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ABSTRACT

The critical shear air/fiber interaction, which is the primary mechanism attributed 

to fiber attenuation within discontinuous rotary spinning processes, has been examined 

and characterized through detailed experimental drag force measurements and 

computational fluid dynamic model simulations.

The experimental measurements were performed using a piezoelectric force 

sensor which was designed, developed and implemented to measure the fluctuating drag 

force on a discrete glass micro fiber within a well-characterized turbulent air flow. The 

novel force sensor possesses a fundamental frequency of 950 Hz with a resolution of 

approximately 10‘4 N. The drag coefficient as a function of Reynolds number has been 

determined and is similar in form but differing in slope and intercept than that published 

for continuous fibers. Although the driving frequency of the turbulence was 

underestimated, which resulted in limited use of the sensor for fine scale forces, the 

sensor provided a necessary measurement of the average micro fiber drag force.

The numerical portion of the research focused on the development of a 

computational fluid dynamic flow model which is capable of simulating the localized 

shear interaction between a molten glass filament and a high-speed air jet similar to that 

which occurs in industrial rotary spinning processes. The numerical model, V/S-FLOW 

(Variable, Incompressible, Interface, Instability, Shear, Flow) is the first computational



fluid dynamic model that enables industrial practitioners to examine on a micro-scale the 

air/glass interaction that is the primary mechanism attributed to fiber attenuation and 

formation. VzJS-FLOW is program for modeling transient, two-dimensional, 

incompressible, two fluid flows with density and viscosity ratios approaching 20:000:1 

and 25:1, respectively. The volume-of-fluid code includes a piece-wise linear interface 

tracking algorithm, a robust continuum surface force model that includes harmonic 

averaging of the fluid viscosity, a 9-point stencil used by the incomplete Cholesky 

conjugate gradient method to solve the pressure Poisson equation and an energy equation 

model that incorporates conduction, convection and radiation heat transfer.

The development of the numerical model, Vr S-FLOW, along with experimental 

drag force measurements, represents the most comprehensive study into the shear 

air/fiber interaction completed to date. V/S-FLOW used in conjunction with 

experimental results is a first step toward gaining the fundamental insight needed to 

obtain better control of fiber diameter and length during production. Thus, improving the 

quality and performance of discontinuous glass fibers produced from rotary spinning 

processes.
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CHAPTER ONE 

INTRODUCTION

Rapid growth and recent technological advances throughout the fiber industry 

have brought about the need for developing an intimate understanding of the physical 

phenomenon involved in the process of discontinuous fiber spinning. Companies that 

produce thermal insulation, made from discontinuous glass fibers, for automobiles, 

aircraft, residential and commercial buildings, are continually striving to improve the 

thermal characteristics of their products by utilizing micro fibers, which provide improved 

thermal conductivity. The need for small fibers is becoming more widespread and has 

renewed interest in improving control of fiber diameter and length during production. 

Currently, discontinuous fibers are being produced from years of empirical knowledge 

and experience, with a limited understanding of the mechanisms attributed to fiber 

attenuation and formation. In the process of discontinuous fiber manufacturing, turbulent 

air and combustion products are used to attenuate the fiber while in its molten state, 

thereby contributing to the control of fiber diameter and length. One critical aspect of 

fiber spinning that is believed to play a significant role in fiber attenuation and formation 

is the air/fiber interaction that occurs during fiberization (Steve Gross, 1997). Analyzing



and characterizing the critical air/fiber interaction forms the basis of the research 

presented herein.

Current research is focusing on the many complex issues of discontinuous fiber 

manufacturing. However, few researchers have examined fiber dynamics during 

formation, including air turbulence interactions, believed to play a critical role in 

achieving specific fiber diameter and length. Fibers that are smaller than 3pm in 

diameter and approximately 200pm in length that are inhaled deeply into the lung cannot 

be dislodged and cleaned by natural processes (Silverman et. al., 1971). Small diameter 

fibers in service that fracture and become airborne may represent a potential health 

problem for maintenance workers (DuPont and Momll, 1989). However, small diameter 

(>10pm) fibers result in improved thermal insulation characteristics (Pelanne et al., 

1981). Therefore, fiber manufacturers are extremely interested in controlling fiber 

diameter and length in industrial fiberization processes, not only to address health 

concerns, but also to improve the performance of the fibers produced.

Mixing conditions within the industrial fiberizing process can be emulated by 

implementing grid generated turbulence (GGT), within a laboratory wind tunnel. 

Previous GGT studies within low speed laboratory wind tunnels provide the basis to 

experimentally investigate the air/fiber interaction, or more specifically the effect of air 

drag on fiber formation (Mohamed and LaRue, 1990, and Tresso and Munoz 2000). A 

dynamic force transducer (see Section 3.3) was positioned within the wind tunnel test 

section, that measured drag force fluctuations on discontinuous glass and polymer fibers.
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The fluctuating drag force data provided the basis to accurately determine friction drag 

coefficients for various turbulent flow conditions and fiber sizes.

Unlike past research that examined drag coefficients experimentally or 

theoretically during and/or for the continuous fiber spinning process (Sakiadis, 1961, 

Matsui, 1976 and Shimizu and Okui, 1983), presented herein is the fiber friction drag 

coefficient for a discrete fiber within a well-controlled laboratory wind tunnel. The fiber 

fluctuations were recorded using a specially-designed piezoelectric force sensor. The 

dynamic response of the fiber was examined through the use of high-speed video to 

determine its fundamental frequency and subsequent vibration modes. The measured 

dynamic fiber tensile force was integrated into the calculation of fluctuating drag force 

and the determination of a friction drag coefficient. The drag coefficient relationship of 

equation 1.1 provides the basis of the experimental study.

C } = t R e / "  (1.1)

In addition to the experimental investigation, a "localized" numerical simulation 

of fiber attenuation and necking has been completed. RIPPLE, a free surface volume-of- 

fluid (VOF) code developed by Los Alamos National Laboratory to simulate two- 

dimensional, free surface flows in a micro-gravity environment, was modified to simulate 

the critical interactions of discontinuous fiber manufacturing. The numerical approach
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provides a critical micro-scale insight into the formation of discontinuous glass fibers, 

which to date has not been successfully completed.

1.1 Rationale

The rapid growth of the fiber industry in recent years has brought about the need 

for developing a deeper understanding of the physical phenomenon involved in the 

process of discontinuous fiber spinning. Presently, most discontinuous fibers are being 

manufactured on the basis of empirical experience and knowledge (Ziabicki, 1976). 

However, recent technological advances in the materials industry have occurred because 

of the need for increased fiber quality. Consequently, an improved understanding of the 

fundamental air/fiber interaction during fiberization is required to further improve the 

quality and quantity of fiber produced.

Progress is being made with an attempt to systematically analyze various 

interactions occurring during fiberization. One such phenomenon, which is believed to 

play a critical role in discontinuous fiber formation, is the interaction between turbulent 

air flow and the glass fiber during formation. It is believed this fundamental interaction 

causes the fiber to attenuate thereby affecting fiber length and diameter. The goal of the 

research was to address the fundamental problem of characterizing the air/fiber 

interaction through experimental drag force measurements and numerical model 

simulations.
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An attempt has been made to exhaustively research all published work in this 

area. The findings are extremely limited. There has been little or no previously 

published work in this area, or at least none available to the general public. As a result, 

there has been no known experimental or numerical research conducted to examine the 

effects of aerodynamic drag on fiber formation.

1.2 Problem to be Solved

In most discontinuous fiber manufacturing processes, air, combustion products or 

both are used to attenuate the fiber while in its molten state, thereby contributing to the 

control of fiber diameter and length. To date there is not a complete understanding of the 

gas/fiber interaction and no known studies have been completed in industrial pilot plant 

environments to better characterize the air/fiber interaction. This study focuses on 

providing an improved understanding of fundamental air/fiber characteristics through 

carefully designed wind tunnel experiments and numerical simulations modeled from the 

industrial process.

The fiberizing process has been well established for many years producing 

products in various industries, however there is little or no background to the basic 

fundamental understanding of fiber production at the intimate level of fiber interaction 

with the surrounding turbulent air flow. The goal of the research presented herein was to 

develop a well-defined study, comprised of a set of experiments, conducted in a well- 

characterized turbulent airflow integrated with a numerical simulation to achieve an
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improved understanding of the flow phenomenon and fiber attenuation within the 

industrial process. This study represents the first step toward investigating the air/fiber 

interaction during discontinuous fiberization.

1.3 Objective

The air/fiber interaction, which occurs during discontinuous fiber manufacturing, 

must be well understood before control of fiber length and diameter can be improved and 

optimized. A specially designed force transducer placed within a well-characterized flow 

region has enabled fiber fluctuating tensile force measurements to be recorded for various 

fiber aspect ratios and turbulent flow conditions. Using the experimental force 

measurements, drag coefficients for a discrete fiber have been determined and compared 

to published results. Drag force is an important, but little understood component of fiber 

spinning. The drag coefficients developed from measurements taken in an environment 

similar to that of an industrial rotary spinner will ensure the validity and accuracy of drag 

force coefficients used in numerical models.

Until recently there has been little effort to fully model, using a computational 

fluid dynamic (CFD) approach, the process of discontinuous fiber spinning. Most of the 

research conducted has focused on continuous filament spinning. Certain effort has been 

devoted to applying commercially available CFD computer codes to validate 

experimental measurements, in addition to estimating process limitations. Accurately 

combining critical process parameters such as melt temperature, air temperature, melt
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viscosity, air speed and process geometries has not been successfully integrated into a 

complete model due to the complexity of the spinning process and computational 

limitations. Simplified, one fluid, two-dimensional models have been developed to 

examine fiber stretching, however controlling fiber diameter and length requires a more 

precise understanding of a multidimensional, two-phase fluid/thermal flow model that 

incorporates the air/fiber interaction. Commercially available software packages that 

include two-phase flow models use particles to track fluid motion, but the particles do not 

represent a continuous phase, which is needed to accurately simulate shear air/fiber 

interaction critical to fiber formation.

In summary the objectives of the research are listed below.

1. Design and development of a dynamic force transducer capable of measuring the 

fluctuating tensile force on a single glass fiber placed within a well-characterized 

turbulent flow field representative of industrial rotary spinning processes.

2. Develop experimental drag force coefficients for various fiber lengths, diameters and 

flow conditions.

3. Provide a numerical tool to analyze critical process interactions.

4. Provide a numerical tool that will be used to predict "localized" fiber attenuation.

5. Initiate the development of a complete and comprehensive fiberizing model that may 

be used as a versatile CFD code to build and expand upon.



CHAPTER TWO 

BACKGROUND

Ross and Klingenberg (1997) developed a particle-level simulation to examine the 

dynamics of flowing suspensions of rigid and flexible fibers. The discrete fibers are 

modeled as chains of spheroids connected through ball and socket joints. By varying the 

resistance of the joints, both flexible and rigid fibers may be dynamically modeled, 

however the fluid/fiber interaction was disregarded.. Skjetne et. al. (1997) also modeled 

fiber motion using a series of rigid spheres connected by ball joints. Both spheroid 

models simulate a discrete fiber tumbling end over end through space, unlike the fiber 

formation zone of the rotary spinning process where molten filaments are extruded 

through small holes of a spinning disk. The filaments likely move with one end fixed to 

the spinning disk until the tensile force exceeds the attachment strength at which point the 

fibers break free from the spinning disk.

The phenomenon of nonlinear waves in an absolutely flexible fiber has been 

examined by Ridel and IVgamov (1997). The researchers studied longitudinal 

oscillations of a previously extended, viscoelastic fiber whose one end is immovable and 

the other is free to vibrate along the fiber by a harmonic forcing function. Modeling a 

discontinuous fiber, Burget and Advani (1994) studied fiber motion near a solid boundary
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but the flows were creeping (Re «  0.05, based on the fiber diameter), simulating 

conditions between the flowing epoxy and fiber matrix during composite material 

manufacturing. Wu and Shambaugh (1992) used a laser doppler velocimeter (LDV) to 

measure the velocity, diameter and orientation of polypropylene fibers formed using a 

continuous melt blown process. Information from this study was used to estimate the 

fiber mass flux and orientation, however no attempts were made to understand the 

importance of the air turbulence interacting with the fiber during formation. Ziabicki et. 

al. (1998) examined the dynamics of continuous melt spinning to determine the essential 

effects in modeling of the process. The researchers developed dynamic formulations of 

the melt spinning process including viscoelastic effects, crystallization, heat production 

and deformation, however again no attempts were made to investigate the air turbulence 

interaction.

Additional research in the area of discontinuous fiber manufacturing has 

examined dynamic bifurcations of the ring-spinning balloon (Stump and Fraser, 1995), 

one dimensional isothermal spinning models for liquid crystalline polymer fibers (Forest 

et. al., 1997) and modeling continuous and discrete systems of the spinning process 

(Akatsuka and Furumatsu, 1996). However, all research was based on a single die, yam- 

spinning device and take-up reel that is unlike the process encountered in this study.

Past research in similar areas has consisted of modeling fiber formation during the 

centrifugal fiber spinning process. The main focus of this work was the prediction of 

fiber diameter, length and production rate knowing the surface tension and viscosity of
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glycerin used to experimentally model industrial flows of molten glass as it was thrown 

from the circumference of a spinning disk, shown in Figure 2.1.

Fi STAGE 2

^  STAGE 3

Inertial Force 
Air Drag Force 
Surface Force

- Gravitational Force
- Viscous Force

Figure 2.1. Wheel centrifugal spinning process.
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Considering the amount of research completed in this area (Cai, 1994, Burget, 

1994, Ziabicki, 1991) there is no known previous work reporting on examination of the 

air/fiber interaction during fiberization, however previous research does provide a basis 

for further experiments into the discontinuous fiberizing process. The studies of 

modeling fiber formation by the centrifugal spinning process indicated good 

predictability of fiber diameter and length within the range of parameters studied (Cai et. 

al. 1994). However, the data began to scatter as Reynolds number increased toward that 

of the industrial process, or as the effects of turbulence increased. Thus, it is imperative 

that the effects of air turbulence within the fiberization process are well understood 

before control of fiber diameter and length can be optimized. In fact, air/fiber interaction 

may be necessary to properly achieve the required attenuation of the fiber during 

fiberization processes (Johns Manville, 1997). It can only be speculated which fiber 

properties or process parameters are affected by the air/fiber interaction during 

discontinuous fiber manufacturing. An approximation of the effect on air/fiber 

interaction is shown in Figure 2.2.



12

Fiber Velocity 
Profile Stretching

Fiber

Turbulent Eddy

Figure 2.2. Air turbulence interaction

A rotary spinning process, to produce glass and polymer fiber, similar to that 

shown in Figure 2.3, utilizes a spinning basket with hundreds of small holes around its 

perimeter. Molten glass/polymer is poured into the top of the basket, spinning about a 

vertical axis, and relatively thick streams of the glass/polymer flow out of the holes. An 

array of high-velocity, downward-directed air jets form an annular flow and interaction 

with the molten glass/polymer streams redirecting them onto a moving conveyer below. 

Because of the centrifugal acceleration of the disk and the momentum imparted to the 

fiber from the air jets, the fiber stretches and the diameter thins to several microns. 

Within this region the flow of air exiting the jets is turbulent and there is a substantial 

shear air/fiber interaction with the forming fiber. The streams also rapidly solidify into
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environment. Tresso (1998), Tresso and Munoz (2000) and Mohamed and LaRue (1990) 

have developed criteria to identify the nearly homogeneous, isotropic flow conditions 

downstream of a square grid. These criteria included analysis of one-dimensional 

velocity skewness, three-dimensional cross moments and turbulent kinetic energy 

dissipation rates for a moderate range of Reynolds numbers (based on grid spacing) 

between 5,000 and 30,000.

Kistler and Vrebalovich (1965) also studied grid generated turbulence at much 

higher Reynolds numbers near 2,400,000. Additional studies by Comte-Bellot and 

Corrsin (1965) examined the effects of contraction to improve the isotropy of grid 

generated turbulence by equilibrating the average kinetic energies.

Unlike past research that examined drag coefficients experimentally or 

theoretically for the continuous fiber spinning process (Sakiadis, 1961, Matsui, 1976 and 

Shimizu and Okui, 1983), presented herein is the fiber friction drag coefficient for a 

discrete fiber within a well-controlled laboratory wind tunnel. Ziabicki (1960) was the 

first to introduce rheological equations into continuous melt spinning. More detailed 

theoretical analysis began with the work of Sakiadis (1961), who derived air drag 

relationships for the laminar boundary layer on a continuous cylindrical surface. Sakiadis 

also considered the effects of a turbulent boundary layer on the continuous fiber but 

suggested that it best be done experimentally. In high-speed spinning, the boundary layer 

formed around the fiber is indeed turbulent, and turbulence should be taken into account
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for the air drag (Ziabicki, 1985). Matsui (1976) has formulated an expression for the air 

drag coefficient using turbulent theory shown below.

Experimental drag force measurements have been recorded on stationary 

filaments in an airstream (Fukuda, 1966, Thompson, 1959, Anderson and Stubbs, 1958, 

Shimizu and Okui, 1983, Kase and Matsuo, 1967 and Gould and Smith, 1980), moving 

filaments in still air (Selwood, 1962 and Kwon and Prevorsek, 1979), filaments spun into 

still air (Shimizu and Okui, 1983, 1981) and filaments spun into an airstream (Shimizu 

and Okui, 1983). Theoretical drag force predictions have also been developed, using 

laminar boundary layer theory applied to flow over a flat plate (Sakiadis, 1961). Both the 

experimental and theoretical predictions agree quite well. A summary of drag coefficient 

characteristics for the continuous fiber spinning process, which correspond to equation 

2.2, are shown in Table 2.1.

C, = 0.37 Re-0'61
J n

(2 .1)

(2.2)
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Table 2.1. Experimental Air Drag Characteristic Summary (Ziabicki, 1985)
(Continuous Fiber Spinning)

Researcher(s)
Experimental

Method k n
Reynolds

Number(Red)

Fukuda, 1966 A  polymer 1.78 0.61 5<Re<20
Thompson, 1953 A  polymer 1.30 0.61 20<Re<150

Anderson et a l , 1958 A  polymer 0.84 0.61 10<Re<60
Shimizu et a l , 1983 AB, polymer 0.77 0.61 50<Re<400

Kase et a l , 1967 A  polymer 1.23 0.81 3<Re<100
Gould et a l , 1980 A  polymer 0.41 0.61 2(XRc<200

Note: A-measurements made on continuous filaments falling in still air.
B-measurements made on continuous stationary filaments in airstream.

The majority of published literature focuses on the process of continuous fiber 

spinning, where a molten filament is extruded through a small orifice, attenuated 

primarily through tension provided and subsequently collected by a take-up reel. Most 

products produced by this method are polymer yams and fiber optic cable. On the 

contrary, the process of discontinuous fiber spinning has yet to be examined and the bulk 

of industrial research is limited and/or retained as industrial trade secrets. Therefore, the 

first portion of the research detailed herein focuses on the study of drag force 

measurements for discontinuous fibers in which turbulent air interaction is the primary 

driving force for fiber attenuation.

There are numerous researchers who have modeled in detail the process of 

continuous fiber spinning used to produce polymer and glass fibers. Later, Choudhury 

and Jaluria (1997) examine the practical aspects in the drawing of an optical fiber. The
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authors examined the neck-down profile of glass fibers using a surface force balance and 

the contribution of body and surface forces during the drawing process. Choudhury et. 

al. (1999) developed a computational model for generating the neck-down profile for 

glass flow in optical fiber drawing. Gupta et. al. ( 1996) developed a nonisothermal 

model of glass fiber drawing stability, which indicates that the stability of the spin line is 

strongly influenced by the temperature dependent glass viscosity. They also suggested 

that previous numerical predictions of nonisothermal stability were underresolved and 

more sophisticated viscoelastic and heat transfer models are needed. The researchers 

concluded that the draw resonance, caused by constant speed take-up device, leads to 

non-constant axial tensile forces with the fiber. Their examination of a nonisothermal 

fiber drawing process contradicts previous research of Shah and Pearson (1972 a,b) 

which found unconditionally stable solutions based on non-converged results. Gupta et. 

al. (1996) found that the correlation of the temperature dependent glass viscosity has a 

strong influence on process stability. The viscosity generally has an adverse effect on 

stability, however decreased viscosity in attenuation processes generally improves 

stability. Present continuous spinning models have predicted draw ratios of 1 O'4 with the 

addition of heat transfer, but the models are incapable of predicting draw ratios of 10"5, 

which occur in industrial spinning processes. Due to the widespread variation in 

simulation results, there is a need to increase the complexity as well as the accuracy of 

numerical models in continuous spinning processes.
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Yarin et. al. (1999) examined the chaotic variation of the fiber radius in glass 

fiber drawing. The draw resonance in continuous spinning processes, which is due to the 

constant take-up speed of the winder, results in self sustained oscillations of the fiber 

radius. However, this phenomenon has not been observed in discontinuous fiber 

processes. Other researchers (Choudhury et. al. 1994, Choudhury and Jaluria, 1997 and 

Simpkins and Blythe, 1997) examined cooling and the prediction of the temperature in 

optical fibers during the drawing process.

All of the research completed in glass fiber drawing has focused on continuous 

spinning processes that are roughly fixed on both ends and more well behaved than 

discontinuous spinning processes. To date there have been no known attempts or 

published literature reviewing the formulation and development of specialized techniques 

that examine the phenomenon of discontinuous fiber manufacturing. The research 

presented herein examines and details the development of experimental and numerical 

methods aimed at characterizing the attenuation and formation of a molten glass 

filaments, which occur in industrial spinning processes. Several efforts have been made 

to model fiber motion during production, however interactions between the fiber and 

surrounding fluid have been ignored (Steve Gross7, 1997).

It is the goal of this research to study the air/fiber interaction that occurs during 

discontinuous fiberization by applying techniques of former and contemporary 

researchers, in addition to new techniques developed herein, which focus on experimental 

drag force measurements and CFD model simulations.
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CHAPTER THREE 

FORCE TRANSDUCER

Currently, there exist no commercially available dynamic force transducers with 

sufficient dynamic response or the desired sensitivity and resolution required to measure 

the drag force fluctuations of discontinuous mircofibers. Thus, a force transducer 

approaching these critical design characteristics has been developed. Possessing a 

fundamental design frequency of approximately 1000 Hz, the dynamic force sensor is 

capable of measuring milligram fluctuating tensile forces (10'4 N) with an estimated 

resolution of several hundred micrograms (10'5 N). The fluctuating force data is utilized 

to determine the glass fiber drag coefficient for various flow conditions.

3.1 Grid Generated Turbulence

The first step toward measuring the fluctuating drag force on a discrete fiber 

begins with simulating the turbulent flow environment of the industrial process within a 

well-controlled laboratory wind tunnel where it may be carefully characterized. Past 

research of Tresso (1998), Tresso and Munoz (2000) and Mohamed and LaRue (1990) 

was utilized to develop, within a wind tunnel test section, the nearly homogeneous and 

isotropic flow conditions downstream of a square grid. Isotropic flow occurs when each
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of the three fluctuating velocity components are invariant due to an arbitrary rotation of 

the defining principal axis (McComb, 1990) given mathematically by

u'v' = v'w' = u'w' = 0 (3.1)

Homogeneous turbulence is also invariant due to an arbitrary rotation of the 

defining axis, such that the variances of the fluctuating velocity components are identical 

(McComb, 1990).

'2 '2 u = v = w (3 2)

It is well founded that downstream of a grid there appear three distinct flow 

regions as shown in Figure 3.1 (Mohamed and LaRue, 1990). The Decay Power-Law 

region is generally characterized by homogeneous and isotropic flow and identified by 

the downstream decay of turbulent kinetic energy.

Air Region #2
Velocity Region #1 Decay Power Law Region #3

Region

Square Grid

Figure 3.1. Illustration of regions previously identified in grid generated turbulence.
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A dynamic force sensor and fiber were placed within the homogeneous, isotropic 

flow region where integral scale eddy sizes are the same in the cross flow directions and 

only twice as large in the flow direction. Assuming that large-scale turbulent eddy and 

force fluctuations are invariant due to an arbitrary rotation of the defining axis simplifies 

the otherwise more complex and unknown turbulent flow field.

Airflow Test
Section

Figure 3.2. Principal velocity components

Each of the three velocity components can be separated into two distinct parts as 

shown in Figure 3.2; the fluctuating components, denoted by a prime, and the average 

components denoted by an upper case. The total contribution for each velocity 

component is given as
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u = u' + U (3.3)

v = v' + V (3.4)

w = w' + W (3.5)

The fluctuating components of interest represent the turbulent fluctuations of the flow.

3.2 Friction Drag Coefficient

Ziabicki (1960) was the first to introduce rheological equations into continuous 

melt spinning. More detailed quantitative analysis began with the work of Kase and 

Matsuo (1965), who made the theoretical prediction for continuous melt spinning 

introducing the energy equation from empirical data for the heat transfer. Sakiadis 

(1961) derived the air drag coefficient on a moving continuous cylinder, oriented parallel 

to the mean flow direction, from laminar boundary layer theory. The measurements of 

air drag on filaments falling in still air where conducted by Higuchi and Katsu (1960). 

However, in high speed spinning, the boundary layer formed around the fiber should be 

turbulent, and turbulence theory should be taken into account for the air drag (Ziabicki, 

1985). Matsui (1976) has formulated a simple expression for the drag coefficient using 

turbulent theory. Regardless of the method employed, (i.e. measurements made on a 

stationary filament under known tension or development of turbulent boundary layer 

theory) drag coefficient results vary. By implementing the dynamic force transducer 

(discussed in Section 3.3) fluctuating force measurements may be recorded and used to
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determine more accurately than past researchers the air drag coefficient on a discrete 

glass fiber for various flow conditions and fiber sizes.

Drag is the resisting body force acting opposite but parallel to the direction of 

motion. The drag force on a cylinder in cross flow depends strictly on cylinder geometry 

and flow parameters. Drag force, Fp, of a smooth cylinder of diameter D, moving at 

speed V, through a viscous incompressible fluid with density p, and viscosity //, can be 

written as a function of these parameters given as

Implementing dimensional analysis and the Buckingham Pi theorem (Fox and 

McDonald, 1992) the drag coefficient, Cd, of a smooth cylinder can be experimentally 

determined as a functional relation between two non-dimensional parameters given as

(3.6)

(3.7)

The relationship of equation 3.7 is valid for incompressible flow of any body 

shape, where D, is the characteristic length used for the Reynolds number calculation. 

The drag coefficient is defined as
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Q, = , / Fn , (3.8)
' 2 / \ " '

where is the surface area of the fiber exposed to the flow.

Implementing the dynamic force transducer, the quantity Fd, can be determined 

experimentally for various turbulent flow conditions (i.e. Reynolds number). Thus, by 

plotting the relationship of equation 3.8, a best-fit line will take the form of

C , = /cR e,-' (3.9)

which is the functional relationship that will be examined and compared to published 

results for continuous fibers.

3.3 Dynamic Force Sensor

The sensing element selected for the force transducer is a polyvinylidene fluoride 

(piezoelectric) film. When a piezoelectric film is deformed it emits an output voltage 

proportional to the amplitude of deformation. Howev er, the voltage quickly dissipates, 

therefore additional steps are required for calibration. Also, the capability of a 

piezoelectric film is strongly dependent upon interface circuitry. Thus, for the small 

anticipated forces and the frequency of fiber dynamic response observed from high-speed 

video (100 Hz <fflber< 500 Hz), the appropriate amplifier was designed and developed to
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optimize film response characteristics. Using the Nyquist criteria, a sensing element was 

designed to possess a natural frequency near 1000 Hz to avoid the effects of aliasing.

The greater the film natural frequency the better, however, the design must strike a 

balance between appropriate frequency response, which improves with sensor stiffness, 

and measurement sensitivity, which increases with decreased sensor stiffness.

A type DT1-028K piezoelectric film, manufactured by Amp Incorporated, was 

masked and chemically etched with acetone to the specific dimensions shown in Table 

3.1. The film dimensions of Table 3.1 represent the smallest piezoelectric film attainable 

from the commercially available DT1-028K, which incorporates the desired dynamic 

characteristics and sensitivity needed for the delicate force measurements.

Table 3.1 Piezoelectric Force Sensor Critical Dimensions

Piezoelectric Film Dimensions(mm)
Film Length 7.112
Film Width 1.143

Film Thickness 0.230

A discrete fiber was attached to one end of a piezoelectric film while the other 

end of the film is fixed, producing a cantilever effect with the fiber and film. As the fiber 

experiences motions caused by the passing air, a resulting dynamic force on the fiber will 

produce a deflection of the piezoelectric film. The tip displacement of the piezoelectric 

film was proportional to the tensile force on the fiber. Thus, the output voltage of the
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piezoelectric force transducer was recorded and converted, by film calibration 

procedures, to measure the fluctuating tensile forces imparted on the fiber as a result of 

the turbulent airflow.

The dynamic force transducer consisted of a properly calibrated piezoelectric 

film, non-inverting operational amplifier and digital band-pass filter. The sensor’s 

functional description is depicted in Figure 3.3.

Air Velocity

Turbulent
Fluctuations

Piezo Film Film Output
Sensor Displacem ent V oltage

Digital band-pass Operational
filter A m plifier

Voltage to force conversion Statistical and 
spectral analysis

Fiber
Response

Figure 3.3. Force transducer development

In order to place the film, fiber and electronics in the test section with minimal 

disturbances to the airflow, an airfoil was designed and built to accommodate the 

components as shown in Figure 3.4. Thus, for a wide range of Reynolds numbers (based 

on the grid dimension, 10,700<R^a/w<52,000) the flow over the airfoil will minimize the
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tube. As the fiber exits the capillary tube outside of the airfoil, flow disturbances caused 

by the airfoil and capillary tube are minimized. Thus, the trailing half of the fiber is 

located in a previously well-characterized turbulent airflow (Tresso, 1998, Tresso and 

Munoz, 2000) with minimal disturbances which could cause considerably erroneous film 

output signals. The delicate tensile force measurements require the piezoelectric film to 

be sensitive to small fluctuations. The same turbulent fluctuations that influence the 

motion of the glass fiber also induce a considerable amount of vibrational noise within 

the airfoil structure. As a result, the highly sensitive piezoelectric film also records 

spurious vibrations caused by turbulent fluctuations acting on the foil itself.

To prevent this, an over-sampling technique was utilized to differentiate between 

fiber fluctuations and unwanted vibrational noise. The noise was over-sampled by 

recording force transducer fluctuations with no fiber present for a range of flow rates.

The over-sampled noise and fluctuating fiber output signals were compared (differenced) 

producing an output signal that was proportional to only fiber fluctuations. Subsequently, 

the output signal was digitally filtered and statistically analyzed to determine modal and 

force characteristics of the discrete fiber.

Preliminary estimates of fiber drag force were estimated by applying the friction 

drag force for flow over a flat plate (see equation 3.8) and the average friction drag 

coefficient given as (Schlichting, 1951).

C/ (x) = 0.0493(ReJ"^ (3.10)
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Upon substitution of equation 3.10 into equation 3.8, the average drag force for a 0.2 m 

length fiber subject to a mean axial velocity of 20 m/sec, results in an average drag force 

of approximately 8.6 x 10"4 N.

In addition to characterizing the turbulent flow field, dynamic analysis of the 

force transducer, used to measure the fluctuations of the fiber caused by the turbulent 

flow, was performed. Descriptive equations of motion for the piezoelectric film are 

shown below. These provide a basis for the measurement system data reduction 

procedure.

The piezoelectric film used as the dynamic force transducer is positioned in a 

cantilever fashion and lends itself nicely to the application of the well-known analysis of 

a single degree of freedom (SDOF), underdamped dynamic system driven by an 

unknown forcing function. The unknown forcing function is the quantity being 

measured. The assumptions required are that the

1. force imparted on the piezoelectric film is similar in magnitude to that of the 

turbulent intensities experienced by the fiber.

2. damping is due to coulomb or viscous forces.

3. forcing function is sinusoidal.

4. mass of the fiber is negligible compared to the that of the system.

5. driving force, due to large (integral ) energy containing eddies, acts directly on the 

piezoelectric film via the fiber.
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The second order underdamped single degree of freedom (SDOF) system is 

shown in Figure 3.5.

Figure 3.5. SDOF Spring/Mass/Damper system.

The following variables will be defined to represent properties of the SDOF 

underdamped forced vibration system. 

m = mass

c = damping factor

£=  damping ratio

k = spring constant

f(t) = external forcing function

F0 = force amplitude

(j>0 = phase angle

x = principal direction of motion

co = frequency
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In general the governing equation for the SDOF underdamped system subject to a 

periodic force input is given as (Rao, 1995)

The general forcing function consists of real (Re) and imaginary (Im) parts. The 

complete solution to the governing equation of motion consists of a homogeneous 

(transient) solution and a particular (steady state) solution. In this case, the transient 

solution, which eventually goes to zero, is of no interest to this analysis. Therefore, the 

focus of the following development will address only steady-state conditions. The 

general solution to the governing equation is assumed to be

mx + cx + kx = F0e lC0t (3.11)

%/f) = Im (^'") (3.12)

Assuming the displacement amplitude, A is given by

(3.13)

then, the steady-state solution can be rewritten as

(3.14)



If the steady state solution is substituted into the governing equation of motion for 

the SDOF underdamped system the absolute value of displacement amplitude, A, is found 

to be

F
A = / k

<o^2 (  1---- +
CÙ

(3.15)

The phase angle can be represented as

(p = tan co„

1 - ^
CO

(3.16)

The particular solution of the governing equation of motion may be obtained, 

however the variable of interest is the force amplitude, F0. All of the unknown variables 

may be measured or calculated except for the F0. Equation 3.15 is rearranged to give
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The natural frequency (a>n), stiffness (k) and damping ratio (^) of the sensing 

element are known from the piezoelectric sensor calibration (see Section 3.4). In order to 

calculate the maximum force acting on the piezoelectric film, the amplitude (A) of the 

fiber/film system must be measured as well as the fundamental frequency of the turbulent 

driving force (a>).

3.4 Sensor Calibration

To apply the piezoelectric film as a sensing element, the film must be calibrated. 

The output of the film, in volts, was converted to amplitude in millimeters. This was 

accomplished using a Kodak Ektapro-TR, high-speed video system to record film tip 

displacements as voltage data was simultaneously recorded. Figure 3.6 shows the 

relationship between piezoelectric film displacement and output voltage.

The stiffness of the piezoelectric film was also a paramount issue as the natural 

frequency of the film had to be higher than that of the phenomenon being measured. As 

indicated earlier, there exists a trade-off between film stiffness and sensitivity. As the 

stiffness of the piezoelectric film increases the sensitivity decreases. If the stiffness of 

the sensing element were decreased, the piezoelectric film would provide a greater output 

voltage due to the increased tip displacement for a given force, but would fail to respond 

to the higher frequency dynamic response of the fiber. In contrast, if the stiffness of the 

sensing element were increased, the piezoelectric film’s ability to respond to the 

fluctuations would be adequate, although a considerable decline in sensitivity would
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occur. Thus, there is a critical design issue regarding the trade-off between film stiffness 

and sensitivity.

The stiffness of the film was calculated by applying a known weight to the film 

tip and recording the tip displacement. A large bellows was used with the Kodak high­

speed video system to capture enlarged images (approximately 20X) of the film tip 

displacement. The results are shown in Table 3.2.

Piezoelectric Film Calibration

0.6

0.5

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Piezoelectric Film Output(volts)

Figure 3.6. Piezoelectric film calibration.
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Table 3.2. Piezoelectric Film Stiffness Calibration.

Piezoelectric Film Stiffness Calibration
film tip film tip film stiffness film stiffness

weight(N) displacement(mm) displacement(m) (N/mm) (N/m)
0.00135 0.12700 0 .00012700 0.01059 10.59171
0.00069 0.05080 0.00005080 0.01361 13.61041
0.00027 0.02540 0.00002540 0.01051 10.50520

average stiffness 0.01157 11.56911

The piezoelectric film damping coefficient (£) and natural frequency (&%,) were 

determined by displacing the film tip an undetermined distance and recording the 

resulting time varying output voltage. The output voltage data is shown in Figure 3.7.

Piezoelectric Film Damping Coefficient

2  3.000
o

2.000«
OX)
5
> 1.000
ac.
3o
£

0.000
0.005o.qoo o . o o i 0.0040.002 0.003

Time (seconds)

Figure 3.7. Piezoelectric Film Damping Coefficient
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The damping ratio of the piezoelectric film was determined using the fundamental 

relationship shown in equation 3.18. Using the damped natural frequency data shown in 

Figure 3.7, the damping ratio was determined using the logarithmic decrement law given 

as

where Xo and X 4 represent the first and fourth positive peak amplitudes of the decaying 

exponential wave form and r is the number of cycles. The logarithmic decrement law 

was applied to three successive positive peaks. These displacements, recorded in volts, 

can be easily converted to displacement amplitude in millimeters. The damped natural 

frequency of the transducer is approximately 950 Hz.

Using the maximum voltage output and converting this output voltage to a 

corresponding displacement of the piezoelectric film, the logarithmic decrement law 

introduced above can be utilized to directly calculate the damping ratio (£). The damping 

ratio of the film is calculated to be Ç= 0.13.

The frequency response of the transducer is shown in Figures 3.8 and 3.9. The 

non-dimensionalized curves indicate the response of the transducer for a range of 

frequencies. Increasing the natural frequency of the transducer will increase the range of 

frequencies for which the amplitude ratio curve is relatively flat. Thus, it is necessary for 

the measurement device to possess a high natural frequency to accurately measure a high

(3.18)
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dynamic response of the fiber (Doebelin, 1990). The widest flat portion of the amplitude 

ratio curves exist for damping ratios ranging from 0.6 to 0.8. The same is true for the 

phase response curve. Thus, the optimal range for the damping ratio is approximately 0.6 

to 0.8. In addition, zero phase angle would be ideal, although is rarely attainable.

Force Transducer Response Amplitude
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Figure 3.8. Force transducer frequency response curves
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Figure 3.9. Force transducer phase response curves

Given the transducer natural frequency of approximately 940 Hz and an estimated 

fundamental driving frequency of the system, the resulting frequency ratio can be 

calculated. Recalling that the damping ratio of the transducer is 0.13, the resulting points 

from Figure 3.8 and 3.9 can easily be identified.

3.5 Data Reduction Procedure

The friction drag coefficient, C/, was experimentally determined by measuring the 

fluctuating drag force on a discrete fiber for various flow conditions and fiber sizes. The
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friction drag coefficient (see equation 3.8) is dependent upon the following experimental 

variables.

• Air velocity

• Fiber diameter and length

• Sensing element stiffness, natural frequency and damping coefficient.

• Turbulent airflow driving frequency.

• Maximum fiber amplitude(displacement)

The first step to measuring the fiber drag force was to calibrate the piezoelectric 

sensing element used as the dynamic force transducer. Through a series of detailed 

laboratory experiments the following relationships were determined.

• piezoelectric film natural frequency (see Figure 3.7).

• piezoelectric film stiffness (see Table 3.2).

• film displacement as a function of output voltage (see Figure 3.6).

The force sensor needed to possess a natural frequency at least twice that of the 

maximum expected fundamental frequency of the fiber. Initial high-speed video analysis 

was used to determine the maximum expected frequency of the fiber. As a result, the 

natural frequency of the piezoelectric film was designed to be approximately 950 Hz. 

Using the calibration data, the film characteristics, such as damping coefficient and 

stiffness, were determined. The piezoelectric sensing element was then integrated into
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the airfoil structure along with the required electronic circuitry. The force transducer and 

fiber were then placed within the wind tunnel test section and fluctuating voltage data 

was recorded for various turbulent flow conditions and fiber sizes. The experimental data 

reduction procedure is outlined below.

1. Using Figure 3.6, the voltage data was converted to a corresponding 

displacement amplitude {A) in meters.

2. The turbulent airflow fundamental driving frequency (co) was estimated using 

both autocorrelation data and grid dimensions (see Chapter 4).

3. Invoking equation 3.17 and using the previously identified film properties (i.e. 

stiffness (Æ), damping coefficient (<Q and film natural frequency (&0), the 

fiber drag force {Fd) was calculated.

4. Using equation 3.8, drag force, along with air density, velocity and fiber 

surface area, were used to calculate the friction drag coefficient, C/.
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CHAPTER FOUR 

EXPERIMENTAL RESULTS

The experimental approach consisted of measuring the fluctuating drag force on 

discrete glass and polymer fibers within a well-characterized turbulent flow field. Grid 

generated turbulence was imposed on the fiber to simplify the flow while approximating 

mixing conditions of the industrial fiberizing process. Using a three-dimensional hot­

wire anemometer, velocity fluctuations in each principal flow direction were recorded 

and analyzed. The turbulent measurements characterized a homogeneous, isotropic flow 

region that occurs downstream of a square grid. Within this region the characteristic, 

large-scale (integral) turbulent eddies were assumed similar in the cross flow velocity 

directions. Furthermore, the displacement (amplitude) of the fiber, which is hypothesized 

to be a result of the integral scales, is also assumed similar in both cross flow directions.

The dynamic force transducer was used to take fluctuating force measurements on 

both discrete glass and polymer fibers. The fluctuating force data was statistically 

analyzed and the appropriate signal processing routines were applied. A digital band­

pass filter was applied to filter any spurious noise. Measuring an over-sampled noise 

background, the fiber output signal was conditioned by subtracting the former; thus 

producing a true fluctuating fiber output signal.
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Initial examination of the fiber using high-speed video estimated the fundamental 

frequency (co) of the turbulent driving force to be approximately one half of the natural 

frequency of the force transducer. Upon further examination, using both autocorrelation 

and grid dimension data, the expected driving frequency of the system was larger than 

expected. Using axial fluctuating velocity data, the autocorrelation, R u( t) ,  was 

calculated. The large (integral) energy containing time scales could then be estimated by 

calculating the area under the autocorrelation curves. Figure 4.1 shows the 

autocorrelation data determined 80 mesh lengths downstream of the 25.4 mm grid. The 

area under the autocorrelation curves approximates the integral time scales of turbulent 

motion (Tresso and Munoz, 2000b).
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Autocorrelation Data 
R u(tau), x/Mu=80, 25.4 mm grid, Red=27,800
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Figure 4.1. Autocorrelation time scale determination.

An alternative approach was to use the GGT scale and mean axial velocity to 

estimate the integral time scales, given by equation 4.1. The approach assumes that the 

largest possible scales of motion are no larger than the 25.4 mm grid dimension. For 

flow with a characteristic velocity, [/, and length scale, the characteristic time scale 

is

A comparison of the two methods is shown in Figure 4.2.
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Turbulent Driving Force Frequency Comparison
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Figure 4.2. Driving frequency comparison.

The scatter in the autocorrelation data may be attributed to the large uncertainty of 

the computation and that of turbulence, however the more conservative estimate using the 

grid dimension and mean axial velocity provides less scatter with a similar trend. The 

reason for offset between the two data sets of Figure 4.2 is unknown.

Given the driving frequency of the turbulence and the piezoelectric film's natural 

frequency 940 Hz, the frequency ratio will approach unity with increasing

Reynolds number (see Figure 3.8). The natural frequency of the piezoelectric film could 

not be enhanced due to the limits of existing films that possessed the desired sensitivity.
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Ideally a sensing element with a natural frequency in excess of 2000 Hz would avoid a 

frequency ratio near one and subsequent resonance of the system.

Nonetheless, a dynamic correction factor was used to compensate for a large 

driving frequency and relatively low piezoelectric natural frequency. The correction 

factor shown in equation 4.2, should compensate for frequency ratios which approach 

unity.

1 - Û)2 Y
+

co
Û0

n J CO
(4.2)

n J

Amplitude Correction Factor
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0.6

0.4

0.2
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Reynolds Number(Red)

Figure 4.3. Amplitude correction factor.
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Upon calculation of the drag force, the correction factor did compensate for 

frequency ratios approaching one, however it also reduced the sensitivity of the force 

sensor by collapsing the scatter in the force data for a range of Reynolds numbers and 

fiber sizes. The displacement amplitude and force data are summarized in Figures 4.4, 

4.5 and 4.6.

Glass and Polymer Fiber Amplitude Summary
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Figure 4.4. Glass and polymer fiber amplitude summary.
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Glass and Polymer Drag Force Summary
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Figure 4.5. Fiber drag force summary as a function of Reynolds number.
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Figure 4.6. Fiber drag force summary as a function of mean axial velocity.
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Examining the amplitude data of Figure 4.4., the sensor seems to adequately 

measure the small amplitude fluctuations of the fiber. However, as the driving frequency 

of the system approaches the natural frequency of the force sensor, the amplitude 

correction factor reduces the data scatter. If the drag force is plotted as a function of 

mean axial velocity, rather than Reynolds number (i.e. removing any dependence on fiber 

diameter), the data collapses with little apparent scatter. The lack of scatter in the data is 

due to a decrease in sensitivity as a result of the compensation provided by the amplitude 

correction factor. Therefor, the piezoelectric film sensor is capable of measuring general 

trends of fiber drag force, but does not possess the sensitivity or sufficient dynamic 

response to resolve the smallest fluctuations in drag force.

The drag coefficient calculated from the drag force data for each fiber type and 

size are shown in Figure 4.7. The condensed drag force data is shown in Figure 4.8.
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Friction Drag Coefficient Summary
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Figure 4.7. Friction drag coefficient summary.

Drag Coefficient Condensation Summary
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Figure 4.8. Friction drag coefficient condensation summary.
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Recalling equation (1.1), the best-fit coefficients k and n were calculated for the friction 

drag data. For the data shown in Figure 4.8, Æ=2328 and «=2.50, which are quite 

different than the friction drag data previously published for continuous fibers (Ziabicki 

and Kawai, 1985). Although specific numerical values for k and n from previous work 

depended on experimental procedure, typical values were À: « 1.30 and n « 0.61.
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CHAPTER FIVE 

NUMERICAL MODIFICATIONS

The CFD analysis focused on the molten glass filaments as they exit the sidewall 

of the spinning disk in the horizontal direction (see Figure 5.1). In this region inertial and 

centrifugal forces dominate as the molten fiber is forced horizontally outward. As the 

filament is extruded, the effects of the high-speed air jet predominate and redirect the 

molten filament downward. Subsequently, the heat and momentum transfer imparted on 

the fiber causes it to attenuate, cool and fracture. It is hypothesized that the effects of 

heat and momentum transfer immediately after molten filaments exit the disk sidewall, 

within the critical zone (see Figure 5.1), play a crucial role in attenuation, cooling and 

formation of discontinuous fibers. The global factors that influence fiber formation are 

the fluid properties, process environment (i.e. air/glass temperatures and velocities) and 

the geometric configuration of the spinner. Each of these factors, other than the spinner 

configuration, within the glass spinning system is extremely difficult to characterize 

experimentally with current methods. However, the development of a comprehensive 

CFD model will enable researchers to examine the two-fluid interaction and thermal 

characteristics within the air/fiber system. The numerical model may be used for





Modifications to the current code include the addition of the following.

■ A more accurate interface tracking algorithm.

■ A two-fluid, incompressible variable density and viscosity model.

■ A more robust surface tension model.

■ An improved pressure coefficient stencil used in the ICCG pressure solution 

algorithm.

■ An energy equation model which includes conductive, convective and radiation heat 

transfer.

Currently, there exists no commercially available computer code that permits user 

access and modification of the source code to effectively model the air/fiber interaction 

as it occurs in industrial fiberizers. Source code access to most CFD codes would enable 

the user to initiate and develop a comprehensive fiberization model. However, that 

option is only available for developers of commercial codes. In general, the majority of 

commercially available CFD codes are inadequate for the studying specific research 

topics. Although, three-dimensional CFD codes for the simulation of multiphase flows 

are currently being developed, there is much that can be gained from two-dimensional 

model development and simulations. The development of a three-dimensional code has 

been completed at Los Alamos National Laboratory (LANL). The newly developed code 

offers the best long-term solution to modeling this complex, multiphase problem. 

However, it has only recently been made available to select university and laboratory
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research groups outside of LANL. The further development of RIPPLE was completed 

to learn about the same methods utilized in the three-dimensional code. The development 

also provides a means to become more familiar with the fiberizing process and the critical 

factors that influence fiber formation as well providing the necessary computational and 

analytical background to receive and work with the three-dimensional code as it becomes 

available. Therefore, it is not the intent of the proposed research to develop a complete 

and comprehensive model, but to take the first steps toward achieving that goal. In 

addition, the focus of the numerical development is not specifically code development, 

but rather the investigation of the air/fiber interaction as it occurs in industry through 

application of CFD techniques. The benefit of using RIPPLE, rather than other 

commercially available CFD codes, is that the user has complete source code access to a 

well-founded CFD flow solver. Rather than attempting to develop a new CFD flow 

solver, RIPPLE can be modified to simulate the incompressible, free surface flow of 

molten glass that occurs in the industrial fiberization processes. The appeal of RIPPLE, 

for the specific application of fiber attenuation, is that it allows the user to model the 

controlling physical phenomenon at a microscopic (1-100 pm) fiber scale using a fully 

customized model that will be developed specifically for characterizing the shear 

attenuation of glass filaments within rotary spinning processes. The process of 

discontinuous glass fiber manufacturing as it occurs in rotary spinning processes is 

extremely complex and requires an advanced, very specific CFD model to properly 

characterize the shear air/fiber interaction.
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The modified version of RIPPLE, referred to as VzJS-FLOW (Variable, 

Incompressible, Interface, Instability, Shear, Flow) from this point onward, may be used 

to simulate the localized mechanisms attributed to attenuation and formation of glass 

fibers produced during rotary spinning processes. Due to the inherent complexity of 

discontinuous fiber manufacturing, the CFD model development was limited to selected 

mechanisms of fiber formation while attempting to maintain fundamental process 

interactions. The CFD model simulates the two-dimensional, shear attenuation of a 

single molten glass filament by a high-speed air jet similar to that shown in Figure 5.2. 

The die geometry, material properties and process parameters are similar to those of the 

industrial process.

VzJS-FLOW serves as a localized model of fiber attenuation and is not capable of 

simulating the global dynamics of fiber motion, attenuation and fracture. The primary 

reason is due to an inability to accurately resolve the computational mesh aspect ratios of 

the attenuating fiber. The necessary radial resolution of the fiber must be on the order of

1.0 to 5.0 p.m when considering small fibers (i.e. < 50 pm), while the length of a newly 

formed fiber reaches approximately 0.05 m. Ideally an adaptive or biased mesh scheme 

is preferred as the fiber experiences rapid changes in diameter, due to sharp velocity, 

material and temperature gradients within the air/fiber system. Small computational cell 

sizes are needed to accurately approximate these gradients, however VzJS-FLOW has 

difficulties implementing computational cells that are highly skewed (i.e. large aspect 

ratios). Even aspect ratios of 2:1 cause convergence problems. Achieving the required
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Considering the previously described issues, the specific objectives of the CFD model 

development were to

• provide a numerical tool to analyze critical process mechanisms and 

scenarios.

• provide a tool that can predict "localized" fiber attenuation, formation and 

diameter.

• initiate the development of numerical models for a complete and 

comprehensive fiberizing model that may be used as a versatile CFD code to 

build and expand upon.

Since the release of RIPPLE in 1991, significant progress has been made in the 

development of more robust solution techniques for solving the time dependent Navier- 

Stokes equations in fluid flows with large density variations (Rudman, 1998). The 

specific heuristics developed by Rudman (1998), Kothe et. al. (1998) and Brackbill et. al. 

(1991) enable the simulation of the flow of two immiscible fluids with variable density 

and viscosity. These improvements, in addition to the modifications needed to simulate 

fiber extrusion, have been integrated into VzJS-FLOW and are summarized in the 

following sections. The modifications to the original RIPPLE source code include the 

addition of a

• piece-wise linear interface calculation (PLIC) algorithm.

• two-fluid, incompressible variable density model.
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• variable viscosity model with substantial modification to the viscous stress 

tensor.

• higher-order curvature calculation integral to the CSF model.

• 9-point pressure coefficient stencil used in the ICCG pressure solution 

algorithm.

• energy equation model to include conductive, convective and radiation heat 

transfer within the air/fiber system.

5.1 Interface Tracking Development

Simulating incompressible, tree surface flows presents several challenges to the 

modeler. Three types of problems arise with the treatment of free surfaces. The first is 

accurately representing the continuous surface with a discrete technique, the second is 

tracking the evolution of the surface in time and lastly selecting the method by which 

boundary conditions are imposed (Hirt and Nichols, 1979). There exist two types of 

interface tracking schemes; Lagrangian and Eulerian. In a Lagrangian method the 

computational grid moves with the computed element velocities while in the Eulerian 

method the grid is stationary and it is necessary to determine the flow field through the 

computational mesh. Typically, Lagrangian and Eulerian formulations have been used 

with varying success depending on the problem. Some of the Lagrangian interface 

tracking schemes include the logically-connected Lagrangian point (LINC) technique 

(Hirt and Nichols, 1970), the marker and cell (MAC) scheme (Harlow and Welch, 1965)
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and the level set method (Sussman et. al. 1994). Level set methods provide acceptable 

results when the flow is simple (i.e. no folding of the interface) with the error primarily 

caused by the difference between the transfer function and the distance function. 

However, as the fluid body deforms the level set method experiences mass loss and 

decreased accuracy (Kothe, 1998). The LINC method also suffers from interfaces 

undergoing large deformation. The MAC method, which was developed prior to and is 

more stable than the other two methods, provides the simplicity of defining fluid regions 

rather than interfaces. The method has the distinct advantage of eliminating all logical 

problems associated with the intersection of surfaces (Hirt and Nichols, 1969). Although 

the MAC method offers the simplicity, it suffers from increased CPU run-time which is 

required to store and move the markers points to new locations.

A flexible, efficient method based on an Eulerian formulation, which is capable of 

modeling complex free surface configurations, is the volume-of-fluid (VOF) method 

developed by Hirt and Nichols (1979). The VOF method was developed to enable finite 

difference representation of free surfaces and interfaces that are arbitrarily oriented with 

respect to the computational grid. In the VOF method fluid volumes are initialized in 

each mesh cell from specific interface geometry. Fluid volumes are computed in each 

cell having an interface or free surface and exact interface data is discarded in favor of 

discrete volume data.

To avoid the difficulties and topological restrictions associated with Lagrangian 

models, free surfaces have been represented with VOF data on a mesh. The initial
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research of Harlow and Welch (1965), Hirt and Nichols (1979) and Noh and Woodward 

(1976) has provided the basis for more recent advances of the Piece-wise Linear Interface 

Calculation (PLIC) scheme (Young, 1982 and Kothe and Rider, 1998) and FLAIR: the 

Flux line-segment model (Ashgriz and Poo, 1991) for advection and interface 

reconstruction within the VOF method. Despite the VOF technique, Eulerian methods 

require the integration and implementation of an accurate free surface reconstruction 

algorithm compute the flux volumes needed for the advection of fluid within the 

computational mesh (Kothe and Mjolsness, 1991).

In the VOF method, fluid volumes must be computed in each mixed cell that 

contains an interface. Mixed cells have volume fractions between zero and one. The 

remainder of cells that do not include an interface have a volume fraction of one (i.e. 

entirely fluid) or zero (i.e. void). Given that the fluid free surface has been replaced with 

discrete volume fractions, detailed interface information cannot be obtained until the 

interface is reconstructed. Once the VOF data is advected, each computational cell 

possesses a specified volume fraction of fluid. The distribution of the fluid volume 

within each cell results in the approximate location of the free surface (or interface in the 

two fluid case). During the reconstruction, local volume conservation is obtained by 

truncating cells with a volume equal to the discrete fluid volumes. Fluid interfaces are 

tracked by advecting fluid volumes forward in time with solutions of an advection 

equation. The exact interface location is not known but must be inferred based on
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volume data. The reconstructed interface is then used to compute the successive volume 

fluxes for further advection steps.

Historically there have been three basic VOF interface reconstruction methods 

used: piece-wise linear methods (DeBar, 1974), piece-wise constant/stair stepped VOF 

approximations (Hirt and Nichols, 1979) and piece-wise constant or simple line interface 

calculation (SLIC) method (Noh and Woodward, 1976). Recently, a piece-wise parabolic 

interface calculation (PPIC) algorithm has been developed (Price et. al, 1999). The 

PPIC method replaces sloped line segments used for reconstruction by the PLIC method 

and implements a piece-wise parabolic curve within each computational cell to 

reconstruct the fluid free surface. The PPIC method increases the spatial accuracy of 

volume tracking methods to third-order and diminishes numerical surface tension effects 

by allowing two interfaces to coexist in the same computational cell (Price, ei. al, 1999). 

Initial results on a small range of test cases show favorable results compared to other 

interface tracking routines, however the improvements come at a cost of increased CPU 

time and algorithm complexity. Until further development and testing has been 

completed, the PLIC algorithm will be implemented into RIPPLE rather than the PPIC 

method.

5.1.1 Piece-wise Constant Volume Tracking Method

The approximate reconstruction of the free surface is needed for the advection of 

fluid from donor to acceptor cell in the VOF method. A much more robust interface



62

tracking algorithm is the PLIC method. Curvature, a second order moment and a 

principal variable in the VOF calculation, can introduce large errors from small volume 

fraction discrepancies. Thus, the PLIC algorithm is more desirable as it ensures more 

accurate results.

Volume tracking methods were advanced significantly by the piece-wise linear 

scheme of Young (1982). Young's novel approach positioned and reconstructed each 

interface line, defined by a slope and intercept, within the controlling volume or cell. In 

Young's method the slope of the line is given by the interface normal (gradient of volume 

fractions), and the intercept follows from invoking volume conservation. There have 

been many schemes that have been based upon Young's work. The piece-wise linear 

interface calculation (PLIC), developed by Kothe and Rider (1998) is based on Young's 

research and forms the basis of the discussion and results that follow. The following 

discussion is an overview of the detailed research completed by Kothe and Rider (1998). 

For a more complete discussion of the procedure summarized herein see Kothe and Rider 

(1998).

It should be noted that despite the notable improvements offered by the PLIC 

method and its contemporary, the FLAIR method, variations of the piece-wise constant 

method and piece-wise constant stair-step method have remained in widespread use due 

to the ease of implementation.
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5.1.2 Fluid Volume Equations

The governing volume equations must be developed prior to the presentation of 

the PLIC method. Those volume equations are derived below. The volume (Ct) of the 

material (k) is given as

V„ = \a t (n d V  (5.1)

where ak(V) is an indicator function given by

Ok(V) = 1, if the fluid is present (5.2)

0, otherwise

The volume fraction, Fk is given as

F* = y  (5.3)

And the total volume (V) is the sum of the volume fractions given as

r  = 2 X  (5.4)
k

Given a flow field velocity of U, the advection equation that governs the evolution of F  is

ÔF—  + U - V F  = 0 (5.5)
&
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In general, Equation 5.5 is a standard advection equation where F  may represent any 

arbitrary scalar value. The equation also indicates that material volumes must remain 

constant along a streamline. Invoking incompressibility ( Y-U=0), equation 5.5 can be 

expressed as a conservation law (Kothe and Rider, 1998).

5.1.3 PLIC Method of Solution

In the PLIC algorithm, an interface line segment that partitions each cell 

containing a free surface into the appropriate volume fraction forms material volumes 

consisting of n-sided polygons. These material volumes pass through the total volume 

flux polygons and are referred to as the material fluxed volumes. The fluxed volumes are 

determined using a heuristic that can be applied to almost any flow field, thus avoiding a 

case-by-case assessment. The heuristic is condensed into a "geometric toolbox" (i.e. a 

step-by-step method) developed by Kothe and Rider (1998). Within the geometric 

toolbox, the two dimensional PLIC method requires the following functions.

1. Line-line intersection

2. Point location

3. Polygon collection

4. Polygon area.

As an example, assume that a line is defined by the equation shown below



65

wi • x + p  — § (5.6)

where m is the slope of the line, x is a point on the line and p  is the line constant. In the 

PLIC method, any cell possessing a volume fraction between one and zero will have an 

interface that is defined by equation (5.6). Within each cell the line divides the cell into 

regions of fluid and void. The direction of n may be oriented into or out of the fluid. In 

this case we will assume that n is directed into the fluid. Thus, n will be positive if 

pointing into the fluid, zero if on the interface line and negative when pointing into the 

void. The line-line intersection algorithm locates the point of intersection between two 

lines, namely the interface line and the cell edge. The second function of the toolbox is 

the point location function, which locates points inside the fluid. The function is needed 

to determine which of the cell vertices are located inside of the fluid polygon. The 

polygon collection function collects the vertices of an n-sided polygon in 

counterclockwise order. The function collects those vertices lying within the fluid and 

bounded by the interface line (see Figure 5.2). The polygon area function takes the 

vertices that have been identified in the direction of n and computes the area enclosed by 

the polygon.
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no fluid (void)

fluid

Figure 5.3. Geometric toolbox representation.
Line-line intersection, point location, polygon collection and polygon area.

5.1.4 Reconstructing the Interface

Linear interface line segments must be reconstructed in each cell using the 

interface reconstruction steps outlined in the geometric toolbox. For each segment the 

line equation (5.6) must be defined, which means that the inward normal (n) and the line 

constant (p) must be determined. The line constant is derived from conservation of 

volume and the line normal follows from volume fraction gradients. The value of p  is 

constrained by volume conservation of each cell. The line constant, defined by the 

passing of the intersection line through the cell, must satisfy the constraint that the 

truncation volume equals the cell material volume (V). The line constant (p) is found 

when the generally nonlinear function
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/ ( f )  = r ( p ) - F  (5.7)

becomes zero. V(p) is the material volume in the cell bounded by the interface segment 

and the portion of the cell edges within the material. When the two volumes are equal 

within some error term (e), the interface is assumed to be reconstructed. There are any 

number of root finding techniques to determine the zero of this function, such as 

Newton's or Brent's method. To avoid taking the derivative of V, which is required by 

Newton's method, Brent's method is employed. The interface reconstruction template is 

summarized in the following steps.

1. Given an interface reconstruction line segment, truncate the mixed cell.

2. Find the vertices of the polygon inside the fluid defined by the interface line 

segment and the cell vertices.

3. Compute the volume bounded by this polygon.

4. Does the polygon volume differ from the known volume by more than a given 

error (£■).

5. If the volumes differ, use Brent's method to find a new estimate for p  and return 

to step one.

6. If the volumes are within the margin of error the interface has been reconstructed.
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5.1.5 Material Volume Fluxes

The next step of the PLIC method requires determination of material volume 

fluxes through each cell face. The material volume flux, 5V, represent the volume of 

material passing through a given face during the current time step. The sum of all 

material volume fluxes must equal the total volume flux of each face. To compute the 

flux volume the following two steps are required.

1. The polygon bounding the volume swept by the velocity field over the time step must 

be constructed.

2. The amount of material k must be found for these polygons.

The algorithm needed to accomplish the second step have been discussed in the previous 

section but the first step must be defined in more detail.

It is now appropriate to define the operator split and unsplit time integration 

techniques. The operators split method constructs the solution in a series of one­

dimensional sweeps. In the unsplit method the flow is considered to be completely 

multidimensional. Figure 5.4 illustrates both the split and unsplit methods. For operator- 

split integration, an x-direction sweep is made in (a) followed by a y-direction sweep in 

(b). A naive unsplit method shown in (c) is not recommended because face adjacent 

polygons overlap, hindering conservative, monotonie volume advection. In the unsplit 

method of (d) polygons are constructed by tracing along upwinded characteristics which
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The following two examples illustrate the split and unsplit techniques on a two- 

dimensional computational mesh.

Split Algorithm

The operator split time integration technique constructs the solution in a 

series of one-dimensional sweeps in the % and); directions. As an example, 

consider a single sweep in the x direction of the cell in Figure 5.5. The interface 

reconstruction has been completed, resulting in a volume of material that is to be 

fluxed in the x direction through the right face of the cell. The first step requires 

that the vertices of the edge being evaluated must be identified. In this case the 

cell edge 2  (located at i+ l/2 ,j) is chosen, where (/,/) corresponds to the center of 

the cell. Next the velocity normal to this edge (JJn) and the time step {At) are 

chosen enabling the determination of the final two vertices of the flux volume. It 

is this material flux volume that is advected across the cell wall in the time 

integration step.
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T

Figure 5.5. Split material volume flux.

Unsplit Algorithm

The unsplit algorithm is similar to the split method, however it requires 

that correction be made to the material flux volumes. The corrections are 

necessary so that overlapping does not occur near the edges of the cell when both 

x and y  sweeps are completed. The comer correction uses the velocity traverse to 

the direction of the edge under consideration. This velocity is upwind differenced 

resulting in the normal edge velocity. The comer edge correction algorithm 

identifies the vertex of the comer being evaluated. This is the first vertex in the 

flux polygon. The next vertex is identified using the velocity normal to this edge 

and the time step. The final vertex is found using the upwinded transverse
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velocity at the comer edge. The algorithm for the upper right comer edge is 

illustrated in Figure 5.6.

2 ■ 1

r

Figure 5.6. Split material volume flux comer correction.

In this example, the unsplit algorithm applies the edge flux method to the 

selected polygon. Then the comer flux correction is applied at the cell's upper 

right vertex. If the upwinded transverse velocity is positive, subtract the comer 

flux volume; otherwise add it. The comer flux correction is then applied at the 

lower right vertex. If the upwinded transverse velocity at the vertex is positive 

add the comer flux volume; otherwise subtract it.
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5.1.6 Time integration

The time integration takes material (k) volume fractions F k,n at the discrete time 

level n and moves them forward in time to step n+1. The material volumes (F*) must 

sum to the total cell volume. A global filling constraint also applies. Material volumes 

summed over the entire mesh must be conserved.

Kothe and Rider (1998) insist that a key point in the time iteration scheme for the 

incompressible flow volume evolution equations is the recognition that discrete velocity 

divergences are not necessarily zero, but rather a function of the convergence tolerance 

used in obtaining the linear system solutions. As a result, the divergence correction, V-u 

is added to both sides of equation (5.8)

+ V • (uF) = FV ■ u (5.8)

Applying the divergence correction globally the volume-filling constraint is satisfied 

more strictly. Equation 5.8 is then integrated forward in time to advance the volume 

fraction (F).

The time integration method operates on two different types of cells; those that 

are mixed (i.e. contain a fluid interface) and those that are active. The mixed cells are 

determined according to the following

1. The volume fractions F  satisfy s < F <  1-s, or
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2. The volume fractions F  satisfy F > 1- s, and a face is shared with an empty cell 

having F < s.

Active cells are flagged if at least one cell in the domain of dependence is mixed. In a 

two-dimensional scheme, the domain of dependence for operator-split time integration is 

three cells along the current sweep direction. A 3 x 3 array of cells is used for the unsplit 

time integration. The error term {s) is small, usually IxlO '12.

Using an operator split time integration scheme, equation 5.8 must be integrated 

twice in two dimensions, once for a sweep in the x direction and once in they direction. 

Sweep direction is alternated every time step to minimize asymmetries induced by the 

sweeping process.

Operator Split Time Integration Algorithm

In summary the operator split time integration procedure is given as

1. Flag all mixed, active and isolated cells.

2. Compute the velocity divergence ( Vu) in each flagged cell.

3. Reconstruct all interfaces in mixed cells.

4. Compute edge volume fluxes (SF) in all flagged cells.

5. Advance volume fractions in time.

6 . Look for and redistribute any volume fraction undershoots (F < 0) or 

overshoots (F > /).
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The unsplit time integration technique advances volume fractions with one 

equation given for two dimensions and employs the unsplit edge correction 

method.

The implementation of the PLIC algorithm was tested using a solid body rotation 

and capillary jet break-up test case (see section 6 .1).

5.2 Two Fluid Development

RIPPLE, originally a one fluid code, has been modified to include a second fluid. 

The VOF method, originally developed by Hirt and Nichols (1981), which RIPPLE is 

based upon, lends itself nicely to simulating a two fluid interaction as well as the critical 

interaction that occurs at the interface.

The original version of RIPPLE defined F  according to

> 0 , < 1 , at the interface (5.9)

0 , in the void

An interface reconstruction algorithm is applied to those cells possessing 0<F<1, 

which are referred to as interface cells. From this reconstructed interface, a donor- 

acceptor method is used to determine the appropriate volume fraction that must be
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advected in the x and y  directions. The momentum advection is based on a VOF 

weighted density given as

In the original RIPPLE source code, solutions to the Navier-Stokes equations and 

advection of the VOF function are applied everywhere for computational cells satisfying 

F>0. The solutions to the governing flow equations are disregarded in the void. The 

addition of a second fluid required the flow solutions everywhere within the domain, 

including the void, which is subsequently defined as the second fluid in the two fluid 

model. The new VOF function is defined as

The process of adding a second fluid (i.e. formerly void) to the original source 

code required a slight modification to the solution algorithm. The original one fluid 

version of RIPPLE solved the governing equations over the entire domain regardless of 

the computational cell type (i.e. fluid, void, surface or obstacle), but discarded the 

solution in void and obstacle cells. In the two fluid model, the solutions to the governing

(5.10)

1 , in fluid #1

at the interface (5.11)
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equations would only be discarded in cells defined as obstacles. The modified two fluid 

model weights the VOF function by the average density within each computational cell. 

The method used to implement this was an average density function based on the VOF 

function given as

P ( i , j )  = F ( i . j ) '  Pjium + 0-F(iJ»-P flu i< t2  (512)

As the equation indicates, for a cell with F=1 (i.e. entirely fluid #1) the average density 

corresponds to the density of fluid #1. Similarly, for a cell with F=0 (i.e. entirely fluid 

#2 or formerly void) the average density corresponds to the density of fluid #2. The more 

critical case occurs in an interface cell where 0<F<J. The resulting average density of 

the cell is the density weighted volume fraction of fluid #1 and fluid #2. Momentum 

advection along each cell edge in the % and y  directions is accomplished using the average 

density of the fluid, as shown in equation 5.12.

The development of the variable density, two-fluid model enables the simulation 

of a two-phase flow field, which is required to accurately simulate the industrial process. 

The modifications to the source code were validated using Rayleigh-Taylor and pipe flow 

test cases that examined the interaction between two different fluids of variable density, 

(see Sections 7.2 and 7.3)
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5.3 Continuum Surface Force Development

RIPPLE implements the CSF method to model surface tension at free surfaces (or 

at the interface in a two fluid case). The CSF model reformulates the surface tension 

force as a volume force that acts on fluid elements within a transition region across the 

interface (see Appendix A, Section A.9). The CSF method is quite different from earlier 

methods that relied on an exact reconstruction of the fluid interface and the application of 

a surface pressure boundary condition which represents a j ump or discontinuity between 

the two fluids.

The exact surface stress boundary conditions at the fluid free surface can be 

written in terms of the normal and tangential components given by

T l,nt ~  T 2,nt +
da
ds

(5.13)

(5.14)

where cris the fluid surface tension coefficient,p  is the pressure, k 'is  the local free 

surface curvature, n is the unit normal to the surface and s is the arc length tangent to the 

surface.

In the original one fluid, RIPPLE source code, viscous effects are neglected in 

fluid 1 (see equation 5.13) and the surface tension coefficient is assumed to be constant 

which reduces the normal stress boundary condition to Laplace's formula given by
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P l - p 2 =  o k  (5.15)

where the p r p i  is the surface tension induced pressure jump across the fluid interface. A 

re-formulation of Laplace's equation into a volume force is used in the continuum surface 

force (CSF) model developed by Brackbill et. al  (1992). In the CSF model, surface 

tension is reformulated as a volume force (body force) given as

(5.16)

The original CSF model, developed by Brackbill et. al. (1992) has been modified 

to include a variable viscosity, viscous stress tensor and an improved method for 

determining interfacial surface curvature (k ).

5.3.1 Viscous Stress Tensor Development

Glass viscosity rapidly changes as a function of temperature. The importance of 

viscosity in the attenuation of the molten glass is of tremendous interest in industrial 

fiberizing processes. In order to formulate an accurate model, the addition of a variable 

viscosity term must be added to the current code. Glass, which is an amorphous solid, 

does not experience a phase change. Thus, there will be no solidification model included 

in the code development and inferences regarding the glass material state will depend on
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the change in the viscosity of the glass as a function of temperature and position within 

the fiber. It is hypothesized that the molten glass filaments do not undergo solidification 

but experience a rapid change in viscosity. Thus, accurately characterizing the glass 

viscosity is of paramount interest to predicting localized fiber attenuation, necking and 

ultimately fiber formation.

In the two fluid development, a variable viscosity, viscous stress tensor is required 

to properly simulate the interaction between two fluids at the interface. Like the variable 

density model, the variable viscosity model uses a VOF weighted, cell centered viscosity 

given as

X ',  j )  = F(i, j )  ■ n  jw , + (1 -  F(U i))  • A sium (5-17)

As the equation indicates, for a cell with F=1 (i.e. entirely fluid #1) the average viscosity 

corresponds to the viscosity of fluid # 1 . Similarly, for a cell with F=0 (i.e. entirely fluid 

#2 or formerly void) the average viscosity corresponds to the viscosity of fluid #2. The 

more critical case occurs in an interface cell when 0<F<1. The resulting average 

viscosity of the cell is the viscosity weighted volume fraction of fluid # 1  and fluid #2 .

The viscous term in the momentum equations is written in the stress divergence 

form to allow for variable viscosity. The harmonic average of the viscosity at each 

computational cell edge (for example, the harmonic average at the cell edge (i+l/2J+l/2) 

is shown in Figure 5.7 and is given as
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Ukarntonic (i + V 2 , j  + \ / ï ) =  2f M (5.18)
JU + f i

(i+ l/2 ,j+ l/2)

Figure 5.7. Harmonic average for the cell edge (i+l/2,j+l/2) on a standard
computational mesh.

The upper ( / / )  and lower ( j / )  cell face viscosities are defined as the arithmetic 

average between cell centered viscosities of neighboring cells, such that

4Iw

(ij)^
"4Ir 1

/ /+ -  ^ (^w+i + / W n ) (5.19)
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P + A+ij) (5-20)

In a two fluid formulation, arithmetic averaging of the viscosity between 

successive cells may produce less accurate results if the cell viscosities are significantly 

different, resulting in large viscosity gradients. Rudman (1998) insists that harmonic 

averaging is essential to ensure that fluid stresses do not give rise to excessive 

accelerations in the less dense, less viscous fluid near the interface.

As shown in Appendix A, section A.9, the one fluid version of RIPPPLE 

originally implemented a constant surface tension force (or normal force component) at 

the fluid free surface by assuming the fluid was incompressible and inviscid {jLt=0). The 

viscosity of the void was identically zero in order for the normal and tangential boundary 

conditions to balance at the free surface. In short, at the free surface the viscosity of the 

fluid and the void are identically zero. As a result, the pressure jump (pl-p2) (see 

equation 5.13) was balanced by the normal surface tension force (cr), which occurs at the 

fluid free surface. The tangential condition given in equation 5.14 was applied as a 

boundary condition at the fluid interface, and both the normal and tangential conditions 

were satisfied in the one fluid case.

A hypothetical scenario may include two immiscible fluids with identical fluid 

properties. At the interface between the two fluids, a change in surface tension or 

pressure jump does not occur between two fluids that possess identical fluid properties.
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Thus, the normal (see equation 5.13) and tangential (see equation 5.14) boundary 

conditions are inherently satisfied.

An example similar to this may be a fixed volume of fluid subject to large 

temperature gradients. The thermal gradients, which strongly influence viscosity, cause 

the single fluid with variable viscosity to act similarly to two dissimilar fluids with 

different viscosities. In both cases the surface tension and shear stress conditions are 

satisfied in both fluids by applying equations 5.13 and 5.14.

The original formulation of the stress tensor routine (see equation 5.21) neglected 

the radial component, which is shown in equation 5.22.

\ drn ' 1 5 /T = / +
 ̂ 5z 1

T ee — M
(  1 dv.

 -  +  —

r 56 r
 (V-v)

3 7
(5.22)

In the axisymmetric case, each term in equation 5.22 is neglected except ree» which is 

equal to v/r. The revised viscous stress tensor is given as

V • r  = 1 d + °In
dz

+  ■ 2-5 1 + (5.23)
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5.3.2 Smoothing Kernel Development

In the continuum surface force model, forces resulting from interfacial surface 

tension are written as a surface volume force. This body force is given by equation 5.24 

(see Appendix A, section A.9)

f , ,  = mc(x)VF(x) (5.24)

where cr, is the surface tension coefficient, zc is the surface curvature and F  is the volume- 

of-fluid (VOF) function. RIPPLE calculates the free surface curvature using 4 cell 

vertices (see Appendix A, section A.9). In the modified CSF model, a cubic B-spline is 

used to smooth the VOF gradient ( VF) over an "zz" point stencil given by

/4 (V
1 - 6  -  

U
+ 6 if r <h/ 2

K(r,h)
h2

- | 3 \

1 - if r < h (5.25)

otherwise

where r is the radius from cell (ij) to the nth cell of the stencil, predetermined by the 

smoothing length, h. A plot of the smoothing kernel is shown in Figure 5.8. The 

smoothing length is 5 pm. Figure 5.8 depicts only one-half of the smoothing kernel,
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which in fact continues in both x and y  (or r and z) directions from each computational 

cell.

CSF Model Smoothing Kernel 
smoothing length (h)=5.0e-6 meter

6.E+10

5.E+10

4.E+10

3.E+10

2.E+10

l.E+10

0.E+00
0.E+00 l.E-06 2.E-06 3.E-06 4.E-06 5.E-06 6.E-06 7.E-06 8.E-06

Radius (meter)

Figure 5.8. CSF smoothing kernel.

The size of the stencil may vary depending on the value of the smoothing length, 

h. A  typical smoothing length is approximately two times the minimum grid spacing 

(Rudman, 1990). The kernel provided by Rudman (1990) defines a smoothed VOF 

function (Ftiide) that varies between zero and one at the interface and is zero everywhere 

else in the domain, which is consistent with the smoothing kernel’s delta function. The
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result is a body force (Fsv) added to the Navier-Stokes equations that represents the 

surface tension at the fluid interface.

The implementation of the continuum surface force model (i.e. the modified 

viscous stress tensor, harmonic averaging and smoothing kernel) was validated using a 

static droplet test case discussed in detail in Section 6.4.

5.4 Pressure Poisson Equation Development

The coupled solution of the continuity and momentum equations is solved using a 

two-step projection method as discussed in Appendix A, section A.7. The PPE, mapped 

from physical coordinates (x,y) to computational coordinates (£ 77), is given as

V- ( l- V p n=l
\ p  ) Jr l P p T

71 +  1 +
J r l p T -

P /

(5.26)

where 5  is defined as 1 in cylindrical and 0 in Cartesian geometry and the derivatives are 

shown using Einstein’s notation. The coordinate transformation employs metrics to 

simplify the notation, where the Jacobian (J) is defined as

(5.27)
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and the geometric coefficients are given as

a -  —
J

(5.28)

(5.29)

(5.30)

The PPE was transformed from physical (x.y) to computational (£ 77) coordinates 

using the coordinate transformations described by Brackbill and Saltzman (1981) and 

Anderson (1995). A majority of real-world CFD problems involve complex geometries 

that require adaptive mesh schemes aimed at refining the mesh in critical flow regions. 

One such example may be the flow over a swept wing. It is more desirable to locate 

more closely packed grid points near the curved surface of the wing where the velocity 

gradients are the largest. The increased grid resolution ensures proper determination of 

the velocity gradient in the critical flow region. However, increasing the number of 

computational cells within a specified region often results in a physical grid that may 

contain a number of cells that are highly distorted and skewed. A coordinate 

transformation is usually employed to convert a non-uniform grid in the physical plane to 

a uniform grid in the computational plane. Brackbill and Saltzman (1982) provide 

numerous examples of transforming highly distorted computational grids into less



skewed, more desirable (nearly orthogonal) computational grids. Simulating the 

extrusion of a glass fiber is one such case where adaptive mesh routines would be 

advantageous in accurately resolving large numerical gradients near the fluid interface or 

radially as the fiber rapidly attenuates. However, adaptive mesh schemes are beyond the 

scope of this research. The transformation of the PPE equation from a physical to a 

computational domain has been included and provides the basis for future mesh 

generation refinement. All simulations completed during the course of the research have 

been carried out on an orthogonal mesh, thus negating the need for a grid transformation. 

Inherent to an orthogonal mesh, the cross derivatives (xn and y£) are zero and upon 

substitution into equations 5.27-5.30, the Jacobian and geometric coefficients become

J  ~ xiy ’i (5.31)

/? = 0 (5.32)

J
(5.33)

(5.34)

Once transformed, the coupled set of equations is solved over the entire domain 

using an incomplete Cholesky conjugate gradient (ICCG) method. In the original, one 

fluid, version of RIPPLE, the ICCG routine was applied using an 9-point stencil on an
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orthogonal mesh. The time n+1 pressure was determined from the solution to the system 

of equations given by

where S  is the solution vector. The pressure coefficients (A,B,C etc.), shown in Figure 

5.8, and given in terms of the geometric coefficients a, /?, and y  make-up the matrix [M] 

The cross derivatives, represented by (see equation 5.29), and the comer cell 

coefficients (C, E, CF and EF) are identically zero due to the orthogonality of the mesh. 

However, coefficients, a  and y  remain as multipliers in matrix [M\ for each of the five 

remaining pressure terms in {pn+I}.

(5 35)
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Figure 5.9 Computational pressure cell template.

The orthogonality of the computational mesh reduces the original 9-point 

template to a 5-point template, which consists of cells A, B, BF, D and DF. The resulting 

pressure stencil uses fewer cells, than the original 9-point stencil, to cover the same 

effective area. This is not a concern if the computational cell (z'j) and surrounding 

neighbors (A, B, BF, D and DF) lie completely within fluid one or two. However, if the 

computation cell is an interface cell or near a boundary or obstacle, using fewer cells may 

lead to inaccurately biasing the geometric coefficients toward the more dense fluid.

Thus, the pressure stencil was recast to extend the calculation template over a larger 

number of cells to counter the possibility of excessive gradients. However, a trade-off
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exists when implementing a larger template. Although a larger template may be more 

robust by averaging over a larger number of cells to smooth any sharp numerical 

gradients, the larger template also introduces additional numerical diffusion into the 

model.

The original 5-point template worked well in the one fluid case, however the same 

template in the two fluid case resulted in numerous pressure convergence failures. In 

several of the pipe flow simulations (see Section 6.3) the ICCG routine would attain a 

converged solution using only a large pressure residual (on the order of 10~2). A pressure 

residual greater than 10'2 resulted in convergence failures. Ideally, the code should reach 

a converged solution with a pressure residual on the order of at least 10"6. Following 

several attempts to improve the convergence, it was determined that the discretization of 

the PPE needed to be reformulated in terms of the geometric coefficients a  and y  to 

include all nine computational cells.

The first step in the discretization procedure utilized a second-order polynomial to 

derive an expression for the pressure gradient (Ap) at cell A (see Figure 5.8). The 

resulting gradients (dp/dx and dp/dy) consisted of points 1,2,3 and 4, which are located 

at cell vertices (i-l/2,j+l/2), (i+l/2,j+l/2), (i+l/2,j-l/2) and (i-1/2, j-1/2). However, 

RIPPLE’s finite difference scheme only determines cell centered values of pressure, 

density, viscosity and the VOF function. The determination of those particular cell edge 

values would require additional averaging which would only introduce additional 

numerical diffusion. Therefor, the a second discretization step, identical to the first step,
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was applied at each of the four cell vertices. For example, the gradient for vertex 2, 

located at (i-1/2, j+ 1/2), was determined using cells C, D BF and A. The same process 

was completed for the remaining three vertices. The end result, following extensive 

algebraic manipulation, was a 9-point template defined in terms of a  and 7  on an 

orthogonal mesh. The final form of the newly discretized PPE is given as

V
\ P

Vp /t= l

y - V /

P ijp  ~  P im jp  +  P i j  ~  P imj

Ida"
+

16/z"

^ r5a ^ ^  P i p j -  P i j  +  P ip jm  - P i j m ^

L
\ 6 t i

( r5a ^ P i j  P  imj P ijm  P  imjm

P  J

f  r Sy''

P  y

y16/z2

P ip jp  P ip j  ^  P i jp  P i j

V 16/z*

P ip j  - P i p j m  +  P i j - P i j m

\6h2
+

^ r sa ^ (  P i jp  ~  P i j  +  P im jp  -  P im j  X

16/z2

f P i j ~  P ijm  + P im j Pim jm

I  p  J \ 16/z2 J

(5.36)

where shorthand notation was used such that ijp=i,j+l, ijm=ij-l, and so forth. The 

corresponding coefficients of [ M ]  are given by
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[M] = Apÿ + Bpipj + Cpimjp + Dp6j, + Epipjp + + CFp,w„ + DFpijm + (5.37)

where

A =
^-ocr5 - y r s ^

\6pfr
+

^-car5 —yr5 ^
\6ph‘

+
\6ph‘

+
r -car5 - y r 5^

\6ph‘

(5.38)

B =
J üru

^ccr5 - y r 5^ 
I6ph2

+
^a r5 - y r 5^

2 J + /21/ 16 ph'
(5.39)

C =
^car5 +yr5  ̂

\6ph2
(5.40)

D =
^ — car5 -^yr5 1̂

\6pW
+

r - a r 5 +yr5^

' + /1/ 2 J + /'2
\6ph‘

(5.41)

E = ^ ar5 +yrs ^ 
\6ph2

2J+^
(5.42)

BF =
^ccr5 - y r 5^

\6ph‘
+

^car5 - y r 5^
\6 p k

(5.43)

CF =
\6phl

(5.44)
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(5.45)

(5.46)

The ICCG solution algorithm remained unchanged, although the discretization of 

the coefficients that make-up matrix [M\ were significantly altered. The 9-point stencil 

provides a more robust determination of the corresponding coefficients for an orthogonal 

grid. The same discretization strategy could be employed to produce a 25-point template 

and so on.

The addition of the 9-point pressure template also required altering the stencil 

used to calculate the new value of velocity at time n+1 from the updated pressure field. 

Recall the numerical solution of the continuity and momentum equations is based on a 

two-step projection method given by equation 5.47 and 5.48.

y  p
(5.47)

ÿ n+x — 
P

(5.48)
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The two equations are combined into a single pressure Poisson equation (PPE) for the 

pressure given as

velocity field. Recall that RIPPLE employs cell face velocities, thus the gradient of the 

pressure for cell (if) is determined using a difference over cells (/,/) and (i+ lj)  (i.e. cell A 

and B, see Figure 5.8). The two cell template is inconsistent with the newly developed 9- 

point pressure stencil. Consistency was achieved using an averaged 6 -point template.

For example, the pressure gradient in the x-direction was determined using a weighted 

average of 6  cells about cell ij (cell A). The updated pressure gradient in the x-direction 

is given as

a
(5.49)

Equation 5.49 uses the newly calculated pressure field (pn+I) to update the

dp [ 0 .1 2 5 ^  - p ipjp)^0.15{pij - p ipj)+0.\25{pijm - p ipjm )
(5.50)

dx

The identical technique is used to calculate the pressure gradient in the y- 

direction. The addition of the 9-point pressure stencil and the weighted 6  cell averaging 

used to update the velocities with the new pressure field increased the robustness and
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accuracy of the ICCG method. The modified discretization of the PPE resulted in 

converged solutions with a pressure residual of 1 0 '8.

5.5 Energy Equation Development

Glass is a homogeneous material with a random, non-crystalline (liquid-like) 

molecular structure. Glass manufacturing processes require that the raw material be 

heated to a temperature sufficient to produce a completely fused melt, which when cooled 

rapidly, becomes rigid without crystallizing (Owens Coming, 2000).

Glass does not solidify but rather experiences a dramatic change in viscosity with 

temperature, as shown in Figure 5.10. The ability to predict the axial temperature profile 

within the glass fiber is critical. Once the temperature is known a corresponding 

viscosity may be determined within the fiber. As a result, localized areas of high 

viscosity are the most likely to experience brittle failure and fracture.

Within the three classical states of matter, there is no place for glass. Glass is 

amorphous, although it combines the rigidity of crystals with the random molecular 

structure of liquids.

The atoms in glass, although arranged at random, are frozen in position. Thus, 

glass combines some of the aspects of a crystalline solid and a liquid; it is rigid like a 

solid but its random atomic structure is characteristic of a liquid. The American Society 

for Testing and Materials defines glass as "... an inorganic product of fusion which has 

cooled to a rigid condition without crystallizing" (Owens Coming, 2000).



97

The viscosity of water at room temperature is 0.001 N-sec/m2 (0.010 poise); that 

of SAE30 motor oil is about 0.1 N-sec/m2 (1.0 poise). The viscosity of most glass at 

room temperature is theoretically about 1018 - 1021 N-sec/m2 (1019 - 1022 poise). As the 

temperature of glass increases, the inflexible molecular network breaks down into smaller 

units. Viscosity drops to about 106 N-sec/m2 (107 poise) and may start to deform under its 

own weight. At higher temperatures, viscosity drops to 102-103 N-sec/m2 (103-104 poise) 

when the glass will flow into a mold, or can be blown with ease (Owens Coming, 2000). 

When heated to very high temperatures, the viscosities of glasses may be so low that they 

become as liquid as thin motor oil. The critical value of viscosity that corresponds to a 

melt temperature of 1260 K for the generic glass used in all of the simulations is 

approximately 11 N-sec/m2 (110 poise), as shown in Figure 5.11. If the localized glass 

temperature falls below this critical value, the glass is assumed to be a solid and most 

likely to fracture at that particular point within the fiber.
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Temperature Dependent Glass Viscosity

Tmell= î2 6 0  K

10000000

n  loooooo
o 100000 

10000 Solid 'Liquid

1000
OU00
>
0
1c
Q

100

0.01
1700900 1100 1300 1500 1900

Temperature (K)

Figure 5.10. Temperature dependent kinematic viscosity. Tmeit=1260 K is the critical melt
temperature of glass.

The implementation of Johnson’s one fluid, heat transfer model into the current 

two-fluid model required several modifications and simplifying assumptions. A fully 

temperature dependent, variable density and viscosity, two-fluid, model was initially 

proposed to accurately simulate the process of discontinuous fiber spinning. This would 

require solving both the governing flow and energy equations in each of the fluids, as 

well as applying specific boundary conditions at the fluid interface. However, an initial 

order of magnitude analyses, which examined the axial and radial analytical temperature
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distributions within a hypothetical glass fiber, has provided the basis to pursue the 

development of a much more simplified fluid/thermal solver.

A hypothetical thermal environment of the rotary spinning process is shown in 

Figure 5.11. The arrow indicates the general free stream path of the molten glass 

filaments as they exit the disk sidewall. It is hypothesized that initially the filaments 

follow a path that is approximately tangent to the temperature contours. The glass 

filament is either heated or cooled by the surroundings depending on the exit temperature 

of the glass filament and the surround environmental. As the fiber attenuates it 

eventually reaches a point in the critical zone when the filament begins to cool.
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SPINNING
DISK

Figure 5.11 Hypothetical temperature contour, (units: deg. K) Arrow represents direction
of extruded fibers.

The distance between each successive temperature contour is believed to be larger 

than the size of glass filament that can be simulated in a reasonable amount of CPU run 

time. In theory a very large computational domain could be constructed to model a much 

larger length of fiber given sufficient computing resources. Due to mesh density 

restrictions, the simulated fiber size is less than the distance between each temperature 

contour. Thus, the surrounding temperature of the fiber is assumed to be constant, but 

remains dependent on the position of the fiber within the flow field.
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Theoretical predictions of the radial and axial temperature profiles within the fiber 

have been estimated using correlations for the temperature distributions within an infinite 

cylindrical fin (Incropera, 1990). The inlet and surrounding temperature of the glass and 

air were 1300 K and 1500 K, respectively. The Heisler-Grober charts were used to 

predict the analytical solution for the radial heat transfer in a 400 micron diameter fin.

The results indicate a uniform temperature profile. The axial temperature variation, 

shown in Figure 5.12 was estimated using a cylindrical fin in cross flow. The 

temperature of the 5 mm long glass filament eventually approaches the surrounding gas 

temperature.

Cylindrical Fin, Axial Temperature Distribution Estimate
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Figure 5.12 Infinite cylinder axial temperature profile approximation.
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The results of the scaling arguments, CPU limitations and preliminary analytical 

temperature predictions indicate that the extrusion of a molten glass filament may only be 

simulated using a localized model. A global model of larger scale may only be achieved 

by "piecing" together a number of smaller simulations.

Furthermore, a fully temperature dependent, two fluid/thermal solver is not 

needed to accurately model the process of discontinuous fiber spinning. The same level 

of complexity may be achieved using the one fluid, constant property, heat transfer model 

of Johnson (2001) integrated with the two fluid, flow solver RIPPLE.

In the process of discontinuous glass manufacturing molten glass filaments are 

cooled by the passing turbulent airflow, which results in a sharp increase in the glass 

viscosity. This localized increase in glass viscosity causes the fiber to become brittle, 

ultimately leading to fracture (i.e. fiber formation). In order to characterize this behavior, 

a thermal model was needed to identify localized areas of the fiber that undergo rapid 

changes in viscosity. Characterizing these localized areas aids industrial practitioners in 

identifying potential failure mechanisms. The background required to assemble such a 

model has initially been completed by Johnson (2001). The researcher has developed a 

numerical model specifically for simulating the process of droplet solidification. The 

researcher’s model provides the basis to develop a thermal model of discontinuous fiber 

manufacturing.

Johnson has developed, verified and validated a numerical model for the 

simulation of heat transfer in free surface flows. The thermal solver simulates the impact
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and solidification of a droplet onto a substrate as it occurs in the process of spray 

deposition. Johnson’s one fluid, heat transfer model has been successfully integrated into 

RIPPLE, which allows detailed numerical simulations of droplet impact, spreading and 

solidification. The heat transfer model is applied over the complete domain (droplet and 

substrate) using the enthalpy method.

The heat transfer model initiated by Delplanque et. al. (1999,1996) focuses on the 

effect of solidification on fluid flow. In order to predict quantitatively the heat transfer 

and solidification behavior of liquid metal impact, it is necessary to solve the energy 

equation. The enthalpy formulation, rather than a temperature formulation, which uses 

contact resistance between the droplet and substrate, is more desirable because the phase 

change process can be determined without explicitly tracking the solid liquid interface. 

The enthalpy method, which is based on the conservation of energy principal expressed 

in terms of thermal energy (i.e. enthalpy) and temperature, together with equation of state 

contain all of the information needed to determine the phase evolution. The energy 

equation, formulated in terms of enthalpy, was discretized and implemented into the one 

fluid, flow solver RIPPLE. Johnson's droplet model solves the energy equation over the 

entire droplet, while considering the surrounding volume to be void. Recall that RIPPLE 

advects the VOF function (F) with the velocity field to track the location of the free 

surface. Johnson's method advects the enthalpy along with the VOF data, which is used 

to identify phase change by the localized value of enthalpy.
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The fundamental principle of conductive and convective heat transfer is the 

thermal energy conservation law given as

^  + V -(F h V )  = - V - q  + ̂ -  + V -(F p V )  (5.51)

assuming the heat generated by viscous dissipation is negligible.

Johnson (2001) focused on solidification of the droplet near an obstacle. In the 

case of glass fiber formation there are several differences. First, the process of glass 

spinning requires simulating the interaction between two fluids, unlike the process of 

spray deposition, which is modeled using only one fluid. Secondly, Johnson's droplet 

impact requires a solidification model, where as glass does not solidify.

The enthalpy along with the VOF data is advected using the updated velocity 

field. However, the enthalpy is only advected within the glass region. The enthalpy of 

the air is neglected. Additional, modifications to the heat transfer model included the 

addition of convection and radiation at the fluid interface. Using the modified heat 

transfer model of Johnson, the associated temperature and heat flux data is determined 

within the glass region. The heat flux is determined iteratively and related to the 

temperature using either conduction or convection and radiation depending on the 

location within the fiber. Within the fiber the conduction term is given by Fourier’s Law
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(5.52)

and the convection and radiation terms are given as

qcm, = K T , - T su„) (5.53)

(5-54)

where Ts is the fiber surface temperature, Tsurr is the surrounding temperature, k is the 

glass conductivity, h is the heat transfer coefficient, s is  the glass emissivity and cris the 

Stefan-Boltzmann constant.

Johnson’s (2001) initial heat transfer model applied an adiabatic (i.e. heat flux 

equal to zero) boundary condition at the free surface of the droplet. The glass fiber 

simulation requires the addition of convection and radiation heat transfer, thus applying 

the appropriate heat flux balance to the free surface. The convective heat transfer 

coefficient was estimated using an average coefficient determined over the entire length 

of the fiber. An approximation for laminar flow over a flat plate was used to calculate the 

Nusselt number (Incropera and DeWitt, 1990), given by
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Nuv =
r i/ 

0 . 3 3 8 ^ 2 ^  3

i + l 004% , 13
(5.55)

From the localized Nusselt number, a connective coefficient was determined and 

the assumption of a constant air temperature enabled the explicit determination of the 

convective heat flux at the interface. The explicit radiation heat transfer was 

approximated as a real surface with an emissivity of 0.8 and the surrounding temperature 

was estimated form process measurements.

The two fluid flow solver and the one fluid thermal solver are two independent 

models which share the commonality of advecting scalars (i.e. the VOF and enthalpy 

data) using the velocity field as well as updating the glass viscosity with the current glass 

temperature field. The remaining material properties within the glass and air regions 

remain constant for the duration of the simulation.

Several modifications to each model were required upon successful integration of 

the two solvers. The strong dependence of glass viscosity with temperature favors the 

use of integrating the thermal/fluid solvers, however as discussed in section 6.6, several 

difficulties originated that did not permit a fully integrated model. The most prominent 

of these was VzJS-FLOW’s inability to function within the “creeping” flow regime, 

which was primarily due to the rapid increase in viscosity with decreasing temperature as 

the molten glass approaches the melt temperature. As a result, the thermal and fluid
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models were not integrated but remain capable of providing useful information regarding 

fiber formation by tracking the development of the fluid interface (from the fluid model) 

and the temperature field (from the thermal model). Superposition of the VOF and 

temperature fields can aid in identifying critical regions (i.e. regions of elevated viscosity 

and attenuation) were fiber formation is most likely to occur.

The temperature dependent glass viscosity is the critical factor in the fiber 

simulations. If the temperature of the glass melt remains above the critical melt 

temperature of 1260 K, an accurate solution to the thermal/fluid flow field is likely to be 

achieved in a timely manner. However, if the temperature of the glass drops below the 

critical temperature, a corresponding sharp rise in viscosity is initiated which results in a 

transition of the glass flow from the laminar to creeping flow regimes, which resulted in 

significant inaccuracies do to VzJS-FLOW’s inability to simulate creeping flows.

Preliminary simulations of hypothetical glass fibers in the creeping flow regime 

have produced erroneous results. There were significant instabilities that developed at 

the air/glass interface which resulted in break-up of the VOF field. As a result the fluid 

thermal solvers will remain separate while a solution to this difficulty is reached.
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CHAPTER SIX 

NUMERICAL RESULTS

Over the course of the numerical development several modifications have been 

made to the original RIPPLE source code. The modifications substantially altered the 

code from its original one fluid state to one that enables the user to simulate the shear 

air/fiber interaction, similar to that occurring in industry. Following the completion of 

the numerical modifications (presented in Chapter 5), test cases that possessed well- 

founded analytical solutions were used to verify, validate and test (VV&T) the CFD code 

to ensure that the original flow solver had not been corrupted during the modification 

process and that the addition of each module provided measurable improvement to the 

CFD code’s ability to simulate the air/fiber interaction. Since there exists very little 

experimental data and no known numerical data for the process of discontinuous glass 

fiber spinning, the test cases were paramount to VV&T the CFD model to ensure 

accurate and acceptable results from the glass fiber simulations.

6.1 PLIC Test Cases

The PLIC algorithm, developed by Kothe and Rider (1998), has been 

implemented to track the rotation of a known VOF data on a mesh when subject to a
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known velocity field. The intent is to demonstrate the algorithm's ability to accurately 

track the fluid free surface. A single forced vortex meant to induce solid body rotation 

has been placed at the center of the fluid domain (Fox and McDonald, 1992). The 

rotation experienced by the fluid due to the forced vortex provides a useful tool in 

debugging and evaluating the PLIC interface tracking routine. An acceptable interface 

tracking method must translate and rotate a fluid volume without significant degradation 

of the fluid interface (Kothe, 1999).

6.1.1 Solid Body Rotation

In this example, a 10 x 10 VOF data was created on a 20 x 20 computational 

mesh. Figure 6.1 shows the results from the initial time step through one complete 

revolution of the VOF data. One revolution occurs following a CPU run-time of 64 

seconds. The solid body rotation was applied using the following velocity components 

given by

u( i, j )  = -co( y (  j  ) -  y cemer )
(o . l

v ( i , j )  = c o (x ( i ) -x cemer)

where <y=constant

Figure 6.1 shows the results of the solid body rotation test case.
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Figure 6.1. PLIC Test Case. (A) t = 1 sec, (B) t = 5 sec, (C) t = 30 sec, (D) one complete 
revolution at a computational run-time of t = 64 sec.
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6.1.2 Capillary Jet Break-up

Given the results of solid body rotation test case, it is evident that the PLIC 

interface-tracking algorithm possess the potential to accurately track the fluid free 

surface. However, further analyses must be completed to determine if the PLIC 

algorithm provides more favorable results than the SLIC algorithm, which is currently 

used in RIPPLE. A quantitative comparison of the two methods has been completed 

using the capillary jet breakup example provided by Kothe et. al. (1991). The capillary 

jet breakup test case was chosen due to its similarity to the process of molten glass 

extrusion and its well-founded analytical solution developed by Rayleigh (1879) and 

Mansour and Lundgren (1990). Three capillary jet test cases have been simulated using 

RIPPLE, interfaced with two different interface-tracking algorithms. The first case uses 

the SLIC algorithm applied on a coarse mesh. The second case uses the SLIC algorithm 

applied on a more refined mesh. Lastly, the PLIC algorithm is applied on a coarse mesh 

identical to the first case.

Rayleigh (1879) developed the first quantitative theory for the growth and radial 

perturbation on a small cylindrical column of liquid (i.e. capillary jet). Surface tension 

forces in the r-z plane at points z along the jet surface, pinching it inward and eventually 

leading to the development of bulges and contractions causing the jet to break up, 

forming small droplets or satellites.
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The capillary jet break-up was computed with RIPPLE using water (p=\ g/cm3, 

o=73.05 dynes/cm) as the liquid stream with a zero pressure background (Kothe ei. al., 

1991). Symmetry conditions about the axis were implemented to take advantage of the 

flow geometry and avoid excessive computing time.

Each of the three simulations are identical except for the interface tracking 

algorithm and the mesh density. The first and third simulations use a 30 x 40 coarse 

mesh, while the second simulation uses a 30 x 140 refined mesh. The refined mesh gives 

a much higher lateral resolution and an improved radial resolution with cell spacing 

closer near the cylindrical axis. The increased resolution of the second simulation 

captures the higher harmonics of the nonlinear flow. Although, the refined mesh provides 

a more accurate solution, the computational time dramatically increases by a factor of six. 

Thus, there exists a trade-off between numerical accuracy and computational run time.
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CBA

Figure 6.3. PLIC vs. SLIC comparison. (A) SLIC coarse mesh, (B) SLIC refined mesh,
(C) PLIC coarse mesh

Each of the three results were recorded at a finish time of 0.9 seconds. Figure 

6.3(A) shows the formation of two small satellite droplets. This is consistent with the 

results of Kothe et. al. (1991). Figure 6.3(B), shows the formation of one large droplet 

with two small satellite droplets. The refined mesh provides a much higher lateral and 

radial resolution than the alternative coarse mesh, in addition to resolving the higher
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harmonics of the nonlinear flow. The additional resolution produces more accurate 

results at the expense of substantial increases in computing time.

An alternative to the SLIC method on a refined mesh is to implement the PLIC 

method on the original coarse mesh. In Figure 6.3(C), the pinching of the capillary jet 

produces one large satellite, which is similar to that of the SLIC method on a refined 

mesh. The PLIC method requires less computational run-time than that of the SLIC 

method on a coarse mesh and produces results similar to the SLIC method on a refined 

mesh. Tables 6.1 and 6.2 summarize the results of the break-up times of the capillary jet 

and the computational run times of the three test cases. Figure 6.3 also provides a 

comparison of the two methods.

Table 6.1. Capillary Jet Break up and Run Time Summary

RIPPLE 
Capillary Jet 

break-up time(sec)

Kothe et. al. 
break-up time 
estimate (sec)

Total 
CPU run 
time(sec)

SLIC(coase mesh) 0.6 0.69 233

PLIC(coarse mesh) 0.44 n/a 257

SLIC(refined mesh) 0.86 1 1495
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Another qualitative measure of the PLIC algorithm’s ability to provide more 

accurate results than the SLIC algorithm is to compare the satellite droplet size computed 

using RIPPLE with the analytical predictions derived by Mansour and Lundgren (1990). 

Table 6.2 summarizes the droplet size results obtained from RIPPLE simulations and 

Mansour and Lundgren analytical solution (1990). The percent error in each case is 

somewhat large and may be attributed to inconsistencies between the analytical and 

numerical solutions. The analytical solution provided by Mansour and Lundgren (1990) 

is a linear solution that is applicable in the early stages of the perturbation development. 

The phenomenon of capillary break-up, disregarding the early development stages, is a 

highly non-linear event. The analytical predictions due not capture this aspect, however 

the CFD code, which is a nonlinear code, does capture the entire process. As a result, the 

discrepancy is likely due to the non-linearity of the capillary jet break-up and the inability 

to capture it with a linear, analytical prediction.

Table 6.2. Satellite Size Comparison Summary

Interface
Reconstruction

Algorithm

RIPPLE 
estimated satelite 

volume (m3)

Rayleigh’s 
analytical 

volume (m3)

Error
Estimate

(Rayleigh)
SLIC(coarse mesh) 2.02E-08 6.17E-06 100%

PLIC(coarse mesh) 3.19E-06 6.17E-06 48%

SLIC(refined mesh) 3.79E-06 6.17E-06 39%
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A comparison summary of the PLIC and SLIC methods are shown in Figure 6.4. 

The SLIC method applied on a refined mesh is likely the closest to the actual 

phenomenon than either the PLIC or the SLIC applied on a coarse mesh. As mentioned 

previously, the refined mesh enables resolution of higher harmonics. However, 

additional computational run-time time is required for the SLIC calculation on a refined 

mesh. A trade-off exists between resolving higher harmonics within the simulation at the 

expense of increased computational run time required for greater mesh density. The goal 

was to minimize computing time while improving the interface tracking algorithm. Thus, 

the PLIC method was implemented using a coarse mesh.

I 1600 -

1400 -

77 1200  -
8
^  1000 -

! E
I H 800 -

c
i  od 600
| g  I
I & 400 ̂

200  -  

0 -

PLIC vs. SLIC Capillary Jet Break-up Test Case
comparison with Rayleigh's analytical prediction

120%

100% E
80% t

w
D

60% £J3
O
>

40% &

20% (3
C/D

0%
SLIC(coarse) PLIC(coarse) SLIC(refined)

A CPU Run TimefY 1 ) #  Est. Satellite Volume Error(Y2)
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6.2 Ravleigh-Tavlor Test Case

A Rayleigh-Taylor (RT) instability test case was used to validate the addition of 

the variable density, two-fluid model to the original RIPPLE source code. As a fluid of 

density, pi is supported against gravity by a lighter, fluid of density, pi, a Rayleigh- 

Taylor instability develops perturbations that grow exponentially in time. The following 

test case predicts the evolution of the two-dimensional Rayleigh-Taylor instability for 

several different surface tension coefficients.

The RT test case is one of the classical instabilities used in fundamental fluid 

mechanics. The buoyancy driven flow is also one of the most difficult to accurately 

simulate. It is the prototype problem for fluid mixing induced by unstable stratification, 

and is of similar importance as the KH instability, which is fluid mixing induced by shear 

flow. This fundamental test case has been the focus of numerous past studies starting 

with Rayleigh (1935) and most recently those studies completed by Tryggvason and 

Unverdi (1992).

An example of a RT instability is shown in Figure 6.5, which depicts buoyant 

thermals rising from a heated surface. The results show mushroom shaped plumes rising 

periodically from a heated copper plate. The plumes are made visible by an 

electromechanical technique using thymol blue.
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Figure 6.5. Rayleigh Taylor instability. Buoyant thermals rising from a heated plate. 
Image taken from An Album of Fluid Motion (Van Dyke, 1998). Experiment completed

by Sparrow, Husar and Goldstein, 1970.

The RT instability possesses both linear and nonlinear phases of growth. The 

calculated linear growth rate is compared with Chandrasekhar’s (1961) analytical 

predictions.

The RT instability develops perturbations of the interface that grow exponentially 

in time as Qx^(nt) for small attitudes. Given a known surface tension coefficient, the 

growth rate n is given by

n 1 =kg A ,  ^
g(Pi + P 2 )

(6.2)
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where k is the wavenumber of the perturbation, g is the gravitational acceleration 

perpendicular to the interface, and At is the Atwood number defined as

4  = Px - ■ Pl (6.3)
P \  +  P i

A critical surface tension coefficient (crc) can be calculated from equation 7.2 by setting 

the growth rate («) to zero. Referring to the work of Daily (1969), a stability parameter 

(I) can be defined as

7 = cr/' (6.4)

For values of 7>1, n becomes imaginary causing the interface to oscillate. Following the 

work of Brackbill et. al. (1992), the time and velocity are expressed in units of rand gr, 

respectively, where r is  the RT growth time n 1 for o=0. The Atwood number is 0.6. 

The instability is initiated with a perturbation of the form 0.035cos(Æx) given to the 

vertical velocity component at the interface. The wavenumber {k) is set to 5/3. Surface 

tension varies between 0 and 12 N/m. The numerical computations were performed on a 

30 x 90 mesh.
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The RT instability test case examines the accuracy of the two fluid CSF model 

(Brackbill et. al. 1992). A comparison of the numerical and theoretical results show that 

becomes unstable fo r/> l. If the interface is to remain stable, the surface tension force 

must directly balance the gravitational acceleration.

The results of the RT test case simulations are shown in Figure 6.6. The 

development of the interface is shown at a time of 6.25 for a stability parameter {I) equal 

to 0, 0.19, 0.38, 0.57, 0.75, 0.94, 1.0 and 1.13. Examining Figure 6.6 indicates a decrease 

in interface deformation with increasing surface tension between the two fluids. For a 

stability parameter of 7=1, the surface tension directly balances the gravitational 

acceleration and there is no movement of the interface. For /> !, the growth rate becomes 

unstable, due to the imaginary root, and the initial surface perturbation begins to oscillate. 

These results are in agreement with those completed by Brackbill et. al. (1992) and Daily 

(1969).



Figure 6.6. Rayleigh-Taylor Instability Test Case.
Interface between fluids, defined as the VOF contour, shown at a time of 6.25 for a 

stability parameter (I) equal to (A) 0, (B) 0.19, (C) 0.38, (D) 0.57, (E) 0.75, (F) 0.94, (G)
1.0 and (H) 1.13.



The theoretical growth rate as determined by Chandrasekhar, (1961) has also been 

compared to the numerical growth rate and is plotted as a function of the stability 

parameter, I, as shown in Figure 6.7.
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Figure 6.7 Theoretical vs. numerical instability growth rate comparison.

The numerically computed linear growth rate, is nonzero fo r/ >  1. This result is 

consistent with that of Brackbill et. al. 1992, who insists that mass diffusion is the cause 

for the unstable flow prior to /  > 1. Other results not shown indicate how this may occur. 

There is a persistent circulating flow, even before /  > 1, which may cause numerical
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diffusion in the calculation of conductive transport term (Brackbill et. al. 1992). 

Diffusion of the heavier fluid downward and buoyancy of the lighter fluid upward 

provide a source of free energy that drives flow, just as bulk motion of the heavier fluid 

drives to flow in the RT instability in the absence of diffusion (Brackbill et. al. 1992).

6.3 Pipe Flow Test Case

A comprehensive characterization of the shear stress interaction occurring at the 

fluid interface has been attained with the addition of the complete viscous stress tensor 

and variable viscosity model discussed in Section 5.3. The addition of the modified 9- 

point pressure template used in the ICCG routine (see Appendix A, section A.7) has also 

been integrated and provides a more robust method for determining the pressure field 

over the two fluid domain. Initially a two fluid, laminar pipe flow test case was used to 

evaluate the viscous stress tensor and PPE modifications. The pipe flow test case was 

chosen due to its well-founded analytical solution which fully describes the velocity 

profile of two dissimilar fluids along a pipe cross section (Schlichting, 1951). However, 

difficulties due to the no-slip, wall condition at the right domain boundary led to 

erroneous results, which are unexplainable at this time (see Appendix C).

The ultimate goal of the research is to simulate the extrusion of a glass filament 

similar to that which occurs in the process of discontinuous fiber manufacturing. The 

fiber simulations, which are similar to the two fluid pipe flow, did not include a no-slip 

boundary along the right edge of the computational domain. Instead, the fiber
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simulations employ a free-slip condition on both the left and right boundaries. Thus, an 

additional test case was completed that compared the analytical and numerical profiles 

for ffee-slip boundaries with two fluids with identical fluid properties. The result is 

shown in Figure 6.8.
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Figure 6.8 Two fluid, ffee-slip boundary test case.

The numerical and analytical results compare very well, producing a total error of less 

than 3%.

Although there is measurable error associated with the two fluid pipe flow test 

case that employs a no-slip condition, acceptable results are attained from the two fluid
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pipe flow test case which employs a free-slip condition along the right boundary. 

Additional ffee-slip simulations were completed that demonstrate the code’s ability 

differentiate between two fluids with vastly different fluid properties. Density and 

viscosity ratios on the order of 20,000:1 and 25:1 were successfully modeled, which 

indicate that the newly modified code is capable of accurately simulating the glass 

extrusion process as it occurs in industry.

During the process of identifying potential sources of error in the two fluid pipe 

flow test case, another challenge was identified that required immediate attention. The 

modified CFD code attained converged solutions only with a residual that was much too 

large (on the order of 10'2). As the residual was decreased to an acceptable value (on the 

order of 10'8) pressure convergence failures occurred throughout the domain, ultimately 

terminating the simulation. The identification of the convergence problems led to the 

development of the new 9-point pressure stencil used in determining the pressure 

coefficients that are an integral part of the ICCG solution algorithm (see Section 5.4). 

Upon successful integration of the 9-point pressure stencil, the code achieved 

convergence with a pressure residual on the order of iff8. The robustness of the code 

was also improved, enabling simulations of density and viscosity ratios near 20,000:1 and 

25:1, respectively. However, the velocity deficit remained in the two fluid pipe flow test 

case.
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6.4 Static Droplet Test Case

In all interface tracking numerical schemes the development of parasitic surface 

currents occur, which result from numerical errors in the surface force calculation. These 

numerically induced errors can become a problem and may lead to physical 

impossibilities in the flow field. Following all modifications to the two-fluid, CSF 

model, a static droplet test case was implemented to examine the development of 

spurious surface currents between the original two-fluid source code and the modified 

source code. A 30x30 computational mesh was used with a density ratio of 2:1 and a 

viscosity ratio of 10:1. The coefficient of surface tension was approximately 0.07 N/m.

The ideal solution should result in a velocity field that is identically zero, but the 

development of spurious surface currents develop in both cases. The growth of total 

kinetic energy (TKE) over the entire domain is used to measure the growth of spurious 

surface currents. The total TKE was normalized using the surface tension coefficient and 

the droplet diameter (ad2).



128

A

B

Figure 6.9 Two-fluid, variable viscosity static droplet test. (A) original CSF model (B) 
modified CSF model, computational run-time, t=10.0 (n)
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Figure 6.9 depicts the two CSF model comparison. Notice in 6.9(A) that the 

surface currents are somewhat larger in magnitude than those shown in 6.9(B). As a 

result the growth of the velocity field over the entire computational domain is much less. 

Figure 6.10 shows the growth of TKE for each CSF model.
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Figure 6.10 Growth of TKE versus time for a static droplet.

The growth of TKE in Figure 6.10 depicts the significant difference between the 

modified CSF and original model. Clearly, the modifications have improved the code's
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ability to decrease the propagation of numerical noise that may be introduced into the 

solution by surface tension forces.

6.5 Heat Transfer Test Cases

The addition of Johnson’s (2001) thermal model into RIPPLE, was verified, 

validated and tested using two different test cases. The integration of the thermal model 

enables the determination of two-dimensional conduction, convection and radiation. The 

first test case was identical to the nickel plate test case completed by the researchers 

during the course of their development. The duplication of this test case ensured that the 

thermal model as it exists in Johnson’s CFD code was properly integrated into the two 

fluid flow solver. The second test case ensured that the thermal solver accurately 

included all three modes of heat transfer (i.e. conduction, convection and radiation) in the 

two fluid model.

6.5.1 The Rectangular Plate

The verification test case used to ensure that the thermal model had been properly 

integrated into the two fluid RIPPLE model was the steady state heat transfer within a 

rectangular plate, which was identical to that completed by Johnson (2001).

Two-dimensional, steady state heat conduction in a rectangular plate with three 

sides at T1 and on side at T2 has an exact solution that is obtained by separation of 

variables (Incropera, 1990) and is given by
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^  n-\

r nxn^

C l  j

sin}^n(W — y  )tü/  Z]  ̂
sinh( nW n /  L )

(6 5)

where G=(T-T1)/(T2-T1)

The analytical solution is compared to the numerical simulation in the particular 

case of nickel with L=W=5mm, T1 =1900 K  and T2=1800 K  (in the simulation the initial 

temperature was chosen to equal Tl). Figure 6.11 depicts the analytical and numerical 

results, which where identical to those obtained by Johnson (2001). All data was 

gathered at a computational finish time of 1.5 seconds.
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Figure 6.11. Johnson (2001) analytical and numerical nickel plate temperature contour
test case results.

6.5.2 The Glass Fiber

In addition to the nickel plate test case that examined only conduction, a glass 

fiber simulation was completed using the newly modified fluid/thermal solver, which 

included conduction, convection and radiation heat transfer modes. The simulation 

modeled the shear interaction between a molten glass filament and a high-speed air jet. 

The diameter and length of the glass filament were 400 microns and 1 mm, respectively. 

As shown in Figure 6.12, the temperature of the glass melt entering the die was 1500 K.
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The temperature of the high-speed air jet was 1300 K. The inlet temperature within each 

jet obstacle remained constant throughout the simulation, which explains the uniform 

inlet temperature shown near the bottom of Figure 6.13(B). The softening temperature of 

the glass was 1260 K and the density and viscosity ratios were 10:1. The glass surface 

tension coefficient was 0.03 N/m and the gravity vector was present in the axial (z-axis) 

direction. The inlet velocities of the glass and air flow were 20 m/sec and 400 m/sec, 

respectively. The specific heat of the glass and air was 1256 J/kg-K and 1140 J/kg-K and 

the thermal conductivity and emissivity of the glass were 200 W/m-K and 0.8.

The air/fiber simulation results are shown in Figure 6.13. Figure 6.13(A) depicts 

the VOF contour of the attenuated glass filament. Figure 6.13(B) shows the temperature 

contour of the fiber due to conduction, convection and radiation heat transfer. The 

numerical results of Figure 6.13, indicate the fiber quickly assumes the temperature of the 

surrounding air due to all three modes of heat transfer. As the simulation progresses, the 

temperature of the fiber assumes the temperature of the surrounding air. The numerical 

results show a good comparison to those predicted by the analytical solution for the radial 

and axial temperature distributions within the filament. The Heisler-Grober charts 

predict a constant radial temperature distribution within the fiber. Using an approximate 

solution to predict the temperature distribution within a cylindrical fin in cross flow 

indicates a decrease in axial temperature along the axis of the fin or fiber in this case. 

However, the temperature gradient predicted from the cylindrical fin estimate is less than
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A  B

Figure 6.13 Glass fiber thermal test case results, (A) VOF contour, (B) temperature 
contour (degree K) and heat flux vector plot. Conduction, convection and radiation taken 

at a computational run-time of 4.0e"6 seconds.

6.6 Industrial Process Simulations

The purpose of the investigation into the process of discontinuous glass fiber 

manufacturing was to characterize the fundamental shear air/fiber interaction through 

detailed experimental measurements and numerical simulations. The air/fiber interaction.
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The shear air/fiber interaction that exists during the process of discontinuous glass 

fiber manufacturing occurs on both macro and micro scales. The experimental drag force 

measurements and dynamic analysis of the glass fiber examined the effect of the integral 

scales of the air turbulence (i.e. the macro-scale interaction). The force transducer 

characterized a global drag force over the entire length of the glass fiber. The drag force 

measurements also included the oscillations (flapping) of the fiber tip due to fluctuations 

of the turbulent air flow. On the contrary, the numerical simulations have targeted the 

localized micro-scale, shear interaction between the molten glass filament and the high­

speed air jet. The numerical simulations completed herein are the first attempts toward 

applying a specialized CFD code to simulate the shear interaction between two dissimilar 

fluids comparable to that occurring in the process of discontinuous glass fiber 

manufacturing. Both experimental and numerical techniques were applied to develop the 

most complete characterization of the air/fiber interaction known to date.

The following is a summary of the air/fiber test cases simulated using VzJS-

FLOW.

1. Industrial Process Test Case simulated the maximum or worst case fiber 

production input parameters and air/glass material property ratios determined 

at the critical melt temperature of glass.

2. Test Cases A, B and C examined influence of air/fiber momentum ratio on 

fiber attenuation.
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3. Test Case D examined the influence of increased drag force on fiber 

attenuation by substantially increasing the air jet velocity.

4. Test Case E examined the influence of an additional body force that 

characterized the tangential centrifugal acceleration of the glass fiber.

5. Test Case F examined the cumulative effect of increased drag and body forces 

on fiber attenuation.

The boundary conditions of the air/fiber simulation are shown in Figure 6.15. A 

free-slip condition was implemented along the centerline of the glass filament to exploit 

the symmetry of the glass fiber. A free-slip condition was applied to the right boundary, 

which indicates an infinite air domain, and a continuous outflow condition and inlet 

air/glass jets were applied to the top and bottom boundaries, respectively. The 

computational mesh density varied between 5,000 and 10,000 cells with a radial and axial 

resolution of 20 microns, which corresponds to a fiber diameter of 400 microns and 

filament lengths of 5 mm and 10 mm. The inlet temperature of the molten glass and 

high-speed air jet were 1500 K and 1300 K, respectively. The temperature of the 

surround process environment was assumed to be 800 K and the softening temperature of 

the glass was 1260 K. The conductivity (&) and specific heat (Cp) of the glass were 2.0 

W/m-K and 1256 J/kg-K, respectively. In each air/fiber simulation the smoothing length 

(h), required by the CSF model, was two and one-half times the minimum cell size and 

the associated smoothing length error (Ah) was 10% of the smoothing length.



Continuous
Outflow

Initial fluid 
interface

Axis o f  
Symmetry 
(free-slip)
dT/dr=0

(free-slip)

GLASS AiR^y

Inletjets

t
Vfiber

Figure 6.15. Air/glass simulation input boundary conditions
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6.6.1 Industrial Process Test Case

Table 6.3 summarizes the “worst” case input parameters used in the production of 

discontinuous fibers made from typical E-glass. A critical factor in glass manufacturing 

is the dependence of glass viscosity on temperature, as shown in Figure 6.16. Although 

glass is amorphous and does not solidify from a liquid to a solid, the terms will be used to 

describe the fluid state at the critical softening temperature of the glass.
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Figure 6.16 Temperature dependent glass kinematic viscosity.
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Initial estimates of Reynolds number (Ref/=1.9), based on the worst case 

parameters, indicate that the glass flow is within the creeping flow regime, while the 

high-speed air flow remains laminar (ite<f=1280). Creeping flow occurs when Red « 1 ,  

however the transition occurs over a range of Reynolds numbers and the effects are most 

likely to occur well before the specified limit. Creeping flow is characterized by a 

negligible pressure gradient due to decreased convective acceleration, thus advection and 

pressure are neglected in the momentum equations and viscous forces dominate the flow. 

V/S-FLOW, which does not compensate for creeping flow, may produce erroneous 

results within the creeping flow regime (Kothe, 1999). CFD analyses often requires the 

use of several specialized codes to address specific creeping and compressible flow 

regimes. In general, a compressible flow can not be accurately modeled using a CFD 

code developed to simulate incompressible or creeping flows.

In addition to the difficulties associated with simulating a creeping flow, further 

problems may arise due to the large density, velocity and viscosity ratios, which occur on 

the micro-scale of the fiber. Although density and viscosity ratios of 20,000:1 and 25:1 

have been successfully modeled on larger scales using VzJ S-FLOW (see Section 6.3), the 

application of such extreme gradients in a micro-scale environment may provide 

excessive resistance to the flow. Resolving the large gradients could also result in 

convergence failures, time step constraints and similar errors.
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Table 6.3 Industrial Process Input Parameters

density7
(kg/m3)

viscosity
(m2/sec)

velocity
(m/sec)

momentum 
(kg-m/sec)

air
T=1000 K

0.34 1.3E-04 400 5.4E-08

glass
T=1260 K

2633 4.1E-03 20 2.1E-05

air/glass
ratio

1.3e-4:l 0.03:1 20:1 0.003:1

The fluid properties shown in Table 6.3 were determined at the critical transition 

temperature of the generic E-glass used throughout the numerical analysis. The 

simulation was completed on a 20x250 mesh, corresponding to a fiber diameter and 

length of 400 microns and 5 mm, respectively. The surface tension coefficient was 0.3 

N/m and the gravity vector was included in axial direction. The results of the simulation 

are shown in Figure 6.18.

The glass filament presented no indications of necking, but rather exhibited a 

behavior similar to the Kelvin-Helmholtz instability (KH), which is characterized by the 

phenomenon of breaking waves as shown in Figure 6.17. The figure shows the 

experimental results of the KH instability of superposed streams (Dimotakis and 

Roshko). The upper stream of water is moving to the right faster than the lower one, 

which contains the dye that fluoresces under illumination by a vertical sheet of laser light.
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Figure 6.17 Kelvin-Helmholtz instability. Image taken from An Album of Fluid Motion 
(Van Dyke, 1998). Experiment completed by Dimotakis and Roshko.

The inability of the fiber to attenuate can be attributed to several factors, mainly 

Vf?S-FLOW’s inability to accurately simulate creeping flows. Recall that the Reynolds 

number is approximately 1.9, which indicates the onset of creeping flow. The 

momentum of the air/fiber system also provides an indication of potential necking within 

the glass filament. The momentum of the air and glass were estimated using the average 

inlet velocity and mass of each fluid within a single computational cell. As shown in 

Table 6.3, the momentum of the glass is greater than that of the air, which results in the
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glass dominating the flow field. Alternatively, the velocity of the high-speed air jet may 

not have been large enough to produce the drag force necessary to produce fiber 

attenuation. The surface area of the fiber, which is directly related to fiber length, may 

also have not been large enough to produced the desired drag force to promote the onset 

of necking. A potential solution would be to increase the length of the fiber, which 

would increase the effective surface area and resulting drag force at the expense of 

additional computational run-time. Instead, the material properties and velocity of the 

high-speed air jet were modified to induce fiber necking, while not increasing the length 

of the fiber and corresponding simulation run-time.
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well as the inlet velocities of the two fluids. However, the viscosity and density of the air 

and glass were modified, as shown in Table 6.4.

Table 6.4 Test Case A Input Parameters.

density
(kg/m3)

viscosity
(m2/sec)

velocity
(m/sec)

momentum
(kg-m/sec)

air 10 1.0E-04 400 1.6E-06

glass 100 1.0E-03 20 8.0E-07

air/glass
ratio

0.1:1 0.1:1 20:1 2:1

In general, V/S-FLOW is capable of simulating incompressible two fluid flows 

with density and viscosity ratios of 20,000:1 and 25:1, respectively. However, the large 

ratios applied to the micro-scale of the fiber resulted in increased computational run-time 

as well as providing additional difficulties (such as increased flow resistance) to the CFD 

model. For simplicity, as well as the development of a baseline for future air/fiber 

simulations, the density and viscosity ratios were decreased to 10:1. The magnitude of 

the glass kinematic viscosity was chosen to ensure laminar flow in each of the 

simulations test cases. The density was arbitrarily chosen. The magnitude of density and 

viscosity in the industrial process simulation were approximately equal to those of a glass 

approaching its softening point in industrial fiberizing processes. However, the severity 

of the density and viscosity gradients and the surface tension coefficient presented
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excessive resistance within the flow field, which increases with decreasing temperature of 

the glass. Thus, the magnitudes of the density and viscosity were decreased so that the 

focus of the simulations remained on resolving the shear interaction between the two 

fluids and the phenomenon of necking, rather than resolving the extreme gradients on the 

micro-scale of the glass filament.

The remainder of the test cases presented herein included a gravity vector in the 

axial (or positive z-axis) and a surface tension coefficient of 0.03 N/m. The surface 

tension coefficient was also decreased by a factor of ten from the industrial process 

simulation. The resulting Reynolds number {Red) of the glass based on the modified 

properties of Table 6.4 was 8.0, which indicates laminar but not creeping flow. The high­

speed air jet remained laminar. The input temperatures of the air/fiber system remained 

unchanged, as well as the computational mesh. The diameter and length of the glass 

filament were 400 microns and 5 mm, respectively.
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jet and the molten glass filament. However, the mechanism attributed to break-up of the 

VOF field cannot be identified with the current code. The break-up phenomenon of the 

glass filament requires further characterization that should be completed on a more 

refined mesh to resolve the smallest localized scales of motion that occur at the interface 

between the two fluids. VzJS-FLOW should only be used to examine the shear interaction 

occurring at the interface and potential for attenuation and necking.

The momentum ratio provides a measure to access the potential for attenuation 

and necking between the two fluids in the simulation. In the industrial process 

simulation (see Table 6.3) the momentum of the glass was greater than that of the air, 

which indicated that the glass dominated the flow field. The air did not possess sufficient 

momentum to influence the propagation of the molten glass through the computational 

domain. In Test Case A (see Table 6.4) the air/glass momentum ratio was greater than 

one, indicating that the high-speed air jet dominated the flow field subsequently 

producing attenuation of the glass filament.

The temperature contour taken at 1.2e'5 seconds (corresponding to Figure 

6.24(C)) is shown in Figure 6.20. The numerical results indicate that the temperature of 

the glass fiber quickly approaches the temperature of the surrounding air. Theoretical 

solutions of the axial temperature distribution in a cylindrical fin in cross flow predict 

similar results (Incropera and DeWitt, 1990). However, radiation heat transfer was 

neglected in those predictions. In each of the following test cases, the thermal properties 

(i.e. temperature, conductivity, specific heat, etc.) of the air and glass remained
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unchanged. The temperature dependent glass viscosity is the most critical factor in the 

production of discontinuous fibers. The glass viscosity is also one of the key factors in 

developing a successful numerical simulation of the spinning process. As the glass 

viscosity increases due to decreases in temperature, the resistance to flow within the glass 

increases proportionally. The increase in viscosity as the glass approaches the critical 

softening temperature, results in creeping flow which VzJS-FLOW is unable to accurately 

model. Although there is a need to include the non-Newtonian behavior of the glass into 

a comprehensive CFD model, Vz'JS-FLOW is not equipped to resolve such interactions 

and is limited to the laminar/turbulent flows. The alternative is to increase the glass 

viscosity just enough to ensure laminar flow while minimizing the deviation from the 

material and process parameters implemented in the industrial spinning process. Since 

the fluid and thermal solver are de-coupled (see Section 6.5), the viscosity of the glass 

will remain constant. The temperature contours for each of the remaining simulations 

will also be omitted as the results indicate that the molten glass filament quickly assumes 

the temperature of the surrounding environment as the glass filament attenuates.
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Figure 6.20 Test Case A air/glass temperature (degrees K) contour at a computational
run-time of 1.2e° seconds.

6.6.3 Test Case B

The results of the first two test cases indicate that a decrease in the momentum of 

the air jet produces an instability similar to the KH instability that indicates potential



152

break-up of the glass filament without noticeable attenuation. In the Industrial Process 

Test Case the momentum of the air was less than that of the glass and the glass flow fell 

within the creeping flow regime, which may have biased the results. To further test the 

air/fiber momentum argument, the ratio was decreased from 2:1 of Test Case A to 0.2:1 

as shown in Table 6.5. The momentum of the air jet was decreased by decreasing the 

density of the air from 10 kg/m3 to lkg/m3. The simulation was completed on a 20x250 

computational grid with a resolution of 20 microns. The fiber diameter and length were 

400 microns and 5 mm, respectively. The surface tension coefficient was 0.03 N/m and 

the gravity vector was included in the simulation.

Table 6.5 Test Case B Input Parameters

density
(kg/m3)

viscosity
(m2/sec)

velocity
(m/sec)

momentum
(kg-m/sec)

air 1 1.0E-04 400 1.6E-07

glass 100 1.0E-03 20 8.0E-07

air/glass
ratio

0.01:1 0.1:1 20:1 0.2:1

The results shown in Figure 6.21 coincide with the momentum prediction. If the 

air/glass ratio is less than one (i.e. the momentum of the air is less than the momentum of 

the glass) the glass dominates the flow field and attenuation of the filament is unlikely.
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6.6.4 Test Case C

To further test the momentum prediction, the density of the air was increased, 

while holding all other input parameters constant. The increase in the air/glass 

momentum ratio was 10 times greater than the momentum ratio of Test Case A. The 

input parameters of Test Case C are shown in Table 6.6.

Table 6.6 Test Case C Input Parameters

density
(kg/m3)

viscosity
(m2/sec)

velocity
(m/sec)

momentum
(kg-m/sec)

air 100 1.0E-04 400 1.6E-05

glass 100 1.0E-03 20 8.0E-07

air/glass
ratio

1:1 0.1:1 20:1 20:1

The results of the simulation are shown in Figure 6.22. The glass filament begins 

to attenuate and necking occurs slightly before that shown in Test Case A (see Figure 

6.19). A comparison of the results from Test Case A and C indicate that the onset of 

necking occurs slightly before that shown in Test Case A due to the increase in 

momentum of the air jet.
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attenuation. Although the CFD model is capable of predicting attenuation and necking of 

the glass filament, further characterization is required to determine the exact break-up 

mechanism of the filament. The portion of the simulation results that indicate potential 

break-up remain questionable. The model is capable of predicting the behavior of the 

glass filament from the inlet of the computational domain to the first point of potential 

break-up, but following that the model must be refined to accurately characterize the 

break-up phenomenon. Each previous test cases has provided valuable information for 

predicting attenuation of the glass filament, however the simulations do not specifically 

target the degree of attenuation and necking of the glass filament.

In practice, industrial rotar y spinning processes that operate under conditions 

similar to those listed in Table 6.3, produce fibers of various lengths and diameters. In 

this process the fibers are extruded from exit holes in the spinning disk sidewall, which 

vary in size from several hundred microns, resulting in attenuated fibers from 5 to 50 

microns. Although necking is present in several of the numerical test cases, it is not as 

severe as that seen in industrial fiberizers. The discrepancies may attributed to several 

factors, two of which will be examined in the following test cases. In industrial rotary 

spinning processes the fibers produced reach lengths nearing 0.05 meters. However, the 

numerical simulations examined the attenuation of 5 and 10mm fibers. The drag force 

acting over the length of fiber may not have been sufficient enough to produce the large 

attenuation and subsequent change in diameter as observed in industrial processes.

Several additional effects must be examined to produce the desired attenuation as it
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occurs in industry. Two primary contributions that are believed to promote fiber 

attenuation and necking are the integrated change in drag force over fiber length and the 

centrifugal acceleration of the fiber. Neither are included in the current model, however 

increasing the drag force (Ty) and adding a body force (iy ) due to centrifugal 

acceleration will determine the importance of each in the air/fiber model. The addition of 

the drag and body forces enables the simulation of much smaller glass filaments without 

increasing the computational domain and associated run-time associated with simulating 

a 0.05 meter fiber. The drag and body forces will be substantially modified by increasing 

the high-speed air jet velocity and adding an additional body force due to the centrifugal 

acceleration of the molten glass filament. Test Case D will examine the effect of 

increased air drag on the fiber by increasing the velocity of the air jet while holding all 

other model parameters constant. Test Case E will examine the effects of adding an 

additional body force due to the centrifugal acceleration of the glass filament while 

holding all other input parameters constant.

6.6.5 Test Case D

The fiber drag force (see equation 6.6) is a function of the surface area of the 

glass fiber, air density and velocity. The drag force can be increased by increasing the 

density of the air, the surface area of the glass fiber and/or the velocity of the air.

Holding the fiber diameter constant, an increase in surface area would require a longer 

length of fiber. However, an increase in fiber length occurs at the expense of additional
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computational run-time do to the associated increase in length of the computational 

domain. If the density of the air remains constant, the alternative to increasing the drag 

force is to increase the velocity of the high-speed air jet.

^  (6 .6)

The velocity of the ambient air as it passes through the high-speed air jet nozzle is 

characterized as choked flow. The temperature of the air is assumed to be approximately 

293 K, which corresponds to a maximum velocity of approximately 400 m/sec. If the air 

temperature were increased the maximum velocity of the high-speed air jet could 

theoretically approach 700 m/sec. If the air flow is choked, the velocity of the air jet 

cannot exceed 700 m/sec unless the orifice of the jet or the air temperature were 

increased. However, to examine the effects of air drag (i.e. by increasing air velocity) on 

the fiber the velocity of the air jet was increased to approximately 1000 m/sec to promote 

attenuation of the fiber. All other material properties remained constant and are given in 

Table 6.7.
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Table 6.7 Test Case D Input Parameters.

density
(kg/m3)

viscosity
(m2/sec)

velocity
(m/sec)

momentum
(kg-m/sec)

air 10 1.0E-04 1000 4.0E-06

glass 100 1.0E-03 20 8.0E-07

air/glass
ratio

0.1:1 0.1:1 50:1 5:1

The results of the simulation are shown in Figure 6.23. Increasing the air velocity 

from 400 m/sec to 1000 m/sec resulted in further necking of the glass filament due to the 

increased drag force. There was less break-up of the glass filament than in the previous 

test cases. Although, unlike the previous test cases which demonstrated fiber attenuation, 

small scale instabilities developed at the interface. The instabilities were similar to the 

KH instability, but may have been due to disturbances at the interface that developed 

during the initial phases of the test case. Regardless of the cause, the instabilities 

eventually dissipated over time.

The addition of the increase in drag force resulted in a final diameter of 

approximately 256 microns, which corresponded to a 36% decrease in diameter over 5 

mm. The simulation computational run-time was approximately 3600 seconds (1 hour).
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dt
+ v . (VV) = - —V/? + —V- r  + g + —F* +Fm 

F  F  FP
(6.7)

The average rotational speed of a 0.508 meter diameter disk in rotary spinning processes 

is approximately 2000 rpm (150 radian/sec), which results in a centrifugal tangential 

acceleration or equivalent body force given as

where œ is the rotational speed of the disk, rdisk is the radius of the disk and z is the axial 

position along the fiber. The results of the simulation are shown in Figure 7.24. It should 

be noted that initial simulations which included a body force equivalent to a rotation 

speed of 150 radian/sec did not produce significant attenuation of the 5 mm long fiber. 

Measurable attenuation of the glass filament was only achieved when the angular rotation 

of the disk was increased by a factor of 1000 and the glass filament length was increased 

to 10 mm. The addition of the body force is equivalent to pulling on the glass fiber with 

approximately 220 N. Although somewhat large, the addition of the body force identifies 

the importance of centrifugal acceleration in the attenuation process.

The input parameters of the test case are shown in Table 7.6. The density and 

viscosity ratio remained unchanged, as well as the inlet velocities of the air/fiber system.

F,=™ ~{rn* +z) (6.8)
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The test case was completed on a 20x500 grid with a resolution of 20 microns. The fiber 

diameter and length were 400 microns and 10 mm, respectively.

The results are shown in Figure 6.24. Aside from the initial surface perturbations 

that occurred following the initial phases of the simulation, the attenuation was 

continuous with few variations in the VOF data, as opposed to earlier test cases. After 

examining the necking of the glass filament, it may be hypothesized that the formation of 

discrete glass fibers are likely following repeated break-up and necking of the glass 

filament. On the contrary, this phenomenon may be attributed to the initial conditions of 

the simulation. The addition of the body force resulted in a final diameter of 

approximately 288 microns, which corresponds to a 28% decrease in diameter over 10 

mm. The simulation computational run-time was approximately 21,600 seconds (6 

hours).

Table 6.8 Test Case E Input Parameters

density
(kg/m3)

viscosity
(m'/sec)

velocity
(m/sec)

air 10 1.0E-04 400

glass 100 1.0E-03 20

air/glass
ratio

0.1:1 0.1:1 20:1
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respectively. The surface tension coefficient was 0.03 N/m and a gravity vector was 

included in the vertical direction.

Table 6.9 Test Case F Input Parameters

density
(kg/m3)

viscosity
(m2/sec)

velocity
(m/sec)

air 10 1.0E-04 1000

glass 100 1.0E-03 20

air/glass
ratio

0.1:1 0.1:1 50:1

The results of the test case are shown in Figure 6.25 and are similar to those 

reported in Test Case E. The glass filament experiences constant necking following 

initial interface perturbations which eventually dissipate with time. As discussed 

previously, the observed necking may be an artifact of the initial conditions of the 

simulation. The addition of both body and drag forces resulted in a final diameter of 

approximately 320 microns, which corresponds to a 20% decrease in diameter over 10 

mm. The computational run-time was approximately 16,200 seconds (4.5 hours).
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micro-scale, which ultimately provided excessive resistance to the flow held. Vf?S- 

FLOW is not capable of simulating creeping flows. Thus, the material properties and 

process parameters were modified to ensure laminar flow within the glass filament, while 

attempting to maintain model parameters similar to those that occur near the critical 

softening temperature of the glass filament.

Once the flow parameters were modified to ensure laminar flow of the molten 

glass, and the density and viscosity gradients were decreased, VzJ S-FLOW was able to 

identified localized regions of filament attenuation and break-up. The utility of Vz'JS- 

FLOW lies in its ability to characterize the shear air/fiber interaction on a micro-scale. 

Identifying the specific mechanisms attributed to filament break-up requires additional 

development on a much more refined scale in order to accurately resolve the break-up 

phenomenon.

The balance of momentum within the air/fiber system is critical to predicting fiber 

necking and attenuation. As Test Cases A, B and C indicate, air/glass momentum ratios 

greater than one ultimately lead to attenuation and necking of the molten glass filament. 

On the contrary, if the momentum of the glass is greater than that of the air, the glass will 

dominate the flow and a phenomenon similar to the Kelvin-Helmholtz instability will 

develop resulting in significant break-up of the VOF data on the mesh.

As the drag force of the fiber was increased the onset of necking and attenuation 

occurred earlier in the simulation. The increased drag force also produced a more stable 

interface with little break-up of the VOF data. The increased drag force resulted in small
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interface perturbations that eventually dissipated over time. The addition of the body 

force also produced continuous necking, more so than each of the previous simulations. 

The addition of both the increased drag and body force to the final test case produced a 

20% decrease in filament diameter over the length of 10 mm. The air/fiber system 

showed continuous necking and attenuation over the length of the fiber. Initial surface 

disturbances arose but dissipated over time. The addition of the drag and body forces 

may not have been required if the length of fiber simulated could have been increased to 

match the lengths of fibers produced in industry. The discontinuous glass fibers 

produced in industry approach 0.05 meters in length and vary in diameter from 5 to 50 

microns. The additional length of a 0.05 meter long fiber may have provided the 

additional surface area resulting in a drag force that was sufficient enough to achieve the 

degree of necking observed in industry, without the addition of the drag of body forces. 

On average a discontinuous glass fiber produced in industry experiences a 98 % decrease 

in diameter over a length of approximately 0.05 meters. The results of the test cases, 

which include the elevated drag and body forces, predicted an average of 25% decrease 

in fiber diameter over 10 mm.

The addition of the body force and increase in drag force examined the 

importance of each on attenuation and necking of the glass filament. The addition of 

other modules such as these may be required to accurately access filament attenuation, 

necking and break-up. Although there is a difference between the numerical results 

obtained from the fiber test cases and the results observed in industry, the numerical
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model development completed over the course of the research is the most comprehensive 

and extensive CFD code development completed to date that focuses on the shear 

air/fiber interaction similar to that occurring in industry. The results represent the first 

attempt toward a complete characterization of the shear air/fiber interaction of 

discontinuous fiber manufacturing.
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CHAPTER SEVEN 

CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions

As a result of the completed research, the shear air/fiber interaction that occurs 

during the process of discontinuous glass fiber manufacturing is better understood. An 

improved understanding of the fundamental mechanism attributed to fiber attenuation has 

been obtained through the use of detailed experimental drag force measurements and 

numerical model simulations.

The development of the novel piezoelectric force transducer enabled the drag 

force to be measured for discrete glass microfibers within a well characterized turbulent 

air flow. Although the force sensor measured the average drag force of glass fibers 

ranging from 10 to 50 microns in diameter and 0.2 to 0.4 meters in length, the sensor did 

not possess sufficient dynamic response or sensitivity to measure the smallest 

fluctuations in drag force.

The initial examination of the fiber natural frequency, using high-speed video, 

estimated the fundamental frequency of the fiber to be approximately one half of the 

natural frequency of the force transducer. However, further examination of the turbulent 

driving frequency using autocorrelation data and grid scaling estimates, indicated a
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higher frequency than expected. Given the natural frequency of the force sensor and the 

higher than expected driving frequency of the system, the frequency ratio (a/cOn) 

approached unity with increasing Reynolds number. The natural frequency of the force 

transducer could not be increased due to limitations of the piezoelectric film and the 

etching process. Thus, a dynamic correction factor was implemented which compensated 

for the large driving frequency and relatively low piezoelectric film frequency. The 

correction factor did compensate for frequency ratios approaching unity, however it also 

reduced the sensitivity of the device by collapsing the scatter in the force sensor data for a 

range of Reynolds numbers and fiber sizes.

The force sensor is suited to adequately measuring the small amplitude 

fluctuations of the fiber, but as the driving frequency approaches the natural frequency of 

the force sensor, the amplitude correction factor masks the measurement variations and 

reduces the data scatter. As a result, the force sensor is capable of measuring average 

trends of the drag force, but does not possess the desired frequency response or 

sensitivity to resolve the force differences between fibers of differing diameters, lengths 

and modulus.

The process of discontinuous glass fiber manufacturing is enormously complex. 

Only recently have efforts been made to develop two-dimensional, CFD models to 

simulate the process of fiber formation. Those models, however, neglect the air/fiber 

interaction, turbulent nature of the process and non-Newtonian behavior of the molten 

glass. Currently, there exists no commercially available CFD models that addresses these
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complexities. Developing a CFD code, such as V/S-FLOW, has provided the means to 

simulate the shear air/fiber interaction which is believed to play a critical role in the 

attenuation of molten glass filament in rotary spinning processes. The fundamental 

insight obtained as a result of the numerical simulations has greatly enhanced the 

understanding of industrial fiberizing, ultimately providing the necessary intuition to 

improve control of fiber diameter and length during production.

The CFD code V/S-FLOW, based on the one fluid version of RIPPLE, has been 

developed and tested. The code has simulated process scenarios similar to those that 

occur in industry. Although V/JS-FLOW is not capable of simulating creeping flows, 

simplifying assumptions were made that enabled the simulation of the shear air/fiber 

interaction similar to that believed to occur in industry. The CFD model initially 

included a fully integrated fluid/thermal solver, however Reynolds number restrictions 

due to elevated viscosities that occur as the glass rapidly cools, required the decoupling 

of the two modules. Although the fluid and thermal modules were decoupled, due to the 

non-Newtonian behavior of the glass, each provides valuable information regarding 

localized fiber attenuation.

Following the extensive numerical modifications detailed in Chapter 5, Vz'̂ S- 

FLOW was implemented to simulate several air/fiber test cases. The simulation test 

cases identified Vz"JS-FLOW’s creeping flow limitation. The dependence of fiber 

necking on the air/fiber momentum ratio was also examined. The results predict fiber 

attenuation for air/fiber momentum ratios greater than one and a behavior similar to the
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Kelvin-Helmholtz instability for air/fiber momentum ratios less than one. The 

development of the instability at the fluid interface ultimately leads to potential break-up 

of the filament without noticeable attenuation. The importance of drag and body forces 

were also examined in the development of the CFD model. Fibers in industry approach 

0.05 meters in length while those simulated in the industrial fiber test cases are less than 

10 mm. As a result, the addition of elevated drag and body forces were required to 

produce attenuation of the test case glass filaments. The addition of the drag and body 

forces may not have been required if fiber lengths similar to those that occur in industry 

could have been simulated in a reasonable amount of computational run-time. The 

additional surface area of the 0.05 meter fiber may have provided a sufficient increase in 

drag and body force to produce necking in the numerical model.

The results of the CFD simulations are the first known models which examine the 

shear air/fiber interaction on the micro-scale of the fiber. The insight gained from these 

simulations has provided the background needed to pursue the development of additional, 

more complex CFD models that will further explore the critical interactions that occur 

during discontinuous fiber manufacturing. The development and continued improvement 

of CFD models such as VzJS-FLOW is required if the phenomenon of discontinuous fiber 

spinning is to be well understood.
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7.2 Suggestions for Future Research

Although a great deal of valuable information has been gained from the 

investigation into the process of discontinuous glass fiber manufacturing, the research 

represents the first step toward achieving a complete understanding of the industrial 

process and critical interactions that are attributed to fiber attenuation and formation. To 

fully understand the spinning process, additional numerical models and experimental 

techniques must be developed.

The experimental techniques that are readily adaptable to the process of fiber 

spinning are extremely limited. The focus of experimental methods should be devoted to 

non-intrusive techniques such as laser doppler velocimetry (LDV) to measure fiber size, 

speed, orientation and possibly fiber strain rates. Simplified, experimental rotary 

spinners should be constructed that examine the extrusion of several glass filaments 

rather than the hundreds and thousands of fiber streams that are produced in industrial 

spinners. High-speed video imaging should be used to gain insight into the extrusion 

process. Heated wind tunnel experiments should be initiated to examine fiber attenuation 

and fracture. Process environments should be well characterized by taking temperature 

and velocity measurements within critical flow regions of the industrial process.

The concurrent development and improvement of V/S-FLOW must be pursued. 

The focus should remain on the further development of research codes such as V/JS- 

FLOW, allowing the researcher to target specific interactions and process scenarios
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unlike commercially available CFD codes which are ill-suited for specific research

topics. Specific CFD code development objectives should include the following.

■ The completion of a comprehensive parametric study that examines the influence of 

density, viscosity, velocity, temperature and geometric spinner configuration on fiber 

attenuation and necking.

■ The development of improved interface tracking algorithms which minimize interface 

diffusion in two fluid cases.

■ Apply or develop a three-dimensional CFD code to the process of discontinuous fiber 

spinning. It is likely that critical insight into the complex process of fiber formation 

exists in the third dimension.

■ Improve the CFD code’s ability to accurately model larger density and viscosity 

gradients on the micro-scale of the fiber.

■ Investigate adaptive mesh schemes that are able to rapidly adapt to the extreme axial

and radial attenuation of the fiber as it occurs in industrial processes.

■ Develop a fully integrated fluid/thermal solver that solves both fluid and energy 

equations in each fluid domain.

■ Develop a temperature dependent viscosity module that enables the simulation of 

creeping flow as the glass temperature reaches the critical softening temperature.

■ Optimize V/S-FLOW ’s data structure to increase CPU run-time efficiency.

■ Develop additional modules that characterize the turbulent and break-up mechanism 

within the fiber spinning process.
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Pursuing and implementing suggestions such as those listed above into current 

CFD code development will enable researchers to simulate the process of discontinuous 

glass fiber spinning in more detail than ever before. However, a significant amount of 

experimental and numerical development is required before the fundamental air/fiber 

interaction is well understood.
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APPENDIX A 

THE NUMERICAL SCHEME

RIPPLE is a program for modeling transient, two-dimensional, incompressible 

fluid flows with surface tension on free surfaces of general topology. The incompressible 

Navier-Stokes equations are solved using a finite difference solution on a Eulerian, 

rectilinear mesh in Cartesian or cylindrical coordinates. A two-dimensional 

axisymmetric coordinate was selected for this study. Volume-of-fluid (VOF) data on a 

mesh represents the free surface. Surface tension is modeled as a volume force derived 

from the continuum surface force (CSF) model. A two-step projection method is used for 

the incompressible fluid flow solutions, aided by an incomplete Cholesky conjugate 

gradient (ICCG) solution technique for the pressure Poisson equation (PPE). Momentum 

advection is estimated with a second order, up-wind method of Van Leer. The following 

sections succinctly discuss the model equations and numerical methods. Additional 

details may be found in the work completed by Kothe et. al. (1991,1998).
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A.1 Governing Equations

RIPPLE's numerical scheme is based on a finite difference solution to a coupled 

set of partial differential equations that govern all incompressible fluid flows. The basic 

governing equations of motion are the continuity equation, given as

V - E = 0 (A.l)

and the momentum equations, given as

dV - -  1 1 l _
—  + V - ( W )  =  Vp + - V - r  + g + — Fb (A.2)
a

where V is the fluid velocity, p  is the fluid density,/? the pressure, r  viscous stress tensor, 

Fb a body force, and g  the acceleration of gravity. The nonlinear advection term ( V-(VV)) 

is written in conservative form. In addition to the velocity and pressure, VOF data (i.e. 

fractional fluid volume defined as F) is used to describe the distribution of fluid in each 

computational cell. The advection of the VOF data on the mesh along with the velocity 

field is given as

— + v y f f '; = o 
&

(A.3)
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where F  is the scalar quantity referred to as the "color" function, which varies between 

zero and one.

The viscous stress tensor is given as

r  = 2juS

S — — 
2

(v f )+ (v f )7'

(A.4)

(A.5)

where S is the rate of strain tensor and fu is the coefficient of dynamic viscosity.

Figure A.l depicts a force balance about an element (dA) at the interface between 

fluids a and b.

n

dA

fluid 1

fluid
interface fluid 2

Figure A.l Force balance about fluid interface element (dA).
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Summation of the forces in the normal {n) and tangential (s) directions results in 

The exact surface stress boundary condition at the fluid free surface written in terms of 

the normal and tangential boundary conditions is given as

fu, -Pl)=(r2,™ -pj+oxr

l,nt T 2,nt + '
d a
ds

(A.7)

(A.8)

where cris the fluid surface tension coefficient,^ is the pressure, n is the unit normal to 

the surface and fc is the local free surface curvature.

In the original one fluid, RIPPLE source code, viscous effects are neglected in 

fluid 1 and equation (A.7) and the surface tension coefficient is assumed to be constant 

which reduces the normal stress boundary condition to Laplace's formula given by

p x- p 2 =<jK (A.9)

where the p r p i  is the surface tension induced pressure jump across the fluid interface. A 

re-formulation of Laplace's equation into a volume force is used in the continuum surface 

force (CSF) model developed by Brackbill et. al. (1992). In the CSF model, surface 

tension is reformulated as a volume force (body force) given as



187

(A. 10)

A.2 Finite Difference Scheme

RIPPLE implements a 2nd order, central difference approximation of the 

governing equations based on the Taylor series expansions of the flow variables, which is 

second order accurate in space and first order accurate in time. The two dimensional 

fluid domain in RIPPLE is divided into a rectilinear mesh made up of cells with a 

variable height and width. Each computational cell (see Figure 5.3) is centered at the 

point (xhyj) and the cell vertices are located at xi+i/2 ,yj+i/ 2  (top right), xz+i/2 ,yj-i/ 2  (bottom 

right), Xi-i/2 ,yj-i/2  (bottom left) andx 1.1/2 ^ + 1 ,7  (top left). Boundary conditions are applied to 

a single row of ghost cells that surround the fluid domain. Therefore, the real 

computational mesh begins with cell (2,2) and ends with the cell {ibar+i,jbar+i) where ibar 

and jbar are the number of real cells in the x  and y directions.

The finite difference method locates % and y  velocity components at cell face 

centers and pressure, density, viscosity and VOF functions at cell centers, as shown in 

Figure 5.3.

A staggered grid is used to offset pressures, densities, and velocities so that 

second-order, central differences can be implemented without allowing checker board or 

"zig-zag" pressure or velocity distributions within the flow field (Anderson, 1995). This 

also offsets mass and momentum control volumes with the mass control volume centered
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at the cell center and the x-momentum control volume centered at the cell edge x ,■+i/2,j 

also shown in Figure A.2.

i.j+l/2

j+1/2

F(i+l,j)

Figure A.2 Computational mesh for cell (i,j) and (i+lj). The x-momentum 
control volume is shown by a dashed line. Pressure and VOF data are cell centered. The 

x and y  velocities are located on the vertical and horizontal cell edges, respectively.

An example of the central difference scheme used to discretize the continuity 

equation is shown below for the continuity equation in two dimensions given as

W  3F ^
Ô X ÔX

(ATI)
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the resulting second order, central difference is given as

V M.i V -U  + , vi -y  = 0 (A.12)
2 Ax 2 Ay

A straight forward central difference discretization can be applied to the continuity 

equation, the same cannot be said for the Navier-Stokes equations, which present a much 

more formidable task. A central difference scheme is used throughout RIPPLE. The 

Navier-Stokes equations are characterized as mixed parabolic/elliptic, which results in a 

mixed implicit/explicit solution with the appropriate stability constraints (i.e. the time 

step, At, must be less than the viscous. Courant or surface tension time step limit) 

(Patankar, 1980 and Anderson, 1985).

A.3 The Two-Step Projection Method

The numerical solution of the continuity and momentum equations is based on a 

two-step projection method given by equation A. 13 and A. 14.

V' =V" +dt - V - ( P v y  + — V-r" + g ” +— F"
p" p ’

(A. 13)
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v n+1 = V* -  — -Vpn+X (A. 14)

V • V n+X = 0 (A. 15)

In the first step of the two-step projection method, the velocity field is calculated from 

incremental changes in the current velocity field (V”) due to advection, gravitational and 

viscous accelerations and body forces. In the second step, the velocity is projected into a 

zero divergence vector field. The two equations in the second step are combined into a 

single pressure Poisson equation (PPE) for the pressure given as

The resulting system of linear equations formulated from the finite difference expressions 

of the PPE is solved using the incomplete Cholesky conjugate gradient (ICCG) solution 

technique developed by Kershaw (1977). The ICCG method returns the time tn+/ 

pressure within each cell of the computational domain regardless if the cell represents 

fluid, void, interface or obstacle.

(A. 14)
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A.4 Time Integration

The solution method used by RIPPLE to determine the pressure and velocity field 

at time n+1, given all values are known at time n, is summarized in the following steps.

1. Determine (initialize) the position of the fluid interface.

2. Initialize the velocity and pressure fields and set the boundary conditions.

3. Evaluate the surface tension and fluid acceleration due to body forces.

4. Estimate new velocity field based on pressure at previous time step.

5. Solve the pressure Poisson equation (PPE), using the implicit (ICCG) method (see 

Section 5.1.7 Pressure Poisson Equation).

6. Update the velocity field with the new pressure field.

7. Advect the VOF data.

8. Apply boundary conditions.

9. Begin new cycle.

A.5 Momentum Advection

The non-linear advection term in equation A.2 is written in conservative or 

divergence form. RIPPLE can approximate the advection term either conservatively 

(V-(VV)) in the body of the fluid and nonconservatively (V(V-V)) near the surface or 

nonconservatively everywhere in the fluid. The method is conservative because the finite 

control volume used to develop the partial differential or integral equations is fixed in 

space. In the conservative approximation momentum can only enter or exit the control
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volume at the boundaries. In short, what goes in must come out. On the contrary, the 

nonconservative momentum approximation is developed from a control volume that 

moves with the fluid and implements cell centered flux velocities. The nonconservative 

estimate is more consistent with the VOF advection algorithm since both use cell face 

flux velocities to estimate momentum fluxes (see Figure A.2). The conservative 

momentum advection was implemented in each of the simulations completed during the 

course of the research.

A.6 Viscous Stress Tensor

The viscous stress tensor in equation 5.2 is given as

V  • r  =
dr.

ay
I + L A

r S ÔX

Ô T
+  ■

yy (A.17)

where Sis a. constant equal to 1 in cylindrical geometry and 0 in Cartesian geometry. In 

RIPPLE the viscous stresses are centered in the momentum control volumes, where t xx 

and Tyy are located at cell centers and Txy is located at cell vertices. The viscous stress 

tensor is evaluated using the velocity field at the previous time step, thus it is subject to a 

stability time step constraint.
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A.7 Pressure Poisson Equation

In RIPPLE, a two step projection method is used for the incompressible fluid flow 

solutions, aided by ICCG technique for the pressure Poisson equation (PPE). Recall the 

PPE equation shown in equation A. 18.

■V*
  (A.18)
a

The finite difference expression for this equation results in a system of linear equations, 

which are solved by the implicit ICCG solution technique. The diffusion operator on the 

left-hand side of equation A.l 8 is mapped into computational coordinates (£ 77). A 

matrix of geometric coefficients is constructed which includes the fluid density in each of 

the surrounding cells of an «-point matrix. RIPPLE uses a 9-point stencil to determine 

the new pressure field. The ICCG routine uses the geometric coefficients which include 

computational mesh and fluid density data along with the current pressure field at time C 

to return the time tn+/ pressure in each computational cell by matrix inversion. The ICCG 

routine is a quick and robust method that converges faster than other methods, such as a 

successive over-relaxation solution. The disadvantage of the ICCG routine is its memory 

requirements, which increase with the complexity of the geometric coefficient matrix [A/] 

(see section 5.4, equation 5.35). The disadvantage of increased memory is offset by the 

methods robustness and speed (Kothe et al  1991). The ICCG method has two

V
P

Vp n + \



advantages over point Gauss-Seidel, alternating direction implicit and over-relaxation 

methods. The first is that the algorithm is vectorizable with a vector length equal to the 

full dimension of the system of linear equations. Secondly, it can be applied for any 

solution of implicitly differenced, partial differential equations. The only restriction is 

that the matrix to be inverted must be symmetric and positive definite (Kershaw, 1978).

A.8 Free Surface

In RIPPLE the location of the fluid free surface is represented with VOF data on a 

mesh (Hirt and Nichols, 1981). In the VOF method, specifically the SLIC method used 

in RIPPLE, an accurate representation of the free surface is not needed. Unlike 

Lagrangian interface tracking algorithms (i.e. MAC and level set methods) which depend 

on an accurate reconstruction of the free surface (or interface in the two fluid case), 

Eulerian interface tracking algorithms (i.e. PLIC and SLIC methods) utilize the free 

surface to advect the fluid within each computational cell. As a result the Eulerian 

methods require a less accurate determination of the free surface than Lagrangian 

methods. The VOF function, F, is advected according to
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In the original version of RIPPLE, F  is equal to one in the fluid, zero in the void and 

0<F<1 at the free surface. The VOF data provides the only information regarding the 

free surface. The algorithm currently used is the Simple Linear Interface Calculation 

(SLIC), whereby vertical or horizontal lines approximate the free surface within a cell 

based on the appropriate volume fraction of fluid within each particular cell. The surface 

tension effects are not derived from a reconstruction of the free surface and the CSF 

model is not dependent on the type of interface reconstruction method. The free surface 

is only needed to advect the fluid within each computational cell.

A.9 Surface Tension

Surface tension is modeled as a localized volume force using the continuum 

surface force (CSF) method developed by Brackbill et. al. (1992). The interface between 

two fluids of different properties or "colors" is represented as a transition region of finite 

thickness, thus negating the need for an accurate reconstruction of a fluid's free surface. 

The "color" function within this transition region varies continuously. A force density at 

every point within the transition region is defined from the local free surface curvature of 

constant "color". The "color" function is nothing more than the VOF weighted average 

density of the fluid at each point within the computational domain. The utility of the CSF 

method is that it greatly simplifies the surface tension calculation by eliminating the need 

to apply a pressure boundary condition to an accurately reconstructed fluid free surface 

(or interface in the two fluid case). In addition, the CSF method enables accurate
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modeling of two and three dimensional flows driven by surface forces, and does not place 

any restrictions on the complexity of the fluid interfaces that have surface tension 

(Brackbill et. al. 1992). The CSF method is easy to implement computationally by 

calculating and applying an additional body force in the momentum equation.

Alternative reconstruction methods suffer from modeling topologically complex 

interfaces having surface tension, such as Lagrangian interface tracking algorithms that 

apply pressure boundary conditions to an accurately reconstructed free surface. The CSF 

method redefines surface tension as a continuous effect across an interface, rather than a 

boundary value condition on the interface, which can introduce numerical error due to the 

graininess of the reconstructed interface.

The surface stress boundary condition (both normal and tangential directions) at 

the fluid free surface (or fluid interface in the two fluid case) are shown in equations A.7 

and A.8. In the original RIPPLE, one fluid source code, viscous effects are neglected and 

the surface tension coefficient is assumed to be constant, thus reducing the stress 

boundary conditions to Laplace's equation, shown in equation A.9. The resulting 

pressure jump across the interface is proportional to the surface curvature (%). In a two 

fluid case, near the interface, where fluid 1 changes to fluid 2 discontinuously, a 

continuous transition replaces the pressure jump induced by surface tension. In the CSF 

model, surface tension contributes a surface pressure that is the normal force per unit 

interfacial area, which is also equivalent to a volume force given as
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Uni \  F J x ) d ix = \  F J x s)dS  (A.20)
/z—> 0  • 'A )

where h is the transition region width (see Figure A.3). The area integral is over the 

length AS of the interface surface that lies within the volume of integration AV.

computational

transition
region

Figure A.3 Transition region between fluids cl and c2. Interface normals are calculated 
from n= Vc/\ Vc\ at cell vertices within the interface region. Surface tension forces are 

calculated at cell centers from the divergence of n (Brackbill et. a l, 1991)
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The surface force (shown in equation A.21) is determined using the interface 

normal (n) calculated at each cell vertex within the transition region.

(A.21)

The surface tension force is nonzero only within the free surface transition region. The 

interface normal is calculated from gradients of the "color" function. The CSF model 

places normal vectors at the cell vertices and the curvature (%) at the cell centers, as 

shown in Figure A.4. The curvature is determined from divergence of the unit normal

r  = (A.23)

where the unit normal is given as

« = rr  (A.24)
\n\

and is derived from the unit vector

H = VF (A.25)

which is the gradient of the VOF function.
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n(i-l/2,j+1/2) n(i+l/2,j+1/2)

n(i+l/2,j-l/2)

fluid interface

n(i-l/2,j-l/2)

Figure A.4 Determination of the body force derived from the surface curvature (k ) at the 
cell center and unit normals at the cell vertices.
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Thus, surface tension volume force (body force) is calculated at the cell center by taking 

the gradient of F, given as

(A.26)

The volume force is added as a body force to the momentum equation.

The basic equations that govern all incompressible, viscous fluid flow have been 

presented and briefly discussed in the previous sections. Additional information 

regarding the implementation and solution of these equations as included in the one fluid 

version of RIPPLE may be found in Kothe et. al. (1991).
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APPENDIX B 

ERROR ANALYSIS

B .l Experimental Error

The method of Kline and McClintock (Doebelin, 1990) was used to estimate the 

uncertainty in the experimentally measured quantities. Table B.l illustrates the 

individual components included in the uncertainty analysis.

Table B.l. Uncertainty Analysis Parameters. 
Glass Fiber, dia.=27 pm, Length=0.2032 m, Red=l 1.5.

Parameter Error(A) Units
V (velocity) 0.001 m/sec
L (length) 0.0015 m

d (diameter) S.Oe'? m
to (frequency) 0.30 Hz

ton (nat. frequency) 0.30 Hz
k (stiffness) l.Oe"6 N/mm

Ç (damping coeff.) 0.001 dimensionless
A (amplitude) 0.0001 m

Possible sources of error may be attributed to resonant vibration of the airfoil 

structure and piezoelectric film. Resonance occurs when the measured (or fundamental) 

frequency of the fiber approaches the natural frequency of the measurement device. The
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natural frequency of the airfoil structure was measured to be approximately 900 Hz and 

the natural frequency of the piezoelectric force sensor is approximately 940 Hz. Both 

natural frequencies are near the fundamental frequency of the turbulent driving force, 

which may contribute to resonance of the system. Ideally, the natural frequency of the of 

the force sensor should be at least two to three times the driving frequency of the system.

The effects of temperature on the performance of the piezoelectric film are also of 

importance in determining potential sources of error and repeatability of the results.

Many of the properties of piezoelectric films change with excitation frequency and 

temperature. There is a small decay in the piezo film strain constant following long-term 

exposure to elevated temperatures. For example, after 10,000 days at 100°C the strain 

constant decreases less than 3%. After reaching a stabilizing temperature the material 

properties remain constant with time and decay only slightly. In the specific application 

of the dynamic force transducer, the effects of temperature are assumed to be negligible.

B.2 Numerical Error

Throughout each step of the numerical development the model was verified, 

validated and tested (VV&T) to minimize the effects of numerical error on the final 

result. Validation is substantiating that a model within its domain acceptably behaves 

with satisfactory accuracy within the study objectives (Balci, 1997). Model validation is 

building the right model. Verification transforms a model from a formulation into a 

model specification, such as converting a flowchart (heuristic) to a computer program
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(Balci, 1997). Verification deals with building the model right. Testing demonstrates 

that inaccuracies exist in the model. The goal of testing is to subject the model to 

analytical and/or experimental test data to gain agreement between that and the numerical 

results.

Inherent to all numerical models are the errors associated with modeling 

continuous quantities (i.e. the partial differential, integral or conservation equations) with 

discontinuous, discretized approximations. Regardless of the care or method applied in 

discretizing any continuous model there exists numerical error that is repeatedly 

generated over the course of a given calculation sequence, from one step to the next. The 

numerical solution to a set partial differential equations contains two types of errors, 

discretization and round-off errors (Anderson, 1995). Discretization solution errors are 

all the errors caused by conversion of the original partial differential, integral or 

conservation equations representing the physical process to algebraic equations and their 

computational solution (Oberkampf et. al. 1998). A discretization error is the difference 

between the analytical solution and the numerical approximation of the corresponding 

difference equation. More simply, the discretization error is the truncation error of the 

difference equation and any additional error introduced by the boundary conditions. 

Round-off error is the error introduced after a number of repetitive calculations have been 

completed to some significant figure, which is determined from the difference between 

the numerical solution and the exact solution of the difference equation.
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Oberkampf et. al. (1998) identifies several topics in CFD VV&T that must be 

considered as fundamental sources of error and inconsistency. The first are physical 

modeling error, which include the various assumptions used to simplify the formulation 

of the governing PDF’s. Similar attention should be given to the auxiliary physical 

models, such as the equations of state and thermodynamic properties. Often overlooked 

sources of error are the application of boundary conditions, which can have a significant 

impact on the numerical model.

Another common error in all CFD applications and a large contributor to 

inaccurate numerical solutions are grid resolution errors. The subject of mesh generation 

in CFD models has plague developers since the inception of CFD in the early 1960’s. 

Mesh generation is often limited by time and financial resources, neither of which 

encourages the use of mesh sensitivity studies that are often critical factors in CFD 

development and optimization.

The modified version of RIPPLE was subject to a wide range of test cases 

following the addition of each module. Although the CFD code was rigorously tested, 

complete simulation model testing is not possible. The purpose of testing is to increase 

model confidence and credibility of the numerical results. Balci (1997) provides and 

summarizes fifteen principles to VV&T all numerical models. However, successfully 

testing each sub-model does not imply overall model credibility and model credibility can 

only be claimed for the prescribed condition for which the model was tested (Balci,

1997).
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Most CFD solutions address significantly more complex mathematical issues than 

the analytical methods used in testing the numerical models. In general, the analytical 

solutions address a much narrower range of fluid dynamics than the computational 

methods. Thus, special attention must be used when selecting and applying an 

appropriate test case to verify and validate the numerical model.

Each of the sources of error, as discussed above, has been considered throughout the 

development of the CFD code RIPPLE. The appropriate test cases have been applied to 

VV&T the addition of each module to the RIPPLE source code. Both qualitative and 

quantitative analyses were completed for each test case to ensure numerical agreement 

with well-founded experimental and analytical data.
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APPENDIX C 

TWO FLUID PIPE FLOW TEST CASE

A comprehensive characterization of the shear stress interaction occurring at the 

fluid interface has been attained with the addition of the complete viscous stress tensor 

and variable viscosity model discussed in Section 5.3. The addition of the modified 9- 

point pressure template used in the ICCG routine (see Appendix A, section A.7) has also 

been integrated and provides a more robust method for determining the pressure field 

over the two fluid domain. A two fluid, laminar pipe flow test case was used to evaluate 

the viscous stress tensor and PPE modifications. The pipe flow test case was chosen due 

to its well-founded analytical solution which fully describes the velocity profile of two 

dissimilar fluids along a pipe cross section (Schlichting, 1951).

The pipe flow test case was modeled using a two-dimensional axisymmetric 

configuration as shown in Figure C. 1. The left axis was the axis of symmetry, with a 

ffee-slip boundary condition and the right axis was defined as rigid, no-slip to simulate a 

wall boundary condition. The top boundary of the computational domain was defined as 

continuous outflow. At the bottom boundary, an inlet jet provided a continuous source 

of fluid replenishment of fluids one and two. The inlet velocity of both fluids was 

identical to avoid the development of a mixing layer. The length of the computational
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domain was divided in half with fluid 2 on the right and fluid 1 on the left. The 

dimensions of the domain were chosen appropriately to ensure fully developed laminar 

flow. The density of each fluid was constant (1000 kg/m3) with no surface tension or 

gravity forces present in the simulations. The viscosity of the two fluids was 0.005 

nr/sec and 0.05 m2/sec. The resulting Reynolds number (Red) varied between 12 and 

120 for a pipe diameter of 0.4 meters and a length of 5.0 meters. The fully developed 

length was estimated to be between 0.24 and 2.4 meters depending on the Reynolds 

number. Initially two viscosity ratios were tested, 1:1 and 10:1, for mesh densities of 

10x200, 20x400 and 40x800. In addition to examining the influence of viscosity on fluid 

motion, a mesh density versus computational run-time comparison was also intended to 

be completed.

The first simulation was examined the development of the velocity profile for two 

fluids that possessed identical fluid properties, which is similar to simulating a one fluid 

pipe flow. The results of a one fluid pipe flow simulation and a two fluid pipe flow 

simulation with two identical, immiscible fluids should produce similar fully developed, 

laminar, parabolic velocity profiles. However, the results of the two fluid pipe flow test 

case were different enough to raise several questions about the development of the two 

fluid CFD model. The numerical and analytical results of the two fluid pipe flow test 

case differed by more than 50%.
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Continuous Outflow

Axis of Symmetry 
(free-slip)

Laminar Velocity Profile 
Density Ratio, 1:1

Laminar Velocity Profile 
Density Ratio, 10:1

Wall Boundary 
(no-slip)

Fluid #2

Fluid #1

Fluid Jet Inflow

Figure C.l. Illustration of the variable viscosity pipe flow test case.
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The results of the two fluid test case show the development of a parabolic velocity 

profile, due to the no-slip condition on the right wall. However, the velocity magnitude, 

particularly along the centerline is significantly less than that predicted by the analytical 

solution, as shown in Figure C.2.

%I
1.2

1.0

0.8

0.6

0.4

0.2 - f

0.0
0.000

Two Fluid Pipe Flow Test Case 
Analytical vs. Numerical Velocity Profiles

0.050 0.100 0.150

Radial Distance (meter)

i Anaytical 

I Numerical

0.200

Figure C.2 Analytical vs. numerical velocity profiles.

The resulting numerical data was approximately one half of what was expected 

from the analytical predication. The numerical profile looks as if the flow may not be 

fully developed, with the flatness of the curve occurring near the center of the
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computational domain. However, great care was taken to ensure that the correct input 

values were specified and that data was recorded within the fully developed flow region. 

Additional sources of error may be due to a possible overshoot in the velocity profile near 

the right (no-slip) boundary of the computational domain.

The mesh near the boundary may have also been too coarse to accurately resolve 

the velocity profile near the wall where the velocity gradients are the largest. Given the 

cylindrical geometry of the pipe, the mass flow is greater near the wall. Thus, an over­

estimate of the velocity profile at this point would result in a decrease in velocity 

magnitude near the centerline of the pipe due to mass conservation principles. An 

obstacle in all numerical computations is reconstructing a continuous quantity (in this 

case the parabolic velocity profile) with a discrete numerical quantity. Regardless of the 

density of the computational cells, a continuous profile is not attainable as graininess will 

always exists on the smallest scale. In an attempt to improve the estimate of the velocity 

profile near the no-slip wall, the mesh density was increased by a factor of four. The 

simulation results were identical, indicating no difference between the coarse and fine 

computational grids and the velocity deficit remained near the centerline of the pipe.

In addition to refining the mesh near the boundary, the velocity boundary 

conditions as well as the implementation of the viscous stress tensor were also re­

examined for potential inaccuracies. No obvious sources of error could be found that 

explain the velocity deficit along the centerline of the pipe.
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The velocity deficit and inability to conserve mass are shown in Figure C.3 and

C.4. Figure C.3 depicts the velocity profile downstream of the pipe inlet taken at a given 

instant in time. The fully developed region has not been reached, but the loss of mass 

occurs soon after the flow has entered the pipe. At each axial position, the mass flow was 

determined and is summarized in Figure C.4. Ideally the slope of the line in Figure C.4 

should be zero (i.e. indicating conservation of mass).

Evident from the simulation results, as the flow of the two fluids progresses from 

the pipe entrance, the fluid along the centerline begins to expand as if being pulled 

toward the right (no-slip) wall boundary, eventually causing the flow to plug.
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Two Fluid Pipe Flow Test Case 
Cross Sectional Velocity Profile Comparision
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Figure C.3 Two fluid velocity profile results. Fluid properties are identical, 
interface occurs at r=0.10 meter.
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Two Fluid Pipe Flow Test Case 
Mass Flowrate Estimate, Red=120,10x250 grid
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Figure C.4 Two fluid pipe flow mass flowrate summary.

One final check was made to verify that the problem could not be attributed to the 

addition of the second fluid. The original, one fluid, RIPPLE code was used to simulate a 

one fluid pipe flow problem identical to that described above. The result is shown in 

Figure C.5. As expected the numerical results are in good agreement with the analytical 

predictions. Once the results of the one fluid test case were examined, it was determined 

that the addition of the second fluid to the code or the boundary conditions associated 

with a no-slip condition at the pipe wall may be the source of the discrepancy.
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Pipe Flow Test Case 
Analytical vs. Numerical Velocity Profiles 

(one fluid, 20x500 (0.2m x 5.0m))
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Figure C.5 One fluid pipe flow test case velocity profile comparison.


