Q) N H}(§2) and there exists a constant C satisfying

[¥ll2.0 < Cllu— unllo,0- (3.75)
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Using the Green’s formula, we obtain

lu—unlff =Y (/K VY- V(u—up)dK — [ (u— uh)xds) , (3.76)

KETh oK

where x = KV - ng is the normal component of the flux variable ¢ = kV1. Let
u be the exact solution of (1.1)-(1.2) and A = kVu - ng. Let (up, Ay) be their finite

element approximations arising from (3.27). Since ¥ = 0 on 952, we have

Z PO = d)ds =0, (3.77)

KeTy

In addition, the fact that y = kV¢ implies that

Z / (A=A — &V (u—up) -ni)(x — kVY - ng)ds = 0. (3.78)

KeTy

It follows from (3.76), (3.77), and (3.78) that

—upll2q = Vi - V(u — up)dK — - d)
e - w2 ;_(/K w76Vl = w)dK = [ (- un)xds
- Z ¢)\ An)ds
KeT,
- ahZ/ (A= — kV(u—up)  ng)(x — &V - ng)ds
KeTy,

= ﬁ(SS)(u — Up, A— /\h) %f’,X)
Using an analogue of the error equation (3.36), we obtain

lu—unlldgq = L5 (w—un, A — An; ¥ — 6, X — Qup) (3.79)
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for any ¢ € X,,. In particular, we choose ¢ = Rpy where Ry is the L? projection

operator onto the finite element space Xj. The right-hand side of (3.79) can be split

into four terms as follows:

J1

J2

and

Ji=ah Y /aK()\—

KeTh

= Y / &V (Y — Rpp) - V(u ~ up)dK, (3.80)
KeT, v K

. Kz; /a =) (x ~ @ux)ds, (3.81)

S KEZT /8 (= Ra) (A= M)ds, (3.82)

)\h - K,V(U, - uh) . nK) (X - th - HV(’Iﬁ - Rhlp) . ’I’LK)dS. (383)

These J-terms are handled by the following four lemmas.

Lemma 3.8 Let J; be given by (8.80). There exists a constant C such that

|J1] < Chl|V(u — un)lonllv — unlloq- (3.84)

Proof: Using the Cauchy-Schwarz inequality we obtain

|| < ClIV(u—un)llon IV (% = Bat))losh- (3.85)

The standard interpolation error estimate (2.8) implies that

IV(®% = Bu)llom < Chllgllao < Chllu — uallo0, (3.86)
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where we have used the a priori estimate (3.75) in the last inequality. The proof is

then completed by substituting (3.86) into (3.85). O

Lemma 3.9 Let J, be given by (3.81). There ezists a constant C' such that
| J2| < Ch (IV(u = wn)llow + B D*(u — un)llow) llu = unllog- (3.87)

Proof: Since @ is the L? projection operator onto the discontinuous finite element

space Y}, then

b= = 3 [ 1= Qu)u—un)l(x - Qunlds. (3.88)

KeTy

Using the Cauchy-Schwarz inequality and the interpolation error estimate we obtain

|Jo] < Ch Z lu — un|10kl|X — @rxllook, (3.89)
KeT,,

where [u — uy|; ok denotes the H'(OK) semi-norm. The trace inequality (3.28) can

be applied to yield
Ju—unl} o < C (W V(u = ha)lfg x + Al D*(u — un) llg &) - (3.90)
Furthermore, with y = x, w = ¢, and £ = 1, we have from Lemma 3.7 that

lx = Qnxllo.ox < ChE |9l (3.91)
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Substituting (3.90) and (3.91) into (3.89) yields
| 72| < Ch ([1V(uw = un)llon + hlID*(u = un)llon) ¥ll20, (3.92)

which, together with the a priori estimate (3.75), completes the proof of the lemma.

d

Lemma 3.10 Let J3 be given by (8.82). There exists a constant C' such that
[J5] < Ch3|IA = Mlloon lu — unllos. (3.93)
Proof: From the Cauchy-Schwarz inequality, we have

[J51 < >IN = Mlloax ¥ — Rutpllo.ox- (3.94)

KeTh

The trace inequality (3.28) can be applied to yield
1= Rull§ oxc < C(A7H 19— Ratllo ke +RIIV (¥ = Ru)ll5 k) < CRID*PI[G g (3.95)
Substituting (3.95) into (3.94), we obtain
J5| < ChE[[$llaa X = Anlloson, (3.96)

which, together with (3.75), completes the proof. O

ARTHU!
coz.ozzZ$é';ES LIBRARY
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Lemma 3.11 Let J; be given by (3.83). There exists a constant C such that

[l < Ch (BHIX = Mlloon + 19 (w = wn)llo + AID(w = un) o ) lu = uiflo

(3.97)
Proof: From the Cauchy-Schwarz inequality, we have
Tl < ah > (1A = Mlloox + 116V (w — un) - nkllo,ox) (3.98)
KET,
([Ix = @nxlloox + |8V (¥ — Ratp) - nklo,0x)-
The trace inequality (3.28) and Lemma 3.7 can be applied to yield
lIx = Qnxllopx + KV (W — Ratb) - nilloox < ChE |||,k (3.99)

Similarly, the trace inequality (3.28) gives
16V (u = un) -kl ox < C(RHIV(u—un)l§ x + hlID*(u — un)llg ) . (3.100)
Substituting (3.99) and (3.100) into (3.98), we obtain
|Jul < Ch (h%H)\ ~ Anlloson + [V (u ~ un)ljosn + 2l D*(u — uh)llo;h) [¥ll20, (3.101)

which, together with the a priori estimate (3.75), completes the proof of the lemma.
()
We are now in a position to prove our L2-error estimate for the symmetric finite

element method (3.27).
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Theorem 3.5 Under the assumptions of Theorem 3.4, there exists a constant ag > 0
independent of the mesh size h such that, for any o € (0, ayp),

lu = unllog < C (hll(w = un, A = Ma)lls + B2 D? (w — wn)lloin) » (3.102)

where C is a generic constant independent of the mesh size h. Moreover, there ezists

a constant C such that, for anyl1 < m<randl1 <£<s+1,
lu = unllog < C (K™ Jullmin + B ullerin) (3.103)

provided that the solution u is sufficiently smooth.

Proof: Recall that from (3.79) we have
lu —unll3 o = Jr+ J2 + Js + Jo. (3.104)
Thus, by the estimates derived in Lemmas 3.8-3.11 we obtain
lu —unllg o < C (Bll(w = wn, A = An)lls + B2 ID*(u — un)llom || v — wnllog.  (3.105)

This proves (3.102). The estimate (3.103) is a direct application of (3.102) and (3.73).

d

3.5 Bilinear forms with jump terms

In this section, we introduce non-symmetric and symmetric formulations that use the

least-squares term (1.13) and the jump term (1.14).



Let us first define a non-symmetric bilinear form on X x Y as follows:

L) (u, A v, ) Z/Wuwdf( Z/ v ds

KeTy KeTy

+Z/ up ds + fh7t Z/ [u][v] ds

KeT, 9K KeT, Y 9K

+ah Z (A= kVu-ng)(p— kVv-ng) ds
KeT,

48

(3.106)

where o > 0 and 8 > 0 are arbitrary but fixed real numbers. Our stabilized finite

element approximation consists in seeking u, € X5, and A\, € Y}, such that

£(sn]) (uh: )‘h) U,M) = E(U).u)7 Vv € Xh’ IS Yh"

(3.107)

where £(v, ) is defined in (3.8). The problem (3.107) is called a stabilized non-

symmetric formulation with jump term for the model problem (1.1)- (1.2).

The linear system in (3.107) is uniquely solvable once we show that bilinear form

(3.106) is coercive in Vj, x My, A bilinear form £(-;-) is said to be coercive on V (or

V-elliptic) if, there exists a constant a > 0 such that,
L(v,v) 2 alvlly, VveV
. In fact, it is easy to see that

£ o0, = o) P+ 17 S [ o s,

KeTh

where the semi-norm || - || is defined in (3.35). Therefore, the bilinear form £(™)(.;.)

is coercive for any a and .
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A symmetric bilinear form on X x Y can be defined as follows:

LOED (u, Xy, 1) = Z/mVqu dK — Z/ v ds
K oK

KeTh KeTh
= / upds + B> / [ullv] ds (3.108)
+ah Z (A= kVu - ng)(p~ kVv-ng) ds
KeT;, Y 9K

where again o > 0 and § > 0 are arbitrary but fixed. Our stabilized finite element

approximation consists in seeking u, € X5, and A\, € Y}, such that
LD (up, Aps v, p) = (v, 1),  Yv € Xy, p €Y, (3.109)

where £(v, i) is defined in (3.26). The problem (3.109) is called a stabilized symmetric
formulation with jump term for the model problem (1.1)-(1.2).
The linear system in (3.109) is uniquely solvable once we show that bilinear form

(3.108) is coercive in V;, X M. This is established in the following lemma:

Lemma 3.12 For any «, there exist a constant By such that, for any B > By, the

bilinear form in (3.108) is coercive.

Proof: We see from (3.108) that

£ (0, 0, 1) = (0, )2+ B0 3 /6K|[U]]2 ds—2 % /{)KW ds.  (3.110)

KeTy, KeTy

Since the values of y differ only in sign on an edge e in two adjacent elements, we

have

Z/aKv,uds

KeTy

<> [inlioll as (3.111)

e€&y €
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where &, denotes the set of all interior edges (or faces) associated with the partition

Tr. By using the Cauchy-Schwarz inequality,

> lull![vﬂldss(ﬁ‘lhz /aKluP) (ﬁh-lz | bF ds) - (312)

ec& V€ KeT, KeTh

By using the triangle inequality and the trace inequality (3.28), we have

Bh Y /aK |uf? ds

KeT,

SQﬁ“th (/ I,u—ﬁV'u-nklzds+/
oK

KeTh oK

< Cpt Z (h/aKl,u—ﬁVv-nKlz ds+/KrchVv dK)

KeT

< CB'max(a™1,1) Z (ah/ lw— kVov - ng? ds+/ kVuVu dK) ,
oK K

KeTy

|kVv - nk)? ds)

(3.113)
where C' is an constant independent of h, « and 3. For any fixed «, we choose (g to

be sufficiently large so that

CBy ' max(a™!,1) <

e

For B > fq, it follows from (3.111)-(3.113) that

L6, 0,10) 2 (lﬂ(v,u) IP+ 6171 3 AKﬂvﬂ2 ds) - (3.114)

KeTy

This completes the proof the coercivity of (3.108). i

The H'!—equivalence norm error estimates for the symmetric and non-symmetric

formulations with jump terms as well as the L? error estimate for symmetric formu-



51

lation can be established in a similar way as in Section 3.3 and 3.4. In fact, these

forms were studied before we discovered formulations without jump terms.
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Chapter 4

CONVECTION-DIFFUSION PROBLEMS

The objective of this chapter is to apply stabilized discontinuous finite element proce-
dure to convection-dominated convection-diffusion problems. In general, the standard
Galerkin finite element methods applied to such problems exhibit a variety of defi-
ciencies, including high oscillations and poor approximation of the derivatives of the
solutions. A new stabilization technique, which features a non-symmetric formulation
using discontinuous piecewise polynomials, is presented and analyzed for such prob-
lems. Error estimates in some H'-equivalence norm is established for the proposed

discontinuous finite element scheme.

4.1 A variational formula

We consider the application of the stabilized discontinuous finite element procedure
to a convection-diffusion problem which seeks u € H'(Q) satisfying

-V - (aVu—bu)+cu = in €2,
( ) +eu=f (1)

u=g on 0f2,

where (2 is an open bounded domain in R? (d = 2, 3). For simplicity, we only discuss
the case in which Q is a polygonal domain in R?. The results can be extended to three
dimensional case and curve boundary regions without any difficulty. ¢ € L>(Q) and

b € [WH°(Q)]? are the coefficient functions, f € L*(2) and g € HY/2(Q) are given.
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Also, a = (a;;)dxq 15 a symmetric matrix such that there are two positive constants

a; and ay satisfying
ar[€]]* < Zaijfifj < awlléll?, V€= (6,8, &) €Q (4.2)
1,

We impose the following assumptions:

H1. a; and ay are proportional and small:

as < 1, az/a; = O(1). (4.3)

H2. There exists a positive ¢y such that
1 .
§V -b+c>c in €. (4.4)

To derive a variational form, let us first introduce some notation. Let {K} = Ty,
be a non-overlapping partition of €2 into polygonal elements which is quasi-uniform.
For notational simplicity, we separate the boundary of {2 into two parts. 9€2, denotes
the part of the boundary where b-n > 0 and 9€2_ denotes the part of the boundary
where b -n < 0 where n is the outward normal direction. This notation is illustrated
in Fig. 4.1.

To obtain a weak formulation of (4.1), we introduce two function spaces

V={v:v|lx € H(K),VK € T}, (4.5)



890 090,
F1G. 4.1. Boundary 9Q2_ and 01,
M= {u : plox € H™2(0K),VK € Tp,3q € H(div; Q),q - nx = plox,

and plan_ =0},

where ny is the outward normal direction on K. We also denote

V, ={v eV :vlsq =g},
Vo = {'UE V:’Ulag_ 20}.

54

(4.6)

(4.7)

Therefore functions in V, satisfies the boundary condition strongly on 0Q_. It can

be shown that there exists a unique pair (@, A) € V, x M such that

> / (aVa — b#) Vv + civdK — Y / Mds = ) / fudK,
K oK K

KETy KeTy KeTh
Z upds = Z / guds,
KeTh oK KET; SKNoN+

for any (v, u) € Vo x M. Moreover,

u=u, and Mok = (aVu —bu) - ng, VK € Ty,

where u is the solution of (4.1).

(4.8)

(4.9)

(4.10)



95

4.2 A stabilized non-symmetric formulation

In this section, we show that the weak form (4.8)-(4.9) can be stabilized by using the

following procedure. Let us first introduce two function spaces:

X = {U . vlk € H3(K),VK € Th}, (4.11)

Yy = {u € H L*(0K), plox, + plox, =0 on 0K N aKQ} . (4.12)
KeTy

Similarly we denote
Xy ={ve X :vlpa =g},
Xo={v € X :v|ga. =0}

(4.13)

On the space X x Y, we define a bilinear form:

O(u, Ao, u) = Z /K(aVu —bu)Vv + cuv dK — Z /aK()w — up) ds

KeTh KeTh
+ ah’ Z z(A = (aVu — bu) - ng)(p — aVv - ng) ds,
KeT, ” 9K
(4.14)
where o > 0 and (8 are arbitrary but fixed numbers independent of h. The quantity z
is an “inflow-outflow” indicator defined on the boundary of each element K as follows:

1, b-ng >0,
2= o= (4.15)

0, b-ng <0.

As shown in Fig. 4.2, z =1 for edge e on K; and z = 0 for e on Kj.
The stabilized problem seeks w € X, and A € Y such that

Q(w, A v, p) = Lo, p),  Y(v,p) € Xo xY, (4.16)
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K,

z2=0
K °\b
z=1

Fi1c. 4.2. The “inflow-outflow” indicator z and function @

where

Lo, ) =) ( /K fvdK + /6 - gu ds) (4.17)

KeT
is a continuous linear functional on the space X x Y.
The derivation of (4.16) can be shown in a similar way to the derivation of the

schemes for elliptic problems. First, we start with the equation
—V - (aVu —bu) +cu = f.
Multiplying by v and then integrating over K we obtain

/ (aVu — bu)Vv + cuv dK — (aVu — bu) - ngv ds = / fvdK.
K K

0K

Using A = (aVu — bu) - ng and summing for all K, we have

;/K(aVu — bu)Vv dK — EK:/&K v ds = ;/K fudK. (4.18)

Next, when e = K; N K, is an interior edge,

/ up +/ up = 0.
e,K1 e,Ks



57

Therefore, by the boundary condition, we have

up ds = / g ds. 4.19
8= 2 (419

Finally, from A = (aVu — bu) - ng we obtain
ah? Z/ z(A = (aVu —bu) - ng)(p — aVv - ng)ds = 0. (4.20)
= Jok

Adding (4.18), (4.19), and (4.20), we arrive at (4.16).
The next lemma shows the uniqueness of problem (4.16), which is one of the

important results of this section.

Lemma 4.1 If the variational problem (4.16) has a solution, then the solution is

unique.

Proof: 1t suffices to show that if
@(w, \; v, 1) =0, V(u, ) € Xo x Y, (4.21)

then w = 0 and A = 0. We choose v = w and p = A + (b - ng)w, where

W, b-ng >0,
' " (4.22)

£,
Il

Wo, b-nK<0,

and w;(w,) stands for the trace of w taken from interior (exterior) of element K. As
shown in Fig. 4.2, W = w|c k,. Therefore, it is clear that @ assumes the same trace

on both sides of any edge in the partition and therefore y = A+ (b - nx)w belongs to
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Y. By selecting such v and p in (4.21), we have from (4.14) that

Z/ aVwVw + cw?dK — Z/ wade+Z/ (b - ng)wwds
K = JoK

(4.23)
+ahf Z/ — (aVw — bw) - ng)(A + (b ng)w — aVw - ng)ds = 0.

The last term vanishes when b - ng < 0 by the definition of the indicator z. When

b ng > 0, w = w; = w|g. Therefore, the last term can be written as

ahﬂZ/ (aVw — bw) - ng)* ds, (4.24)

KT)nK>0
which is nonnegative.

To establish the non-negativity of the other terms, we introduce the following

lemma:

Lemma 4.2 Under the assumptions in Lemma 4.1, we have

—Z/ wade—i—Z/ (b - ng)wwds

(4.25)
= —Z/ (V-b)uw'dK + - Z/lb ne|[w]’ds,
eeeh
where
[w] = wle,x, — wle,x, (4.26)

is the jump of the function w across the edge e.



Proof: By using integration by parts,

—/ bwVwdK = / wV - (bw)dK — (b - ng)wds
K

oK

:f(V~b)w2dK+/ wade—-/ (b - ng)w?ds.
K K oK

We now have

—/ bwVwdK = 1/(V’-b)deK—-l/‘ (b - ng)wds.
K 2 Jk 2 Jok

Summing for all K, we obtain that

—Z/wade—l—Z/ (b - ng)wwds

:—Z/ (V- b)wdK + = Z (b nk) (2wl — w?)ds.

99

(4.27)

The last term is nonnegative. To illustrate this, let e = 0K; N 0K, be the common

boundary of elements K; and K,. (See Fig. 4.2.) We denote by e* (e
e where b - n. g, > 0 (< 0). Therefore, on e*, b-nx, <0 and on e,

When integrating on K7, we have from the definition of w that

/ (b . ne,Kl)(2w'lD - wz)ds = / (b ' ne,KI)wlg,IﬁdS
K et

+ /_ (b- ne,Kl) (2w[e,K1w|e,Kz - wig,Kl) ds.

Similarly, when integrating on Ko,

[ ne)ews - wiis = [ (beno)ul s
e, Ko e

+ / (b : ne,Kz) (zwle,fﬁwIC,Kz - wIZ,Iﬁ) ds.

e+

~) the part of

b- Te Ky > 0.

(4.28)

(4.29)
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We combine (4.28) and (4.29) and obtain

Z/@K(b-nx)@wﬁ) — w?)ds
=5 [ medtol 4 me) o] @ (430)

eeg et e

= Z/lb ne|[w]?ds.

ecéy

In (4.30), [w] is understood as the one-sided trace on boundary edges. The result of
the lemma is then obtained from (4.27) and (4.30). O
We now continue our proof of Lemma 4.1. In fact, we can see from (4.23), (4.24)

and (4.25) that if (w, A) solves the homogeneous problem (4.21), then

Z/anVuH— “V b+ c)w?dK + = Z/|b ne|[w]?ds

= (4.31)
+ahﬁZ/ — (aVw — bw) - ng)*ds = 0.

JK,b- nK>0

Using the assumption H2 (4.4), we know w = 0 everywhere in Q. Also, A = 0 on the
part of 0K where b - ng > 0. This includes all boundary edges belonging to 0€..
Remember that the values of A differ only in sign for adjacent edges in the interior

part of . Thus A = 0 on all interior edges. From (4.21),

Z/ wds=0 WeX.
K JOKNON-

This shows that A = 0 on 9Q2_. Therefore A = 0 everywhere on 0K for all element

K. This completes the proof of uniqueness. a

The stabilized problem (4.16) can be approximated by a finite element method
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by using discontinuous elements. Let us introduce two finite element spaces:

Xn = {veX: v|lg € P(K)},

m(K) 4.32
( )
Y, = pey: /J,laK € | | Ps(ei,K), VK €Ty, 7,

i=1

where P,(K) and P;(e; k) denote the spaces of polynomials of degree no more than

r and s on K and its boundary piece e; i, respectively. We make the following
assumption:

H3. The degree of the polynomials on edges is no less than the degree of the

polynomials on the element, i.e.,

s>r>1. (4.33)

Our stabilized discontinuous finite element method then seeks us € X, N X, (so

that the boundary condition is satisfied on d2_ strongly) and A, € Y}, satisfying

D(up, Ans v, 1) = L(v, 1), Vv € Xp, p €Y (4.34)

Theorem 4.1 The discontinuous finite element scheme has one and only one solu-

tion in the finite element space X, X Y.

Proof: The numerical scheme (4.34) comprises a system of linear equations where the
number of equations is the same as the number of unknowns. Therefore it is sufficient
to show the uniqueness of the solution for (4.34). To this end, let £(v, ) = 0 and
(wp, Ap) € Xy X Y}, be the corresponding solution. As in the proof of Lemma 4.1, we

select v = wy, but here u = A, + (b - ng)wy, does not belong to Y}, in general. So we
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select = A, + Qn[(b - ng)w) € Y, where @y, stands for the L2-projection operator

onto Y. We can rewrite
=X+ (b-ng)ip+ (Qn — I)[(b - ng)wp) (4.35)
where I denotes the identity operator. We obtain
O (wp, An; Wi, Ap + Qp[(b - ng)wp]) = 0. (4.36)

In fact, it follows from (4.14), (4.36) and the proof of Lemma 4.1 that

/ Ib - | [un]?
eEEh

+ahb Z/ (An — (@Vwy — bwy) - n (4.37)

OK,b-ng>0

+Z/ wh(Qn — I)[(b - g )]

+ah? Z / (O = (aVwn — bup) - 1) (Qn — D)[(b - 1) i).

@ (wh, An; Wiy An + Qh[(b N )iy))
_.Z/ anthh+( V-b+cw +

The second to last term vanishes because, on the boundary 0K, wy, is a polynomial
of degree r < s. The last term also vanishes for a similar reason because the degree

of the polynomial A\, — (aVwy, — bwy) - nx € Y} is no more than s. Therefore, we
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have

@(wh, )\h, Wh, )\h + Qh[(b nK)th])
—Z/ anthh+( V. -b+c)wi+= Z/|b ne|[ws]? (4.38)

eGSh
+O[h,ﬁ Z/ /\h — (anh - bwh) . ’I’LK) .
0K bni >0
It follows from (4.36) and (4.38) that w, = 0 and A, = 0. This completes the proof

of Theorem 4.1. O

4.3 Error Estimates

In this section, we derive an error estimate for the stabilized finite element scheme

(4.34). We introduce a norm on X X Y as follows:

I, Wl = (Z/ aVuVo + ( v b +c)v?+ = Z/u) ne|[v]?
= (4.39)
+ ah? Z/

— (aVv —bv) - n )2)
8K,b: nK>0

Let u = u(z) be the exact solution of (4.1). Assume that u is sufficiently regular
such that v € X. By letting A = (aVu — bu) - ng, we see that (u,A) € X x Y is the
solution of the stabilized variational problem (4.16). Consequently, if (up, Ap) is the

finite element solution of (4.34), then the following error equation is satisfied:
D(u— up, A — v, u) =0, V(v, u) € Xp X Yy (4.40)

Let II,, be the L? projection operator from X to X,. By using the triangle inequality
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we have
Iw = uny A = Al < W(w — Tpu, A = QuA)|| + [[(un — Thu, A — Q)| (4.41)

It is sufficient to establish an estimate for the second term of the right-hand side of

(4.41). To simplify the notation, let

(¢:m) = (u—Ihu, A — QrA), (4.42)
(v 1) = (un — Tpu, Aw — @A), (4.43)

and
£ = (b nk). (4.44)

We use the non-negativity relation (4.38) to obtain
Il (un — Taw, M — QuA)I? = S(un — Mau, An — QuA; v, p+ Qr). (4.45)
We have from (4.45) and (4.40) that

I (un — T, Ay — QrA)?

= ®(u — TThu, A — QuA; v, 4+ Qré)

_ V6 — bg)V dK
O /K(a 6 —bg)Vo + cpu

KeTy,

- Z/ n ds + ZLK¢(ﬂ+th)ds

KeTy, V9K KeT,

+ahf Z / z(n — (aVe — bo) - nk)(u + Qré —aVv - nk) ds

KeT, 9K

(4.46)

=1+ I+ I3 + 14,
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where I; are defined accordingly for: =1,.--,4.

The I—terms can be handled by the following lemmas.

Lemma 4.3 Let I, be as in (4.46). There ezists a constant C such that
1111 < C (Il(u = Thu, A = QuA)l + A7 lw — Taullon) (v, w]l- (4.47)
Proof: By using the Cauchy-Schwarz inequality, we obtain

< CllgllonllVollon- (4.48)

> /K b¢VvdK

KeTh

Since v is a piecewise polynomial, we can use the standard inverse inequality (2.14)

and obtain

< Ch7H | @llonllvllosn- (4.49)

> /K bpVudK

KeTy,

The terms involving coefficients @ and ¢ can be handled by the Cauchy-Schwarz

inequality directly. This completes the proof of the lemma. O

Lemma 4.4 Let I, be as in ({.46). There ezists a constant C such that
_1
[ I2| < CR™2[|A = QnAlloanll (v, ). (4.50)
Proof: By using the Cauchy-Schwarz inequality, we obtain

L] < (ZHU”%,@K) (ZHUII%,ax) : (4.51)

By using the trace inequality (3.28) and the standard inverse inequality (2.14), we
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have

[vllfox < CA7HVlIG x + RIVYIE &) < CATH[IIG k- (4.52)
This completes the proof of the lemma. O

Lemma 4.5 Let I3 be as in (4.46). There exists a constant C such that

5| < C(h+ 1T + ash™) (B72|6135 + [ 8113,) Fll v, ) (4.53)
Proof: Write
¢((1+ Qné) = d(p+ &) + ¢(Qn — I)§, (4.54)

where [ is the identity operator. The trace values of p + £ only differ in sign on a

common edge. Therefore,

<y Bl(a+ (b-ngv).  (455)

KeT;, J 0K k>0

Z/@Kcé(uv%)ds

KeTy

Write
p+b - -ngv=p—(aVv—bv) -ng +aVv - ng.

By using the Cauchy-Schwarz inequality and trace inequality (3.28), we obtain

—(aVv — bv)-nkg)lds -8 2211
Z/aKH[aﬁ]l(u (aVv — bv) - ng)|d §C<h Z/ach) (v, )l (4.56)

KeTy KeT,
< CRE (W Y8113 + BlIl20) (v, ),
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and

> / [¢]aVv - nK|d3<Oa2<Z / ¢2) (ZIIVvII%,aK>
KeTy KeT; KeTy,

1

< Cagh™ 5 (™Y1, + Bllol124) 71| Vol
< Cagh™2 (hY|@12, + Rll61I2) 2 I (v, )]

(I

(4.57)

0

In the last step, we used the standard inverse inequality (2.14) to obtain
IVllon < Ch™Hlollow < CR7HI(w, W]

We now establish an estimate for the last term in (4.54). Similar to (4.55), we

have

<y / 1@ Do) 458

Z/ O(Qn — 1)E ds

KeTy

Using the fact that if v is a piecewise polynomial of degree » > 1 and b is smooth,
then
(@n — I)(b - nkv)|loox < Chllvlosk. (4.59)

Then by using the Cauchy-Schwarz inequality and the trace inequality (3.28), we

obtain

> [ 9@ Deds < Ch (hM|g1134 + hlllIA) 7N v, )l (4.60)

KeTh

Finally, the estimate in (4.53) is obtained by combining (4.56), (4.57) and (4.60). O
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Lemma 4.6 Let Iy be as in (4.46). There exists a constant C such that

] < C+ RS @, mIl I, )l (4.61)

Proof: We rewrite

p+ Qré—aVuv -ng = p+&—aVu-ng + (Qn — IE.

By the definition of z and using the Cauchy-Schwarz inequality, we obtain

ahf Z / — (aV¢ —Dbg) - nk)(u+ & —aVv - nk) ds
KETh,
<ol 30| (1= (@Ve=bg) )+ ~(aVv ~bv) nK)[ (4.62)
Ket, |J0K bng>0
< i@, (v, wl-

Similar to (4.58), we can use (4.59) to obtain

ah? Z/ — (aVé — bg) - ) (Qn — DE ds| < CLE |6, )] (v, w)]l.
e (4.63)
Combining (4.62) and (4.63), we obtain (4.61). O

Combining Lemma 4.3-4.6, we obtain the following first error estimate for the

finite element solution (up, Ap).

Lemma 4.7 Assume that the solution u of (4.1) is sufficiently smooth such that
ue€ XNHYQ). Let A € Y be given by Mok = kVu-ng. If (up, \p) € Xy X Yy is the

stabilized discontinuous finite element approzimation obtained by solving (4.84), then



69

there 1s a constant C such that

I = up, A = M) < O+ A5 (w = Tau, A — QuA)|
+C(1+ 17 + aph™) (lu — Wyul2, + h2[lu — Tyull3,))
+Ch73||A = QuAlloon-

ol

(4.64)

Assume that the finite element partition 7, is regular. Then there exists a

constant C such that the interpolation error estimate
h™Hlu — pullop + [lu = Mpullyn + hllu — Maullzn < CR™|ullm s (4.65)

holds for 0 < m < r and u € H H™1(K). Next, we provide an estimate for

KeTs
1A — QuAlloor if A = (aVw — bw) - nk for some smooth function w defined on K.

Lemma 4.8 Let K € T, be an element in the finite element partition T,. Let A =
(aVw — b) - ng. Then there exists a constant C > 0 such that

H)\ Qh/\“O K S < C(ag + h) 2 “w||e+1 K> 0 S f S s+ 1.

Proof: Let II,w € P,,1(K) be the L?-projection of w in the polynomial space P;1(K)

and

A=A+ X = aV(Iw) - ng — O, (bw) - ng, (4.66)

where A; are defined accordingly for « = 1, 2. Then,

A=QuA ==X+ (A= Quh) + Qu(A = A). (4.67)

ARTHUR LAKES LIBRARY

COLQ%ADG S
GOLDEN Co gH%)L OF MINES
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It follows that

IA = QuMloorx < 1A= Mloax + [|1A — @uMlloox + |Qn(X — Nllo,ox
20\ = Mlo,ox + 1A — @nAlloox- (4.68)

VAN

To estimate the first term, we see that
1A= M ore < 20aV(w — hw) - nkll§ o5 + 2/ (bw — Mabw) - nkl§ o5 (4.69)

By using the trace inequality (3.28) and the standard interpolation error estimate

(4.65), we have

1A= MBox < Caj (hHIV(w — Taw)l[3 & + hllD*(w — Myw)|[§ &)
+ C (h7Ybw — Mbw|2 ¢ + hllbw — Mybw|l3 «) (4.70)

< Caih* Hwllzy k + CR*HlwlE
for 1 < ¢ < s+ 1. As for the second term of (4.68), we again use (4.65) to obtain
m(K)

IA = QrAlloox < C Z (R lIx]

=1

vk T Dallerres), 0<L<s+1, (471)

where || - ||¢e, < is the norm in the Sobolev space H*(e; k). To estimate each norm
Hj\llg)ei,K, we assume that the coefficients a and b are sufficiently smooth on the

element K. Using the trace inequality (3.28) and the relation (4.66), we obtain
IAilee, < Cai (B Iawll g i + hlThwles ) (4.72)

where |II,w|eu41 k is the Sobolev semi-norm of II,w on the element K. It follows
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from the standard inverse inequality (2.14) that
hIawlpg e < AHTTLwl[7, - (4.73)
Thus, substituting (4.73) into (4.72), we have
IAllZe, e < Cash™ IMywllgy x < Cazh™ wllgs &,
where we have used the boundedness of the L2-projection I, in H**!(K). Similarly,
XellEi1e i < Cas (B M0l + Blawlen i) < Ch7 M wlfr ke (4.74)
Substituting (4.74) into (4.71), we obtain
IA = QuMlopx < Claz +h)h 3 ||wllprx, O0<L<s+1.  (4.75)
Now combining (4.68) with (4.70) and (4.75), we obtain

IA = QuAlloor < Clag + WA 3 [wlleprx, 0<L<s+1, (4.76)

which completes the proof. a

We are now in a position to prove the main result of this section regarding the

accuracy of the finite element method (4.34).

Theorem 4.2 Under the assumptions of Lemma 4.7, there exists a constant C such
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that
(e = un, A = An)l

< C (RBP4 b+ B+ a3h2 + a3hPY) ® W[l (4.77)
+C(1+ A5 (1 + aph ) A ullesam,

for1<m<randl </{<s+1, provided that the solution u s sufficiently smooth.

Proof: 1t is easy to see that

D=

(Z / aV (u — Tu)V (u — Hhu)> < Ca? |lu — Myul|n,
K K

and

N

1
(=V:-b+c)(u—-1I u)z) < Cllu — Mpul|osn-
(;/K - . ™

By using the trace inequality (3.28), we obtain

1 z L
(-2- > bl - Hhu]]2) < O(hY|u — DyulZy, + hllu — Maull2,)3,

ec&y, €

and

N

(ahﬂ Z/aKb ng >0 (A = QrA = (aV(u — IThu) — b(u — ITzu)) - nK)Z)

< ChE(|A - QuMlIg, + a3 (hHu — Thullyn + hllu — Haul|gm)
+(hHu — Taullop + Allu — Maull1yn)) 7.
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Therefore, there exists a constant C' such that

I(u = Thu, A = @uA)| - < Clh+ AP+ 2h 7 |u — Thyullop
+C(ay + h+ a2hP~1 + P13 |ju — Tyul|y
+C(a2h?~ VY2 h)|lu — Myul|zn
+CRE||A = QuAllon.

(4.78)

Omitting all higher order terms, we obtain from Lemma 4.7, Lemma 4.8 and the

interpolation error estimate (4.65) that

(= wny A = M)
< C (AP +h+hP* + alh™2 + alhfY)
F(1 4+ %) (A + ash™) B |ul| 4 1m,

1
s (4.79)

for 1 <m <rand1</¢<s+1. This completes the proof of the theorem. O
We can see from (4.79) that in order to get the best estimate, we need to choose
B = 0. Using the assumption that a; < h, the main estimate in (4.77) can be written

as follows:

(e = wn, A = M)l < CA™ 2 [ull s + Blluullesrin)- (4.80)
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Chapter 5

ANALYSIS OF THE MATRIX PROBLEMS

In this chapter, we construct the stiffness matrices for stabilized discontinuous finite
element schemes. Symmetric and non-symmetric formulations for the elliptic problem
as well as the non-symmetric formulation for the convection-diffusion problem are
discussed. We also discuss briefly the conjugate gradient method for the resulting

linear system.

5.1 Matrix of the symmetric formulation for elliptic problems

Recall that the stabilized symmetric formulation (3.27) of the elliptic problem (1.1)-
(1.2) seeks (up, Ap) in Xp X Y}, such that

E(SS)(uha )‘ha v, /’l') = K(IU’ /"’)7 V('U, N’) € Xh X Yh: (51)

where

LENu, Ao, p) =Y / KVuVv dK — > / Mds— ) / up ds
KeTy K KeTy, 9K KeTy 9K (52)
—ah Z (A — kVu-ng)(p — &V - ng) ds,
KeT, /9K
and
=3 ([ te@ar - [ gntas). (5.3
K OKNoN

KeT,
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Finite element spaces are defined as

Xy = {Ui U|KEPT(K)}a

m(K)
(5.4)
Y, = uweY: N'BKG H Ps(ei,K),VKE'E ,

i=1

where P,(K) and Ps(e; ) stand for the space of polynomials of degree no more than

r > 1and s > 0 on K and its boundary piece e; g, respectively, and

Y = {,u € H L2(8K),/,613K1 + ,u,laKz =0 ondKiN aKQ} . (55)
K€eTh

The formulation (5.1) can be written as the following:

kVup,VvdK — / Apvds
+ah2/ (A — 6Vuy - ng)kVo - ngds = Z/ fudK, (5.6)
K K

uh,uds—ahZ/ (An — kVup - ng)pds = —Z/ ; guds,

for all (v, p) € X}, x V).
Assume that the basis functions of X, and Y}, are given by {v;};% and {u;}}%
respectively. We also write u, = va:ll ulv; and A, = Z;V:zl Mpj. Then (5.6) is

equivalent to the following linear system:

Nl . N2 .
Z (Z u'(kVug, Vug) g — Z N (i, ve)ox
K \i=1 =1 (5.7)

N2 N
+ah (Z Ny = Z“i"ﬂvw “ng, KV - nx) ) = Z(f, Uk) K,
oK

j=1 i=1 K
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ZU i, th)ok + ah (Z)\’M ZU KV, - nm#t)
oK

j=1 =1

(5.8)
Z 9, Mz)almaa,
K

fork=1,2,---,N;and [ =1,2,---,N,. (-,-)r denotes the L? inner product in the

region R. The linear system (5.7)-(5.8) can be further written as

B C u f
= , ie, Ax =D, (5.9)
D E A -g
where
u= (ul,u2,...,uN1)T7

A= ()\1,)\2’.,,,/\N2)T7
f=(fi,for )5 fo = (fve)k,
g= (91»92; T ,9N2)T, g = ZK(Q, Nz)almam

(5.10)

where T denotes the transpose operator. The block matrices in (5.9) are defined as

follows:

B = (bki) NyxNys bki = Z (kVvs, Vo) i — b (KV; - ng, KV - k) gk )
K
C = (cks)mixnas s = D (—(vrs py)oxc + h(py, KV - nikc)oxc)
K
(5.11)
D = (du) Ny, di = Y, (—(, vi)ox + b6V v; - g, ) o)
K

E = (eij)nyxny €15 = Z —ah(w, 5ok
K

It can be seen easily from (5.11) that B and E are symmetric and DT = C. Therefore

the coefficient matrix in (5.9) is symmetric.
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Now we discuss the construction of the coefficient matrix in (5.9) in the two
dimensional case. We choose r = 1 and s = 0 in (5.4). Therefore the finite element
space X, is the space of piecewise linear functions on the elements and Y}, is space
of piecewise constant functions on the boundary pieces of the elements. The stiffness
matrix can be computed locally on each element and local stiffness matrices can be
combined to obtain the global coefficient matrix. The one and only relation that

connects elements together is given in the definition of ¥ in (5.5):

NlaKl + /1/|8K2 =0 on J0K;NOoK,. (5.12)

In order to impose this condition, we artificially put signs on two sides of an edge.
For each common edge of two adjacent element, we define one side to be positive and
the other side to be negative. In the local matrices, we need to multiply the sign of
an edge on all entries corresponding to that edge.

Let K be any triangle in the partition. We denote the vertices of K by (z;, y;)
and the edges by e; where i = 1,2,3. The length of edge e; is denoted by h;. We
denote by s; the sign defined on its edge e;. The local basis function v; is the linear
function that takes on the value 1 at vertex (x;,y;) and 0 at the other two vertices.
The local basis function p; is the piecewise constant function that takes on the value
1 on edge e; and 0 on the other two edges. The local stiffness matrix on K can be
obtained from (5.9) and (5.11) as follows:

| Bloc Cloc
Aloe = , (5.13)

locT loc
C E
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Where

B¢ = (b;;)3x3, bij = (kVv;, V), — ah (VU - 1k, KV - k) ¢
C°° = (cij)axa, cij = (=(vi, bj)ox + ah(py, £VV; - nk)ox) 85, (5.14)

Eloc — (eij)3><3a €ij = —ah(ui,uj)az(sisj.

We can easily see that (u;, 1;)sk is non-zero only when ¢ = j. In fact,
E"¢ = —ah diag{hy, ho, h3} (5.15)

because s? = 1. This also shows that the global matrix E in (5.9) is a diagonal matrix
with negative diagonal entries. Therefore E is symmetric and negative definite (and
thus invertible). The global coefficient matrix A in (5.9) can then be obtained by
putting all local matrices on all elements together. In fact, it is not necessary to build
up the global matrix as long as we know the global indices of all local basis functions.

The global coefficient matrix A in (5.9) is not positive definite because the matrix
E is negative definite. Therefore we cannot solve the linear system by efficient linear
solvers like the conjugate gradient method. The following is a discussion on how
we transform the problem into a linear system with symmetric and positive definite
coefficient matrix.

We showed in Lemma 3.4 that, for all (v, u) € Xp, X Y,

LE) (v, v, —p) > C Z (/ kVoVudK + ah/ u2ds) >0 (5.16)
K K

KeTh 9



79

for constant o < ap. This implies that, in the matrix form,

B C u
[u”, —A"] >0 (5.17)
CT E||A

for any vectors u € R™ and A € R". A direct calculation shows that
u’Bu—-ATEA >0, VYVueRM AcR™. (5.18)

This also shows that B should be at least non-negative definite.

On the other hand, the matrix problem in (5.9) can be written as:

Bu+CA = f, (5.19)

CTu+EA = -g. (5.20)

Solving A from (5.20) and substituting into (5.19), we obtain the following linear

system for u:

(B-CE'CT)u=f+CE™'g. (5.21)

Matrix B—CE~'C7 is symmetric by the symmetry of B and E. It is also non-negative
definite because B is non-negative definite and E is negative definite. The uniqueness
result that we obtained in Theorem 3.2 implies that the matrix B — CE~!'C7 is non-
singular. Therefore the coefficient matrix in (5.21) is symmetric and positive definite.

This will be the linear system that we use for the symmetric formulation.
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5.2 Matrix of the non-symmetric formulation for elliptic problems

Recall that the stabilized non-symmetric formulation (3.21) of the elliptic problem
(1.1)-(1.2) seeks (up, Ap) in X X Y such that

L™ (up, A v, 1) = (v, ), Vv € Xp, p € Yy, (5.22)
where
L™ (u, X; v, p) Z/KVUVUdK Z/ /\vds+Z/ up ds
KET KGT KGT (523)
+ah Z — kVu-ng)(u— «Vv-ng) ds,
KE€T,
and
(v (/ f(z)v(z)dK +/ g(:z:),u(x)ds) : (5.24)
Ker, dKNOR

The formulation (5.22) can be written as the following:

kVup,Vu dK — / ApU ds
—ahZ/ (M — &kVup - ng)kVu-ng ds = Z/ fv dK, (5.25)
= Jox =~ JK
uppt ds + ah / A — kVuy -n ds = / gu ds,
Y[ s an 3 [ O oVumuds = 3 [

for all v € X, and p € Y},

By using the same notation as in the previous section, (5.25) can be written as
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the following linear system:

Ny No
Z (Z u'(kVvg, Vo) — Z)\j(uj,vk)ax
=1 j=1

K

N N (5.26)
2 1
—ah (Z /\jMJ‘ - Zuiﬁvvz‘ “Np, KV U - nK) = Z(f, Vk) K>
j=1 i=1 oK K
(Zu Ui, th)ox + ah (Z My — Zu KVv; - nx,m> )
0K (5.27)

Z (9, t)oxnon,

for k = 1,2,---,N; and | = 1,2,---, Ny. The linear system (5.26)-(5.27) is again

SEHI
= ) i.e., Ax =h. (5.28)
A

written as

B C
D E

The block matrices in (5.28) are defined as follows:

B = (bk:i)leNla bkl - Z ((K)V’Ui, Vvk)K — ah (K)V'Ui Nk, K}V'Uk . nK)aK) s
K

C = (ckj)NixNzs Chj = Z (= (vks ) — ah(pj, KV - nK)ok) ,
K (5.29)
D = (di)nyxnys dis = z (1, vi)ox — ah(kVv; - nge, ) ok )

E = (ej) Nyxny» €15 Zah s 15)a

It can be seen from (5.29) that DT # C. Therefore the coefficient matrix in (5.28) is

non-symmetric.
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The local stiffness matrix on K can be obtained from (5.28) and (5.29) as follows:

PBloc CIOC
Aloc — , (5'30)
Dloc ElOC
Where
B¢ = (bij)sxa, by = (£Vvi, V) e — ah (6Vv; - nk, 6V - 1) e
Cloc — (Cij 3x3; Cij = (—(Uz',,u,j)aK - ah(ﬂj, K/V'Ui . nK)aK) 3j7 (5 31)
D* = (dij)sxa, cij = ((v), pi)ax — ah(pi, KVV; - nk)axc) Sy
Floc — (ez‘j)3><3a €ij = Ozh(,LLz',,Uj)BKSiSj.

The global coefficient matrix A in (5.28) can be obtained by putting all local matrices
on all elements together. Again, it is not necessary to build up the global matrix as
long as we know the global indices of all local basis functions. This will save memory

space in the implementation and execution of our code.

5.3 Matrix for the convection-diffusion problem

For the convection-diffusion problem (4.1), the stabilized discontinuous finite element

method (4.34) seeks (up, A\n) € X x Y}, satisfying

q)(uh) )‘h; U, /1') = E(v,u), Vv € Xh7 e Yh) (532)
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where

O(u, \;ju,u) = Z/ (aVu — bu)Vv + cuv dK — Z/ (A — up) ds

KeTy KeTx

+ ahf Z — (aVu — bu) - ng)(n — aVv - ng) ds,
KeTs
(5.33)

and

Lo, p) = </ fvdK + /alman gy ds) (5.34)

KET,
We choose 3 = 0 in our computation because, as we showed in (4.80), it gives the
best estimate. The notation z denotes the “inflow-outflow” indicator. Then (5.32) is

equivalent to the following system:

Z/ (aVup — bup) Vo + cuv dK — Z/ Apv ds
Kk VK % JOK
—aZ/ z(An — (aVuy, — buy) -ng)aVu -ng ds = Z/ fvdK, (5.35)
= JoK — Ik
Z/ (uppt + az(An — (aVup, — buy) -ng)p)ds = Z/ gu ds,
= Jox 7 Jo

KNon

forallve X, and pp €Y},
Assume that the basis functions of X}, and Y}, are given by {v;}2}, and {,u]
respectively. We write u, = fV:ll vv; and Ay, = Z;Y_fl Mpj. Then (5.35) can be

written as the following system of linear equations:

Z <Zu (aVv; — by, Vug) g + (cvs, i) i Z)\] 15, V)

K =1

No Ny
—a (Z My, — Zui(avm — by;) - ng,aVuy - nK) ) = Z(f, U)K,
i=1 oK

i=1 K

(5.36)



84

Zu Vs, aK—*—a(Z)\J% Zu aVv; — by;) - nK,z,ul>
Jj=1 =1 9K (5.37)

Z 9, t)oxnon,

K
for k = 1,2,---,N; and | = 1,2,---, N;. The linear system (5.36)-(5.37) is again
written as

B C u f
= : ie., Ax =b. (5.38)

D E A g

The block matrices in (5.38) are defined as follows:

B = (bki)nyxny, b = Z [(aVv; — bu;, Vog) g + (cvi, vi)

K
+a((aVv; — bv;) - ng, zaVuy, - ng)ax],
C ] (Ck‘j)N1XN27 ij - Z (—(’Uk,ﬂj)aK - QK(Z/I'], avvk : nK)aK) ’ (539)
K
D= (d“)Nszl, dli - Z ((Ul) Ui)aK - a((avvi - bvl) ‘Ng, Z/’”)aK) )
K
E= (elj)N'gXsz elj = Z a(Z‘U/l,,U/j)BK
K

We can easily see that the coefficient matrix in (5.38) is non-symmetric.

Now we construct the local stiffness matrices. In the simplest case of assumption
H3 (4.33), we choose s = r = 1. Let K be any triangle in the partition. We denote
the vertices of K by (z;,y;) and the edges by e; where i = 1,2,3. We denote by s;
the sign defined on its edge e;. The local basis function v; is the linear function that
takes on the value 1 at vertex (z;,y;) and 0 at the other two vertices. The local basis
function p; is the piecewise linear function that takes on the value 1 at one endpoint
of an edge, 0 at the other endpoint, and 0 on the other two edges. Thus there are

6 basis functions p; on a single element. The local stiffness matrix on K can be
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obtained from (5.38) and (5.39) as follows:

| Bloc Cloc
Alee — , (5.40)

Dloc Eloc
where

B¢ = (bg;)sxs, b= (aVu; — b, Vug) g + (cvi, vg)

—a ((aVv; — by;) - nk, 2aVug - ng) gg
O = (cig)axes  ciy = (— vk i)ox — alzmy, AV nk)ox) s, (5.41)
DY = (di)exs, du= ((vi, )ox — azpu, (aVv; — bv;) - ng)ax) si,

EYC = (ej)exs,  €ij = lzpi, hi)ox5i8j,

where s; and s are the signs defined on the edges of consideration.
The global coefficient matrix A in (5.38) can obtained by putting all local ma-
trices on all elements together. Again, it is not necessary to construct the global

stiffness matrix as long as we know the global indices of all local basis functions.

5.4 Computation of local stiffness matrices on reference elements

The computation of the local stiffness matrices are performed on the reference finite
element, not on generic elements. Let K be a triangle in the finite element partition
with vertices (z;,y;). The reference triangle K is a triangle in the Z{-plane with
vertices (0,0), (1,0), and (0,1). An affine map (see Fig. 5.4) from K to K is given
by

8
IS
8
i

=J + , (5.42)

Ny
<
<
ey
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where
To—T1 T3 — X
J 2 1 I3 1 . (5.43)
Y2—Y1 Ys— W%
y ~
Y
. 1
F
K .
K
O
z 1 z

Fic. 5.1. Affine map from an arbitrary element to the reference element

Let w = w(z,y) be a function on K. It is easy to see that

/ w(z,y) dzdy = / 8(%, §) divd, (5.44)
K

K

where (2, 9) = w(z(Z,9), y(Z, §)|detJ|. The integral in (5.44) is then calculated by

the following quadrature formula:

(6(0.5,0) + (0.5, 0.5) + 9(0, 0.5),

1
/ (2, 9) didy ~ =
e 6

with an error of order h2. This formula is used to compute entries of local stiffness
matrices involving integrations over element K.
For integrations over boundary pieces of K, since they are equivalent to single

integrations, Simpson’s rule is used.
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5.5 The conjugate gradient iteration

The conjugate gradient method (CG) [28] is an iterative method for solving the system

of linear equations

Az =b, (5.45)

where A is a symmetric and positive definite N x N matrix, b € RV is given, and

r=A"beRY (5.46)

is the solution to be found. The goal of the conjugate gradient method is to find,
for a give tolerance ¢, a vector z such that ||b — Az||2 < €[|b]]2. The procedure of the

algorithm is given as follows:
CG Algorithm

1. For initial guess z, compute 7 = b — Az and py = ||r||3. Set k = 1.

2. While /pr_1 > €||b]|2 do

e if k=1thenp=r

else 8 = py-1/pr-2 and p =17+ fp
o w=Ap

* o= pk—l/pTw

r=2x+ap

e r=7r—0aw

pe = |Irllg =r"r

k=k+1
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Note that the matrix A itself need not be formed or stored; only a routine for
matrix-vector products is required. This is one big advantage of this method. Another
advantage is that CG has an acceptable convergence rate. In fact, it is well known
that the rate of convergence depends on the condition number of the matrix A, defined
by k(A) = /\max, where Apayx and Ay, are the maximum and minimum eigenvalues of

>\min
A, respectively. The closer the condition number is to 1, the better the convergence

rate will be.

The conjugate gradient method becomes a more efficient method when it is
coupled with preconditioning. The combination is called the preconditioned conjugate
gradient method (PCG). Let S be a symmetric and positive definite matrix, where
S? = M =~ A~!. Then the matrix SAS is symmetric and positive definite and its

eigenvalues are clustered near one. Moreover, the preconditioned system
SASy = Sb, (5.47)

has y = S~ !z as a solution, where Az = b. In fact, using CG algorithm on the
preconditioned system (5.47), we have the following PCG algorithm:

PCG Algorithm
1. For initial guess z, compute r = b — Az and py = ||r||3. Set & = 1.

2. While ,/px—1 > €||b]]2 do
o z = Mr

® Trp_1= ZT’f'

e ifk=1thenp==2
else 8= Tk_1/Tk_2 and p= 2+ Bp

ARTHUR LAKES LIBRARY
COLGRAD(C STHOOL OF MINES
GOLDEN, CO 80401
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e w=Ap

o = Tk—l/pTw

e L =T+ ap

o =7 —Qquw

pe = Ir|) =r"r

k=k+1

If A is non-symmetric but nonsingular, we consider solving Az = b by applying

CG to the normal equation

AT Az = ATb. (5.48)

This is called conjugate gradient on the normal equations to minimize the residual

(CGNR). Alternatively, one can solve
AATy = b, (5.49)

and then set z = ATy’. This is called conjugate gradient on the normal equations
to minimize the error (CGNE). The advantages of these approaches are that all the
theory for CG carries over and a simple implementation for both CG and PCG can
be used. There are a couple disadvantages. The first is that the condition number of
the coefficient matrix AT A is the square of that of A. The second is that two matrix-
vector products are needed for each step of CG iteration. Therefore the convergence
is slow.

In the numerical experiments reported in this thesis, CGNR is used if the global

stiffness matrix is non-symmetric.
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Chapter 6

NUMERICAL EXPERIMENTS AND RESULTS

The main purposes of this chapter is to present numerical examples and results. In the
first section we present experiments and results for elliptic problems. Examples with
continuous and discontinuous diffusion coefficients are illustrated. In the case when
true solutions are known, the rate of convergence of the numerical approximations are
given. In the second section, we present some examples for the convection-diffusion

problem.

6.1 Numerical examples for the elliptic problem

In this section, we give some examples for the elliptic problem (1.1)-(1.2). The sta-
bilized symmetric finite element method (SSFEM) and the stabilized non-symmetric
finite element method (SNFEM) are implemented in the two dimensional case. For
simplicity, we choose £ = [0, 1]2. We also choose r = 1 and s = 0, which means that
the solution u is approximated by piecewise linear functions and the normal com-
ponent of the flux A = kVu - ng is approximated by piecewise constants. Uniform
partitions are used, though the main code is written for quasi-uniform partitions. We

consider the following examples.

Example 1. We choose u = sin 7z cos my to be the solution to test the convergence
of the schemes. The coeflicient « is chosen to be the identity matrix I. Therefore,

f=27%uin Q and g = u on 0.
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Let N be the number of subintervals on each side of 2. The code of the schemes of

SSFEM and SNFEM are tested for N = 8, 16, 32, and 64. The ||-||s of (u—up, A—Ap),

the L? norm of u — uy,, the maximum error of u — uy, at the nodal points, and the

maximum error of A — )\, at midpoints of the edges are computed. The results are

listed in Table 6.1 and 6.2. The rate terms show the rate of convergence, calculated

by the logarithm of the ratio between consecutive errors base 2.

Table 6.1. Errors and convergence rates for SSFEM

Errors and convergence rates for SSFEM

{ a =10 | a=1 I a=0.1 |

N IC, )lls | Rate IC, s | Rate IC, s | Rate
8 4.849E-1 4.384E-1 4.335E-1

16 2.246E-1 | 1.11 2.184E-1 | 1.01 2.178E-1 | 0.99

32 1.099E-1 | 1.03 1.091E-1 | 1.00 1.090E-1 | 1.00

64 5.463E-2 | 1.01 5.453E-2 | 1.00 5.452E-2 | 1.00
N || [|lu — us||r2 | Rate || [|u — up||z2 | Rate || ||[u — unl[z2 | Rate
8 3.143E-1 2.941E-2 3.454E-3

16 7.907E-2 | 1.99 7.369E-3 | 2.00 8.618E-4 | 2.00

32 1.980E-2 | 2.00 1.843E-3 | 2.00 2.154E-4 | 2.00

64 4.952E-3 | 2.00 4.609E-4 | 2.00 5.385E-5 | 2.00
N || [lu — uplloo | Rate || |Jlu — unlleo | Rate || ||u — uplleo | Rate
8 6.551E-1 9.515E-2 3.864E-2

16 1.662E-1 | 1.98 2.349E-2 | 2.02 9.644E-3 | 2.00

32 4.167E-2 | 2.00 5.846E-3 | 2.01 2.410E-3 | 2.00

64 1.042E-2 | 2.00 1.455E-3 | 2.01 6.024E-4 | 2.00
N Il JA = Mllo | Rate | J]A — Anlloo | Rate || ||]A — Anlloo | Rate
8 5.159E-2 5.159E-2 5.159E-2

16 1.403E-2 | 1.88 1.403E-2 | 1.88 1.403E-2 | 1.88

32 3.648E-3 | 1.94 3.648E-3 | 1.94 3.648E-3 | 1.94

64 9.292E-4 | 1.97 9.292E-4 | 1.97 9.292E-4 | 1.97
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In Table 6.1, We first notice that we have first order convergence for semi-norm
Il - lls- This is consistent with the error estimate we obtained in (3.73) with » = 1 and
s = 0. we also see that the L? error of u — uy is of second order. This is consistent
with our result of the L? error estimate for SSFEM given in (3.102). The maximum
error of u —uy, at nodal points and the maximum error of A — \; at midpoints of edges
are also of second order. In fact, the second-order convergence rate of the maximum
error of A — )\, is due to superconvergence. The reason of this superconvergence is
interesting and open, which requires some future work. We also want to mention that
the table does show better errors for smaller parameter «, but due to the nature of
our linear solver, the errors bottom out for some small « which is problem-dependent.

In Table 6.2, we see similar results to those from SSFEM. However, since CGNR
is used on the normal equations, the computational cost is much greater. In fact,
for « = 0.1 and n = 64, the number of iteration was 6857 and CPU (Pentium III
running RedHat Linux 6.2) time was 873 seconds in SNFEM comparing to 501 and
40 seconds in SSFEM. The numerical solutions are shown in Fig. 6.3.

Tests of this type have been done on u = sinwzsinmy, u = z(1 — z)y(1 — y),

u = 22 + y?, and u = e*¥. The same convergence rates are observed.

Example 2. In this example, we test our code for which & is not the identity matrix.

In fact, k is defined as
10422 2y

Ty 10 + 2
We choose the exact solution to be u = €*7¥. Then f = 20— (z —y)(z —y+3))e* ¥
is obtained by substituting u into the equation. The following Table 6.3 shows the

errors and convergence rates of SSFEM and SNFEM for such a problem.

We can see from the result that the L? error of v — uy, and the maximum error of



Table 6.2. Errors and convergence rates for SNFEM

B a =10 | a=1 [ a=01 |
N ¢, )l | Rate IC, )l | Rate G, )l | Rate
8 5.000E-1 4.360E-1 4.331E-1
16 2.267E-1 | 1.14 2.181E-1 | 1.00 2.177E-1 | 0.99
32 1.101E-1 | 1.04 1.090E-1 | 1.00 1.090E-1 | 1.00
64 5.466E-2 | 1.01 5.452E-2 | 1.00 5.452E-2 | 1.00
N || |lu — un||z2 | Rate || |Ju — up|[z2 | Rate || ||[u — up||z2 | Rate
8 3.101E-1 2.615E-2 1.276E-3
16 7.803E-2 | 1.99 6.585E-3 | 1.99 3.178E-4 | 2.01
32 1.954E-2 | 2.00 1.649E-3 | 2.00 || 7.9389E-5| 2.00
64 4.887E-3 | 2.00 4.125E-4 | 2.00 1.984E-5 | 2.00
N |l |lu — uplloo | Rate || |Ju — unlloo | Rate || |Ju — uplloo | Rate
8 6.526E-1 9.177E-2 3.793E-2
16 1.662E-1 | 1.97 2.325E-2 | 1.98 9.599E-3 | 1.98
32 || 4.1734E-2 | 1.99 5.833E-3 | 2.00 2411E-3 | 1.99
64 1.045E-2 | 2.00 1.459E-3 | 2.00 6.031E-4 | 2.00
N || JA = Anlloo | Rate || [|A — Anlloo | Rate || ||]A — Anlloo | Rate
8 7.761E-2 5.323E-2 2.783E-2
16 1.976E-2 | 1.97 1.355E-2 | 1.97 7.147E-3 | 1.96
32 4.962E-3 | 1.99 3.403E-3 | 1.99 1.807E-3 | 1.98
64 1.242E-3 | 2.00 8.519E-4 | 2.00 4.539E-4 | 1.99
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u—uy, at nodal points are of second order. The maximum error of A — )\, at midpoints

of edges is of first order. The numerical solutions are shown in Fig. 6.4.

Example 3. In this example, we consider discontinuous diffusion coefficient function

k. Let k be defined as

I z < 0.5,
el

k= K(z,y) =
x> 0.5,
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Table 6.3. Errors on a problem with variable coefficient matrix

| SSFEM (a=0.1) [ SNFEM (a=0.1) |

N IC,)lls | Rate G, )N | Rate
8 6.609E-2 6.046E-2

16 3.081E-2 1.1 3.005E-2 1.01

32 1.510E-2 | 1.03 1.500E-2 1.00

64 7.510E-3 | 1.01 7.498E-3 1.00
N || |lu — us||z2 | Ratio || ||u — usl|z2 | Ratio
8 6.413E-3 6.922E-3

16 1.605E-3 | 2.00 1.731E-3 2.00

32 4.014E-4 | 2.00 4.328E-4 2.00

64 1.003E-4 | 2.00 1.082E-4 | 7 2.00
N || llu — uplloo | Ratio || ||u — us]lw | Ratio
8 2.483E-2 2.648E-2

16 6.531E-3 | 1.93 6.895E-3 1.94

32 1.676E-3 | 1.96 1.760E-3 1.97

64 4.247E-4 | 1.98 4.445E-4 1.99
N || 1A = Aullo | Ratio || ||A — Azlleo | Ratio
8 1.175E-1 2.481E-2

16 5.301E-2 | 1.15 1.460E-2 0.77

32 2.429E-2 | 1.13 7.781E-3 0.91

64 1.145E-2 | 1.09 3.995E-3 0.96

where ¢ > 0 is a constant (See Figure 6.1). Such kind of regions has useful practical

meanings (e.g. region filled with two media). Experiments have been done in the

following cases.

1. Choose f =1 and consider a solution u = u(z) which depends on z only. The

equation becomes —u"” =1 for z < 0.5 and —eu” =1 for z > 0.5. It is easy to
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x

F1G. 6.1. Region ) with discontinuous s

see by integrating twice that

—0.5z2, z < 0.5,
u(r) = ¢ 1 _ ¢ — 4g2
_.e__x_ x > 0.5,
8¢,

is the solution satisfying u(0) = «/(0) = 0. On the interface z = 0.5 the
continuity of u and the flux kVu - n are required. We choose ¢ = 0.1. The
results from SSFEM and SNFEM are listed in Table 6.4. We can see that the
L? error of v — u;, and the maximum error of u — u, at nodal points are of
second order. The maximum error of A — \; at midpoints of edges is of first

order. This is consistent with the results in the previous examples.

. Choose f =1 and g = 0. The true solution is not known in this case. The
contour graphs of the SSFEM and SNFEM approximations are shown in Fig.
6.5-6.8. Fig. 6.5 and 6.6 show numerical solutions for symmetric and non-

symmetric schemes in the case where € = 0.1. The graphs are almost identical.



Table 6.4. Errors on a problem with discontinuous coeflicient

[ SSFEM (& = 0.1)

| SNFEM (a=0.1) |

N IC-,)lls | Rate IC, Il | Rate
8 2.565E-1 2.649E-1

16 1.282E-1 | 1.00 1.351E-1 0.97

32 6.411E-2 | 1.00 6.757E-2 1.00

64 3.205E-2 | 1.00 3.382E-2 1.00
N || |l — up||p2 | Ratio || |lu — us]|z2 | Ratio
8 6.773E-3 1.601E-2

16 1.798E-3 | 1.91 4.088E-3 1.97

32 4.582E-4 | 1.97 1.031E-3 1.99

64 1.152E-4 | 1.99 2.589E-4 | 7 2.00
N || v — uplloo | Ratio || |Ju — uz]|lo | Ratio
8 6.494E-2 8.191E-2

16 1.635E-2 | 1.99 2.105E-2 1.96

32 4.090E-3 | 2.00 5.258E-3 2.00

64 1.022E-3 | 2.00 1.315E-3 2.00
N || ]A = Mullo | Ratio || ||]A = Anllo | Ratio
8 2.142E-2 3.258E-2

16 1.048E-2 | 1.03 1.659E-2 0.97

32 5.217E-3 | 1.01 8.288E-3 1.00

64 2.605E-3 | 1.00 4.145E-3 1.00
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We can see that the solution behaves differently on different sides of the interface

z = 0.5. Fig. 6.7 and 6.8 plot the numerical solutions for ¢ = 0.0001. In each

of these two cases the solution in region {2, dominates the solution in 2;.

Example 4.

In this example, we also consider a discontinuous coeflicient function
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k, defined by
el x <0.5and y <0.5
k=kK(Z,y) = eof z>05and y > 0.5
I elsewhere in €2,

where £; and €, are constants (See Fig. 6.2). Experiments have been done for different
choices of £; and 5. Some results are shown in Fig. 6.9-6.12. Fig. 6.9 and 6.10 plot
the numerical solutions of the symmetric and the non-symmetric schemes for ¢; = 0.1
and €5 = 0.2. Fig. 6.11 and 6.12 plot the numerical solutions for €; = 0.0001 and
g9 = 0.0002. Each pair of the contour graphs are almost identical. The dominance of

the solution is also shown in the region of small coefficient «.

Y
i
Q3 Qs
k=1 Kk =¢€ol
Qy Q4
k=el| k=1
z

F1G. 6.2. Another region 2 with discontinuous

6.2 Numerical examples for the convection-diffusion problem

In this section, we show a few numerical experiments and results for the convection-

diffusion problem. Again we choose Q = [0, 1]2. We also choose 7 = 1 and s = 1, which
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means that the solution u and the normal component of the flux A = (aVu —bu) - ng
are approximated by piecewise linear functions.

In the first test problem, we choose diffusion coefficient a = €1, convection term
b = (1,0), absorption term ¢ = 1, source f = 1, and boundary value g = 0. We
consider two different cases. In the first case, let € = 0.1. The numerical solution
is shown in Figure 6.13-6.14. Without the convection term, the solution should be
symmetric around the center of the region. The impact of the convection pushed
the solution in the direction of b = (1,0). In the second case, let £ = 0.0001. The
numerical solution is shown in Figure 6.15-6.16. The convection term plays a more
significant role than in the previous case. As seen from the 3D plot of our solution,
a boundary layer is observed near the outflow boundary of x = 1. This is consistent
with the known results for such a problem.

The second test problem is chosen from [21]. We choose diffusion coefficient
a = €I, with ¢ = 0.01, convection term b = (0,1) and absorption term ¢ = 0, and
source f = 0. The boundary value is given by g = sin7z if y = 0 and g = 0 elsewhere.
The problem has an exact solution given by

sinwx

Ae—A1 Yy ey
o (e e e'?Y),

u(z,y) =

where
1— 1+ 4722 1+ V1 + 4722
/\1 = 2€ and AQ = 28 .

From the numerical solution in Fig.6.17-6.18, we can see the sharp boundary layer at

the outflow boundary. As a comparison, we display the exact solution in Fig.6.19-6.20.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

One of the main contributions of this thesis is that we proposed and analyzed a new
and innovative finite element method for second order elliptic equations using dis-
continuous piecewise polynomials on a finite element partition consisting of general
polygons. The new method is based on a stabilization of the well-known primal hybrid
formulation by using some least-squares forms imposed on the boundary of each ele-
ment. Two variational formulations of the new method are provided. The equivalence
of the weak solution and the classical solution is shown. Corresponding symmetric
and a non-symmetric finite element scheme are presented. The non-symmetric for-
mulation is absolutely stable in the sense that no parameter selection is necessary for
the scheme to converge. The symmetric formulation is conditionally stable in that
a parameter has to be selected in order to have an optimal order of convergence.
Optimal-order error estimates in some H'-equivalence norms are established for the
proposed discontinuous finite element methods. For the symmetric formulation, an
optimal-order error estimate is also derived in the L? norm.

Another contribution of the thesis is the application of the stabilized discontin-
uous finite element method to a convection-dominated convection-diffusion problem.

The standard Galerkin finite element methods applied to such problems exhibit a va-
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riety of deficiencies, including high oscillations and poor approximation of the deriva-
tives of the solutions. A new stabilization technique, which features a non-symmetric
formulation using discontinuous piecewise polynomials, is presented and analyzed for
such problems. Existence and uniqueness of the finite element approximation is estab-
lished. Error estimates in some H'-equivalence norm are established for the proposed
discontinuous finite element method.

Discussion on the construction of stiffness matrices of the finite element schemes
is presented. For the symmetric formulation, a system of linear equations with sym-
metric and positive definite coefficient matrix is derived. Implementation of the finite
element schemes is carried out. An efficient numerical solver is developed using C++.
The solver is tested on a lot of examples. The resulting numerical solutions have

showed some properties of the true solutions and desired accuracy.

7.2 Future work

The stabilization method presented and analyzed in this thesis is based on the coupled
system of the solution v and the normal component of the flux (e.g. A = kVu - ng
for elliptic problems). In the future, we plan to carry out the analysis to the system
coupling v and the flux variable (e.g. p = xkVu for elliptic problems) on all element
boundaries. A similar analysis can also be applied to coupled system of v and the
flux variable in all elements. The advantage of these systems is that they can provide
more information on the derivatives of the solution u. The objective is to construct
finite element schemes that are stable and accurate for these systems, and to give a
systematic study of the error.

Another planned future research direction is in the computational aspects of
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our method. The linear solver that is used in the thesis is basically the conjugate
gradient method. The convergence is relatively slow especially for non-symmetric
systems where CG for normal equations is used. In the future, we plan to investigate
fast linear solvers, such as domain decomposition and multigrid methods, to speed
up the convergence and improve the efficiency of our method. We also plan to extend
our numerical experiments to the three dimensional case.

The idea of stabilization can be applied in many areas. For example, in the first-
order system least-squares finite element methods, second-order convection-diffusion
equations can be written as first-order systems. Again applying the standard Galerkin
finite element methods to elliptic equations with significant convection terms will re-
sult in non-physical oscillations. Employing the least-squares principle can overcome
these deficiencies. In the future, I also want to focus on the numerical modeling of
fluid flow problems. I intend to apply the idea of stabilized discontinuous finite ele-
ment to the Navier-Stokes equation. In fact, this approach has been applied to the
Stokes equation and some very promising results have been derived. Overall, I think
the stabilization idea can be applied to many difficult problems in the area of applied

partial differential equations.
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