A Personnel Inventory Projection and Aging Model for Large Organizations Using Nonlinear Programming

ARTHUR LAKES LIBRARY COLORADO SCHOOL OF MINES GOLDEN, CO 80401

BY:

Raymond M. Bateman

ProQuest Number: 10796584

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10796584

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

A dissertation submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical and Computer Sciences.

Golden, Colorado Date <u>04</u>

Signed: Mion Raymond M! Ba

Un Approved

Dr. Ruth A. Maurer Dissertation Advisor

Golden, Colorado

Date: 7 April 1994_

Dr. Ardel J. Boes Head, Department of Mathematical and Computer Sciences

ABSTRACT

This dissertation is based on a project done for the U.S. Army Personnel Command (PERSCOM) in Alexandria, Virginia. With the recent downsizing of personnel in industry, human resource considerations have become obscured in the many issues of personnel hiring freezes, furloughs and layoffs. Employees are disenchanted and are taking a much more selfish approach when dealing with the employers, particularly in regard to employer practices.

The problem of attracting, retaining, and training a qualified workforce can be alleviated in the near to long term by addressing accession of new employees and the aging of the personnel inventory in a qualitative and quantitative way. With the model developed for this project, industry can more efficiently develop the employees they have, foster worker loyalty, and save money on personnel investment and training programs.

The model provides a non-linear approach to solving the problem of accessing and projecting the personnel inventory by skill and grade to meet requirements over time. The benefit to personnel managers is that they have an optimized accession plan and projected inventory to meet requirements.

iii

TABLE OF CONTENTS

ABSTRACT	•••	iii
TABLE OF CONTENTS		iv
LIST OF FIGURES	•••	vi
LIST OF APPENDICES		vii
ACKNOWLEDGMENTS	• •	viii
Chapter 1. INTRODUCTION		1
1.1 Background Information	•••	1 2
1.3 Special Considerations and Approaches		5
1.4 Research Results and Recommendations	•••	7
Chapter 2. MAJOR FUNCTIONS AND OBJECTIVES OF MODEL		9
2 .1 New Environment	• •	9
2.2 Shift in Personnel Management Philosophy		11
2.3 Impact of the Model	•••	11
2.4 Model Objectives		
Chapter 3. FUNDAMENTAL PRINCIPALS OF THE MODEL		16
3.1 Customer Satisfaction	•••	16
3.2 Systems View of the Model.	•••	17
3.3 Validity and Usefulness of the Model.	•••	19
3.4 Architecture of the Model	•••	20 23
3.6 Organizational Operation		23 24

	33
4.1 Model Focus	33
	33
4.3 Issues Relating to the Model	33
	34
4.5 Sensitivity Analysis of the Model	48
4.6 Optimized Accessions	49
	49
Chapter 5. U.S. ARMY WARRANT OFFICER CORPS EXAMPLE	51
5.1 Model Architecture	52
5.2 Model Variables	
5.3 Optimization of the Accession Plan	
5.4 Using the Generalized Reduced Gradient Method	
5.5 Building and Running the Model	
	74
	75
A +	75
· · · ·	76
	77
6.4 Recommendations for Improvement	78
Selected Bibliography	79

LIST OF FIGURES

3.1	Flowchart of Algorithm .	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	27
-----	--------------------------	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	----

LIST OF APPENDICES

Appendix A	Fiscal Year 1993 Base Inventory	80
Appendix B	Fiscal Year 1994 to 1998 Inventory Projections	82
Appendix C	Optimized Accession Plan	88

ACKNOWLEDGMENTS

It is with my sincerest thanks that I wish to acknowledge Dr. Ruth A. Maurer, Dr. Robert E. D. Woolsey, Professor William R. Astle, Dr. Warren A. Spaulding, and Dr. David E. Fletcher as the guiding force in my graduate education at the Colorado School of Mines. Their patience, encouragement, and exacting high standards have allowed me to learn far more than I imagined possible.

A special thanks to LTC Jack A. Jackson (USAF), LTC C. Neil Fulcher (USA), CW5 Julian "Butch" Davis (USA), CW5 William "Curt" Oldroyd (USA), and Mr. Erdem Ince (AGDT). Their friendship, assistance, and professionalism have helped me immeasurably as I negotiated the tangled halls of academia in pursuit of higher education and while I conducted my research at the U.S. Army Personnel Command (PERSCOM) in Alexandria, Virginia.

Most importantly, I wish to thank my wife Lauretta and our two daughters Katie and Julie for their unflappable support. Their love and understanding through the early mornings, late nights, difficult classes at The Colorado School of Mines and The Catholic University of America and life in the U.S. Army shows me again just how special they are.

Chapter 1

Introduction

1.1 Background Information

Attracting and retaining a qualified work force depends on more than salaries. A working environment in which an employee is positively motivated will prove to be industry's greatest asset. Industry, much like the U.S. Government, is attempting to attract and retain a highly qualified work force to meet the demands of an expanding global economy and new world order. Both institutions rely on marketing strategies that put their offerings in a positive light. Working against this initiative, however, is the recent downsizing of the number of personnel within many industries. Human resources have become obscured in the many issues of personnel hiring freezes, furloughs, and layoffs. The challenge lies in finding a way to motivate the employees who remain, while ensuring fairness and sensitivity towards those who are released. This reality becomes a particularly troublesome area when employees are released shortly after being acquired by a company.

The age old adage that said if you are skilled, devoted and loyal you will be rewarded with a good salary, benefits, promotions, and a retirement is rapidly eroding. Recent events in industry, such as layoffs, demotions, and early retirement programs, have produced employees who are disenchanted and who are taking a much more selfish approach when dealing with their employer. More and more often, employees are now looking out for themselves and questioning employer practices. Recognizing this, Citicorp, Apple Computer, the U.S. Government, and other large corporations have instituted programs to foster employee satisfaction¹.

The key to solving the problem of keeping a qualified work force lies in how the work force is accessed and the inventory aged over time. Some of the more critical variables in this process are employee continuation rates, survival rates, and promotion rates. Other key indicators that are closely monitored by employee organizations are increases in opportunity for jobs with greater responsibilities, authority, and educational advancement.

Accepting the fact that industry and the U.S. Government have released many people from their jobs by different means, whether fair or unfair, these same employers still need to hire new employees in order to maintain a credible and viable work force for the future. Their goal is to achieve a steady-state environment with the accessions, losses and the continuing education of employees.

1.2 Research and Literature Search

Until recently, human resource management has been a low priority for industry and government agencies. Workers' loyalty and

¹Soloman, Charlene M. 1992. The Loyalty Factor. <u>Personnel Journal</u> (01 September): 51.

commitment to their industry have been taken for granted². Recent downsizing initiatives and forced job reclassifications have been referred to as necessary to remain competitive economically. However, when not managed properly, the results can prove to be a financial and human disaster. Secretary of Labor Robert Reich stated it well when saying, "Over the long term, I believe firmly that when you cut payrolls, you end up reducing long term performance because employees are worried, demoralized and often you get rid of some of the most experienced people"³.

An additional problem facing some industries is the perception of being reactionary rather than proactive in respect to the company's well being. Immediately after employee layoffs, stock prices may temporarily increase in value⁴. This is a direct result of the company's slimming down. Two problems that the company is left with for the future are new employee retraining due to recent hiring or retraining, new technology upgrades, and the loyalty of the remaining work force due to these changes⁵. An example of this is the defense buildup of the 1980's, followed by a sharp downturn involving layoffs, and then the subsequent re-hiring of the laid off personnel as the companies took on new directions⁶.

²Goddard, Robert W. 1989. Workforce 2000. <u>Personnel Journal</u> (01 February): 64.

³Reich, Robert. 1994. Interview. <u>The Washington Post</u> (02 January): D-5. ⁴Managing Survivors. <u>Information Week (15 July 1991)</u>: 10.

⁵DEC Realigns Sales. <u>Industry Week</u> (03 August 1992): 15.

⁶Reich, Robert. 1994. Interview. The Washington Post (27 December): 3.

During the defense buildup of the 1980's, rapid expansion of the local economy in the Washington D.C. area was described as substantial. However, now that the Soviet Union has collapsed and the cold war is over, the U.S. military is getting smaller. This has had the effect of fewer weapons systems being needed, which translates to a reduced need for defense contractors, subcontractors, and subsequent spin-off work to related industries. The impact in human terms is hard to measure, but can be evaluated in terms of less office space leased and decreased or eliminated research and development projects. Indirectly, the impact is also felt by the local economy's infrastructure and by the decreased values of commercial and residential real estate and service jobs.

Historically, models were developed to age and access the U.S. Army's inventory, but at a great cost. The Officer Projected Aggregate Levels System (OPALS)⁷ model was developed in early '84 and the Officer Projection Specialty System (TOPSS)⁸ model came out in late '86 at a combined development cost of over 6 million dollars. The early models provided valuable information, but the personnel manager had problems managing the populations in the Primary Military Occupational Specialty (PMOS) level of detail. Assignment officers used tabulation paper and adding machines or calculators to access and project their inventory. Much was left to the assignment manager's intuition.

⁷ Officer Projected Aggregate Levels System. 1984. Developed by: General Research Corporation, Vienna, VA.

^{*}The Officer Projection Specialty System. 1986. Developed by: General Research Corporation, Vienna, VA.

1.3 Special Considerations and Approaches

Many industries have tried to have policies that were flexible and guaranteed no layoffs. However, with recent displacements of personnel from many long standing industries, a new breed of worker has evolved. The worker now tends to be skeptical, seeking job security, and looking for training that will make them invaluable. Additionally, past recruiting strategies now are costing companies much money. For example, in 1991 it cost \$5,409.00 to hire a new employee. By 1992 the cost had escalated to \$6,624.00 per employee, and it is estimated to be \$7,350.00 for a new hire in 1993⁹. Costs are for personnel consultants "head-hunters" who search for and locate people with those skills desired by the company. Costs for the years '91 to '93 haven't been adjusted for inflation and do not reflect discounted cash flow rate of return on investment.

There have been some innovative approaches to the problems of downsizing. One example is the Foxboro industrial plant¹⁰. As industrial and government jobs became technologically oriented, Foxboro employees took steps to improve themselves, their jobs, and their company. They accomplished this through job retraining with a concerted effort to hire qualified minority and female workers and place them in jobs matching their abilities. While similar initiatives have been

⁹<u>The Washington Post</u>. (02 January 1994): B-2.

¹⁰ Foxboro's World Class Workforce. 1993. <u>Modern Materials Handling</u> (01 January): 50.

taken by other industries, relatively few initiatives have been taken to ensure the success of a person at the time of hiring.

Recently, in 1992, the small legal firm of Winston and Strawn demonstrated that the downsizing coupled with new accessions could work¹¹. After laying off 25 partners, ten of whom were in their mid fifties or older, they still demonstrated that the cuts made good business sense and improved the firm's bottom line within several years. This venture was achieved by holding on to the goal of their strategic plan, rather than to the personalities of their employees. For this business, downsizing with new accessions was a success. Conversely, several large industries including General Motors and Caterpillar, have attempted to downsize with major problems resulting¹². Employees went on strike and malcontents remained within the group of employees who kept their jobs. The survivors have now been placed into an environment of risk aversion and non-tolerance of mistakes. In the U.S. Army this is commonly referred to as "zero defects". The impact on the employees' morale is formidable, especially when human resources are scarce. Reactions to the fairness of the layoffs and changes within the organization affect the employee and their ambitions. Questions surface as to job security, career prospects, and quality and quantity of responsibilities of the survivors.

¹¹Barker, Billy. 1993. <u>The American Lawyer</u> (01 June): 70.

¹² Personnel Journal 100. 1992. <u>Personnel Journal</u> (01 December): 47.

1.4 Research Results and Recommendations

The literature indicates that the problem of attracting and training a qualified work force can be adjusted in the mid to long term by addressing the problem of accession of new employees and the aging of the personnel inventory in a qualitative and quantitative way. This will ensure that management is candid with all employees in regard to hiring practices and addresses expectations as to personal growth and development. The company will then develop the employees they have, foster worker loyalty, and save money on personnel investment and training programs. The model developed here will provide personnel managers with the tools necessary to access the optimal number of employees annually, adjust the size and determine the skills required of the work force in the out years, age employees by skill utilizing statistical and analytical techniques, and, finally, transition the right number of workers for additional training to meet the demands of changing technology. To the employees this will be viewed as a system that will allow them to see their future prospects with the company and to gauge their expectations for advancement.

Robert Reich, Secretary of Labor, made this statement in an interview with the Washington Post: "The better route is to upgrade not only their technology, but also their employees¹³". The goal of this dissertation is to develop a model so that as industry develops its

¹³Reich, Robert. 1994. <u>The Washington Post:</u> (02 January): D-5.

strategic plan to incorporate new technologies, it will also have a usable tool to manage personnel and their training.

Chapter 2

Major Functions and Objectives of the Model

2.1 New Environment

Productivity and morale of employees are keys to any company's success. A motivated work force has helped the railroad industry recover from a bad economic position to one of higher productivity¹⁴. Employees who survive layoffs will have a greater impact on the future of the company in many different areas. Factors affecting the employees' performance are the handling of the layoff, perceptions of those laid off and retained, and changes within the organization. Difficult to measure, but very important to the company and especially the employee, are job security, career opportunity, new job responsibilities, and employee perceptions of what is fair. Steps taken before, during, and after the layoff have a direct impact on the productivity and morale of those who remain¹⁵. Steps to improve the circumstances of the layoff are difficult at best to address; however, a work force that is motivated and managed efficiently and fairly will help to improve morale and the perception of fairness.

Downsizing an organization is done to ensure profitability and survival but companies which conduct poorly planned layoffs may be doing irreversible damage by not managing personnel downsizing in a

¹⁴ People Power on Railroads. 1989. Modern Railroads (01 November): 16.

¹⁵ Brockner, Joel. 1992. <u>California Management Review</u> (Winter): 9.

systematic way¹⁶. Areas of concern are personnel with critical skills, workers who require specific training programs, and a work force that has a constant rate of attrition/hiring. Difficult to measure and sometimes not given sufficient credibility are the attitudes of remaining workers who will be key in making those "important" business decisions and remaining competent in their jobs. The overall risk, and a great concern to personnel managers, is an employee who will not make a decision because of a work atmosphere where there exists a "risk-averse work paralysis"¹⁷. When fear of doing the wrong thing interferes with normal decision making, the employees' reaction will be to delay a decision or pass it on to management. When this process is done, resources have been wasted and management may look for a scapegoat to place the blame, thus perpetuating the perception of risk-adverse work paralysis within the workforce.

As the American society has evolved, the impact of government regulations, workers' rights, and accountability of employers and employees' actions have done much to improve the work place. Workers today are better educated than at any other time in history. Today greater numbers are seeking a post high school education or are enrolling in trade schools. Though many prospective employees lack a formal education or specific trade skills, there are large number of personnel who have industry-specific skills that are in demand.

¹⁶ Rightsizing, Not Downsizing. 1992. <u>Industry Week</u> (03 August): 23.

¹⁷ Rightsizing, Not Downsizing. 1992. Industry Week (03 August): 14.

Technology has outpaced human ability in many areas, particularly the computer with its tremendous applications. In some cases the computer has displaced workers. In other cases, it has forced workers to need additional training. This training is an investment in the employee and in the company.

2.2 Shift in Personnel Management Philosophy

As technology improves, companies must meet the challenge of a new environment. There is a decreasing pool of qualified job applicants as jobs get more industry specific and depend to a lesser degree on a pure academic education. The goal for a personnel manager then becomes finding qualified applicants, training new employees for specific jobs within the company, and aging the company's personnel inventory. Accessing and aging the personnel inventory is the personnel manager's most difficult job in these difficult times. Training programs cost money while the company must remain economically competitive. Management is expecting the personnel manager to do all of this at the lowest possible cost while also providing a continuously improving work force. Taking advantage of current operations research tools, the model developed here will assist personnel managers in making better business decisions.

2.3 Impact of the Model

The model is an analytical algorithm that takes advantage of current resources available to the operations research analyst. The Excel

5.0 Spreadsheet package from Microsoft Corporation offers optimization and resource allocation methods. Some of the techniques available in the program are linear and non-linear optimization, sensitivity analysis, and minimization and maximization algorithms. There are other more elaborate and significantly more expensive software programs available, but the intent here is to be realistic and conservative with resources and to exploit readily available tools.

The model developed here helps personnel managers determine the best uses of scarce resources so that goals and objectives can be pursued realistically. In this case, the objective is to minimize the difference between personnel requirements and calculated end strength while aging the work force and ensuring that the proper number of personnel are accessed at the right time, given current constraints and history. Particular jobs and other factors are included for the personnel manager to consider. Examples would be transitioning employees with certain skills to skill-enhancing training required for promotion. Other considerations involved are factoring in different rates of personnel turnover such as personnel continuation rates and losses from retirement or promotion/non-promotion.

2.4 Model Objectives

The purpose of the model is to provide an automated means of accessing and aging a personnel inventory by skill and grade to meet an organizations personnel requirements over time. It can be used by

personnel managers to determine personnel development issues for the work force. Generally, the model is run at the end of each fiscal or calendar year, depending on how the company's reports are done. For this dissertation, it will be done by fiscal year (12 month period from 01 October to 30 September). Personnel requirements can then be determined and supported as needed. The model is actually a series of relationships that produces personnel management information for the personnel manager. The model consists of five principal components which can be tailored for specific circumstances within a company. Components used here are

- 1. Current inventory
- 2. Personnel requirements by job type in each of the forecasted years
- 3. Training program transition matrix (donor to receiver skills)
- 4. Promotion opportunity by job type
- 5. Rate statistics (continuation, losses, promotions, and training)

The model's output is a series of End of Fiscal Year projection reports that are used by the personnel manager. Reports are projections by job type of end of fiscal year inventory, accessions, and the number of personnel to train for advanced jobs.

Assumptions used in the model are company-specific; however, the model explained here and in the Warrant Officer Corps example given are based on the following assumptions.

- 1. There will be a need for job-specific technicians/skills in the future
- 2. Improvements in training and utilization can be achieved
- 3. Constrained resources are a factor
- 4. It is desirable to improve the capability of the work force
- 5. Hiring and training practices follow government guidelines, e.g. gender, minority, or handicap anti-discrimination policies
- 6. The company has a uniform promotion system

As is usually the case with mathematical modeling, for a specific case, modifications to assumptions may be necessary. Utilizing these assumptions, the model allows the personnel manager to incorporate personnel requirements into the company's strategic plans. In turn, clearly defined goals for facility and personnel improvements can be addressed in a manner that ensures overall fairness to the employee and the company.

2.5 Benefits Derived from the Model

Strength management of personnel is the first application to ensure a stable work force. Optimization of the model allows the personnel manager to have steady state accessions and training programs. Optimization and sensitivity analysis of the model given all constraints allows for detailed analysis and develops analytical values to predict changes and trends during the year. These trends, if unacceptable to management, allow the personnel managers to intercede at the right place and time. An example could be when personnel from a particular job skill are leaving the work force at a rate higher than average.

These tools, when combined with the company's strategic plan, ensure fairness and understanding. As stated in Chapter One, all personnel are affected by this model. Equity is ensured since marginal performers, who exist in every organization, can be eliminated by nonpromotion or left in a lower grade by their non-selection for advanced training or promotion.

These rules are easily modeled and provide the incentive for workers to work harder to achieve promotions and advanced training. The work force will eventually achieve steady state characteristics. For example steady state ensures there are no senior grade level overstrengths in the future. If the senior level population gets too large and voluntarily decides to retire, the larger number of retiring individuals cannot be replaced by the existing pool of mid-career personnel.

The steady state accession and aging model has been developed to meet the total personnel requirements for a company. Given the protective mechanisms and constraints from external and internal sources we have the tools to shape the work force. Shaping is done by grade level and job skill, and is requirements-based in order to build a competitive population and meet future needs. Using this model we can manage the work force quantitatively based on known and projected requirements.

Chapter 3 Fundamental Principles of the Model

In developing an algorithm to solve the problem presented in this dissertation, Banks and Carson's steps of a simulation study¹⁸ and Winston's simulation process¹⁹. Listed below are the four phases that were followed:

- 1. Problem formulation and setting of objective and overall design;
- 2. Model building, data collection, coding, verification, and validation;
- Experimental design, production runs and analysis, and additional runs; and
- 4. Documentation of program and implementation.

These phases allowed for a methodical and systematic means to quantify the problem.

3.1 Customer Satisfaction

For any model or application to be successful it must first satisfy the needs of three very different groups of people: top level managers who give guidance and direction, mid-level managers who will implement the model, and operations research analysts who will design and analyze the

¹⁸ Banks, Jerry and Carson, John S. II. 1984. <u>Discrete-Event System Simulation.</u> Englewood Cliffs, New Jersey 07632: Prentice-Hall, Inc.

¹⁹ Winston, Wayne L. 1987. <u>Operation Research: Applications and Algorithms</u>. Boston, Massachusetts 02116: Prindle, Weber & Schmidt Publishers.

specific model. All are concerned with the validity of the concept and application to current projects and practices. Each of the three groups will want something different from the modeling project. Top level management will be interested in the long term planning capability of the model. Mid-level managers are searching for specific information and recommendations that they can implement. Finally, the operations research analyst will need new and improved ways to look at modeling issues to enhance their research efforts.

The three groups differ in their knowledge of the material and in their basis of perception. Top management will be familiar with the concept but will want to know how the concepts are related and if the model will work in practice. Mid-level managers will have to be convinced that the top level managers are supportive while the operations research analysts must be satisfied that the model is valid.

3.2 Systems View of the Model

The operations research analyst, working with the personnel manager, is the key to the successful implementation of the model. Also important are top management's support and the personnel managers' thorough understanding of the concepts behind the model. The personnel managers' needs can be addressed in the model by allowing them the flexibility to adjust the model as the company's situation changes. For example, the personnel manager can adjust the budgeted end strength (maximum number of persons working at the end of a fiscal

year) in the out years as the company adjusts to the market demands for products or new equipment. These changes allow the personnel manager to begin adjusting personnel accession plans and training programs. Each year the personnel manager will work with the operations research analyst to develop enhancements to the model based on the previous year's experience. The analyst will also change annual rates and verify the integrity of the model to ensure the model is doing what it is supposed to do. This also allows for software upgrades and product enhancements.

Data inputs to the model can come from many different sources, such as a mainframe, a mini-computer, or paper records. Since any system is made up of inter-related processes; the only difference between companies is in resources available. Computer modernization has allowed users of the personal computer to take advantage of highly complex models and exploit recent technology developments in spreadsheets and relational data bases. Recent improvements in software and computing include optimization, linear and non-linear modeling, advanced mathematical simulation, and probability and statistics.

Optimization of personnel accessions is key to the success of a personnel manager. The analyst, after working closely with the personnel manager, can then start to decide what is essential, what will be done in-house, and what will be done by outside sources. At all times the personnel manager should be involved in the model's development

since the personnel manager is the one who will use it and make decisions based on the model's output. This allows top management to integrate outside resources tightly with the rest of the system. The personnel manager's participation in development allows for continuous improvement of the model. Since decisions are being made by the personnel who have knowledge of the overall system, the model has the potential to influence the personnel process at its earliest stages.

By maximizing each person's potential and capabilities, responsibility and accountability have been given to the people whose decisions may be made in a timely and efficient manner.

3.3 Validity and Usefulness of the Model

The validity of the model can be determined by checking whether the current personnel system is accurately represented. This is achieved through comparisons with older models and new insights gained from attempts to improve the older model. The usefulness of the new model is determined by each level of management. Management will want to see if there is anything new to learn and if there is anything that can be applied to their own organization. Some involved will be critical of the new approach taken since they may not realize the capabilities of recent enhancements of software and hardware. Others will be afraid of change, but with top level management's support and a concrete example of a successful application of the models concept, many of these fears will dissipate. To support the validity of the specific example of the model described in this dissertation, three areas are closely examined.

- 1. Does the concept meet the common sense test?
- 2. Can the concept be extended and used in real world applications?
- 3. Can current software and hardware replace older customized programs²⁰?

This dissertation answers all three questions in the affirmative. The general model illustrated in Chapter 4 and the specific example for the U.S. Army Warrant Officer Corps in Chapter 5 are verification and validation of the concept and its architecture.

3.4 Architecture of the Model

The model developed is actually a series of programs that produce personnel management information for top level management and personnel managers. In its current form it consists of six basic components.

- 1. Inventory
- 2. Authorizations
- 3. Budgeted End Strength (BES)
- 4. Accessions Optimization
- 5. Aging

²⁰ Holtz, Betty. 1980. Interfaces. (December): 37.

6. End of Fiscal Year Outputs

Inventory and personnel loss files are extracted from a database and used to calculate the statistics of continuation rates (CRATE) and training, transient, holding and student rates (TTHS). CRATE and TTHS rates are used later for the aging process. They are calculated as a weighted moving average of historical data determined from the last three years and exponentially smoothed. Trends are relatively short, usually only lasting five to seven years, so this technique has demonstrated to be the best for calculating rates.

Authorizations are determined by top level managers working with the personnel manager and company modernization personnel. Jobs are defined by using the previous year's personnel projections and incorporating known and planned changes to the company's capabilities. The base authorizations used should project out 5 to 8 years and capture any changes planned in the strategic planning document.

Budgeted end strength (BES) is a calculation of the inventory and authorizations components of the model. This number is the total demand by job skill and grade required for each year in the projection model. The total number of authorizations represents the amount of personnel in training and personnel required to operate the company. The BES actually is the ideal distribution of personnel by job skill and grade.

The accession component of the model is the key to development of the ideal state of accessions required to sustain job skills by grade over

time. It incorporates all functions of the model and, through the optimization program, develops the steady state optimal number of personnel to access by year over the entire projection period. The term steady state is used loosely but to the personnel education system the intent is to have a uniform number of students for each class. Since the model cannot determine if the accession job skills are over or under represented, the analyst, with the personnel manager, must ensure that the authorization component represents the actual demand for personnel needed. The sensitivity analysis tool of the model allows the analyst to apply different statistical approaches for different scenarios. The aging model does the actual year accession plan and then projects, by default, the steady state accession plan for the out years.

The aging component of the model projects the personnel inventory by job skill and grade over a five year period. The aging procedure incorporates those aspects of the personnel system required for the end of fiscal year projections. The model incorporates CRATE and TTHS rates, promotion rates and opportunities, accessions, job migrations, authorizations, and budgeted end strength against a starting personnel inventory. It produces projected annual losses, operating strength, training strength, migrations, and total inventory by grade and job skill.

The model produces output that captures the information required by the personnel manager. Areas of the forecast projection output by job skill and grade are authorizations, inventory, budgeted end strength, the difference between BES and authorizations, adjusted BES, and

calculated BES. Also, in other areas of the model are loss rates, accession plans for the execution year and forecast years. Specific skill categories can be included as in the Warrant Officer case study with the Aircraft Qualification Course (AQC) seats. The model can use either an optimized transition matrix or one that is directed by management. An example of a directed transition matrix would be one limited by aircraft flight time available or by aircraft available. This is specific to the Army model; however, the same principle can be applied to any industry where employees change jobs.

3.5 Personnel Requirements into Personnel Goals

The premise of this model is that each of the components can be captured and statistically evaluated by the Monte Carlo probability technique or some other method. The projections are only as good as the information gathered from available data. Uncertainty in each variable can not be captured if changes occur outside the analyst's area of influence or knowledge. Sensitivity analysis can determine which variables are key and simulations can demonstrate the impact of changes to the inventory over a period of time.

Attrition and accessions are key variables that impact the model greater than any other variables. To compensate for these changes to the projection, the analyst, with top management and the personnel manager, can influence the outcome through several other programs. Some areas that can be influenced by company policy are promotion rates, job retraining programs, and retirements.

Another area is drawdown goals which target specific job skills for reduction or elimination. To effectively manage and shape the workforce, the entire population is measured by job skill and BES allocation. The projections gained from the model allow personnel managers to quickly identify overages and adjust the optimized accessions component of the model. Unexpected reductions, such as unforecasted elimination of a particular job skill or unexpected closing of a department, can be handled by the model if identified early in the analytical process. Adjustments can be made by transitioning personnel affected into new jobs through retraining or job reclassification. Other options available to personnel managers include mandatory retirements, early retirements, contract buyouts, or as a last resort, layoffs.

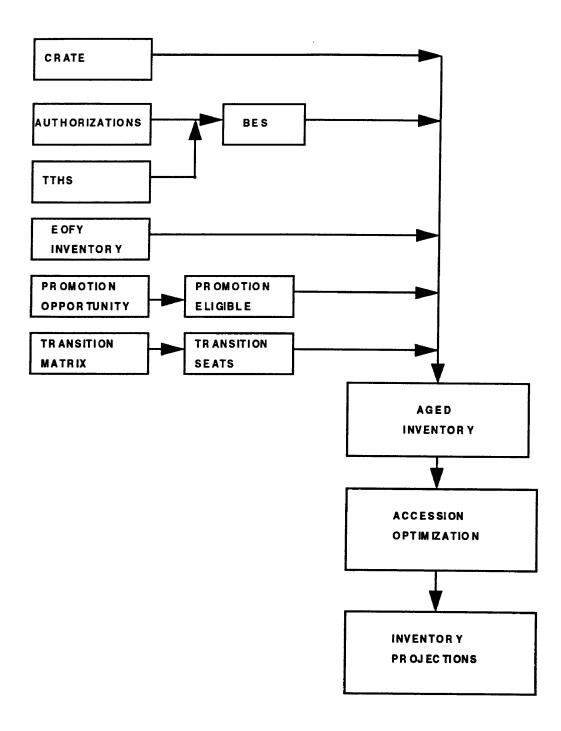
3.6 Organizational Operation

Reductions must be handled efficiently and with the knowledge that their mishandling may cause problems as discussed in Chapters 1 and 2. Everyone must be considered in a drawdown to ensure equity and that the shape of the force doesn't deviate from the aging plan. An example of reduction mishandling would be the situation where many senior employees are asked to retire and there are insufficient younger personnel qualified to replace those who leave.

Aging the personnel inventory is difficult to accomplish due to dynamic times and situations. Government regulations and an ever changing marketplace cause problems that are difficult at best to model. Constraints tied with management's strategic plan allow this model to provide a tool that will affect and age the work force. This model projects and promotes personnel to meet future needs, not only by specific job skills but also by grade and years at the company.

Past policies, continuation rates, promotions, and TTHS rates determine the shape of the current inventory. This model works with this inventory both during times of calm and when changes are dynamic. The optimization of accessions and the management of authorizations based on earlier projections give the personnel manager information necessary to develop a valid work force aging model to meet the needs of the organization.

3.7 Non-Linear Optimization


Non-linear optimization is a mathematical technique that selects the best course of action to form a set of feasible solutions. The problem is illustrated in the following way. Optimize the objective function by minimizing or maximizing a non-linear function of the independent variable and decision variable, subject to a series of constraints involving the individual variable. The dependent variable is the objective function and involves the economic concept of the minimum or maximum for a

value. See figure 3.1 for the general form of the flowchart. The general equation of this problem is represented below.

Minimize:

$$\begin{split} & \left[\sum_{i=1}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{previous inventory})_{j,k} (\text{CRATE})^{i} + (\text{accessions})_{i,j,k} \right] \right] \right] \right] + \\ & \left[\sum_{i=1}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{promotion eligible})_{j,k} (\text{CRATE})^{i} \right] \right] \right] \right] - \\ & \left[\sum_{i=1}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{not promotion eligible})_{i,j,k} (\text{CRATE})^{i} \right] \right] \right] \right] + \\ & \left[\sum_{i=1}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{transition gains})_{i,j,k} \right] \right] \right] \right] - \\ & \left[\sum_{i=1}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{transition losses})_{i,j,k} \right] \right] \right] \right] \right] \right] \\ & \text{Subject to:} \\ & \left[\sum_{i=5}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{previous inventory})_{j,k} (\text{CRATE})^{i} + (\text{accessions})_{i,j,k} \right] \right] \right] \right] - \\ & \left[\sum_{i=5}^{x} \left[\sum_{j=1}^{y} \left[\sum_{k=1}^{z} \left[(\text{Authorizations})_{j,k} (1 + \text{TTHS rate})^{i} \right] \right] \right] \right] \le 0. \end{split}$$

- i = years
- j = grade
- k = job skill
- x = maximum number of years
- y = maximum number of grades
- z = maximum number of job skills

The best general algorithm for using iterative linearization is the General Reduced Gradient (GRG) method²¹. The GRG algorithm is an extension of the Wolfe algorithm for linear constraints, modified for a non-linear objective function and non-linear constraints. This method uses linear or linearized constraints, defines new variables normal to the constraints and expresses the gradient in terms of the normal basis. In simplified form, general case, the problem solved by the GRG method.

 Minimize:
 $f(\mathbf{x})$ $\mathbf{x} = (x_1, x_2, ..., x_n)^T$

 subject to:
 $h(\mathbf{x}) = 0$ j = 1, ..., n

 $L_i \le x_i \le U_i$ i = 1, ..., m.

L_i (lower bound) and U_i (upper bound) restrict x_i. The L_i and U_i are treated as inequality constraints because of the technique used to calculate step length and direction of search. Non-linear constraints are taken care of by slack variables, $h_j(x) = g_{jj}(x) - \sigma_j^2 = 0$ and letting the bounds range from $-\infty \le \sigma_j \le +\infty$.

Unique to this problem is changing the objective function to zero. The objective function (the dependent variable) is represented in the general formula as (aggregate budgeted end strength)-(aggregate projected strength). Decision variables (independent variables) are represented as (accession by PMOS by year). Finally, the constraints are the (end of fiscal year 1998 projected inventory)-(end of fiscal year

²¹ Developed by Leon Lasdon, University of Texas at Austin and Alex Warren, Cleveland State University.

budgeted end strength by PMOS by year by grade) ≤ 0 , that is the objective function should be less than or equal to zero. The inherent difficulty of this problem lies in the large data sets, number of calculations to perform, and limitations of hardware and software.

Utilizing the Generalized Reduced Gradient²² method and the Excel 5.0 spreadsheet, the analyst can determine the optimal number of people to access during the execution year (next fiscal year) and each of the projected years. The analyst, when the optimization routine is completed, will have the optimal accession plan and projected inventories to give to the personnel manager.

The gradient algorithm, where the gradient search procedure is modified to keep the search path from penetrating any constraint boundary, is used for this problem. Using the steps of the Generalized Reduced Gradient Algorithm found in Himmelblau's book²³, the optimization process is outlined in its general form. For all iterations it is assumed that $\left[\frac{\partial h(x)}{\partial x_D}\right]$ is non-singular. For notation purposes, $f(x^k) = f^k$ and $h(x^k) = h^k$, where the superscript *k* denotes the iteration.

²²Lasdon, L.S. and Warren, A.D., H.G. Greenberg. 1978. Generalized Reduced Gradient Software for Linearly and Nonlinearly Constrained Problems, <u>Design and</u> <u>Implementation of Optimization Software</u>, Sijthoff an Noordhof, Alphem aan den Rijn, The Netherlands.

²³ Edgar, T.F. and Himmelblau, D.M. 1988. <u>Chemical Engineering Series</u>. <u>Optimization</u> <u>of Chemical Processes</u>; McGraw-Hill Book Company, United States: 327.

Phase I:

Determine the search components for the independent variables. At iteration k linearize the constraint at the feasible point x^k and compute the reduced gradient. The subscripts D and I indicate the dependent and independent variables.

$$(g_{R}^{k})^{T} = \left[\frac{\partial f^{k}}{\partial x_{I}^{k}}\right]^{T} - \left[\frac{\partial f^{k}}{\partial x_{D}^{k}}\right]^{T} \left[\frac{\partial h^{k}}{\partial x_{D}^{k}}\right]^{-1} \left[\frac{\partial h^{k}}{\partial x_{I}^{k}}\right]$$

The search directions of the independent variables are established from the reduced gradient g_{Ri} as follows:

a. If x_i is at one of its bounds, the search direction component is $\Delta_i^k = 0$; if the step exceeds its bound, that is

$$\Delta_i^k = 0 \qquad \text{if } x_i^k = U_i \quad g_{Ri} < 0$$

$$\Delta_i^k = 0 \qquad \text{if } x_i^k = L_i \quad g_{Ri} > 0$$

b. If $L_i < x_i < U_i$, the search direction is the negative of the corresponding element of the reduced element of the reduced gradient, $\Delta_i^k = -g_{Ri}$.

Phase II:

Determine the search components for the dependent variables to \tilde{x}_{D} maintain feasibility with respect to the linearized constraints.

$$\Delta_D^K = -\left[\frac{\partial \mathbf{h}^k}{\partial \mathbf{x}_D}\right]^{-1} \left[\frac{\partial \mathbf{h}^k}{\partial \mathbf{x}_I}\right] \Delta_I^K$$

ARTHUR LAKES LIGRARY COLORADO SCHOOL OF MINES GOLDEN, CO 80401

Phase III:

Improve the value of the objective function. Minimize $f(x_I^k + \lambda^k \Delta_I^k, x_D^k + \lambda^k \Delta_D^k)$ with respect to $\lambda(\lambda > 0)$ using the quasi-Newton unidirectional search. Lambda (λ) must be carefully chosen so as to limit the magnitude of λ^k since this can lead to an infeasible point.

$$\begin{aligned} x_I^{k+1} &= x_I^k + \lambda^k \Delta_I^k \\ \widetilde{x}_D^{k+1} &= x_D^k + \lambda^k \Delta_D^k \end{aligned} \text{ where } \widetilde{x}_D \text{ is a tentative point.} \end{aligned}$$

Phase IV:

Use the quasi-Newton method to regain feasibility of the dependent variable. If some of the points of the objective function are infeasible, Newton's method will return from the infeasible point to one that will satisfy all of the constraints. Several iterations may be necessary to regain feasibility. Newton's method is

$$x_D^{k+1} = \widetilde{x}_D^{k+1} - \left[\frac{\partial \mathbf{h}(x_I^{k+1}, x_D^{k+1})}{\partial x_D^k}\right]^{-1} \partial \mathbf{h}(x_I^{k+1}, \widetilde{x}_D^{k+1})$$

Phase V:

Convergence on Newton's method has four possible outcomes. 1. x^{k+1} is feasible and $f(x_l^{k+1}, x_D^{k+1}) < f(x_l^k, x_D^k)$, adopt x^{k+1} and return to phase I.

- 2. x^{k+1} is feasible but $f(x_1^{k+1}, x_D^{k+1}) > f(x_1^k, x_D^k)$, reduce λ and return to phase IV. If after twenty iterations Newton's method fails, reduce λ , and start phase IV again.
- 3. If the three aforementioned strategies fail, change the basis by exchanging

the dependent variable with a former independent variable.

4. When x_i hits a bound it is removed from the basis, takes the boundary value, and is replaced by a value from the set x_D. A new iteration takes place.

Similar to other commercial codes, stopping criteria fall into one of four categories. They are maximum time, maximum number of iterations, precision, and tolerance. Affecting each of the stopping criteria is the speed of the machine, operation in a multitasking environment, and settings of interim results. To improve speed of solution, the computer should have complete control of the working environment. Turning off screen savers or not printing will improve performance.

Chapter 4 The General Model

4.1 Model Focus

This model has been developed to accurately access and project a company's personnel inventory out to six years. Projections can be made further out, if necessary, but for this example seven years is sufficient. The focus of this model is to ensure a qualified workforce, even when a company's charter involves minimizing the number of personnel needed to do required jobs. For the general model, relationships will be drawn from the specific model illustrated in Chapter 5 to lend clarity.

4.2 Evaluation Criteria

Evaluation criteria used in the example in Chapter 5 must demonstrate that it can correctly access a personnel inventory and provide sufficient information to manage an organizations personnel population.

4.3 Issues Relating to the Model

In developing this model, certain assumptions had to be made. These assumptions were developed through discussions with personnel experts, working as an analyst for the Warrant Officer Corps of the U.S. Army, and by reviewing existing regulations and policies that are discussed in Chapter 2. In developing the model, certain issues were discussed that significantly influence its design. Issues are presented in no specific order.

- 1. Impact on the organizations personnel system.
- 2. Accuracy of information.
- 3. Cost of using this model.
- 4. Automation of model.
- 5. Minimize personnel inventory to the organizations desired end strength.

4.4 Steps of the Model

Listed below are the steps used to develop and execute the aging component of the model.

Step 1: Gathering Data and Other Information. The analysts must develop techniques that will allow gaining the information needed to develop and operate their unique models. The recommended technique is to work as an assistant and analyst to the personnel manager. When an analyst has gained sufficient insight to work independently, then the analyst is able to begin gathering information to develop the model. The cost of learning how to do someone else's job is high but the penalty for the mal-utilization of resources is much higher. For the personnel model, in the general and specific case, these variables are important contributors.

Input Variables

1. Continuation Rate. The continuation rate (CRATE) is the percentage of people who stay with an organization from year to year. The technique of a three year moving average is used to calculate the CRATE for each fiscal year. To extract the data from the mainframe computer used at PERSCOM the SAS programming language was used. Below is an example of the code to calculate the CRATE from FY 1992 to FY 1993. The code is left in its raw form to illustrate the technique used.

000001//ALKVX	SL3 JOB (ZLP2P413,6)	N61).'ZLP2P413	BATEMAN' CLASS=X,MSC	CLASS=Y
000002//* THIS	IS AN INFORMATION I	PULLING ROUT	INE FOR CONTINUATION F	ATES
	ARRANT OFFICERS			
000004//*				
	SAS, OPTIONS='LS=1		NONEWS PS=58'	
	DD SPACE=(CYL, (50)	,40)ROUND)		
000007//*				
			ME9209.BACKUP,DISP=SH	
		XX.XXXXXXXX	ME9309.BACKUP.DISP=SH	R
000010//SYSIN				
000011// DAT	-			
000012// INFI	LE START;			
000013				
	UT RSCD \$ 2646			
000015		AFS 119-1		
000016	SSN \$ 1-9	· · · · · · · · · · · · · · · · · · ·		
000017	PMOS \$ 341-344	EADC \$ 96-99		
000018	AFCS \$ 122-124;			
000019				
000020	IF RSCD = '0' AND M	•		
000021	YOS = INT(AFS/12) + 2	-		
000022	IF YOS >= 30 THEN Y	YOS = 30;		
000023	KEEP SSN;			
000024	DATA TWO;			
000025	INFILE NEXTY:			
000026				
000027	RSCD \$ 264		MPC \$ 10	AFS 119-121
000028	PMOS \$ 341	1-344	EADC \$ 96-99	AFCS 122-124
000029	TGRC \$ 42		SSN \$ 1-9;	
000030				
000031	IF RSCD = 'O' AND M	IPC = W;		
000032				
000033	YOS = INT(AFS/12) +			
000034	IF YOS >= 30 THEN Y	YOS = 30;		

000035	
000036	DATA MERGE;
000037	MERGE ONE(IN=A) $TWO(IN=B)$;
000038	BY SSN;
000039	IF A:
000040	LOST = 0;
000041	SURVIVED = 1;
000042	IF A AND NOT B THEN DO:
000043	LOST = 1;
000044	SURVIVED = 0;
000045	END;
000046	
000047	PROC TABULATE F=5. MISSING NOSEPS;
000048	CLASS PMOS TGRC YOS;
000049	VAR LOST SURVIVED;
000050	LABEL PMOS ALL= 'AGGREGARE', YOS = 'YOS' ALL='TOTAL', TGRC=' '*
000051	(ALL ='INV'*N=' ' LOST*SUM=' ' SURVIVED*MEAN=' '*F=7.4)
000052	ALL="TOTAL'*
000053	(ALL ='INV'*N=' ' LOST*SUM=' ' SURVIVED*MEAN=' '*F=7.4) / RTS=10 PRINTMISS;
000054	
000055	TITLE 'CONTINUATION RATES FY 93';

To calculate the three year moving average, a SAS run is done for each fiscal year (91-93). Using a SAS program similar to the one above, develop a table of the three year moving average for each grade and primary military occupational specialty (PMOS). Once created the resulting CRATE is used to age the inventory.

2. Transient, Training, Holdee, and Student Rate. The Transient, Training, Holdee, and Student Rate (TTHS) is the percentage of personnel, by grade and job skill (PMOS), who at any time during a year are in a TTHS account. These accounts are PMOS's 001A, 002A, 003A, and 004A. The same technique used in the CRATE calculations are also used to count the TTHS rate. Listed below is the SAS code used to calculate the TTHS rate from FY '92 to FY '93. The code is left in its raw form and shows the technique used.

000001//ALKVXSL7 JOB (ZLP2P413,6N61), 'ZLP2P413/BATEMAN' CLASS=X,MSGCLASS=Y 000002//* THIS IS AN INFORMATION PULLING ROUTINE FOR TTHS RATES 000003//* OF WARRANT OFFICERS 000004//* 000005// EXEC SAS, OPTIONS='LS=132 NOCENTER NONEWS PS=58' 000006//WORK DD SPACE=(CYL.(50.40)...ROUND) 000007//* 000008//START DD DSN=XXXXXX.XXXXXXXXXX.ME9209.BACKUP,DISP=SHR 000010//SYSIN DD* 000011// DATA ONE; 000012// INFILE START: 000013 INPUT RSCD \$ 2646 MPC \$ 10 000014 000015 TGRC \$ 42 AFS 119-121 NAME \$ 11-26 000016 SSN \$ 1-9 PMOS \$ 341-344 EADC \$ 96-99 000017 AFCS \$ 122-124 000018 CT4CMF \$ 3016-3019; 000019 IF RSCD = '0' AND MPC = 'W'; 000020 000021 KEEP SSN; 000022 000023 000024 DATA TWO: 000025 INFILE NEXTY; 000026 000027 RSCD \$ 2646 MPC \$ 10 AFS 119-121 000028 PMOS \$ 341-344 EADC \$ 96-99 AFCS 122-124 SSN \$ 1-9; 000029 TGRC \$ 42 000030 000031 IF RSCD = 'O' AND MPC = 'W'; 000032 SCHOOL = 'NOT TTHS'; IF PMOS IN ('001A' '002A' '003A' '004A') OR 000033 CT4CMF IN ('001A' '002A' '003A' '004A') THEN SCHOOL = 'TTHS :: 000034 000035 000036 DATA MERGE; 000037 MERGE ONE(IN=A) TWO(IN=B); 000038 BY SSN; IF A; 000039 000040 LOST = 0: SURVIVED = 1; 000041 000042 IF A AND NOT B THEN DO; 000043 LOST = 1;000044 SURVIVED = 0;000045 END; 000046 000047 PROC TABULATE F=5. MISSING NOSEPS: 000048 CLASS PMOS TGRC SHCOOL; 000049 VAR LAST SURVIVED: 000050 LABEL SCHOOL ALL= 'AGGREGARE', YOS = 'YOS' ALL= TOTAL', TGRC=' * (ALL ='INV*N=' ' LOST*SUM=' ' SURVIVED*MEAN=' '*F=7.4) 000051 000052 ALL='TOTAL'* (ALL ='INV*N=' ' LOST*SUM=' ' SURVIVED*MEAN=' '*F=7.4) / RTS=10 PRINTMISS; 000053

000054 000055 TITLE 'TTHS RATES FY 93';

To calculate the three year moving average for the TTHS rate, a SAS run is done for each fiscal year (91-93). Using a SAS program similar to the one above, a table of the three year moving average is created for each grade and job skill (PMOS).

Another technique will be used when the drawdown is nearing conclusion, the moving weighted average of the last two observations, with alpha (α) being the weighting factor²⁴. The advantage of this technique is that the data will be more descriptive of the time series since the other model is more representative of the past.

New forecast = α (current observation)+(1- α)(last forecast).

3. Authorizations. Authorizations for personnel is done by year and reflect the overall job skill (PMOS) distribution of the inventory. The aggregate accession number is directed by Congress and is fixed, but the Department of the Army has the flexibility to adjust the distribution between Commissioned Officers, Warrant Officers, and Enlisted personnel. Listed is an example from FY '95 showing the distribution of personnel by grade and PMOS.

²⁴ Nahmias, Stephan. 1989. <u>Production and Operations Analysis</u>. Homewood, Ill.: Irwin: 54.

PMOS	W 1/C 2	CW 3	M /C 4	CW 5	total
000A	0	0	0	0	÷.
001A	0	0	0	0	0
003A	0	0	0	0	0
004A	0	0	0	0	0
130A	0	0	0	0	Û
130B	0	0	0	0	0
13 1A	65	27	15	4	11).
132A	0	0	0	0	0
140 A	11	4	2	1	1.9
140B	33	14	8	2	5/7
140D	6	3	1	0	11
14 0 E	73	31	17	4	12.5
15 1A	116	49	27	7	199
152 B /3 C	233	99	53	14	399
152C	41	17	9	2	70
152 D	176	74	40	10	301

4. Budgeted End Strength. Budgeted End Strength (BES) is the total number of personnel authorized by Congress to be on active duty at the end of each fiscal year. The company would refer to this as the desired end strength determined by management. The BES is represented as the aggregate number that is authorized. Thus 11,410 Warrant Officers are authorized for 1998.

EOFY 94 95 96 97 98 BES 12 A 77 12 001 11524 11 A 10 11 A 10

For this model, budgeted end strength is used to calculate the distribution of personnel by grade and PMOS. Authorizations are distributed by PMOS and then multiplied by one plus the TTHS rate to distribute personnel by PMOS and grade. This calculation ensures that there are sufficient total personnel in training and working in their jobs. An example of this is illustrated as the FY '94 Projected End Strength of the grades WO1 and CW2 by PMOS. The "Auth" column is the authorized number of personnel, the "Inventory" column is the projected inventory of officers, "BES" is the authorizations multiplied by 1+TTHS

rate (by PMOS and grade), and the "diff" column is the difference of the BES and Inventory columns. This overage of personnel, represented by the parentheses, and shortage of personnel is the PMOS imbalance that the analyst is attempting to minimize.

W 0 1/C W	2			<u> </u>
PMOS	A uth	Invento r	BES	diff
A000	0	61	0	(61
001A	0	4	0	(4)
003A	0	6	0	(\$
004A	0	1	0	ા
130 A	0	0	0	0
130B	0	0	0	0
13 1A	52	68	56	(13)
132A	0	0	0	0
140A	11	9	12	3
140B	37	44	41	(3)
140D	16	6	18	12
140E	73	79	78	(1)
151 A	125	131	131	1
152 B /153	251	472	302	(170)
152C	39	12	43	31
152 D	129	204	14 9	(55)

5. EOFY Inventory. The end of fiscal year inventory is used as the basis of the aging and accession process of this model. The data are extracted from each of the EOFY tapes. The SAS programming language is used to extract the data from the mainframe database. Those personnel who will continue into the next fiscal year are determined by in the program shown below.

000011	DATA VER;			
000012	INFILE RAWC	OMF;		
000013	INPUT	RSCD \$ 2646	MPC \$ 10	CT5 \$ 3016-3019
000014		CT5CMF \$ 3016-3020	TGRC \$ 42	AFCS \$ 122-124
000015		CONGR \$ 3576-3577	SSN \$ 1-9	TGPGC \$ 325
000016		TGRSEL \$ 137	SEX \$ 501	REDCAT \$ 301
000017		AFS 119-121	COMPT \$ 77	MEL \$ 398
000018		PMOS \$341-344	EADC \$ 96-99	OPP \$ 318
000019		ORCMD \$858-859	AREQID \$ 2829-28	
000020		ORDTGC \$ 3119-3124	OCMD \$ 871-872	ORIARC \$ 860-861;
000021	IF MPC = 'W' AND RS			· ,
000022	IF AREQID = 'RR' AN	D ORDTGC <= 930930 TH	IEN DELETE:	
000023	YOS = INT(AFS/12) +			
		- /		
000024	IF PMOS < 1130 ' OP	PMOS > '922A' THEN PMO)S ~ CT5.	
000024		T5 > 922A' THEN CT5 = '(· · · · · · · · · · · · · · · · · · ·	
000025		' OR CT5CMF > '923A ' TH		
	•		1EN CISCMF = PMOS;	
000026		THEN CT5CMF = '001A';	TOME TO A	
000027	IF SUBSTRICTSCMF.	(5,1) = ' ' THEN SUBSTR(C	15CMF.5.1) = ; */	
000028	GRADE = 'XXX			
000029		HEN GRADE = $CW1/CW2$	2';	
000030	IF TGRC = ∇ THEN (GRADE = 'CW3 ';		
000031	IF TGRC = $'U'$ THEN (GRADE = 'CW4 ';		
000032	IF TGRC IN ('S' 'T') TH	IEN GRADE = 'CW5 ';		
000032	GRADEP = 'XXX	*:		
000033	IF TGPGC IN ('X' 'W')	THEN GRADEP = $'CW1/C$	W2': IF TGPGC = 'V' THE	EN GRADEP = 'CW3 ':
000034	IF TGPGC = $'U'$ THEN			, and <u>and and and and and and and and and and </u>
000035		THEN GRADEP = CW5		
000000				
000036	GRD = 'XXX ':			
000037		HEN GRD = $'CW1/CW2';$		
00037		$\operatorname{Hen}\operatorname{Grid} = \operatorname{Cw1/Cw2},$		
000000				
000038	IF IGRC IN (U V) I	HEN GRD = 'CW3/CW4';		
000000				
000039	IF TGRC IN ('S' 'T') TH	IEN GRD = 'CW5 ';		
000040	PROC FREQ;			
000041	TABLE PMO	S TGRC TGPGC GRADE (GRADEP SEX REDCAT;	
000042	PROC TABULATE DA	TA=VER F=8. NOSEPS;		
000043	CLASS PMO	S TGRC;		
000044	TABLE PMO	S ALL, TGRC ALL / RTS=	12;	
000045	TITLE 'PMOS	S BY PERMANENT GRADI	£';	
000046	PROC TABULATE DA	TA=VER F=8. NOSEPS;		
000047	CLASS PMOS TGPGC			
000048	TABLE PMOS ALL, TO	-		
200010				
000049	TITLE 'PMOS BY PRO	MOTABLE CRADE'		
00093	TITLE FINOS DI FRO	wo music owner,		
000050		TA-UPD E-9 NOSEDO		
000050		TA=VER F=8. NOSEPS;		
000051	CLASS PMOS GRADE			
000052		RADE ALL / RTS=12; TTTI	E PMOS BY PERMANEI	NT GRADE';
000053		TA=VER F=8. NOSEPS;		
000054	CLASS PMOS GRADE	CP;		

000055	TABLE PMOS ALL, GRADEP ALL / RTS=12; TTTLE 'PMOS BY PROMOTALBE GRADE';
000056	/* PROC TABULATE DATA=VER F=8. NOSEPS;
000057	CLASS CT5CMF GRD;
000058	TABLE CT5CMF ALL, GRD ALL / RTS=12;
000059	TITLE 'CT5CMF BY PERMANENT GRADE FOR ODP USE';

/* //

6. Promotion Opportunity. Promotion opportunity is a numerical probability that an individual will be selected for advancement to the next grade. The arithmetic mean, of the entire population, is defined by a set of measured responses $y_1, y_2, ..., y_n$ and is given by

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \, .$$

Historically, the selection rate has a mean near the directed selection rate, such as promotion to CW3 is 80%, with a very low variance. The variance of the selection rate is calculated by a set of measurements $y_1, y_2, ..., y_n$ using the average of the square of the deviations of the measurements about their mean. The variance is represented by

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2.$$

Statistical values of selection rates at the aggregate level are less important and have been held to within 1% of the promotion board's goal. To analyze the selection rates of subsets of the aggregate population the above statistical technique must be used. An example of this is analysis of selection rates of African American or Female Warrant Officers when compared to other subsets of the personnel population. To measure the difference of each of these subsets, assume that the distributions are normal and the standard deviation is the positive square root of the variance, $\delta' = \sqrt{\delta'^2}$. The analysis of gender or racial distributions are not used in this example but can be included later.

An analysis of variance test can be conducted on randomly selected variables of each of the subsets of the population. The populations are assumed to be normally distributed with equal variances δ^2 and means $\mu_1, \mu_2, ..., \mu_k$. Exact parameters can be calculated using the entire population but access to a software program such as SAS/STAT and a mainframe may be necessary.

7. Promotion Eligible. To find the promotion eligible population the analyst must isolate that population that fits certain parameters for promotion. Dates of rank are determined for the zone of consideration. The SAS program below illustrates the technique used to calculate the number of personnel eligible at the EOFY '93.

^{000001//}ALKVXSL8 JOB (ZLP2P413,6N69), 'ZLP2P413/BATEMAN', CLASS=O, MSGCLASS=Y 000002//* THIS IS AN INFORMATION PULLING ROUTINE FOR WO PROMOTION ELIGIBILITY 000003//* BY RANK AND MOS FOR CURRENT AND HISTORICAL TIMEFRAMES. 000004//* 000005//* 000008//* 000009// EXEC SAS,REGION=5000K,OPTIONS=,SORT=4,WORK='12,2' 000011//RAWOMF DD DSN=xxxxxxxxxxxxxx.xxxx.ME9309.BACKUP,DISP=SHR 000012//SYSIN DD * 000013 OPTIONS NOCENTER LS=132 PS=58; /* SAS: PROMOTE */ /* PROMOTIONS */ 000014 DATA VER; 000015 INFILE RAWOMF; INPUT RSCD \$ 2646 MPC \$ 10 000016 SEX \$ 501 000017 TGRC \$ 42 CT5CMF \$ 3016-3019 **REDCAT \$ 301** 000018 TDOR \$ 43-48 AREQID \$ 2829-2830 000019 TGRSEL \$ 137 PMOS \$ 341-344

AFCS 122-124; AFS 119-121 000020 000021 IF RSCD = '0' AND MPC = 'W'; /* DATE OF RANK */ 000022 IF TDOR >= 881001 AND TDOR <= 890930; /* RANKS ARE: CW1=X CW2=W CW3=V CW4=U */ 000023 IF TGRC = 'V'; 000024 IF PMOS > '922A' OR PMOS < '130A' THEN PMOS = CT5CMF; 000025 IF TGRSEL = ' ' OR TGRSEL = '0'; 000026 AFS = INT(AFS/12); 000027 000028 PROC FREQ; 000029 TABLE PMOS TGRC AFS SEX REDCAT; 000030 000031 /*PROC TABULATE DATA=VER F=5.; CLASS PMOS TGRC: 000032 TABLE (PMOS ALL), (TGRC ALL) ALL/RTS=8;*/ 000033 TITLE 'PROMOTIONS BY ZONE': 000034 000035 /* 000036 //

The numbers generated from this output would then be aged, and the number of personnel eligible by PMOS and Grade for promotion multiplied by the exponent of the difference of the year. An example for EOFY '96 promotions by grade and job skill:

Aged Promotion Eligible = (# eligible)(CRATE)^(EOFY '96 EOFY '93)

This forecasting technique allows the projection module to best estimate the number of persons eligible for promotion and calculates the number to eliminate as the difference of those selected for promotion vs. those non-selected for promotion.

8. Transition Matrix and Seat Table. During normal business operations there are going to be personnel who require additional training that upon its conclusion will require a change in the person's job skill (PMOS). Since some of the training programs are expensive or require a lengthy training process, this method has been developed to transition those people. A distribution of positions is done by grade and is shown below. This illustrates that 85% of the transitions will go to the grade WO1/CW2 and 15% to the grade of CW3.

	Share
W01/CW	0.85
CW 3	0.15

The matrix itself is only a tool that shows the donor job skills (PMOS) along the column and receiver job skill (PMOS) along the rows.

	Receiver	A/C	ł						
		152D	152F	152G	153D	154C	155D	155E	156A
Donor	152B/3C	0.80	0.15	0.75	0.20	0.20	0.30	0.00	0.00
A/C	152F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	152G	0.20	0.80	0.00	0.10	0.05	0.20	0.00	0.00
	153B	0.00	0.05	0.25	0.70	0.75	0.50	0.00	0.00
	153D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	154C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	155D	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
	Total	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Finally, the distribution table shows the transition job skills that are available for each PMOS by fiscal year. A constraint to this table is the "ALL" row. In this case, the ALL row is the total number of aviation job skills available by fiscal year. For the general case the same principle applies for the distribution of personnel.

	Qualification		<u>`</u>		
PMOS	'94	'95	'96	'97	'98
152B/3C	0	0	0	0	0
152C	0	0	0	0	0
152D	99	138	170	112	112
152F	72	50	40	40	40
152G	11	16	8	8	8
153A	0	0	0	0	0
153B	0	0	0	0	0
153D	125	144	168	164	164
154C	23	2 5	50	50	50
155A	0	0	0	0	0
155D	44	45	47	47	47
155E	66	90	52	44	44
156A	6	0	0	0	0
ALL	446	508	535	465	465

The calculation is a straight forward multiplication of (% share by grade)*(donor to receiver ratio)*(seats available for receiver PMOS)*(CRATE)' to give the inventory adjustment by year, job skill (PMOS), and grade.

9. Additional Cuts/Gains. The final variable is one not directly related to the accession and projection model. Additional cuts/gains have been added to this model to ensure that mid-year changes to personnel programs can be adjusted and the impact measured during a trial and error analysis. Cuts and gains are directly added to or subtracted from the execution year inventory. The changes can then be measured on the entire model. If the changes come early enough the model can be re-run to again optimize the accession plan. In this example all values are zero since there haven't been any changes to the plan.

TO:	CW3	CW4	CW5
000A	0	0	0
001A	0	0	0
003A	0	0	0
004A	0	0	0
130A	0	0	0
130B	0	0	0
131A	0	0	0
132A	0	0	0
140A	0	0	0
140B	0	0	0
140D	0	0	0
140E	0	0	0
151A	0	0	0
152B/3C	0	0	0
152C	0	0	0
152D	0	0	0

Step 2: Input Variables into Spreadsheet Model.

The user inputs the variables, as listed in step one, into the spreadsheet model. Variables can be placed manually by filling in the outline or can be updated by utilizing the import features of the Excel 5.0 Spreadsheet or mainframe used for this example.

Step 3: Extract the Projected Inventory from the Spreadsheet.

The analyst takes the aged inventory for each of the projected years and uses them as a basis for a starting point for the optimal accession table. In this example the starting point is the previous year's accession plan. This gives the algorithm a feasible solution to start with and minimizes computing time.

Step 4: Optimize the Accession Plan.

This problem has evolved into a non-linear model for several reasons. During the iterative process changing cells are divided and

T-4471

multiplied by each other and exponentiation is used with non-linear derivatives. By adjusting the decision variables (accessions) as the constraints (difference of BES and projected inventory) are driven to values of ≤ 0 , the previously selected objective function is then driven to zero. The model could have been written as a minimization to the budgeted end strength but given current constraints and the intent of Congress the model has been forced to optimize the difference of inventory and end strength. If the model had remained a trial and error problem with no optimization required, then the base spreadsheet would have been sufficient for trial and error calculations. Guesswork by its nature is feasible, if done "a priori", but may not give the best solution. This model, using the GRG2 optimization technique, provides a sophisticated numerical analysis which allows the computer to arrive at an optimal solution quickly. There is no guarantee of convergence for this method since this non-linear programming problem is using repeated linearization of the objective function and constraints to estimate the solution. To help ensure optimality the accession plan should start with a feasible solution. By changing any suspect values and re-running the program the optimal solution can be found along a hyper-plane.

4.5 Sensitivity Analysis of the Model

Sensitivity analysis is used to study the uncertainty of variables of this analysis and the associated risks. This technique allows the

48

identification of those variables that, if changed, could significantly affect the company's bottom line. The variables within the accession plan are the ones whose values are changed to study the uncertainty.

In most cases, the single most expensive resource that a company has is personnel. The unnecessary hiring and firing of personnel causes problems well beyond employee resentment. For this analysis, personnel accessions proved to be the critical variable in the aging process. The related costs of salary, training, and benefits are resources a company can't afford to waste.

4.6 Optimized Accessions

Utilizing the GRG optimization program within the spreadsheet the accessions plan is optimized. As conditions change, the plan can be modified to generate subsequent solutions resulting from financial or political problems. This aged inventory will also show overages and shortages by specific job skills included in each of the projection years. Personnel can be moved to new job skills and retrained or an elimination program can be developed for specific grades and job skills.

4.7 Utility of the General Model

Historically, models were written in programming languages that few understood and had to run on mainframe computers. Nonlinear optimization is a sufficiently robust code that is efficient and is able to work with very complicated non-linear models. Cost to develop the older models such as TOPSS and OPALS have been expensive and only the government or large corporations could afford to undertake these projects²⁵. Recently, modern desktop computers have allowed analysts to execute and run complicated programs much more conveniently and with less expense. With the development of the Generalized Reduced Gradient non-linear code²⁶, complicated optimization can be done on a desktop computer. The technique developed here allows a company to have optimization of their resources and still have the flexibility to develop the algorithm on a desktop computer using professional office software.

 ²⁵ As of January 1994 the U.S. Army has invested \$ 6,052,000 on development of these models. Additional money has been spent on hardware and CPU time.
 ²⁶ Developed by Leon Lasdon, University of Texas at Austin and Alex Warren, Cleveland

²⁶Developed by Leon Lasdon, University of Texas at Austin and Alex Warren, Cleveland State University.

Chapter 5 U.S. Army Warrant Officer Corps Example

The Warrant Officer Management Act (WOMA) became law on 01 February 1992 when an amendment to the Defense Authorizations Act for fiscal years 1992-1993 was signed into law²⁷. The law provided a uniform and comprehensive system for appointment, promotion, separation, and retirement of Warrant Officers. The gain for the personnel manager is that WOMA provides a life cycle management system. This ensures that all warrant officers are afforded the opportunity for an Army career while providing the Army a fully qualified Warrant Officer Force.

The example shown here gives the Warrant Officer Division at U. S. Personnel Command (PERSCOM) and the Warrant Officer personnel managers at the Office of the Deputy Chief of Staff for Personnel (ODCSPER) a steady state accession model that provides information by which to manage the warrant officer population. From the information developed, decisions are made by the Commands for promotions, accession plans, voluntary and involuntary separations, and shaping of the warrant officer inventory to meet future requirements.

²⁷ Perspective. January-February 1992: 5.

5.1 Model Architecture

While developing the algorithm, I had the option of writing a unique code utilizing a programming language that might be difficult for the Warrant Officer personnel managers or my replacement as an analyst to update. Instead, for reasons of utility, I wrote an algorithm using the Excel spreadsheet²⁸, a Solver²⁹ utility program, and a GRG2³⁰ optimization code. This model can thus be updated, as circumstances change, by a non-programmer with a strong mathematical or statistical analysis background. Since the U.S. Army at PERSCOM and ODCSPER are licensed users of the Excel 5.0 spreadsheets and other add on utility programs, I chose Excel 5.0 for this model. Additionally, I used an IBM 3090 and IBM 3070 mainframe computer to store and manipulate information. The means to extract and manipulate data was the SAS³¹ language with the models of SAS Operations Research (SAS OR) and SAS Statistics (SAS STAT).

Probability Analysis is calculated using the Monte Carlo simulation technique. *Probability Theory* allows us to measure the uncertainty of the occurrence of events that we are considering. Statistics is the mathematics' of the collection, organization, and interpretation of numerical data. These tools, when used with the model, impact the

²⁸ Microsoft Excel, version 5.0, Microsoft Corporation.

²⁹ Frontline Systems, Inc., Incline Village, Nevada.

³⁰ GRG2 Optimization Code, Leon Lasdon, University of Texas at Austin.

³¹ SAS Institute, v. 6.08, Cary, North Carolina.

models' events and their calculations involve the probability that the personnel forecasts will meet the projections of the model.

5.2 Model Variables

To run the model, some variables and tables are used to generate calculations needed to determine the personnel inventory projections and accession plans. The variables and tables are explained below to illustrate interactions within the model.

<u>Budgeted End Strength:</u> Budgeted End Strength (BES) is the total number of personnel that Congress has authorized to be on active duty at the end of each fiscal year listed. These end of year values will be used to determine the maximum number of personnel on active duty at the end of fiscal year (EOFY).

EOFY 94 95 96 97 98 BES 12,477 12,001 11,524 11,410 11,410

EOFY 1993 Inventory: The end of fiscal year 1993 inventory is used as the basis of the aging and accession process of this model. The inventory is displayed as a table where the primary military occupational specialties (PMOS) are displayed as rows and the grades are displayed as columns as shown in the example below. The junior grade is Warrant Officer One (WO1 and W1 for this example) and the most senior of grades is Chief Warrant Officer Five (CW5). The table displays the actual number of CWOs on active duty on the last day of the fiscal year by PMOS and grade.

CURREI	CURRENT INVENTORY AS OF EOFY 93					
Updated	l 15 Febru	ary 1994				
PM OS	W 1/C 2	CW 3	M /C 4	CW 5	Total	
A000	61	0	0	0	61	
A1 0 0	4	0	1	0	5	
003A	6	0	0	0	6	
004A	1	0	0	0	1	
130A	0	1	0	0	1	
130B	0	0	0	0	0	
13 IA	66	29	10	2	107	
132A	0	0	0	0	0	
140 A	9	2	1	0	12	
140B	43	23	8	0	74	
140D	7	4	6	2	19	
140E	79	17	8	0	10 4	
151A	136	58	31	6	231	
152 B /153	450	105	66	6	627	
152C	13	23	15	2	53	
152 D	131	97	42	7	277	

<u>Continuation Rate:</u> The continuation rate (CRATE) is the percentage of warrant officers who stay in the army from year to year. A three year moving-average is the technique used to calculate the CRATE for each projection fiscal year. Since all data points are available by PMOS and grade, the moving-average forecast is merely a weighted moving-average of the last three years. For this example the end of fiscal year populations are measured from FY '91 to FY '93. The table displays the actual percentages of CWOs that stay on active duty by job skill.

PM O S	W 01/CW	CWS	CW4	CW 5
000A	1.000	1000	1000	1.000
001A	1.000	1200	1.000	1.000
003A	1.000	1000	1.000	1000
004A	1.000	1000	1000	1000
130 A	1.000	1000	1000	1000
130B	0.941	0.714	0.600	0.600
13 1a	0.899	008.0	0.886	0.886
132A	1000	1000	1000	1000
140 A	0.918	0.722	0.714	0.714
140B	0.877	0.825	0.867	0.867
140D	0.829	0.742	0.862	0.862
140E	0901	0.808	0.733	0.733
151A	0.886	0.770	0.903	0.903
152 B /153	0.925	0.914	0.824	0.824
152C	0.926	0911	0.881	0.881
152 D	0915	0.959	0.895	0.895

Training, Transient Holdees, and Student Rate: The training, transient³², holdees³³, and student rates are the percentage of warrant officers by grade and PMOS in each of these four accounts. Like the continuation rate, these percentages are calculated as three year moving-averages by job skill and grade. The table displays the actual percentages of CWOs that are in the training, transient, holdees, or student accounts by grade and job skill

³² Transient Officers are those who are moving from one location to another. An example would be an officer moving from Ft. Bragg, NC to Golden, CO for attendance at the Colorado School of Mines.

³³Holdee Officers are those who are in a hospital or under confinement for a long duration, normally more than three months.

PMOS	W 1/C 2	CW 3	M /W 4	AVG.
A000	0.000	0.000	0.000	0.000
001A	0.000	00000	000.0	0.000
003A	0.000	0.000	0.000	0.000
004A	0.000	0.000	000.0	0.000
130A	0000.0	000.0	0000	0.000
130B	0.000	0.333	0.000	0.200
13 1A	0.067	0.083	0.100	0.077
132A	000.0	0.000	0.000	0.000
140 A	0.143	0 50 0	0.000	0 .19 1
14 O B	0 118	0.097	0.143	0 112
140D	0 .113	0.044	0.125	0.095
140E	0.075	0 .111	0.167	0.087
151A	0.055	0.123	0.073	0.076
152 E /3 C	0.204	0 10 3	0.078	0 175
152C	0 111	C 01. 0	0.214	0 13 1
152 D	0 .156	0.073	0.059	0 .113

<u>Authorizations:</u> Authorizations for Warrant Officers are by rank and PMOS and go six years into the future. Currently the Army has a technique to develop the workforce of the future. They utilize a notional force structure, in this case NOF-32³⁴, which provides the annual force structure to EOFY 1999 by PMOS and grade. This structure, when multiplied with the training, transient, holdees, and student rates (TTHS), will give the total budgeted end strength. The table displays the actual number of CWOs by PMOS and grade for EOFY 1994

PMOS	W 1/C 2	CW 3	M/C4	CW 5	total
A000	0	0	0	0	0
001A	0	0	0	0	0
003A	0	0	0	0	0
004A	0	0	0	0	0
130A	: 0	0	0	0	Ú
130B	0	0	0	0	0
13 1A	52	22	12	3	89
132A	0	0	0	0	Ċ.
140A	ш	4	2	1	18
140B	37	16	8	2	63
140D	16	7	4	1	27
140E	73	31	17	4	124
151A	125	53	29	7	233
152 B /3 C	251	106	57	15	42.9
152C	39	16	9	2	55
152 D	129	54	29	7	220

³⁴ Notional Force number thirty-two.

To read this table, take PMOS 152B/3C and grade CW3. The value 106 of that cell is the total number of authorizations for that grade and PMOS for EOFY '94.

<u>Accessions</u>: The accessions table is a method to dictate the number of officers by job skill to satisfy the projected budgeted end strength. The minimum number of Warrant Officers are accessed to meet this demand. The optimization procedure used to access the current force is described later in this chapter.

PMOS	'94	95	96	97	98
A000	0	(0)	(0)	(0)	(0)
001A	0	(O)	(ē.)	(÷)	(0)
003A	0	(0)	(0)	(0)	(0
004A	0	(0)	(0)	(÷)	65
130A	0	(0)	(¢)	(Q.)	(Q ,
130B	0	(G)	(0)	(0)	(0)
13 IA	9	36	36	36	36
132A	0	(0)	(0)	(0)	(0
140A	1	4	4	4	4
140B	6	7	7	7	7
140D	0	1	1	1	1
140E	8	23	23	23	23
151A	10	25	25	25	25
152 B /3 C	176	111	111	111	111
152C	0	13	13	13	13
152 D	0	(20)	(2,0)	(2, 0)	(2.0

To read this table take PMOS 152B/3C and year '95. The value 111 of that cell is the total number of accessions for that PMOS for EOFY '95.

<u>Promotions:</u> With the establishment of WOMA, a single promotion system was created that gave the warrant officers standardized procedures for promotions. Officers selected for promotion continue to serve in their grade until promotion without having to be considered for the same grade again. Warrant Officers who are twice non-select³⁵ for the next grade are retired or separated from active duty. Warrant officers will be considered for promotion to CW2 at 2 years of warrant service, promotion to CW3 at 8 years of warrant service, CW4 at 14 years of warrant service, and to CW5 at 20 years of warrant officer service. The table displays the number of CWOs by PMOS and grade eligible for promotion during FY '95.

то:	CW 3	CW4	CW 5
000A	0	0	0
001A	0	0	0
003A	0	0	0
004A	0	0	0
130A	0	0	0
130B	0	1	0
13 IA	5	2	1
132A	0	0	0
140A	5	1	0
140B	5	6	0
140D	1	1	2
140E	16	1	0
151A	22	8	2
152 B /3 C	9	14	4
152 C	1	3	0
152 D	9	21	5

<u>Promotion Opportunity:</u> The WOMA allows for a standardized promotion system and hence the law sets forth certain guidelines for advancement to the next grade. Promotion opportunity refers to the statistical probability of one being selected for advancement to the next grade. Those who are non-select twice for a grade may retire, if they have achieved twenty years of active federal service, or will be separated seven

³⁵ Officers who are twice non-select for promotion have been looked at by a promotion board two separate times and rejected both times.

months after the Secretary of the Army signs the promotion list. The table displays the promotion opportunity for the warrant officer by grade.

Promoti			
rank:	CW3	CW4	CW5
Rate	0.800	0.760	0.440

Transition Seats and Matrices: Within any organization there are those people who have critical skills that require additional training. The technique used here is to develop a matrix showing transition from one job skill to another and a distribution by grade. This ensures that the right number of personnel are available to work in specific job skills. Aviation assets are the most expensive to train and therefore are managed very carefully within the Warrant Officer Corps. For example, the cost to train a pilot in an advanced aircraft, such as the AH-64 Apache, can cost upward of \$1,000,000. The table below displays the distribution by grade followed by the transition matrix with donor job skills on the rows and receiver job skills on the columns. The Aviation Qualification Course matrix represents the total available seats for each fiscal year. Finally, the working matrix is a check to ensure that the distribution by job skill is a zero sum game with the ALL row having zero values for each fiscal year.

Distribution of grades:

W01/CW: 085 CW3 015

Donor and Receiver Matrix:

	152 D	152 F	152 G	153 D	154 C	155D	155E	156 A
152 B /3 C	0.80	0.15	0.75	0.20	0.20	0.30	0.00	0.00
152 F	0.00	0.00	0.00	0.00	0 0.0	0 0.0	0.00	0 .0 0
152 G	020	0.80	0.00	0.10	0.05	0.20	0.00	0.00
153 B	0 .0 0	0.05	0.25	0.70	0.75	0.50	0.00	0.00
153 D	0.00	0.00	0 0. 0	0 0. 0	0.00	0 0. 0	0.00	0.00
154 C	0 0. 0	0 .0 0	00.0	0 .0 0	0.00	00.0	0.00	0.00
155D	0 .0 0	0 .0 0	0 .0 0	0.00	0 .0 0	0.00	100	1.00
Total	100	100	100	1.00	1.00	1.00	1.00	1.00

Aviation	Qualificat	ion Cours	se (AQC)	:	:
PMOS	94	95	96	97	'98
152 B /3 C	0	0	0	0	0
152C	0	0	0	0	0
152 D	99	138	170	112	112
152 F	72	50	40	4 C	40
152 G	11	16	8	8	8
153 A	0	0	0	0	0
153 B	0	0	0	0	0
153 D	125	14 4	16 8	16 4	16 4
154 C	23	25	50	50	50
155A	0	0	0	0	0
155D	44	45	47	47	47
155E	66	90	52	44	44
156 A	6	0	0	0	0
ALL	446	508	535	465	465

Working	Materix				
PMOS	94	95	96	97	98
52B/3C	(1411)	(1777)	(206)	(359)	و زير (
152 C	0	0	0	0	0
152 D	99	138	170	112	112
152 F	72	50	40	40	40
152 G	(8.9.)	(75)	(87)	(75)	<u>75</u>
153 A	0	0	0	0	0
153 B	(123)	(14.9.)	0.3.2.1	(18-0-)	(1 5 ()
153 D	125	14 4	16 8	16 4	164
154 C	23	25	50	50	50
155A	0	0	0	0	0
155D	(28)	(45)	(5)	3	3
155E	66	90	52	44	44
156 A	6	0	0	0	0
ALL	0	(0)	0	0	0

<u>Unprojected Losses or Gains</u>: During the course of the execution year it may become necessary to adjust projections due to unexpected losses or cancellation of voluntary or involuntary elimination programs. The capability to adjust the forecast allows the personnel manager alternatives to programs that may be used. The table displays the job skill by grade. In this case the values are all zero, which reflects no unexpected losses in FY '94.

то :	CW 3	CW4	CW 5
A000	0	0	0
001A	0	0	0
003A	0	0	0
004A	0	0	0
130A	0	0	0
130B	0	0	0
13 1A	0	0	0
132A	0	0	0
140 A	0	0	0
140B	0	0	0
140D	0	0	0
140E	0	0	0
151 A	0	0	0
152 B /3 C	0	0	0
152C	0	0	0
152 D	0	0	0

5.3 Optimizing the Accession Plan

The goal of this model is to develop a five year accession and inventory projection plan for the Warrant Officer Corps. This objective is to ensure that sufficient Warrant Officers are accessed to meet the demand of authorizations and budgeted end strength. The model described in this dissertation is significantly cheaper, in relative terms, and achieves the same result as the larger model. The benefits come from improved hardware, new software, and the model's responsiveness to "what if" questions. To an assignment manager or division chief, this translates into the ability to find an optimal solution and conduct their own sensitivity analysis. If their accession plan is changed, the analyst can re-run the non-linear optimizer and create a new optimal solution for the personnel managers.

The Personnel Accession and Inventory Projection Model for the Warrant Officer Corps of the U.S. Army is an optimization and resource allocation program. Using techniques of non-linear and linear programming, the personnel accessions are optimized to minimize total personnel based on requirements and constraints set by the Army or Congress. These combined techniques constitute a powerful optimization and resource allocation tool. They allow the analyst to determine the optimal accession plan for the personnel manager using the algorithm entitled "Generalized Reduced Gradient Two", a non-linear code developed by Leon Lasdon, University of Texas at Austin and Alex Warren, Cleveland State University. The Generalized Reduced Gradient Two (GRG2) method allows the analyst to find the optimal value for the BES by adjusting the values of the accessions plan as the difference in the authorizations and projected inventory that is forced to zero. The model consists of three main components, which are familiar in linear and non-linear optimization.

 The objective function, in this example, is the difference of the EOFY '98 BES and the EOFY '98 projected inventory. The goal is to get a zero difference which would mean that the inventory meets requirements. A negative value would be the shortage of inventory compared to the budgeted end strength.

62

- 2. Decision variables are used to achieve steady state accessions³⁶. Accessions are held constant for the years '95-'98 to achieve this goal. The principal reason for this is to ensure that resources (school seats, training dollars, and educators) are available on a uniform basis. It also ensures that there won't be a surge of officers by PMOS in any one year. This allows the Army to be proactive in planning and distributing resources.
- 3. Constraints are determined by limiting the difference of the overage and shortage of officers in EOFY '98 to be less than or equal to zero. During the optimization process the less than or equal to constraints allow the computer to run much faster and still allow the algorithm to get an optimal solution. This will ensure that the personnel managers have the right number of officers available at the right time.

Lasdon's and Warren's GRG2 non-linear code has been incorporated into the model using the Excel 5.0 spreadsheet. The code is sufficiently robust to allow this large non-linear model, a result of huge, disproportional relationships within accessions and projections, to be solved on an advanced spreadsheet. In this spreadsheet the model became non-linear for these main reasons: decision variables are multiplied and divided by each other, exponentiation during the projection calculations, and logarithmic functions³⁷ in the spreadsheet.

³⁶A stable accession plan (condition) that does not change over time.

³⁷ Savage, Sam L. 1993. <u>Fundamental Alternative Spreadsheet Tools for Quantitative</u> <u>Management</u>. New York: McGraw-Hill, Inc.: 157.

5.4 Using the Generalized Reduced Gradient Method

The GRG2 method for non-linear programming has been demonstrated to be a robust code that can handle large problems quickly on a personal computer³⁸. What once took a specialized code on a mainframe computer is now solved on a personal computer. Essentially, the GRG2 code solves a general non-linear problem by linearizing the model and applying linear programming techniques to solve it.

Formulation of the general method is done by linearizing all constraints and objective function. The constraints are successively linearized and improved. At each feasible solution, the program improves the preceding solution until the solution becomes non-feasible. Using the previous solution, the problem is reformulated and the program starts again. The functions are linearized in piecemeal fashion so that the successive set of straight line segments are used to approximate the objective function and constraints. Within the GRG2 program, the solution process is controlled by setting certain specifications within the model and code. Options available to the analyst are:

1. Search techniques. Those included are the quasi -Newton and the conjugate gradient search methods³⁹. Each has its own

 ³⁸ Edgar, T.F. and Himmelblau, D.M. 1988. <u>Chemical Engineering Series. Optimization of Chemical Processes:</u> McGraw-Hill Book Company, United States: 322.
 ³⁹ Edgar, T.F. and Himmelblau, D.M. 1988. <u>Chemical Engineering Series. Optimization of Chemical Processes:</u> McGraw-Hill Book Company, United States.

advantages and disadvantages. The quasi-Newton requires more memory with less iterations while the conjugate gradient search method requires less memory with more iterations to reach a particular point of accuracy. However, the conjugate gradient search method is preferred with larger problems.

- 2. Derivatives. The analyst can use one of two similar methods for approximating partial derivatives of the objective function and constraints. The forward differencing method has a fixed step size and requires less calculations without a loss in accuracy. The central differencing method for partial derivatives requires more calculations but achieves great accuracy. Central differencing is preferred because it is better for improving solutions.
- 3. Estimates. Initial estimates of the basic variables are needed for each of the single dimensional searches. This can be achieved through tangent estimates which use linear extrapolation from a tangent vector or through quadratic extrapolation estimates. The quadratic extrapolation estimates work better than the tangent estimates for highly non-linear problems, such as in this example.

Inherent to any optimization problem is the solution time. This depends on many variables. Complexity and size of the model contribute to the overall difficulty of the problem. Having defined how to solve the problem, a method must be determined how to stop the model. Similar to other commercial codes, stopping criteria fall into one of four categories. They are maximum time, maximum number of iterations, precision, and tolerance.

- Maximum time is the time limit for solution process and is measured in real time.
- 2. Maximum iterations is the limit of the number of iterations calculated; it is measured by a complete processing cycle.
- Precision determines when a constraint meets a value of upper or lower bound specified and is measured as a function of the difference of values.
- 4. Tolerance is the percent error allowed in the optimal solution where integer constraints are used on any element in the problem. A higher tolerance 5% vs. 1% for example, would speed up the solution process. Tolerance is measured as a function of the percent difference of the constraint equations and the decision variables.

Affecting each of the stopping criteria is the speed of the machine, operation in a multitasking environment, and settings of interim results. To improve speed of solution, the computer should have complete control of the working environment. Turning off screen savers or not printing will improve performance.

5.5 Building and Running the Model

To run the model, the analyst creates the worksheet model within Microsoft Excel 5.0. Next the objective function, decision variables, and constraints to be optimized must be determined. In this example, the objective function is the BES for EOFY '98, decision variables are the accession plans, and the constraint is the difference of the projected inventory and the authorization. The analyst would now call up the addin program for non-linear optimization and select the appropriate settings. Settings used here are stopping criteria, type estimate, derivative differencing method, and search technique. Finally, after the problem is defined, the model will find a solution.

The GRG2 code runs in six phases. It is assumed all prior conditions are met, such as the requirement that the Hessian matrix being non-singular. The six phases are.

- Determine the search components for the independent variables.
- 2. Determine the search components for the dependent variables.
- 3. Improve value of the objective function.
- 4. Use quasi-Newton's method to regain feasibility of the dependent variable.
- 5. Check convergence to precision criteria.

6. If the model is set up correctly, the optimal solution will be obtained, and three reports will be generated.

In many of the reports, it will be observed that there are values of "#NA". This is only because the objective function was set to a value less

T-4471

than or equal to zero. If this model had been run as a maximization or minimization problem then values would have appeared. Additionally, there are values of "##" in several of the reports. This is an early warning to the analyst and is a reflection of an underlying problem in the distribution of additional training seats, such as having too many people in the additional training matrix. Listed below are the reports that summarize the results of the first attempt at the model.

The sensitivity report contains two tables of information demonstrating how sensitive a solution is to changes in the calculated model.

Microsoft E xcel 5.0 Sensitivity R eport Worksheet: (AGE NOF 32.XLS)AGE T WOS R eport Created: 15/2/94 12:02

a	hanging Ce	əlls		
			Final	Reduced
	Cell	Name	Value	Gradient
	\$BD\$188	000A '98	(16)	0
	\$BD\$189	001A '98	(2)	0
	\$BD\$190	003A '98	(2)	0
	\$BD\$191	004A '98	(1)	0
	\$BD\$192	130A '98	(1)	0
	\$BD\$193	130B '98	(0)	0
	\$BD\$194	131A '98	36	0
	\$BD\$195	132A '98	<u>(0)</u>	0
	\$BD\$196	140A '98	4	0
	\$BD\$197	140B '98	7	0
	\$BD\$198	140D '98	1	0
	\$BD\$199	140E '98	23	0
	\$BD\$200	151A '98		0
	\$BD\$201	152B/3C'9	98 111	0
	\$BD\$202	152C '98	13	0
	\$BD\$203	152D '98	(18)	0

The reduced gradient measures the increase in the objective function per unit increase in the decision variable. "Changing Cells" refers to the decision variables. For PMOS 000A with an excess to requirements of 16 officers per year would mean that these people with PMOS 001A must be moved to another PMOS. For this model PMOSs 001A to 004A are those officers in initial Warrant Officer training who haven't been awarded a PMOS. PMOS 140E has a demand of 23 officers per year to maintain sufficient number of officers in that job skill (PMOS).

Constraints		000000000000000000000000000000000000000	
		Final	Lagrange
Celi	Name	Value	Multiplier
\$DM\$10	000A diff]	0
\$DM\$11	001A diff	1	0
\$DM\$12	003A diff	1	0
\$DM\$13	004A diff	1	0
\$DM\$14	130A diff]	0
\$DM\$15	130B diff	1	0
\$DM\$16	131A diff]	0
\$DM\$17	132A diff]	0
\$DM\$18	140A diff]	0
\$DM\$19	140B diff	1	0
\$DM\$20	140D diff	1	0
\$DM\$21	140E diff]	0
\$DM\$22	151A diff]	0
\$DM\$23	152B/153C diff	1	<u> </u>
\$DM\$24	152C diff	1	0
\$DM\$25	152D diff	(23)	0

The Lagrange multiplier measures the increase in the objective function of the corresponding constraint. The final value for PMOS 000A is one, this means that it is exactly at the constraint, where PMOS 152D is 23 officers over the constraint but within the 1% tolerance set.

The answer report shows the relationship of the objective function, decision variables, and constraints.

Microsoft Excel 5.0 Answer Report Worksheet: (AGENOF32.XLS)AGETWOS Report Created: 15/2/94 12:01

Target Cell (Value Of)

Cell	Name	Original Value	Final Value
\$CT\$90	EOFY FY '98	561	0

Adjustable Cells

SBD\$192 130A '98 0 (1) \$BD\$193 130B '98 0 (0) \$BD\$193 130B '98 0 (0) \$BD\$194 131A '98 9 36 \$BD\$195 132A '98 0 (0) \$BD\$196 140A '98 1 4 \$BD\$196 140A '98 1 4 \$BD\$197 140B '98 6 7 \$BD\$198 140D '98 0 1 \$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	Cell	Name	Original Valu e	Final Value
\$BD\$190 003A '98 0 (2) \$BD\$191 004A '98 0 (1) \$BD\$192 130A '98 0 (1) \$BD\$192 130A '98 0 (1) \$BD\$192 130A '98 0 (0) \$BD\$192 130B '98 0 (0) \$BD\$193 130B '98 0 (0) \$BD\$194 131A '98 9 36 \$BD\$195 132A '98 0 (0) \$BD\$195 132A '98 0 (0) \$BD\$195 140A '98 1 4 \$BD\$196 140A '98 1 4 \$BD\$197 140B '98 6 7 \$BD\$198 140D '98 0 1 \$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$188	000A '98	0	(16)
SBD\$191 OO4A '98 O (1) \$BD\$192 130A '98 O (1) \$BD\$192 130A '98 O (1) \$BD\$192 130A '98 O (0) \$BD\$193 130B '98 O (0) \$BD\$194 131A '98 9 36 \$BD\$195 132A '98 O (0) \$BD\$195 132A '98 O (0) \$BD\$195 132A '98 O (0) \$BD\$195 140A '98 1 4 \$BD\$196 140A '98 1 4 \$BD\$197 140B '98 6 7 \$BD\$198 140D '98 0 1 \$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$189	001A '98	0	(2)
SBD\$192 130A '98 0 (1) \$BD\$193 130B '98 0 (0) \$BD\$194 131A '98 9 36 \$BD\$194 131A '98 9 36 \$BD\$195 132A '98 0 (0) \$BD\$195 132A '98 0 (0) \$BD\$195 132A '98 0 (0) \$BD\$195 140A '98 1 4 \$BD\$196 140A '98 1 4 \$BD\$197 140B '98 6 7 \$BD\$198 140D '98 0 1 \$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$190	003A '98	0	(2)
\$BD\$193 130B '98 0 (0) \$BD\$194 131A '98 9 36 \$BD\$195 132A '98 0 (0) \$BD\$195 132A '98 0 (0) \$BD\$195 132A '98 0 (0) \$BD\$196 140A '98 1 4 \$BD\$197 140B '98 6 7 \$BD\$198 140D '98 0 1 \$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$191	004A '98	0	(1)
SBD\$194 131A '98 9 36 SBD\$195 132A '98 0 (0) SBD\$196 140A '98 1 4 SBD\$197 140B '98 6 7 SBD\$198 140D '98 0 1 SBD\$199 140E '98 8 23 SBD\$200 151A '98 14 25 SBD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$192	130A '98	0	(1)
SBD\$195 132A '98 0 (0) SBD\$196 140A '98 1 4 SBD\$197 140B '98 6 7 SBD\$197 140B '98 0 1 SBD\$197 140D '98 0 1 SBD\$198 140D '98 0 1 SBD\$199 140E '98 8 23 SBD\$200 151A '98 14 25 SBD\$201 152B/3C '98 176 111 SBD\$202 152C '98 0 13	\$BD\$193	130B '98	0	(0)
SBD\$196 140A '98 1 4 SBD\$197 140B '98 6 7 SBD\$197 140B '98 0 1 SBD\$198 140D '98 0 1 SBD\$199 140E '98 8 23 SBD\$200 151A '98 14 25 SBD\$201 152B/3C '98 176 111 SBD\$202 152C '98 0 13	\$BD\$194	131A '98	9	36
\$BD\$197 140B '98 6 7 \$BD\$198 140D '98 0 1 \$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$195	132A '98	0	(0)
SBD\$198 140D '98 0 1 SBD\$199 140E '98 8 23 SBD\$200 151A '98 14 25 SBD\$201 152B/3C '98 176 111 SBD\$202 152C '98 0 13	\$BD\$196	140A '98]	4
\$BD\$199 140E '98 8 23 \$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$197	140B '98	6	7
\$BD\$200 151A '98 14 25 \$BD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$198	140D '98	0]
SBD\$201 152B/3C '98 176 111 \$BD\$202 152C '98 0 13	\$BD\$199	140E '98	8	23
\$BD\$202 152C '98 0 13	\$BD\$200	151A '98	14	25
	\$BD\$201	152B/3C '98	176	111
	\$BD\$202	152C '98	0	13
\$BD\$203 152D '98 0 (18)	\$BD\$203	152D '98	0	(18)

The final value in the answer report is the actual accession plan needed for each EOFY '95 to EOFY '98. The Target Cell refers to the objective function starting with 561 officers under the BES and achieving the final value of 0, or the BES directed by Congress. Adjustable cells refer to the decision variables and the change from the FY '93 accession plan. The optimized accession plan changed from 877 personnel to 1,063 people for the accession years of FY '94 to FY '98. In some cases the changes are minor but in others it is dramatic. PMOS 152B/3C is an aviation skill with a FY '93 accession plan of 176 and an optimized plan for accessions, based on requirements, of 111. To train the additional 65 officers would have meant an additional cost of approximately 15 million dollars.

Constraints					
Cell	Name	Cell Value	Formula	Status	Slack
\$DM\$10	000A diff]	\$DM\$10<=1	Binding	0
\$DM\$11	001A diff]	\$DM\$11<=1	Binding	0
\$DM\$12	003A diff]	\$DM\$12<=1	Binding	0
\$DM\$13	004A diff]	\$DM\$13<=1	Binding	0
\$DM\$14	130A diff]	\$DM\$14<=1	Binding	0
\$DM\$15	130B diff	1	\$DM\$15<=1	Binding	0
\$DM\$16	131A diff	1	\$DM\$16<=1	Binding	0
\$DM\$17	132A diff	1	\$DM\$17<=1	Binding	0
\$DM\$18	140A diff	1	\$DM\$18<=1	Binding	0
\$DM\$19	140B diff]	\$DM\$19<=1	Binding	0
\$DM\$20	140D diff	1	\$DM\$20<=1	Binding	0
\$DM\$21	140E diff	1	\$DM\$21<=1	Binding	0
\$DM\$22	151A diff	1	\$DM\$22<=1	Binding	0
\$DM\$23	152B/153C diff	1	\$DM\$23<=1	Binding	0
\$DM\$24	152C diff]	\$DM\$24<=1	Binding	0
\$DM\$25	152D diff	(23)	\$DM\$25<=1	Not Binding	24

The second part of the status report gives information as to whether a variable is binding or not-binding. Binding means that the final constraint value equals the constraint value and has a slack value equal to zero. A not-binding constraint is met but does not equal the constraint value and has a non-zero slack value.

The limits report lists the objective function, decision variables with their values, lower and upper limits, and the objective function values.

Microsoft Excel 5.0 Limits Report Worksheet: (AGENOF32.XLS)AGETWOS Report Created: 15/2/94 12:02

000000000000000000000000000000000000000	Target	
Cell	Name	Value
\$CT\$90	EOFY FY '98	0

***************************************	Adjustable	000000000000000000000000000000000000000	Lower	Target	Upper	Target
Cell	Name	Value	Limit	Result	Limit	Result
\$BD\$188	000A '98	(16)	(16)	0	#N/A	#N/A
\$BD\$189	001A '98	(2)	(2)	0	#N/A	#N/A
\$BD\$190	003A '98	(2)	(2)	0	#N/A	#N/A
\$BD\$191	004A '98	(1)	(1)	0	#N/A	#N/A
\$BD\$192	130A '98	(1)	(1)	0	#N/A	#N/A
\$BD\$193	130B '98	(0)	(0)	0	#N/A	#N/A
\$BD\$194	131A '98	36	36	0	#N/A	#N/A
\$BD\$195	132A '98	(0)	(0)	0	#N/A	#N/A
\$BD\$196	140A '98	4	4	0	#N/A	#N/A
\$BD\$197	140B '98	7	7	0	#N/A	#N/A
\$BD\$198	140D '98	1]	0	#N/A	#N/A
\$BD\$199	140E '98	23	23	0	#N/A	#N/A
\$BD\$200	151A '98	25	25	0	#N/A	#N/A
\$BD\$201	152B/3C '98	111	111	0	#N/A	#N/A
\$BD\$202	152C '98	13	13	0	#N/A	#N/A
\$BD\$203	152D '98	(18)	(25)	24	#N/A	#N/A

The lower limit of this report is the smallest value that a decision variable can take while holding all other decision variables fixed and satisfying all constraints. Upper limits are the same as lower limits except they refer to the largest value that a decision variable can take while holding all other decision variables fixed and satisfying all constraints. Target result is the value of the objective function when the decision variable is at its upper or lower limit.

5.6 Finding the Solution

In any search program there are only three possible outcomes to the routine. They are:

- 1. A solution is found;
- 2. or, a current solution is found but stopping criteria set in the program causes it to stop (maximum time or iterations criteria is met);
- 3. or, the program fails.

Some reasons for a program failing are the objective function is increasing or decreasing without limit, integer constraints were used and the tolerance is too tight, or input values are several orders of magnitude apart.

Chapter 6 Conclusion and Recommendations

This model has significantly enhanced the Warrant Officer Corps ability in determining an optimal accessions program and inventory projections. For the first time, personnel and assignment managers have an optimal solution to their accession plan and an accurate projection of the personnel inventory. Flexibility of the model allows them to conduct their own sensitivity analysis and lets them answer questions from the field in a quantifiable manner.

6.1 Impact and Implementation of the Model

In 1993, the accession plan called for the accession of 977 Warrant Officers. The impact was an uneven distribution of personnel resources across the Army. The same methodology was used in earlier years and caused certain skills to be over represented while others were under represented. The optimal accession plan for FY '95 is 1,063 personnel identified by PMOS.

When the drawdown of FY '91 started, it was realized that certain PMOSs would take the brunt of the reductions while others would not be reduced. This situation was uncomfortable and caused resentment among some of the Warrant Officers. This model begins the process of fixing earlier problems and works towards ensuring an equal distribution of personnel by PMOS in the future. What is important to note is the fundamental change in philosophy from having more resources than necessary to one of ensuring that the Army has exactly what it needs. This places the personnel managers in a position to address questions related to other areas.

A common complaint of Warrant Officer Assignment Officers is that they have no way to answer questions from the field in a quantifiable manner. Questions could range from what is the projected inventory by PMOS in FY '97 to how many people can we send to advanced aircraft training in FY '96?

At the Officer Personnel Management Directorate (OPMD) and Deputy Chief of Staff, Plans (DCSPLANS) at the U.S. Army Personnel Command (PERSCOM), and the Office of the Deputy Chief of Staff of Personnel (ODCSPER) at the Pentagon, personnel managers have begun the learning process of how to use the model.

6.2 Implications for the U.S. Army Warrant Officer Corps

With the introduction of this model, the methodology of conducting Warrant Officer business has changed. The accession plan has been optimized and the force will begin to shape itself to fit the BES directed by Congress. The older methods had inventory imbalances of over 25% of authorizations by grade in PMOS. This model by EOFY 1998 is projected to have the imbalances reduced to less than 10% by PMOS and grade. As the world situation changes and requirements for the Warrant Officer Corps change, so will the accession plan and projected

76

inventories. Having the additional flexibility of this model over the older mainframe models allow policy makers to weigh the effects of a rapidly changing policy. Policy changes could include promotion opportunity or how and when personnel are accessed.

Personnel Managers and Assignment Officers now have the additional tool of this model to assist them. Currently the model is being used by the Warrant Officer personnel managers and passes the most important test of all, that of customer satisfaction.

6.3 Conclusion

This dissertation addresses three types of audiences. Top level management, personnel managers, and assignment officers. These people have been critical of the theoretical approach and have examined the model from their perspective. Most people don't care about theory and the analytical approach but more about the function and capability of the model. This model passed the evaluations of all three levels of management. This isn't a guarantee of success but is a start to ensure the model is used. The U.S. Army has incorporated the Warrant Officer model into current personnel actions and processes. Concrete benefits have been demonstrated by the use of this model. The reduction in force and selective early retirement boards were canceled because of the models ability to correctly project the force size. Programs that were used to shape the Warrant Officer force due to imbalances were voluntary separation incentive programs. Immediate cost savings are

77

estimated to be around 12 million dollars for FY '95 due to the accuracy of the model.

6.4 Recommendations for Improvement

As the model evolves and experience is gained with its use, enhancements will be made to ensure the model meets expectations of the Personnel Managers. Changes would be the updates to rates and inclusion of specific sub-programs such as gender and racial ethnic provisions. Applying updated tools and techniques will ensure that the model doesn't become outdated quickly.

SELECTED BIBLIOGRAPHY

Banks, Jerry and Carson, John. 1984. Discrete System

Simulation. Englewood Cliffs, New Jersey: Prentice Hall.

Edgar, T.F. and Himmelblau, D.M. 1988. <u>Optimization of Chemical</u> <u>Processes</u>. New York, NY: McGraw-Hill Book Company.

Flury, Bernhard and Riedwyl, Hans. 1990. <u>Multivariate Statistics A</u> <u>Practical Approach</u>. New York, NY: Chapman and Hall.

Freund, John E. 1992. <u>Mathematical Statistics</u>. Englewood Cliffs, New Jersey: Simon & Schuster Company.

Montgomery, Douglas C. 1990. <u>Introduction to Statistical Quality</u> <u>Control</u>. New York, NY: John Willey and Sons, Inc.

Nahmias, Steven. 1989. Production and Operations Analysis.

Homewood, Il: Richard D. Irwin, INC.

Savage, Sam L. 1993. <u>Fundamental Analytic Spreadsheet Tools for</u> <u>Quantitative Management</u>. New York, NY: McGraw-Hill Book Company.

Stermole, Franklin J. and Stermole, John J. 1990. <u>Economic</u> <u>Evaluation and Investment Decision Methods</u>. 7th. Ed. Golden, CO: Investment Evaluations Corporation.

Walpole, Ronald E. and Myers, Raymond H. 1989. <u>Probability and</u> <u>Statistics for Engineers and Scientists</u>. New York, NY: Macmillan Publishing Company.

Winston, Wayne L. 1987. <u>Operations Research: Applications and</u> <u>Algorithms</u>. Boston, MA: Prindle, Weber & Schmidt Publishers.

Appendix A

Fiscal year '93 inventory used as the basis for the personnel inventory projections.

	26 Oct. '9				
PMOS	W 1/C2	C W3	M/C4	CW5	Total
0 0 0 A	61	0	0	0	6
001A	4	0	1	0	
0 03 A 0 04 A	6	0	0	0	
1 30 A	0	1	0	0	
1 30 B	0	0	0	0	
131A	66	29	10	2	10
1 32 A	0	0	0	0	
140A	9	2	1	0	1:
140B	43	23	8	0	7
140 D	7	4	6	2	11
140E 151A	136	58	31	6	10
152B/153	450	1 05	66	6	62
152 C	13	23	15	2	5
1 52 D	131	97	42	7	27
152 F	613	2 7 3	1 3 2	30	1,04
1 52 G	341	127	83	27	57
153A	190	0	0	9	19
153B	631	2 0 9	161	33	1.03
153 D	1.018	399	235	35	1.68
154 C 155 A	285	2	130	2	58.
155 D	6	32	31	1	7
155 E	18	1 3 2	147	39	330
156A	7	39	30	6	8
180A	214	1 04	2	0	320
210A	20	12	5	2	31
213A	0	0	0	0	(
2 15 D	20	15	3	0	31
250 A 250 B	102 37	91 18	37	3	233
251A	40	47	13	0	100
256 A	181	96	41	1	318
311A	206	123	59	8	396
3 50 B	49	39	15	1	1 04
350 D	45	31	9	0	85
350L	18	21	7	0	46
351B#	2 65	67	39	3	374
351C# 351E#	45	20	10	3	76
351E# 352 C	89	43	8	0	140
352 D	10	3	1	0	14
352 G	49	12	8	0	6 9
3 52 H	12	8	1	0	21
352J	28	19	5	0	52
3 52 K	10	4	0	0	14
353A	36	18	2	1	57
420A 420C	<u>66</u> 21	75	78	5	224
550A	30	16	10 9	1	48
600A	33	21	12	0	7(
640A	30	22	0	0	51
670A	45	20	8	0	7
880A	43	17	11	4	75
881A	60	21	10	1	92
910A	53	36	16	0	1 05
911A	1	12	8	3	24
012A	56	25	12	1	94
013A 014A	24	32 18	19 11	0	7
915A	543	353	96	9	1,00
916A	11	11	4	0	2
917A	44	17	12	0	7
918A	22	9	4	0	3
919A	61	58	22	4	14
920A	198	157	66	4	425
920 B	129	95	41	4	269
921A	20	15	7 26	0	42
922A	20				81

Appendix B

Inventory projections for years 1994 to 1998.

				N 10 1	1	1	T			<u></u>				1			,		r		
P ROJEC W 01/CW		NTORYA I	S OF EOF	γ·94	C W 3	<u> </u>			C W4		-		C W S				<u> </u>	Total			
	Auth	Inventory	BÉS	d(1)	Auth	inventory		ditt	Auth	Inventory		d111	Auth	Inventory		dift		Inventory	C-BES	A-BES	della
000A	0	61	0	(61)	0	0	0	0	0	0	0	(1)	0	0	0	0	0	61	0	0	
0014	0	4 6	0	(4)	<u>с</u> 0		0		0	0	0	0	0		0	0	0	5	0	0	
004A	0	1	0	(1)	0		0	0	0	0	0	0	0		0	0	0	1	0	0	1
130A	0	0	0	Ó	0					0	0	0	0		0	0		1	0	0	
130B 131A	52	68	0 56	(13)	22		24	0	12	9	13	4	3		0	2	89	102	0 96	0 97	
1324	0	¢	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	C	C	1
140A	11	9	12	3	4		7	5	2	1	2		1		1	1	18	11	22	22	
1408	37	44	41	(3)	16	19	17	(2)	8	7	10	3	2		2	2	63	70	70	72	
140D 140E	73	6 79	78	(1)	31	14	34	20	17	6	19	14	4		5	5	124	99	136	139	
151A	:25	131	131	1	53	45	59	14	29	28	31	3	7		8	2	213	209	229	233	
152B/153	251	472	302	(170)	106	21	117	42 (3)	57	54	62	8 (2)	15	5	<u>16</u> 3	11	429	606	497	<u>506</u> 76	(10
152C 152D	39	204	43	31 (55)	54	108	58	(50)	29	38	31	(6)	7	6	8	2	220	356	246	251	(10
152F	580	632	633	1	245	269	257	(12)	133	116	137	21	34	26	35	8	<u>991</u>	:,043	1,06.2	1,080	3
152G	222	223	247	24	94	101	102	24	51	67	54	(13)	13	22	14	(8)	379	413	417	424	1
153A 153B	57 451	152 640	<u>69</u> 514	(83)	24	161	24	42	13	132	15	(23)	26	27	28	(3)	98 771	960	111 854	113	(4)
153D	893	1,047	965	(82)	377	384	416	31	205	208	217	9	52	31	55	24	1,527	1,670	1,65 3	1,683	1
154C	283	286	297	11	119	141	130	(12)	65	124	67	(58)	16	36	17	(19)	483	588	511	520	16
155A	14	(19)	14	13	6 19	25	6 21	(4)	10	23	4	3 (11)	3	2	3	(1)	24 78	6 31	25 87	25	1 5
155D 155E	137	73	156	83	58	133	6.9	(64)	31	124	34	(89)	8	33	9	(24)	235	363	268	273	(9
156A	18	12	23	11	8	36	9	(27)	4	25	5	(21)	1	5	1	(4)	31	78	38	38	(4
180A 210A	214	254	231	(22)	90	95	97	2	49	2	49	47	12	0	12	12	365	351	390	397	4
210A 213A	23	0	26	0	0	9	0	o c	0	0	0	0	0	0	0	(0)	0	0	0	43	
215D	8.1	19	18	(1)		12	8	(4)	4	3	4	1	1	0	1	1	30	35	31	32	(
250A	111	105	118	13	47	74	50	(24)	25	31	28	(3)	6	3	7	4	189	212	203	206	2
250B 251A	47	42	49	21	20	38	26	(12)	14	11	14	3	3	0	3	3	102	92	107	109	
256A	147	185	157	(28)	62	78	67	(11)	34	32	35	3	9	1	9	8	251	296	268	273	(2
311A	235	214	250	36	99	101	107	6	54	43	56	14	14	6	14	9	401	363	428	435	7
35 0B	71	54	75	21	30	36	32	(4) (5)		13	16	3	4	1	4	3	122	104	127	130	2
350D 350L	46	49	47	(2)	12	19	13	(5)		6	7	1	2	0	2	2	49	47	55	56	
35 IB #	198	276	212	(63)	84	49	89	40	45	29	51	22	12	2	t 3	11	339	356	365	372	11
351C#	46	43	48	6	19	20	2 1 4 0	1	10	9	21	2	3	3	3	G	78	74 104	83 157	85	1
351E # 352C	85 97	69 95	90	22	36	27	42	8	20	7	28	21	6		7	4		136	181	160	4
35 2D	4	10	4	(6)	1	2	1	(1)	1	1	1	0	0	0	0	0	6	13	6	6	C ()
352G	32	48	36	(13)	13	10	14	4	7	7	9	2	2	0	2	2		65	61	62	(
352H 352J	12	12	13	2	5	6 1.6	6 12	0	3	1	3	2	2	0	1	1	21	18	23 50	23	
3525 352K	9	10	10	0	4	3	4		2	0	2	2	1		1	1		13	17	17	
35 3A	26	37	28	(10)	11	14	13	(1)		1	6	5	2	1	2	1	45	54	49	49	(*
420A 420C	120	72	126	53 3	<u>51</u> 10	57	55	(2) (2)	27	66 8	28	<u>(38)</u> (2)	7		7	3	205	200	216 45	220	2
550A	35	32	36	4	15	18	15	(3)		8	8	0	2	0	2	2	5.9	57	. 61	62	
600A	2	14	2	(13)	. 1	9	1	(9)	0	8	0	(8)	0	0	0	0	3	32	3	3	(2
640A	31	32	34	2 (0)	13	18	14	(4)	7	0	7	7	2	0	2	2	<u>53</u> 75	50 69	56 80	57 81	
670A 880A	49	47	47	1	21	15	23	8	11	10	12	2	3	3	3	(0)		77	88	89	1 1
881A	53	67	57	(10)	22	17	25	8	12	8	13	5	3	1	3	3	91	93	98	100	
910A	46	49	49	0	20	27	21	(7)	11	13	12	(2) (6)	3	0	3	3 (2)	79	89	84 0	86 0	() (1)
911A 912A	42	59	44	(1)	0	21	19	(2)	10	11	10	(1)	2	1	2	1	71	92	76	77	
913A	40	25	43	18	17	26	18	(8)	9	17	10	(7)	2	0	2	2	68	68	73	74	
914A	31	33	32	(0)	13	12	15	3	7	10	7	(3)	2	0	2	2	53	55	56	57	
915A 916A	525 18	563	555 19	(8) 	222	289	235	(53)	120	70	125	55	31	7	32	25	898 31	927 25	947 33	964 33	3
917A	36	56	42	(14)	15	15	17	2	8	10	8	(2)	2	0	2	2	61	81	68	70	(1
918A	22	24	23	(1)	9	8	10	5	5	3	5	2	1	0	1	1	37	34	39	40	
919A	76	62	84 244	23	32	49	36 105	(13) (22)	17 52	19	19	1 6	4	3	5	2	130	133	144	147	1 3
920A 920B	228	207	173	5.5	9 65	77	71	(22)	35	33	39	6	9	3	10	7	263	230	292	297	6
921A	30	21	31	10	13	12	13	1	7	6	8	2	2	0	2	2	51	40	55	56	1
922A	47	28	52	24	20	27	21 3,032	(6)		20		(8) 23	3 385		3 408	1 17	81 11,315	76		89	
ALL I	6,619	7,3/4	/ 20.9	[164]	2,195	3,123	3,032	(93)	1,316	0.00	עיטס ַ ו	23	383	201	408	14/	11,315	12,340	12,238	12,4/1	13
	FY '94	BES '94																			
CBES	12,258	12,477																			
	11,315																				L
Avn Tech	6,358	6,032																			h
sum	12,346																				
2xNS	0																				
BES '94			7																		—
JET	131	0				·i			·	· · · · · · · · · · · · · · · · · · ·				•				L	·		<u> </u>

TIT T <tht< th=""> T T T</tht<>																						
Party Party <t< td=""><td></td><td></td><td>NTORYA</td><td>S OF EOF</td><td>Y '95</td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>CW5</td><td></td><td></td><td></td><td><u> </u></td><td>Total</td><td></td><td></td><td></td></t<>			NTORYA	S OF EOF	Y '95	0.00								CW5				<u> </u>	Total			
State T C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>			Inventory	855	dut .		Investory	BES	det		Inventory	BES	ditt		Inventory	BES	ditt	To: Auto		C-BES	A-RES	4/11
TIT T <tht< th=""> T T T</tht<>										0	· · · · · · · · · · · · · · · · · · ·						_					(46)
Diff 1 1 6 1 0 6 0		0	3	0																		(4)
Cont C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>																						(5)
100 2 3 4 10 <td></td> <td><u>. (1</u></td>																						<u>. (1</u>
1717 65 64 66 74 7								0														(0)
137. c c d <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>(6)</td>										15												(6)
etg 12 13 13 14 14 14 15 16 2 16 17 15 15 16<	1 3 2 A					0	0										0	0		0		0
1000 4 -1 1 -1 1																						7
end ft ft< ft< <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(4)</td></th<>																						(4)
																						28
Signed Dia Dia <thdia< th=""> <thdia< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27</td><td>28</td><td></td><td></td><td>7</td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td>10</td></thdia<></thdia<>										27	28			7		7						10
100 111 216 112 216 113 21 216 217 218 217	152B/153	233	392																			(22)
bit bit <td></td> <td>22</td>																						22
1300 1991 1951 2921 191 192 122 122 121																						
153 157 163 44 (49) 24 9 24 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>56</td></th<>																						56
1300 1323 1011 1027 <th< td=""><td>153A</td><td></td><td></td><td></td><td></td><td>24</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>97</td><td></td><td>110</td><td>111</td><td>(47)</td></th<>	153A					24												97		110	111	(47)
Sinc Tit2 Tit2 <thtit2< th=""> Tit2 Tit2 <tht< td=""><td>153B</td><td>398</td><td>587</td><td>454</td><td>(133)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(5)</td><td></td><td></td><td></td><td></td><td>(83)</td></tht<></thtit2<>	153B	398	587	454	(133)												(5)					(83)
1564 11 4 11 6 6 1 1 12 2 1 </td <td>153D</td> <td></td> <td>74</td>	153D																					74
iso i																						10
156 125 126 123 126 127 127 127 127 128 <td></td> <td>83</td>																						83
964 9 4 12 6 12 6 12 6 12 12 13 12 13 14 15 15 15 16 62 18 20 14 13 12 <							127	64	(63)	29	109	31	(77)	7	38	8		216	353	246	249	{104]
104 21 22 1 2 1 2 1 2 1 <td>156A</td> <td></td>	156A																					
712 0																						
17:00 16 17:10 15 13 1 <th1< th=""> 1 <th1< th=""> <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></th1<></th1<></th1<>																						3
Sight 95 106 105 105 106 107 109 107 109 107 109 107 109 107 109 107 109 107 109 107 109 107 109 108 107 109 108 107 108 107 108 107 108 107 108 107 108 107 108 108 107 108 107 108 107 108 <td></td>																						
9569 47 47 48 2 26 15 21 6 11 2 11 9 3 3 70 44 43 93 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 23 44 44 45 3 2 14 14 14 4 14 4 14 44 15 2 5 3 3 44 44 45 35 44 44 45 35 44 44 45 35 44 44 45 35 44 45 35 44 45 35 44 45 35 44 45 35 44 44 45 35 44		99	106	105	(0)	42	60	45	(16)	23	29	25	(5)		4	6	3	169	199	181	183	(16)
136 146 136 146 136 146 136 146 136 146 136 146 136 146 136 146 136 146 136 146 136 146 136 146 136 136 146 136 146 136 136 146 136 136 136 136 146 136 146 136 136 146 136 136 136 146 136 <td>250B</td> <td></td> <td>20</td>	250B																					20
11 A 222 229 247 10 90 106 (3) 53 20 56 14 13 6 14 8 90 311 422 422 422 42 42 42 42 42 42 42 42 43 53 114 103 146 103 146 103 146 103 146 103 146 103 146 103 146 103 146 103																						5
3560 71 65 11 73 73 74 73 73 74 73 74 73 74 73 74 73 74 73 74 73 74 73 74 <																						
Sing Sing <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27</td></th<>																						27
9580 28 27 33 6 12 13 13 13 13 2 11 44 45 55 55 64 14 14 12 13 9 13 9 339 344 94 95 13 9 13 9 339 344 94 95 14 14 12 13 9 13 9 17 17 148 148 145 12 13 9 17 17 148 148 160 15 14 10 10 10 10 10 10 10 11 11 10	35 0D												5									8
53.0 45 43 43 44 19 20 1 16 8 11 2 3 2 3 0 77 72 82 43 156 166 1 7 177 177 176 176 176 176 177 176	35 OL	29	27	33																55	55	6
Site 18 15 29 10 37 22 41 19 20 9 22 13 5 2 6 4 150 115 162 163 4 550 100 100 100 100 100 100 11 1 1 0 0 0 7 11 7 7 10 550 22 24 00 1 1 1 0 0 0 0 7 11 7 7 0 551 7 30 30 00 11 1	35 1B #																					19
192 193 193 193 23 7 29 22 6 1 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td></t<>																						10
1570 4 1 1 1 1 1 0 0 0 0 0 0 7 11 7 7 7 1 1 1 1 0 0 0 0 7 11 1 7 7 8 9 1 2 1 2 2 5 6 6 1 <td></td> <td>42</td>																						42
112 113 13 13 13 13 13 12 1 1 1 1 20 19 22 22 22 23 23 27 30 30 10 11 13 12 12 13 12 13 12 13 12 13 12 14 14 14 44 45 56 50 2 1 1 14 44 45 56 56 2 6 4 1 1 1 14 46 14 46 14 46 14 46 16 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 14 16 16 1 1 1 1 1 1 1 10 11 11 10 11 11 11 11 11 <t< td=""><td>352D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>(4)</td></t<>	352D									1	1				0	0						(4)
153/2 27 30 30 10 11 13 12 (1) 6 5 6 1 2 1 2 1 44 45 50 50 153/2 6 11 10 (1) 14 14 16 <th< td=""><td>352G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(3)</td></th<>	352G									7												(3)
ispa ispa <th< td=""><td>352H</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></th<>	352H									3												3
35A 26 38 27 (10) 11 11 13 1 6 2 6 4 1 1 1 1 1 1 44 50 47 48 (0) 230 114 01 17 11 (6) 5 7 (10) 1 1 1 1 1 1 0 39 45 42 22 (2) 200 2 2 59 57 61													· · ·									
114 01 119 29 48 47 S2 5 24 5 24 6 7 6 7 6 7 119 202 203 207 11 200 23 200 23 200 23 200 24 4 10 17 11 160 5 7 6 (1) 1 1 0 39 45 420 2 2 53 57 61 0 61 0 61 0 61 0 61 0 61 0 61 0 61 0 61																1						(4)
135 33 33 33 15 17 15 12 8 6 8 1 2 0 2 2 2 57 61 61 7 100A 1 5 1 13 0 4 1 13 0 6 0 15 2 2 53 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 57 61 61 7 <td>420A</td> <td></td> <td></td> <td></td> <td>29</td> <td>48</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td>(1)</td> <td>195</td> <td>202</td> <td>205</td> <td>207</td> <td>6</td>	420A				29	48								7			(1)	195	202	205	207	6
10 5 1 13 0 4 1 13 0 6 0 (5) 0 1 0 11 2 2 2 11 13 12 13 13 13 13 13 14 14 00 7 3 7 5 2 0 2 2 33 51 56 57 10 100A 41 52 42 (10) 17 13 19 6 9 7 10 3 2 4 3 (11) 70 74 75 (12) 10A 50 62 54 2 21 23 5 11 7 12 5 3 1 3 2 28 93 92 93 (2) 14 14 23 16 17 14 13 23 22 20 0 13 3 84 84 92	420C																					(3)
100 25 34 101 13 14 14 100 7 3 7 5 2 0 2 2 53 51 56 57 71 78 78 7 5 2 0 2 2 73 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71 78 71																						5
Tox 43 43 43 19 6 10 1 2 0 2 2 73 71 78																						6
180A 41 52 42 (10) 17 13 19 6 9 7 10 3 2 4 3 (11) 70 76 74 75 76 76 76 76	670A												1									8
10A 50 52 54 2 21 23 22 (0) 12 12 13 0 3 1 3 3 86 80 92 93 5 11A 0 (2) 0 2 0 6 0 (5) 0 3 1 3 3 96 93 93 5 12A 36 49 38 (10) 15 22 17 (5) 8 11 8 (2) 2 2 (0) 64 66 67 (1) 11A 26 32 23 16 (7) 8 14 9 (5) 2 2 2 0 61 66 65 66 (1) 16 13 15 14 (11) 5 10 6 (41) 2 2 3 1 1 0 1 1 22 27 23 23 (1) 1 1 3 3 3 3 3 2 2 10 <td>880A</td> <td>41</td> <td>52</td> <td>42</td> <td>(10)</td> <td></td> <td>74</td> <td></td> <td>(2)</td>	880A	41	52	42	(10)															74		(2)
11A 0 (2) 0 2 0 6 0 (6) 0 5 0 (5) 0 3 0 (3) 0 12 0 0 0 11 11A 36 44 39 (10) 15 22 17 (5) 8 11 8 (2) 2 2 0 64 66 67 (1) 11A 36 27 38 11 15 23 16 (7) 6 14 9 (5) 2 2 2 0 64 65 66 (1) 2 1 2 0 44 53 51 57 (1) 15A 504 546 532 (13) 21 27 23 23 23 51 57 (2) 53 29 30 22 62 91 90 917 (1) 15A 13 14 (1) 5 10 6 43 7 11 7 (4) 2 0 </td <td>881A</td> <td></td> <td><u>(1)</u></td>	881A																					<u>(1)</u>
112A 36 49 38 (10) 15 22 17 (5) 8 11 8 (2) 2 2 (0) 62 84 66 67 (1) 112A 36 27 38 11 15 23 16 (7) 8 14 9 (5) 2 2 0 61 65 65 66 (1) 114A 28 32 29 (3) 12 11 14 2 6 8 6 (1) 2 1 2 0 48 53 51 55 (1) 116A 13 15 14 (11) 5 10 6 (41) 2 7 1 1 1 0 1 1 22 74 58 59 0 (11) 11 14 3 7 11 7 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 1 1																						5 (12)
10A 36 27 33 11 15 23 16 (7) 8 14 9 (5) 2 2 2 0 61 66 65 66 14 14A 28 32 29 (3) 12 11 14 2 6 8 6 (1) 2 1 2 0 48 53 51 51 (1) 15A 504 546 532 (13) 213 307 226 (8) 16 57 12 0 48 53 51 51 (1) 15A 504 546 522 (13) 213 307 21 1 0 1 1 22 27 23 23 (1) 16A 13 11 14 3 7 11 7 (4) 2 0 2 1 0 1 1 30 32 32 32 (2) 1 1 1 30 32 32 32 32 <	912A																					(17)
11A 28 32 29 (3) 12 11 14 2 6 8 6 (1) 2 1 2 0 48 53 51 51 (1) 15A 564 546 532 (13) 213 307 226 (8) 16 57 120 63 29 30 22 82 910 90 917 (1) 1 22 27 23 23 (1) 1 0 1 1 22 27 23 23 (1) 11 0 1 1 22 27 23 23 (1) 1 1 1 22 27 23 23 (1) 11 1 1 1 1 22 27 23 23 (1) 11 1 1 1 2 27 23 23 (1) 11 1 1 1 30 22 22 27 23 23 (1) 1 1 1 23 23 23 24 <td>913A</td> <td></td> <td></td> <td></td> <td>11</td> <td>15</td> <td>23</td> <td>16</td> <td></td> <td>8</td> <td>14</td> <td>9</td> <td>(5)</td> <td>2</td> <td></td> <td>2</td> <td>0</td> <td>61</td> <td></td> <td></td> <td></td> <td>0</td>	913A				11	15	23	16		8	14	9	(5)	2		2	0	61				0
168 13 15 14 (11) 5 10 6 (4) 3 2 3 1 1 0 1 1 22 27 23 23 (11) 17A 30 52 35 (16) 13 11 14 3 7 11 7 (4) 2 0 2 1 52 74 58 59 (11) 18A 18 22 18 (4) 7 8 8 0 4 2 4 2 1 0 1 130 32 32 32 (11) 19A 67 60 75 15 28 48 32 (17) 15 15 17 2 4 5 4 (11) 16 128 <td< td=""><td>914A</td><td>28</td><td>32</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>(1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>51</td><td>51</td><td>(2)</td></td<>	914A	28	32						2				(1)							51	51	(2)
17A 30 52 35 (16) 13 11 14 3 7 11 7 (4) 2 0 2 1 52 74 58 59 (11) 18A 14 22 14 (4) 7 8 8 0 4 2 4 2 1 0 1 1 30 32 33 35 14 9 373 385 402 406 2 42 55 51 1 33 30 32 32 32 32 32 32 32 32	915A																					(1)
118. 19. 22 18. (4) 7 8 8 0 4 2 4 2 1 0 1 30 32 40 6 4 33 36 40 2 1 1 93 32 22 265 4 2 1 1 1 30 32 33 32 1 36 6 55 5 1 33 1 1 1<																						(3)
19A 67 60 75 15 28 48 32 (17) 15 15 17 2 4 5 4 (1) 115 129 128 129 (1) 20A 216 217 234 16 92 117 100 (16) 50 47 54 8 13 5 14 9 373 385 402 406 2 206 1 100 (16) 50 47 54 8 13 5 14 9 373 385 402 406 2 206 4 2 1 5 14 9 373 385 402 406 2 206 4 2 1 5 14 15 129 128 402 406 2 206 2 5 5 13 16 13 13 1 11 10 15 15 13 16 13 13 3 2 3 1 98 98 10 10 10	918A																					{01
1206 154 150 173 22 65 63 71 8 35 30 39 8 9 5 10 4 263 240 292 295 4 221A 30 26 31 5 13 11 13 2 7 4 8 4 2 1 2 1 8 4 2 1 2 1 5 5 5 5 10 4 263 240 255 5 1 22A 56 59 62 3 24 20 25 5 13 16 13 (3) 3 2 3 1 96 98 103 104 141 6.422 7.315 6.992 (323) 2,711 2,864 2,841 78 1,471 1,518 1,561 43 373 321 396 75 10,977 12,017 11,890 12,001 1 1,490 1,471 1,518 1,561 43 373 321 396<	919A				15	28		32		15	15	17	2	4	5	4	(1)	115	129			{0]
21A 30 26 31 5 13 11 13 2 7 4 8 4 2 1 21 51 42 55 55 11 22A 56 59 62 3 24 20 25 5 13 16 13 (3) 3 2 3 1 96 98 103 104	920A																					21
222x 56 59 62 3 24 20 25 5 1.3 1.6 1.3 (3) 3 2 3 1 96 98 10.3 104 LL 6.422 7.315 6.992 (323) 2,711 2,864 2,941 78 1,471 1,518 1,561 4.3 373 321 396 75 10,977 12,017 11,890 12,001 (11) FV '95 BES '95	9208																					46
LL 6.422 7.315 6.992 (323) 2,711 2,864 2,941 78 1,471 1,518 1,511 43 373 321 396 75 10,977 12,017 11,890 12,001 (1) FV '95 BES '95									2		_		(3)	2		2	⊢-÷					13
FY 195 BES 195	ALL	6,422	7,315	6,992					78				43	373	321	396	75				12,001	(16)
2 BE S 11,090 12,001 Image: Control of the control o			14.55																			
2 BE S 11,090 12,001 Image: Control of the control o																						
vn 5,999 5,002 Image: Constraint of the second	CBES	11,890	12,001																			
ach 6,019 6,199 Image: Constraint of the const	Auth:																					
um 12,017 12,001 Image: Constraint of the cons	Avn.																<u> </u>	 				
xNS																		<u> </u>				<u> </u>
IES '95 12,001 12,001	2xNS																					
	BES 95																					
	EOFY	(16)	0												L.,					1		L

bits 2 -7 1 -102 -0 0																			-			
Party Party <t< th=""><th></th><th></th><th>NTORYA</th><th>S OF EOF</th><th>γ.96</th><th>0.412</th><th></th><th></th><th></th><th>C # 4</th><th></th><th></th><th></th><th>C W 5</th><th></th><th></th><th></th><th></th><th>Total</th><th></th><th></th><th></th></t<>			NTORYA	S OF EOF	γ.96	0.412				C # 4				C W 5					Total			
DEP C DEP C E G <td>_</td> <td>_</td> <td>Inventory</td> <td>BES</td> <td>401</td> <td></td> <td>Inventory</td> <td>BES</td> <td></td> <td>_</td> <td>Inventory</td> <td>BES</td> <td>ditt</td> <td></td> <td>Inventory</td> <td>BES</td> <td>ditt</td> <td>To! Auth</td> <td></td> <td>C-BES</td> <td>A-BES</td> <td>ditt</td>	_	_	Inventory	BES	401		Inventory	BES		_	Inventory	BES	ditt		Inventory	BES	ditt	To! Auth		C-BES	A-BES	ditt
at 1 b<																						(30
bit of the set of the	0014																					(3
Signer C CO C </td <td></td> <td>(1</td>																						(1
Sign C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>																			1			
Sint Sint <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>																						0
is 1 is 1 is 1 is 2 is 3 i																						(9
right right <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																0						
1000 1 1 1 2 1 4 2 10 4 2 10 4 2 10 4 2 10 4 2 10 4 2 10 4 2 10 4 2 10																2						5
bigs fig fig <td></td> <td>(2)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>													(2)									0
Signed Signed<		73	91	79	(12)	31	26					20	16			5	5			137	140	19
Size G2 <																						0
Sing Sing <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(29</td></th<>																						(29
157 176 176 181 177 182 171 172 171 172 171 172 171 <td></td> <td>(61)</td>																						(61)
6566 147 176 168 163 11 12 14 122 16 110 161 110 161 110 161 110 161 110 161 110 161 110 161 110														27	29							(106)
10.99 177 148 920 1103 110<																						54
1350 147 147 147 147 147 148 147 148 147 148 147 <td></td> <td>(188)</td>																						(188)
1000 1775 198 2077 198 2077 198 2077 198 410 41																						125
1544 1 4 1 4 3 2 2 2 3 1 1 2 1										62	136	64	(72)	1.6	45	16	(29)		518	493	501	(17)
198 198 191 192 191 192 192 192 192 192 193 193 197 <td>155A</td> <td>11</td> <td>8</td> <td>11</td> <td>3</td> <td>4</td> <td></td> <td>7</td>	155A	11	8	11	3	4																7
164 9 (10) 72 21 20 2 20 1 (1) 15 71 (1) 15 71 15 71 15 71 15 71 15 71 15 71 7																						<u>52</u> (97)
1164 214 212 214 22 21 22 21 22 21 22 21 22 21 21 21 23 25 24 22 11 22 11 21 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(28)</td></t<>																						(28)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												49			0							26
15 16 15 16 16 16 16 16 16 16 0 18 0 18 0 18 0 18 0 18 0 17 174 1 6508 94 46 43 46 43 46 42 160 18 17 174 14 6 17 174 14 6 17 174 14 6 17 174 14 6 17 174 14 6 17 174 14 17 174 14 174 </td <td>210A</td> <td>2 '</td> <td>24</td> <td>23</td> <td>(1)</td> <td>9</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>1</td> <td>(0)</td> <td>36</td> <td></td> <td></td> <td></td> <td>3</td>	210A	2 '	24	23	(1)	9	9						2			1	(0)	36				3
State 94 (10) (10) (10) (11)																						0
Sige G G G G G G Z Z Q Z <thz< th=""> <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<></thz<>																						(3)
93 h 93 h 93 h 93 h 93 h 94 h 96 h 94 h 96 h 95 h 126 h 126 h 126 h 136 h 137 h 138 h 190 h 93 h 94 h 96 h 111 h 232 h 256 h 247 h 127 h 138 h 136 h 14 h 14 h 14 h 14 h 15 h 14 h 15 h 128																						7
11 A 232 238 247 (12) 98 86 106 7 53 33 56 22 13 5 14 9 986 337 422 449 536 560 61 56 52 (1) 21 22 25 3 12 0 12 13 2 13 3 1 3 2 13 43 13 2 14 45 155 55 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>22</td><td>23</td><td>1</td><td></td><td></td><td></td><td>(1)</td><td>3</td><td></td><td>3</td><td>3</td><td></td><td>93</td><td>94</td><td></td><td>3</td></td<>							22	23	1				(1)	3		3	3		93	94		3
560 76 72 80 8 92 31 34 3 17 18 17 (10) 4 2 4 2 130 123 136 130 133 136 130 133 13 14 32 14 35 14 35 14 35 14 35 14 35 14 35 14 35 14 35 14 35 14 35 14 35 14 14 35 14 14 35 14 14 35 14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(20)</td></t<>																						(20)
Sign 10 51 54 52 10 22 25 3 12 8 12 3 3 1 3 2 97 84 92 93 558 142 266 155 152 12 12 12 12 12 12 12 12 13 24 93 93 5518 142 266 155 152 83 041 13 10 4 1 5 13 13 13 13 13 13 13 13 13 14 14 15 13 13 14 14 15 13 13 14 14 15 13 13 14 14 15 13 13 14 14 15 14 13 13 14 14 15 14 15 14																						33
Sign 12 23 23 2 12 13 2 7 7 7 7 1 2 1 4 6 5 5 5 5510 112 256 166 177 55 85 30 16 17 17 52 82 30 16 17 66 137 42 20 0 63 77 67 64 337 142 144 142 144 142 144 142 144 142 144 142 144 142 144 142 144 144 14																						5
SiGe 37 42 39 (2) 16 17 (2) 8 7 9 2 2 2 2 0 63 71 67 68 Sige 77 95 62 (13) 21 10 4 1 5 3 122 144 144 144 14 14 1 1 0 0 0 0 7 6 167 16 17 6 167 16 17 16 6 1 7 6 167 16 17 16 1																						4
Sife 77 95 82 (12) 23 19 36 18 18 18 10 4 1 5 3 122 124 142 144 55C 65 117 100 14 64 1 7 64 64 162 159 177 100 7 7 7 55G 22 46 36 (10) 1 1 1 0 0 0 0 7 10 7 7 7 55G 22 46 36 4 6 2 3 2 3 1 1 0 1 1 24 44 3 4 4 3 2 3 2 3 3 1 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10																						(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																						(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																						2 2
5576 32 46 36 (10) 13 9 1 2 1 2 1 54 63 61 622 5574 12 14 13 (2) 5 4 6 2 3 1 10 1 12 0 45 44 49 50 5574 6 111 10 22 1 2 0 2 1 </td <td></td> <td>(2)</td>																						(2)
15:7: 26 11 10 (2) 11 20 4.5 4.6 4.9 50 15:7: 9 11 10 (2) 4.3 4 1 2 0 2 1 1 1.1 1.5 1.4 1.6 1.6 1.6 1.1 1.5 1.4 1.6 1.6 1.6 1.1 1.5 1.4 1.6 1.6 1.6 1.1 1.1 1.1 1.4 1.6 1.6 1.1 1.6 2.2 2.4 4.4 1.1 1.1 1.1 1.1 1.4 1.1 1.	9526																					(2)
isix i																						2
55A 25 35 27 (4) 1 1 0 1 1 4.3 50 4.6 4.7 120 111 117 6 47 32 51 18 26 52 26 123 6 8 7 10 19 204 201 204 201 204 201 204 201 204 201 204 201 204 201 204 201 204 201 204 201 204 201 204 201 20 2 55 5																						2
120C 122 19 23 4 9 16 11 (5) 5 8 6 (3) 1 1 0 38 44 41 42 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 38 44 41 42 1000 1 1 1 1 1 1 0 1 1 0 1 2 2 55									(1)													(3)
350. 32 34 33 (1) 14 13 14 1 7 6 7 (1) 2 0 2 2 55 56 57 58 300. 1 1 1 0 0 0 1 7 1 <td></td> <td>1</td>																						1
100. 1 <th1< th=""> 1 1 1</th1<>																						(2)
x00. 30 31 32 2 13 17 13 (4) 7 5 7 2 2 0 2 2 53 55 56 800. 11 52 42 (10) 17 13 19 6 9 7 10 3 2 4 3 (2) 70 76 74 75 800. 41 52 42 (10) 17 13 19 6 9 7 10 3 2 4 3 (2) 76 76 74 75 81A 50 65 53 (12) 21 2 13 11 3 2 85 54 82 54 114A 0 (3) 0 3 0 (3) 0 5 0 (5) 2 2 (0) 59 64 63 64 64 63 64 64 63 64 64 63 64 64 63 64 63 64																						(6)
170A 42 53 45 (4) 18 10 19 9 10 8 10 1 2 0 2 2 7.1 7.2 7.6 7.7 180A 50 65 53 (12) 21 20 23 3 11 7 12 5 3 1 3 2 85 94 92 94 160A 47 55 50 (5) 20 20 21 1 11 11 12 1 3 1 3 2 85 94 92 94 116A 47 55 50 (5) 20 11 11 11 12 1 3 1 3 2 80 86 85 87 112A 33 33 37 4 15 28 16 (11) 8 15 2 2 2 100 50 76 63 64 16 112A 23 37 9 15 2							17	13		7	5	7	2	2	0							3
BitA 50 65 53 (12) 21 20 23 3 11 7 12 5 3 1 3 2 85 94 92 94 110A 47 55 50 (5) 20 21 1 11 11 12 1 3 2 40 86 85 87 114 0 (3) 0 3 0 (3) 0 50 (5) 0 2 0 (2) 0 7 0 0 0 1		42	53	45	(9)				9											76		5
10A 47 55 50 (5) 20 20 21 1 11 11 12 1 3 1 3 2 80 86 85 87 11A 0 (3) 0 3 0 (3) 0 5 0 (5) 0 2 0 (2) 0 7 0 0 0 11A 0 (3) 0 3 0 (3) 0 5 0 (5) 0 2 0 (2) 0 7 0<																						
11 if b 0 (3) 0 3 0 (3) 0 5 0 (5) 0 2 0 (2) 0 7 0 0 0 112A 35 33 37 4 15 28 16 (1) 8 13 8 (5) 2 2 2 0 (2) 0 76 63 64 (4) 113A 35 28 37 0 15 20 16 (5) 8 13 8 (5) 2 2 2 0 (2) 0 76 63 64 (1) 2 2 2 (0) 46 55 49 50 11 115A 407 53 525 (6) 210 315 221 14 15 21 16 16 16 15 21 16 16 22 28 31 31 31 31 32 31 31 31 31 31 32 31 31 31																						(0)
112A 35 33 37 4 15 28 (1) 8 13 8 (5) 2 2 2 (0) 59 76 6.3 64 (4) 113A 35 28 37 9 15 20 16 (5) 8 13 8 (5) 2 3 2 (0) 59 64 63 64 1 113A 35 28 37 9 15 20 16 (5) 8 13 8 (5) 2 3 2 (0) 59 64 63 64 1		0		0		0	3	0	(3)	0	5	Û	(5)	0	2	0	(2)	0	7	0	0	(7)
114A 27 31 22 31 22 22 (0) 46 52 49 50 115A 497 531 525 (6) 210 315 223 (92) 114 56 118 63 29 8 30 222 850 911 896 911 116A 17 16 17 7 16 17 7 8 6 (1) 4 2 4 2 1 0 1 1 29 28 31 31 117A 29 43 34 (8) 12 14 14 (1) 4 2 4 2 1 0 1 1 28 28 31 31 31 31 31 31 31 31 31 31 31 31 31 30 21 11 4 20 11 10 11 12 13 32 31 11 10 11 11 12 11 11 11 12			33																			(12)
115A 497 531 525 (6) 210 315 223 (92) 114 56 118 63 29 8 30 22 950 911 996 911 116A 17 17 16 1 7 3 6 (1) 4 2 4 2 1 0 1 1 29 28 31 31 117A 18 17 16 1 7 3 6 (1) 4 2 4 2 1 0 1 1 29 28 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 1 1 0 1 1 26 31 27 28 32 1 1 0 1 1 26 31 27 28 34 10 111 1 1 1 1 1 1 1 1 32 1 2																						(0)
116A 17 17 16 1 7 9 8 (1) 4 2 4 2 1 0 1 1 29 28 31 31 177 29 43 34 (8) 12 14 14 10 7 11 7 (4) 2 0 2 1 50 67 56 57 (1) 18A 15 21 16 (5) 6 8 7 (1) 3 2 3 1 0 1 1 26 31 27 28 19A 64 63 71 8 27 41 30 (11) 15 18 16 (2) 4 5 4 (11) 10 128 1328 334 30 235 38 383 383 390 208 228 172 167 (5) 63 56 69 13 34 29 37 9 5 10 4 255 262 283 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>{2</u>) 0</td></th<>																						<u>{2</u>) 0
17.7 2.9 4.3 2.4 (9) 1.2 1.4 1.4 (10) 7 1.1 7 (4) 2 0 2 1 5.0 6.7 5.6 5.7 (10) 118A 1.5 2.1 1.6 (5) 6 8 7 (1) 3 2 3 1 1 0 1 1 2.6 3.1 2.7 2.8 120 64 63 7 4 3.0 (11) 1.5 1.8 1.6 (2) 4 5 4 (11) 0.5 1.1 1.0 1 1 2.6 3.1 2.7 2.8 220B 122 223 233 3.8 5 1.0 4 2.5 2.62 2.83 2.83 2.83 2.93 2.93 2.9 1.0 4 4.5 4.9 3.0 4.7 3.2 1 2 1 4.6 4.5 4.9 3.0 3.7 9 9 1.0 4.6 4.5 4.9 5.0 3.3 <											2	4		1	Q							3
19A 64 63 71 8 27 41 30 (11) 15 18 16 (2) 4 5 4 (11) 100 126 121 123 20A 208 225 223 (3) 88 106 96 (10) 48 47 52 5 12 5 13 8 356 383 384 380 20B 149 172 167 (5) 6.3 56 69 13 34 29 37 9 9 5 10 4 255 262 283 288 211 11 11 11 12 1 6 4 7 3 2 1 2 1 46 45 49 50 221A 27 30 28 (10) 11 11 12 1 6 4 7 3 2 1 4 2 4 2 123 113 132 145 16 13 17 4 4 <td>17A</td> <td>29</td> <td>43</td> <td>34</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(4)</td> <td></td> <td></td> <td></td> <td></td> <td>50</td> <td>67</td> <td>56</td> <td>57</td> <td>(10)</td>	17A	29	43	34									(4)					50	67	56	57	(10)
20A 20B 225 223 (3) 88 106 96 (10) 48 47 52 5 12 5 13 8 356 383 384 390 20B 149 172 167 (5) 63 56 69 13 34 29 37 9 9 5 10 4 255 262 283 289 21A 27 30 28 (1) 1 1 12 1 6 4 7 3 2 1 2 1 46 45 49 5 22A 72 80 79 (1) 30 17 32 14 16 13 177 4 4 2 4 2 123 113 132 135 11 6.128 7.99 6.64 (428) 2.758 2.779 2.806 28 1.404 1.542 1.480 (52) 356 318 378 60 10.476 11.731 11.338 11.524 (2 12 1.642 1.944 1.542 1.480 1.542 1.480 (52) 356 318 378 60 </td <td></td> <td><u>_</u></td> <td>the second s</td> <td></td> <td>and the owner of the</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(3)</td>													<u>_</u>	the second s		and the owner of the						(3)
220 140 172 167 (5) 63 56 69 13 34 29 37 9 5 10 4 255 262 283 288 21A 27 30 28 (1) 11 11 12 1 6 4 7 3 2 1 2 1 46 45 49 50 22A 72 80 79 (1) 30 17 32 14 16 13 17 4 4 2 4 2 13 132 135 1L 6.128 7.092 6,664 (428) 2,558 2,779 2,806 28 1,404 1,542 1.480 (52) 356 318 378 60 10,476 11,731 11,338 11,524 2 FY 96 BES 96 95 9 9 9 9 9 9 9 9 9 9 10 11,731 11,338 11,524 10 11,524 9 5,572 9 9 9 9 9 9 9 9 9 9 9 9 9 10 11,731																						(3) 7
21A 27 30 28 (1) 11 11 12 1 6 4 7 3 2 1 2 1 46 45 49 50 22A 72 80 79 (1) 30 17 32 14 16 13 17 4 4 2 4 2 123 113 132 135 132 135 132 136 13 17 4 4 2 4 2 123 113 132 135 132 135 132 135 132 133 132 135 132 133 132 133 132 133 132 135 133 132 133 132 133 132 133 132 133 132 133 132 133 132 133 132 133 132 133 132 133 132 133 132 133 133 133 133 133 133 133 133 133 133 133 133<																						26
ILL 6,128 7,092 6,664 (428) 2,558 2,779 2,806 28 1,404 1,542 1489 (52) 356 319 378 60 10,476 11,731 11,338 11,574 (2 FY '96 BES '96 Image: Set				28			11	12	1		4					2	1	4.6	45	49	50	5
ILL 6,128 7,082 6,664 (428) 2,588 2,179 2,806 28 1,404 1,542 1,489 (52) 356 318 378 60 10,476 11,731 11,338 11,574 (2) FY '96 BES '96 Image: Set	22A	72	80	79	(1)	30	17	32	14				4	4	2	4		123	113			2 2
2 BE S 11,338 11,524	LL	6,128	7,092	6,664	(428)	2,588	2,779	2,806	28	1,40.4	1,542	1,489	(52)	356	318	378	60	10,476	11,731	11,338	11,524	(207)
2 BE S 11,338 11,524		EV '04	0 5 5 10 4															-				
uin 10,476																						
vn 5,676 5,572		10,476											1									
um 11,731 11,524	WD.	5,676	5,572																			
xNS 0 IES '96 11,524 11,524	ech	6.054	5,952	1																		
ES 96 11,524 11,524		11,731	11,524																			,
			11,524	†				1														

			•																		
		NTORYA	S OF EOF	Y '97	C W 3		I		C W4				CWS					Tolai			
W O1/CY	Auth	Inveniory	BES	d +11	Auth	Inventory	BES	ditt	Auth	inventory	BES	ditt	Auth	Inventory	BES	111b	To! Auth	Inventory	C-BES	A-BE S	ditt
A0 0 0	0	15	0	(15)	0	0	0	0	0	0	0	0	0	0 U	0	0	0	15	0	0	(15)
0 0 1 A	0	0	0	(0)	0	0	0	0	0	1	0	(1)	0	0	0	0	0	2	0	0	(1)
004A	0	0		(0)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0)
1304	0	(')			0	1	0	(1)	0	0	0	0	0		0	0		0	C	0	(0)
1 30B	0 86	138		(47)	0 36	(0)	0 39	0 20	20	0	22	(0)		0	<u> </u>	2	0	(0)	۰ 158	161	0
1 32A	0	0		0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	C	0	0
1404	11	15	12	(3)		4	7	2	2	1	2	2	1	0	1	0	18	20	22	22	2
140B 140D	33	42	37	(6)	14	13	15	(1)	8	10	2	(1)	2	2	2	(2)	56	66 13	62	64	(2)
140E	73	103	79	(24)	31	22	34	12	17	4	20	15	4	0	4	4	125	130	137	139	10
1514	106	106	112	5	45	62	50	(12) 50	24	24	26	2	6	9	<u>6</u> 7	(3)	208	201	194	198	(3)
152B/153 152C	122	208	47	(62)	51 18	17	20	3	10	14	12	(22)	2	3	2	(0)	72	75	240	245 82	(28)
152D	314	393	362	(31)	132	149	142	(7)	72	57	76	19	1 8	8	18	11	536	607	599	611	3
152F	498	421	544	123	210	357	221	(136)	114	141	118	(24)	29	29	29	0	851	948	911	929	(19)
152G 153A	111 79	70	123 95	(59)	47	76	51 33	(25) 33	25 18	49	27	(22)	6 5	18	6 5	(12)	189	213	207	212	(1)
1538 1538	271	399	309	(90)	115	70	122	5.2	62	99	6.6	(33)	16	28	16	(12)	464	597	513	523	(74)
153C	903	926	976	50	381	470	420	(49)	207	214	220	5 (74)	52	42	52	10	1.544	1,653	1,668	1 70 2	49
154C 155A	269	152	283	131 (0)	114	161	123	(38)	<u>62</u> 2	138	64	(/4)	16	48	16	(32)	460	499 16	486	496	(3)
155D	41	28	45	17	17	9	19	10	9	14	!1	(3)	2	2	2	(0)	70	54	77	79	25
155E	106	26	120	94	45	98	53	(44)	24	100	26	(74)	<u> </u>	32	6	(26)	181	256	206	210	(46)
156A 180A	214	(13) 279	12	25 (48)	4 90	14	5 97	(10) 41	49	27	49	(24) 5	12	0	12	(4) 12	16	33	19 390	20	(13)
210A	20	213	23	(3)	9	8	10	2	5	4	5	1	1	2	1	(0)	35	38	38	39	1
213A	0	0	0	0	0	0	0	0	0	0	0	C (2)	0	0	0	0	0	0	0	0	0
215D 250A	93	15 102	15 99	0 (3)	6 39	6 4 3	42	0	21	31	23	(2)	5	3	5	0	25	27	26 170	27	(1)
250R	43	48	4 5	(4)	18	18	20	1	10	6	10	. 4	3	0	3	3	74	73	77	78	5
251A	52	57	55	(2)	22	22	23	1	12	13	12	<u>(1)</u>	3	2	3	1	89	94	93	95	1
256A 311A	127	161 284	136	(25) (37)	54 98	55 92	58 :06	3	29 53	32	30	3 24	13	2	13	5.9	217	245	232	236	(9)
350B	76	76	80	3	32	33	34	2	17	19	17	(2)	4	2	4	2	130	131	136	139	8
350D	51	58	52	(6)	21	21	25		12	10	12	1	3	1	3	2	87	90	92	94	4
350L 3518 #	29	249	33	(2) (58)	12	10	13	4	7	8	7 46	(2)	2	0	2	1	49 306	53 339	55 328	56 335	3
351C#	37	42	39	(3)	16	18	17	(2)	8	7	9	2	2	2	2	0	63	70	67	68	(1)
351E#	76	104	80	(23)	32	18	36	<u>18</u> 7	17	11	19	8 1.4	4	1	4	3	130	133	140	142	9
352C 352D	92	121	100	(22)	39	34	2	()	1	1	- 20	0	0	0	5	5	158 7	168	172	7	
352G	31	33	35	3	13	22	14	(8)	7		9	1	2	1	2	1	53	6 2	59	60	(2)
352H	12	15	13	(2)	5	10	6	2	3	2	3	0 (2)		0	1	0	20	21 47	22	2.2	1
352J 352K	23	12	10	(2)	4	2	4	2	2	1	2	1	1	0	1	1	15	15	16	16	1
35 3A	25	30	26	(4)	10	14	12	(2)	6	3	6	2	1	0	1	1	42	48	45	46	(2)
420A 420C	114	129	119	(10) 6	48	23	52	29 (4)	26 5	44	27	(17)	7	10	7	(4) (0)	195 37	206	205	209	3
550A	32	36	33	(3)	13	11	14	3	7	9	7	(2)	2	0	2	1	54	56	56	57	1
600A	1	(0)	1	1	0	1	0	(0)	0	3	0	(3)	0	0	0	(0)	1	3	1	1	(2)
640A 670A	30	36 54	33	(2) (9)	13	14	13	() 6	7	- 4	7	3	2	0	2	2	52	53	55 76	56 77	3
8 8 GA	42	48	43	(6)	t 8	\$ 6	20	3	10	8	10	2	2	. 4	2	(2)	71	76	75	76	(0)
881A	50	68	54	(14)	21	18	23	6	12	6	13	6	3	2	3	1	86	94	93	95	1
910A 911A	46	56 (6)	49	(7) 6	20	16	21	(3)	11	12	12	(0) (4)	3	1	3	1 (2)	79 0	85	84	86	0 (3)
912A	33	25	35	10	14	29	15	(13)	8	12	8	(5)	2	3	2	(1)	56	68	60	61	(7)
913A	34	32	36	5	14	14	15	1	8	14	8	(6)	2	3	2	<u>(</u>)	58	63	62	63	(0)
914A 915A	26 490	28 539	28 517	(1)	207	281	13	(1)	6 112	7	117	(1)	2 8	1	2	0 21	45 837	50 903	48 881	49 899	(1)
916A	17	19	18	(1)	7	8	8	(0)	4	3	4	1	1	0	1	1	29	29	31	31	2
917A	28	33	33	(1)	12	16	13	(3)	6	10	6	(3)	2	1	2	1	48	60	54	55	(6)
918A 919A	15 63	18	16	(2)	6 27	35	30	(2)	3	17	3 16	2		0 5	1	1 (1)	26	29	27	28	(1)
920A	204	238	218	(21)	86	97	94	(3)	47	42	51	9	12	6	12	6	348	382	374	381	<u>(1</u>)
920B	144	194	161	(33)	61	46	67	20	33	25	36	11	8	5	8	3	246	271	272	278	7
921A 922A	27	31	28	(21)	29	14	31	17	16	10	17	7	4	2	2	2	119	124	128	50 131	2
ALL		6,780		(192)	2,55.8		2,773		1,38.8			(83)		324				11 475			
CBES	FY '97																				
	10.357																				
Avn	5,389	0																			
Tech. sum	6,086	- 0																			
2xNS	0																				
BES '97		0						Ţ													
EOFY	(65)	0																			· · · · ·

				_							,										
PROJEC	TED IN VE	NTORYA	S OF EOI	8 <u>6' Y</u>	C w 3	I			C W 4				C #5					Totai			
PMOS	Autn	Inventory	BES	diff	Auth	Inventory	BES	ditt	Auth	Inventory	BES	d+11	Autr	Inventory	BES	dill	Tot Auth	inventory	C-BES	A-BE S	dett
000A	0	(0)		0	0		0	0	0	0	0		0	0		0	0		0	0	0
001A 003A	0	(1)			0		0	0	0	0	0		0			0			0	0	
004A	0	0	0	(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0)
1 3 0 A	0			<u> </u> <u> </u>	0		<u> </u>	(1)		0	0		0			0			0	0	(0
1 3 0B	101	159	107	(52)	42		46	(0)	23	9	25	16	6			0			185	0 188	(0)
1 32A	0	Û	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
140A	11	18	12	(6)	4		16	4	2	0	2	2	2			0	18		22	22	0
1405 140D	34	41	38	(3)	3	13	3	(0)	1	3	2	(2)	0		ó	2		66	65	<u>66</u> 12	0
1 4 0E	73	106	79	(27)	31	25	34	10	17	9	20	11	4	0		5	125	140	137	140	0
151A	106	116	112	(1)	45	50	50	(0)	24	23	26	3 (58)	6	8	7	<u>(1)</u>	181	198	195	198	0
152B/15: 152C	107	123	129	6 (5)	18	15	20		10	12	12	(0)	2	3	3	0	72	216 82	212	216	0
152D	338	419	391	(29)	143	164	153	(10)	77	67	8 2	15	20	8	21	13	578	658	647	658	0
152F	508	347	555	208	215	371	225	(146) (25)	116	201	120	(81) (56)	30	27	30	3	869	947	931	947	(0)
152G 153A	95 80	18	106	88 (59)	40	69	34	34	18	0	20	20	6 5	3	5	(10)	136	182	179	182 157	0
1538	267	315	304	(11)	113	53	120	67	61	119	64	(55)	16	26	16	(10)	456	513	505	513	0
153D	893	883	964	82	377	491	415	(76)	204	260	217	(43)	52 16	46	55	10	1,526	1,680	1,652	1,680	(0)
154C	269	109	283	174	114	172	123	(49)	6 2 2	2	3	(102)	16	48	16	(32)	460	495	486	495	(0)
155D	41	58	45	(13)	17	9	19	11	9	10	11	1	2	2	3	1	70	79	78	79	0
155E	105	(1)		121	44	98	53	(45)	24	84	26	(58)	6		7	(21)	180	209	205	209	(0)
156A 180A	214	(20)	231	32 (46)	4	13	5 97	(8) 39	2	23	2	(20)	1 1 2	4	12	(4)	16	20	19 390	20	(0) 0
2104	20	27	23	(40)	9	8	10	2	5	3	5	1	1	2	1	(1)	35	390	380	390	(0)
2 1 3A	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
215D 250A	93	13	15	2 (3)	6 39	<u>6</u> 39	7 42	0	3 2 1	7 27	3 23	(4)	5	0	۱ 6	0	25	27	26	27	(0)
250B	43	48	45	(4)	18	21	20	(1)	10	9	10	1	3		3	3	74	78	77	78	(0)
25 1A	52	64	55	(9)	22	18	23	5	12	11	12	1	3	2	3	1	89	95	93	95	0
256A 311A	127	<u>149</u> 313	136	(13)	54 98	<u>54</u> 83	58	4 23	29	30 29	30	0 26	7	3	8	5	217 396	236	232	236	0
3508	76	89	80	(10)	32	30	34	4	17	15	17	2	4		4	1	130	138	136	138	0
35 0D	51	57	52	(5)	21	23	25	2	12	13	12	(1)	3		3	2	87	93	\$2	93	0
350L 351B#	29 178	35 245	33	(1) (55)	12	10 66	13	3 14	41	10	46	(3)	2	0	2	1	49 304	56 333	55 328	56 333	0
3510 #	37	42	39	(3)	16	18	17	(1)	8	6	9	3	2		2	0	63	68	67	68	0
35 1E #	76	110	80	(29)	32	19	36	18	17	13	19	6	4		5	4	130	142	140	142	0
352C 352D	92	134	100	(35)	39 2	30	41	11 (0)	21	12	26	15	5	0	7	6 0		177	174	177	0
352G	31	33	35	2	13	19	14	(5)	7	7	9	1	2	1	2	1	53	61	60	61	0
352H	12	16	13	(3)	5	4	6	2	3	3	3	0	1	0	1	1	20	22	22	22	0
352J 352K	25	28	28	(2)	11	9 2	- 11	2	<u>6</u> 2	9	6 2	(3)	1	1	1	0	43	47	47	47	(0)
353A	25	29	26	(2)	10	13	12	(1)	6	3	- 6	2	1	0	1	1	42	46	45	4.6	0
420A	114	144	119	(25)	48	18	5.2	34	2 6	37	27	(10)	7	9	7	(2)	195	209	205	209	0
420C	22	17	23	6 (3)	9 13	14	15	(4)	5	9 9	5 7	(3)	1	2	2	(0)	37	41 57	40	41	0
600A	32	36	33	2	0	0	0	0	0	2	0	(2)	0	0	0	(0)	34	- 37	30		0
640A	30	37	32	(4)	13	14	13	(1)	7	5	7	2	2	0	2	2	51	55	54	55	0
670A 880A	41	<u>57</u> 51	44	(13)	17	12	19	7	9	7	9	3	2	0	2	2	70	76	74	76 76	(0)
881A	50	73	54	(19)	21	15	23	9	12	6	13	7	3	2	3	2	86	95	93	95	(0)
910A	46	59	49	(10)	20	14	21	6	11	11	12	0	3	1	3	2	79	86	84	86	0
911A 912A	0 33	(7)	0 35	7	0	28	0	(2) (13)	0	3	0	(3)	0	2	0	(2)	0	0 61	0 60	0 61	
912A 913A	33	34	36	3	14	13	15	3	8	13	8	(5)	2	3	2	(1)	58	63	62	63	0
914A	26	29	28	(1)	11	\$ 2	13	0	6	6	6	0	2	2	2	(0)	45	49	48	49	(0)
915A 916A	491	<u>577</u> 21	519	(58)	207	249	220	(29)	113	<u>68</u> 2	117	49	29	7	30	23	840	901 31	886 31	901 31	0
9174	28	21	33	12	12	20	13	(7)	6	12	6	(5)	2	1	2	1	48	55	54	55	(0) (0)
918A	15	15	16	1	6	t 0	7	(3)	3	3	3	1	1	0	1	1	26	28	27	28	0
919A 920A	63 205	72	219	(1) (45)	27	30	30 94	(1)	47	15	16	1 8	4	5	4	(1)	108 350	122	120 377	122	0
920A 920B	205	211	161	(50)	61	37	67	29	33	24	36	12	8	5	13	- 4	246	384	273	384 278	0
921A	27	35	28	(6)	11	10	12	2	6	5	7	3	2	1	2	1	46	50	49	50	0
922A	71	110 6,612	78	(32)	30	2 730	31 2,776	20	16	1 75 4	17	9 (279)	4		4		121				0
ALL	0,000	9,612	0,596	(10)	2,301	2,130	4,110	40	1,390			(278)	333	315	3/4	59	10,370	11,410	11,220	11,410	(0)
	FY '98	BES 98																			
CBES	11,220																			_	
	10,370																				
Avn Tech	6,153	0																			
sum	11,410	0																			
2xNS	0																				
BES '98 EOFY	11,410	0																			
													_			_					

Appendix C

Historical accession plan for 1994. Optimized accession plan for projection years 1995 to 1998.

PMOS	94	'95	'96	'97	'98
0 00 A	0	(15)	(15)	(15)	(15
001A	0	(1)	(1)	(1)	(1
003A	0		(1)	(1)	(1
				· · · · ·	
0 04 A	0	(0)	(0)	(0)	(0
1 30 A	0	(0)	(0)	(0)	(0
1 30 B	0	0	0	0	0
131A	9	37	37	37	37
1 32 A	0	0	0	0	0
140A	1	5	5	5	5
140 B	6	8	8	8	8
-					
140 D	0	2	2	2	2
140 E	8	24	24	24	24
151A	10	26	26	26	26
152B/3C	1 76	1 1 2	1 1 2	112	1 1 2
152 C	0	14	14	14	14
1 52 D	0	(22)	(22)	(22)	(22
1 52 F	0	(1)	(1)	(1)	(1
1 52 G	0	58	58	58	58
153 A	0	31	31	31	31
1 53 B	202	1 65	1 65	1 65	1 65
153 D	0	(26)	(26)	(26)	(26
154 C	0	(42)	(42)	(42)	(42
1 55 A	0	3	3	3	3
155 D	0	29	28	29	29
155 E	0	(62)	(62)	(62)	(62
		, í	<u> </u>		
156 A	0	(7)	(7)	(7)	(7
180 A	59	41	41	41	41
210A	3	5	5	5	5
213A	0	0	0	0	0
2 15 D	2	2	2	2	2
2 50 A	15	18	18	18	18
2 50 B	5	6	6	6	6
251 A	8	15	15	15	15
2 56 A	23	21	21	21	21
311A	31	73	73	73	73
3 50 B	9	19	19	19	19
3 50 D	5	8	8	8	8
350L	6	7	7	7	7
351B#	33	37	37	37	37
351C#	0	2	2	2	2
351E#	9	24	24	24	24
3 52 C	15	29	29	29	29
3 52 D	1	0	0	0	0
3 52 G	3	5	5	5	5
352 H	1	4	4	4	4
352J	4	3	3	3	3
3 52 K	1	2	2	2	2
353A	4	4	4	4	4
20 A	18	39	39	39	39
120 C	2	1	1	1	1
550 A	4	5	5	5	5
5 00 A	0	(1)	(1)	(1)	(1
540 A	3	6	6	6	6
570 A	6	10	10	10	10
880 A	9	7	7	7	7
	10	9	9		9
381 A					
910A	5	15	15	15	15
911A	0	(2)	(2)	(2)	(2
912A	5	(1)	(1)	(1)	(1
913A	4	8	8	8	8
914A	3	6	6	6	6
915A	63	1 10	110	110	1 10
916A	2	3	3	3	3
917A	12	(4)	(4)	(4)	(4
918A	2	0	0	0	0
919A	8	15	15	15	15
20 A	33	58	58	58	58
920 B	23	73	73	73	73
921 A	3	8	8	8	8
922 A	13	38	38	38	38
		351	38		