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A B ST R A C T

I present and analyze two approaches for doing transformation to zero offset 

(TZO) for mode-converted waves. One approach, which, in principle, is exact for 

constant-velocity media, is implemented in a nonphysical domain, referred to as the 

k - ti  domain. The other approach, which is approximate, is implemented in the 

frequency-wavenumber ( f - k )  domain.

The exact k - t i  TZO approach is an extension to mode conversion of the Gard

ner’s TZO method, which was developed for ordinary p-waves. In this approach, the 

physical half-offset and the recorded time are mapped into a nonphysical half-offset 

k  and a nonphysical time *i. The mapping requires knowing only the velocity ra

tio, not the individual velocities themselves. Analyses show that this approach has 

three intrinsic problems, namely, amplitude and phase, amplitude-verses-offset, and 

large-offset problems. Due to these unresolved problems, the k - t i  TZO method is 

not recommended for processing seismic data, be it mode-converted or conventional 

(ordinary p-waves). However, this approach may be used to find stacking velocity. 

Velocity analysis in the k - ti  domain yields velocities that are dip-independent. This 

is true even for mode-converted waves, in which case the reciprocal of such a stack

ing velocity is seen as simply the arithmetic mean of the downgoing and upgoing 

slownesses.

The mode-converted f - k  TZO method, on the other hand, is a practical way

to process mode-converted data. It requires only slight modification to the existing

Hale’s TZO method for ordinary p-waves. To modify Hale’s TZO method to mode

conversion, one again needs to know only the velocity ratio. The mode-converted

iii



T-4344

TZO operator differs from the elliptical p-wave operator in two aspects. First, the 

operator is a pseudo-ellipse; its deviation from being an ellipse is controlled solely by 

the velocity ratio which squeezes one side of the operator and stretches the other, 

depending on the mode of conversion. Second, the operator is laterally shifted, and 

in a time-varying manner, so that it closely resembles the behavior of the theoreti

cal operator for mode-converted waves. In addition, in the limit when the velocity 

ratio is unity, the operator reduces to the conventional, p-wave operator. As with 

Hale’s TZO method, the mode-converted f - k  TZO method is also readily extendible 

to approximately handle velocity variations with depth; this is achieved by simply 

extending Hale and Artley’s squeezing trick to mode-converted waves.

Application of this mode-converted f - k  TZO method to synthetic data reveals 

that the method is capable, to a great extent, of transforming mode-converted data to 

zero offset. Although not too sensitive to the choice of velocity ratio, the TZO process 

must account for mode conversion when dealing with mode-converted data. Not only 

can the mode-converted TZO method correct reflections from dipping reflectors, but 

also from horizontal ones, in which case reflections are simply shifted laterally to 

their appropriate, zero-offset reflection points. As for dipping reflectors, reflections 

are properly TZO-corrected regardless of the sign of dip.

Finally, I have tested the method on two field data sets. Consisting dominantly 

of p-sv reflections, both data sets were acquired in the same area, but shot in opposite 

directions. Because the signal-to-noise ratio was poor in both data sets, the results 

obtained after applying mode-converted TZO were not as dramatic as those seen in 

the synthetic data. Nevertheless, velocity analysis shows that the stacking velocity, 

obtained after mode-converted TZO has been applied, is dip-independent—a result 

both conventional processing (no TZO) and conventional TZO (ignoring mode con
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version) have failed to achieve. Furthermore, I show that the method may be used 

to qualitatively infer information about the velocity ratio from field, mode-converted, 

seismic data. I also derive an expression for quantitatively estimating the velocity 

ratio from the two mode-converted data sets; the expression makes use of the relative 

shift between the stacks from each set, among other things. Both the qualitative 

and quantitative approaches reveal that velocity ratio in the range 0.4-0.5 is a good 

estimate for the data  here.
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Chapter 1 

IN T R O D U C T IO N

Zero-offset seismic data (source and receiver being at the same location) are 

rarely recorded in practice. In reflection seismology, receivers are typically placed 

a finite distance, i.e., offset, from the source. The need for transformation of such 

data to zero offset (TZO) often arises when a particular processing scheme, poststack 

migration for example, presumes that the input seismic data are zero-offset.

The moveout velocity of p-wave reflections is known to be dip-dependent (Levin, 

1971). Normal moveout (NMO) correction based on some choice of moveout velocity 

will, therefore, correct reflections from reflectors with only certain dips—the dips 

with which the moveout velocities are associated. Consequently, mapping of seismic 

data to zero-offset based on NMO correction alone tends to enhance reflections with 

certain zero-offset slopes at the expense of other slopes (Hale, 1984). The solution to 

this problem is to apply a TZO method that is valid for all dips.

TZO of prestack seismic data for constant-velocity media is well understood and 

is readily implemented when dealing with either p-waves or s-waves. TZO is achieved 

by inserting a dip-moveout (DMO) process to correct data for the influence of dip, 

either before or after NMO correction. The TZO process transforms prestack seismic 

data in such a way that common midpoint (CMP) gathers are closer to being common 

reflection point (CRP) gathers after the transformation.

Several TZO methods are currently used in processing ordinary p-wave seismic 

data. One such method is implemented by applying the DMO correction in the
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frequency-wavenumber ( f - k )  domain to NMO-corrected data (Hale, 1984). TZO can 

also be applied to NMO-corrected data in the space-time domain, in which case the 

TZO method is referred to as a Kirchhoff 0 1  integral method (Hale, 1991). Another 

approach, which achieves TZO by first applying DMO correction to prestack seismic 

data and, second, applying NMO correction, is implemented in a domain (Forel and 

Gardner, 1988) tha t is nonphysical in the sense that processed traces have been 

mapped to new “offset” and “time” domain that differs from true source-receiver 

offset and reflection time.

Converted (p-sv or sv-p) waves differ from ordinary (p-p or s-s) waves in that the 

downgoing and reflected upgoing waves travel at different velocities, even in isotropic, 

homogeneous media. As a result, in accordance with Snell’s law, the angle of reflection 

differs from the angle of incidence at a reflection. This makes the kinematics (time- 

distance relation, or moveout) more complicated than that encountered in the absence 

of mode conversion. One way of dealing with this complication is to approximate the 

moveout of converted waves so that it resembles that of ordinary waves (Sword, 1984). 

Unfortunately, such an approximation is valid only for small offsets and, consequently, 

cannot be used to process large-offset seismic data.

A kinematically exact TZO method for mode-converted waves, assuming a 

constant-velocity medium, was introduced by Harrison (1990). This TZO approach, 

an integral method, transforms prestack seismic data directly from recorded time to 

zero-offset time, given prior velocity information. Rather than done as a separate 

step, the process of NMO correction is embedded in Harrison’s TZO approach. Im

plementation of TZO for mode-converted waves by methods other than Harrison’s is 

the task of this thesis. Namely, we shall investigate the possibility, applicability, and 

efficiency of extending Hale’s f - k  TZO, as well as the Forel and Gardner’s approach,
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to mode-converted seismic data.

Differences in the actions of mode-converted TZO and conventional (i.e., ordinary 

p-wave) TZO can be seen by comparing their responses for constant-offset data when 

the input data consist of all zeros with the exception of a single seismic trace with 

isolated time impulses. The impulse-response shape of conventional TZO (assuming 

a constant-velocity medium) is known to be an ellipse (e.g., Deregowski, 1986) in 

zero-offset time tg as a function of the location of the zero-offset output trace relative 

to the midpoint between source and receiver. For an input seismic trace at midpoint 

y and with a single impulse at time tn (NMO-corrected time), the apex of the ellipse 

is located at the point (y, tn). Figure 1.1a shows the impulse responses of conven

tional TZO for three input time impulses at y=0, tn=2.0, 2.8, and 3.6 s, assuming 

a constant velocity of 2000 m /s. For comparison, when the downgoing and upgoing 

velocities are 2000 and 1000 m /s, respectively, the trajectories for the response of 

mode-converted (p-sv) TZO (Harrison, 1990) to the same three time impulses are 

shown in Figure 1.1b. Note that the impulse-response shapes here are no longer el

lipses. Furthermore, each asymmetric impulse response now has its peak shifted, in 

a time-varying manner, from the midpoint of the input trace.

Den Rooijen (1991) derived an integral operator for mode-converted TZO that 

is equivalent to Harrison’s. He applied his operator to both synthetic and field mode- 

converted data. Typical of any Kirchhoff implementation, Den Rooijen applied am

plitude weighting factors, as well as a phase-compensation filter (rho-filter) in his 

TZO approach. His synthetic results, though correct from the timing point of view, 

exhibited aliasing and amplitude variation with offset that he attributed to use of 

improper weighting factors (Den Rooijen, 1991). As with ordinary p-wave TZO, the 

aliasing and amplitude shortcoming could have been avoided if the TZO process had
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F ig . 1.1. Impulse responses of the TZO process. Conventional TZO yields a response 
(a) that is an ellipse with apex directly underneath the midpoint, whereas the response 
of mode-converted TZO (b) is an asymmetric curve whose apex is laterally shifted, 
in a time-varying manner, relative to the midpoint. Offset is 2000 m. The medium 
velocity in (a) is 2000 m /s; the downgoing and upgoing velocities in (b) are 2000 and 
1000 m /s, respectively.

been implemented in the f - k  domain—an alternative investigated in this thesis.

To address the problem of TZO for mode-converted waves, I first analyze the 

moveout for a constant-velocity medium, obtaining two different moveout relations. 

The first, which is exact and equivalent to that of Harrison (1990), relates zero-offset 

time to recorded time and output distance relative to midpoint location (see, for 

example, Figure 1.1b). In this moveout relation, the dependence of zero-offset time 

on dip is implicit. The second moveout relation, which is approximate, expresses 

recorded time as a function of zero-offset time and dip; dependence on dip here is 

explicit.

The first moveout relation (implicit dip) is used to extend an existing TZO 

approach, originally developed for ordinary p-waves by Forel and Gardner (1988),
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to mode-converted data. While the extension of their approach to mode-converted 

waves is straightforward, it turns out, unfortunately, that this approach has intrinsic 

problems that make it unfavorable to implement. These problems are discussed in 

detail in Chapter 6.

The second moveout relation, though approximate, is attractive because of the 

explicit dependence of recorded time on dip, thus making it analogous to the well- 

known moveout relation for ordinary p-waves

o 2 x 2 x 2 sin2 0 
t  = * 0  +  ^ 2  — ’

as given by Levin (1971), where t is recorded time, to is zero-offset time, x  denotes 

source-receiver offset, v is velocity, and 0 is the dip. Analysis of the approximate 

moveout relation for mode conversion reveals that TZO for mode-converted waves 

can be implemented in the f - k  domain in much the same way as for ordinary p- 

waves (Hale, 1984), with little modification.

The impulse response (the operator), for the first stage of the f - k  TZO method 

is analytically found to be a “squeezed” ellipse (relative to that of ordinary p-waves) 

that is laterally shifted in space. The lateral shift of this approximate operator is 

time-invariant and is a constant for a given offset. The exact operator seen in Fig

ure 1.1b, however, is nonelliptical and has a time-variant lateral shift. The incorrect 

position and shape for the approximate operator arise because the f - k  TZO method 

is only approximate. Therefore, I modify this approximate f - k  TZO operator by, 

first, accounting for the lateral shift of the conversion point for horizontal reflectors 

as a function of time and, second, altering the shape of the resulting TZO operator 

to make it better resemble the behavior of that for mode conversion.

Application of this f - k  TZO method to synthetic, mode-converted seismic data
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reveals that this method is capable, to a great extent, of transforming mode-converted 

data  to zero offset, even when velocity changes with depth. In contrast, conventional 

TZO (ignoring mode conversion) fails to correct mode-converted data and, in some 

cases, yields poorer results than when the data are simply NMO corrected. The 

method is not too sensitive to the choice of velocity ratio, but mode conversion must 

be taken into account. Not only does the method TZO-correct reflections from dipping 

reflectors regardless of the sign of dip, but also reflections from horizontal reflectors, 

too, in which case the reflections are laterally shifted to their appropriate zero-offset 

locations.

I also tested the method on two field data sets, acquired in the same region 

but shot in opposite directions, with dominantly p-sv reflections. The signal-to-noise 

ratio was poor in both sets and reflection dips did not exceed about 25 degrees, so that 

improvement with mode-converted TZO was not as dramatic as that for the synthetic 

data  tests. Nevertheless, the method has significantly removed the influence of dip 

from stacking velocity, and yielded better stacks than either the conventional CMP 

stack or the stack for conventional TZO. Neither conventional processing (no TZO) 

nor conventional TZO (ignoring mode conversion) was able to dip-correct velocity as 

well as did mode-converted TZO.

As an example from the synthetic tests, Figure 1.2 shows a CRP gather after 

applying conventional f - k  TZO to mode-converted seismic data. The choice of NMO 

velocity used here was such that it would match that typically made in practice,

i.e., a velocity obtained from velocity analysis based on only horizontal reflections. 

Consequently, only reflections from the horizontal reflector (shallowest) are properly 

corrected (i.e., horizontally aligned). Reflections from dipping reflectors are severely 

overcorrected and, consequently, will not produce an acceptable stack. Note, also,
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Offset (m)
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<D 1.5-

F ig . 1.2. CRP gather obtained by applying conventional TZO (ignoring mode conver
sion) to mode-converted data. For these synthetic data, the downgoing and upgoing 
velocities are 2000 and 1000 m /s, respectively. The gather shows reflections from five 
reflectors with dips starting at 0 degrees (shallowest reflector) with an increment of 
20 degrees; the dip of the deepest reflector is 80 degrees.

that their residual moveouts do not even show the curvature familiar in overcorrected 

p-wave data. The same CRP gather is shown in Figure 1.3, but processed now 

by applying the f - k  TZO method proposed here, thus honoring mode conversion. 

Reflections from all reflectors, including the deepest one, which dips at 80 degrees, 

are now correctly aligned. Clearly, this CRP gather will produce a better stack than 

will that of Figure 1.2.

The previous two examples illustrate the necessity of incorporating a mode- 

converted TZO, such as the one proposed here, for the processing of mode-converted 

seismic data. Although Den Rooijen (1991) qualitatively showed that his integral 

TZO method was quite sensitive to the choice of the velocity ratio, he did not, nor
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F ig . 1.3. CRP gather obtained by applying mode-converted TZO to the same mode- 
converted data shown in Figure 1.2. Reflections are now correctly aligned, including 
those from the steepest (deepest) reflector, which dips at 80 degrees.

did Harrison (1990), investigate the consequence of ignoring mode conversion when 

mode-converted data are considered. To bridge the gap, we shall, throughout this 

thesis, compare TZO results from two methods: the conventional TZO method that 

does not honor mode conversion, and the mode-converted TZO method proposed 

here. As we shall see, mode-converted data should never be processed with a TZO 

algorithm that ignores mode conversion.

For many rocks, the velocity of shear wave vs is approximately half that of the 

compressional wave vp (Dobrin and Savit, 1988). For this reason, I choose a velocity 

ratio v3/vp =  0.5 for most of the examples in this thesis.
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C hapter 2

TH E K IN EM ATICS OF C O NVERTED WAVES

2.1 Introduction

Before analyzing TZO for mode-converted waves, we first address the time- 

distance (moveout) relation in the presence of both dip and mode conversion. Two 

moveout relations are derived here, both assuming a constant-velocity medium.

The first relation, which is exact, relates zero-offset time to both recorded time 

and the location of an output zero-offset trace. This relation, in which there is no 

immediate time dependence on dip, is referred to as an implicit-dip relation. Based 

on this moveout relation, derivation of TZO in the nonphysical domain introduced 

by Forel and Gardner (1988) is given in Chapter 6.

The second moveout relation, which is derived by approximating a power series, 

expresses traveltime as a function of zero-offset time and dip. Although not exact, 

this explicit-dip moveout relation will eventually pave the way for deriving a TZO 

method for mode-converted waves by Fourier transform.

2.2 Im plicit-dip relation

From geometrical considerations, the equation describing the two-way traveltime 

for a converted wave can be written as

^ _ ^ / ( x  + h)2 + z‘2 _ ^ ( x - h ^  + z2
t _  - I , (2.1)
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where

(x, z) : coordinates of the reflection point,

h : half-offset between source and receiver along the surface 2  = 0,

v : velocity for the path from the source to the reflector,

7 v : velocity for the path from the reflector to the receiver (7 <  1 implies

p~sv conversion, and 7 >  1 implies sv-p conversion).

Figure 2.1 shows the geometry pertaining to equation (2.1). In that figure, the mid-

FlG. 2.1. Depth section depicting a mode-converted, reflection raypath in a 
homogeneous medium with a dipping reflector.

point is at the origin, s denotes the source location, and g denotes the receiver location. 

Unlike the situation for ordinary p-waves, for mode-converted waves the angles of in

cidence and reflection differ (i.e., symmetry is broken), as shown in the figure. A line



T-4344 11

passing through reflection point (rr, z), and perpendicular to the reflector, crosses the 

surface at point b relative to the midpoint. To convert CMP gathers to CRP gathers, 

TZO must move the nonzero-offset reflection to a location that is at the distance b 

from the original midpoint (Hale, 1988) and has the time of that for two-way travel 

from (6, 0) to (x,z).

Following Sword (1984), we obtain z2 from equation (2 .1) as

z2 = ^ 2 ^ - P  (x + h)2 -  ^ ( x - h ) 2 -f a{vt)2 -  ^ y / ( v t ) 2 -  4/tah j  , (2.2)

where

#  =  1 4— ô,
7

P =  1 _ ^ 2 ' (2 3)

For constant 7 , Zi, v, and t, the graph of z versus x  looks like a distorted ellipse. An 

example of such a pseudo-ellipse is shown in Figure 2.2.

At an arbitrary subsurface reflection point (%, z) on the pseudo-ellipse (Fig

ure 2.3), construct the circle that is tangent to the pseudo-ellipse and has its center 

along the line connecting the source and receiver. Let the radius of the circle be R, 

such that the center is at the point (6,0). The equation describing the circle is thus

(x -  6)2 +  z2 =  R 2. (2.4)

To satisfy the tangency requirement, the slope of the pseudo-ellipse and that of 

the circle must be the same at the point of tangency. Differentiating equations (2.2)
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Distance x (m)
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FlG. 2.2. The locus of z as a function of x  looks somewhat like an ellipse, for constant 
7 , h, v, and t. Here 7 = 0.5 , h=400 m, v=2000 m /s, and t = l  s. The midpoint is located 
at T =0.

and (2.4) with respect to x  yields, respectively,

and

dz 1 
Zf a  = ]P -P (a: +  h )  -{x — h)r +

vt 2(3h

7 \J(vt)2 — 4/to/i J

(x — b) + =  0.
dx

(2.5)

(2.6)

Now, from equations (2.2), (2.4), (2.5), and (2.6), the radius R  can be obtained as 

a function of Specifically, using equations (2.2) and (2.4) to eliminate

z2, using equations (2.5) and (2.6) to eliminate zdz/dx,  and after some algebra and
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FlG. 2.3. A circle with radius R  and center at (6,0) is tangent to the pseudo-ellipse 
at reflection point (x, z). The distance b from the midpoint is the same as that in 
Figure 2.1.

simplification, we obtain

R 2 = (h2 -  b2)
(id):

2h(ah +  f3b)
1 (2.7)

Harrison (1990) derived a result that is equivalent to equation (2.7), differing only in 

that the downgoing and upgoing velocities are used explicitly. Figure 2.4 shows how 

the pseudo-ellipse of Figure 2.2 is constructed as the envelope of circles whose radii 

are calculated from equation (2.7).

Referring to Figure 2.3, for mode-converted waves (ignoring the fact that mode 

conversion does not truly occur at normal incidence) the two-way normal-incidence
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FlG. 2.4. The curve of Figure 2.2 is constructed from circles whose 
radii are given by equation (2.7).

time associated with reflection point (x, z) is given by

,  R  R  R (  l \
to — -----1--------— — I 1 H—  ) ,

v 'yv v \  7 y

or

(2 .8)

(2.9)

(2 .10)

,  _  2Rto — ---- :
Va

where the average velocity va is given by

2v
Va =  — , G

with

<7 =  1 +  - .
7

200 -

400 -

600 -

800 -
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Substitution of equations (2.8) and (2.9) for R  in equation (2.7) yields the following 

expression for zero-offset time

fg =  (&= -  6=)
(crt)'

2h(ah +  fib) 2) (2 .11)

For a given offset h, relationship (2.11) between to and b defines the trajectory 

of the response of the TZO process to an impulse at the source-receiver midpoint and 

at time t (i.e., the shape of the TZO operator). Figure 2.5 is a plot of this function 

for the same parameters used in Figure 2.2. Note that equation (2.11) reduces to an

CO o

|  0.2

Z  ° - 4 "1 

« 0.64
0 .8 -

01o
N 1.0

-800  -400  0 400
Distance b (m)

800

FlG. 2.5. Shape of the impulse response to(b) of the TZO operation for an impulse 
at time t= l  s. The parameters here are the same as those in Figure 2.2.

ellipse in (to, b) when 7 = 1  (i.e., /? =  0). For 7 /  1, however, we once again observe 

the broken symmetry for mode-converted data.
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If the average velocity va is known, equation (2.11) can be used to transform 

prestack seismic data directly from recorded time t to zero-offset time to (Harrison, 

1990). Furthermore, equation (2.11) can also be used to extend to mode conver

sion the principles underlying the velocity-independent DMO approach introduced 

by Forel and Gardner (1988) for ordinary p-waves; the DMO correction in this case 

depends only on the velocity ratio, and not on the individual p- and sv-wave velocities 

themselves. Detailed explanation is given in Chapter 6.

Since the operator given by relation (2 .11) is exact, it will be used as a standard 

against which to compare an approximate TZO operator derived in the next chapter.

2.3 E xplicit-dip relation

For ordinary p-waves, and in a constant-velocity medium, traveltime can be 

expressed as an explicit function of offset, zero-offset time, velocity, and reflector 

dip (Levin, 1971). This relation, the well-known hyperbolic moveout equation, is 

used as the basis in deriving TZO by Fourier transform for ordinary p-waves (Hale, 

1984). For mode-converted waves, to formulate a TZO operator in the frequency- 

wavenumber domain we need a similar moveout relationship in which time explicitly 

depends on dip. An exact moveout relation was introduced in the previous section, 

equation (2.11). Unfortunately, unlike the situation for ordinary p-waves, the derived 

traveltime expression for mode-converted waves is not an explicit function of dip. To 

make progress, I next derive an approximate dip-dependent moveout relationship.

The derivation is based on the model of a single dipping reflector in a constant- 

velocity medium, as shown in Figure 2.6. In that figure, the offset between source 

s and geophone g is x. The quantity D  designates the distance from the midpoint 

y  (between s and g) to the reflector, whose dip angle is $. The angles between the
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X

s y  g

FlG. 2.6. Depth section depicting a mode-converted, reflection raypath in a 
homogeneous medium with a dipping reflector.

normal to the reflector and the incident and reflected (mode-converted) rays are, 

respectively, </)s and <pg. From the geometry of the figure, offset x  can be expressed 

(Appendix A) as
2D(tan</>s + ta n < y

x  =
2 cos 9 +  sin #(tan (f>s — tan (f>g)

W ith the downgoing and reflected waves traveling at speeds v and 71?, respectively, 

the traveltime for the reflection is then given (Appendix A) by

v
D

1 + 1
cos <f>s 7 cos (f)s + xsinO 1 1

7 cos</>9 cos(f>s
(2.13)

The angles <f)s and (f)g can be expressed in terms of a slowness parameter v along the
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dipping interface, using Snell’s law:

i/ =  ! i n A = ! i n ^
v ,yv

In the presence of dip, and unlike that for ordinary p-waves, traveltime for mode- 

converted waves is no longer an even function of offset within a CMP gather. That is, 

considering p-sv conversion for example, interchanging s and g in Figure 2.6 yields 

a different raypath and, with it, a different traveltime. The dependence of time t on 

offset x  can thus be expressed in the following series form

£2 =  Co +  C\X +  C2 X2 +  C32:3 +  . . . ,  (2.15)

which includes both odd and even powers of x. In the absence of mode conversion, 

this power series expression would contain only even powers of x.

Equations (2.12) and (2.13) can be expressed in terms of the slowness parameter 

v  by substituting for </>3 and (j)g their values from equation (2.14). Consequently, t2, x, 

x 2, x 3, ..., are expressed as power series (Taylor expansion) in the same slowness pa

rameter z/ (Appendix B). After substitution of those expressions into equation (2.15), 

the coefficients c* can then be recursively solved for by matching like powers of u. 

The first five coefficients (Appendix B) are

f 2 D \ 2 _  «
^  -  W  =

_  2(1 — 7 )t0 sin 5Ci —

C2

C3

( 1 + 7 K  
47 cos2 0 +  (1 — 7 )2 sin2 0 

(1 +  7 )2u2 
87(1 — 7 ) cos2 9 sin 9 

(1 +  ^ H q V 3
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47(1 — 7 ) cos2 9 [(7 — 1) cos2 ^ +  (2 — 27 — 72) sin2 #]

04 ~  (1 +  7 )4<0"a

where va is the same average velocity given by equation (2.9), i.e.,

2 1 1
va v 71;

If the series in equation (2.15) is truncated beyond the third term, the approx

imate moveout relationship, after some algebra and trigonometric substitution, be

comes

.2 .2 . 2 (1 - 7 )t0is in f l , 4-,-x2 , [(1 -  7)2 -  47] i 2sin2g
0 (l +  7)«a (1 +  7)2v2 (1 + 7 ) 2y2

This relation is clearly an even function of neither offset nor dip. Note that when 

7 =  1 (no mode conversion), equation (2.16) reduces to

(i i t )

the well-known hyperbolic moveout relation for ordinary p-waves as given by Levin 

(1971).

Hale (1984) exploited the moveout relation given by equation (2.17) to derive a 

TZO method for ordinary p-waves by Fourier transform. In much the same way as for 

Hale’s f - k  TZO method, equation (2.16) will next be used as the basis to facilitate 

the derivation of TZO for mode-converted waves by Fourier transform.
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C h a p te r  3 

T Z O  B Y  F O U R IE R  T R A N S F O R M

3.1 In tro d u c tio n

Analogous to Hale’s f - k  TZO method for ordinary p-waves (reviewed here), I use 

the approximate moveout relation given by equation (2.16) to derive a TZO algorithm 

for mode-converted waves in the frequency-wavenumber domain. Since this f - k  TZO, 

as with Hale TZO, requires that the input prestack seismic data be NMO-corrected, 

I will discuss NMO-corrected time and NMO velocity for mode-converted waves. 

Then, after deriving an initial, approximate f - k  TZO formulation, I shall introduce 

modifications necessary to obtain the desired TZO action.

3.2 H ale f - k  TZO

For ordinary p-waves, the moveout relation given by equation (2.17) is exact for 

a constant-velocity medium. This moveout relation is the basis for Hale f - k  TZO. A 

review of Hale f - k  TZO is given here.

Following Hale (1984), NMO-corrected time tn is related to recorded time t by

t l - t 2 -  —r , (3.1)

where half-offset A, given by x/2 ,  is introduced here for convenience. t n in equa

tion (3.1) is, by definition, the conventional NMO-corrected time. For a given seismic
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trace with midpoint %/, it is assumed that the NMO-corrected and the recorded seis- 

mograms, pn and p, respectively, are related by pn{tn,y,ti) = p( t,y ,h).  W ith NMO- 

corrected time tn so defined, it follows from equation (2.17) that zero-offset time, 

can be expressed in terms of tn as

Ah2 sin2 6
t l  = t l +  .  ■ (3.2)

For a constant half-offset h, the 2-D Fourier transform of the unknown zero-offset 

seismograms, po(to) y, h), is defined by

P0(u ,k ,h)  = J d t 0 elu}to J d y e ~ tkypo(t0,y ,h).  (3.3)

Using the change of variables given by equation (3.2), the integration over the un

known to in the above transform is replaced by integrating over the known tn. Taking 

advantage of the relations for the zero-offset slope (A to/ A y )  in the physical and 

Fourier domains, i.e.,
A t 0 2 sin# k
A y  v lj

it follows from (3.2) that

A ~  dt0 - \
h2k2

1 4*
< > 2’

and the transformation in (3.3) can then be written as

P0(u ,k ,h) = J  dtn A  1 elu,A*n J  d ye  thy pn{tn,y,h).  (3.4)

Finally, the desired zero-offset data Po( t o , y ,  h) are obtained by 2-D inverse transfer-
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mation of equation (3.4) as follows

Po(fo,2/, =  - ^ 2  / du e~tUt° J  dke tky P0(u,k ,h).

The impulse response in the t - y  domain of this TZO method is obtained by 

finding the 2-D inverse transform of equation (3.4) when pn(tn,y, ti)  is an impulse. 

The impulse response is known to be an ellipse (Hale, 1988) given by

( ? ) ' - > •  < «»

where yo denotes the location of the output zero-offset trace relative to the original 

input midpoint. This elliptical relation between to and y0 is well known in reflection 

seismology and is frequently referred to as the DMO ellipse.

3.3 N M O -corrected tim e and NM O  velocity for converted waves

Let us call the third term in equation (2.16), which has no dip dependence, T 2.

That is, in terms of half-offset Zi, we have

-  167,12 (3.6)
(1 + 7 )2î )2

For ordinary p-waves (7 =  1), this term reduces to

T 2 = (3.7)
vz

where v is the medium velocity. So, for 7 =  1 (no mode conversion), the quantity 

t2 — T 2 reduces to t2, given by equation (3.1), which is the square of the conventional 

NMO-corrected time for ordinary p-waves. Similarly for mode-converted waves, define
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NMO-corrected time tn by

t l = t 2 - T 2, (3.8)

where t  is the recorded time given by relation (2.16). For a given seismic trace 

with midpoint y, it is also assumed here that the recorded and the NMO-corrected 

seismograms, p  and pn, respectively, are related by pn(tn, y, h) = p(t, y, h).

Again, for 7 =  1, the constant medium velocity v in equation (3.7) is also the 

NMO velocity. Similarly, the NMO velocity for mode-converted waves can be deduced 

from the term T 2 (7 ^  1) by writing equation (3.6) as

r 2 =  4 ^ .
nm o

where the NMO velocity vnmo is then given by

v2 =unm o
(1 +  7 )2v2

47

Then, using equation (2.9), we get

=  y / î v .  (3.9)

Recalling that v and 7 % are the downgoing and upgoing velocities, respectively, the 

NMO velocity given by equation (3.9) is thus the geometric mean of these two veloc

ities.

In practice, however, the “stacking” velocity required to flatten mode-converted 

reflections from horizontal reflectors is somewhat higher than vnmo given by equa

tion (3.9). For a velocity ratio 7 =  0.5, for example, and assuming a maximum 

source-receiver offset of 4000 m, a 5% increase over the proposed vnmo above is needed
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to approximately flatten reflections from horizontal reflectors, even in media where 

velocity changes with depth. Figure 3.1 shows a constant-velocity example. Although

1000
Offset (m) 

2000 3000 4000
Offset (m)

1000 2000 3000 4000

r r

FlG. 3.1. CMP gather showing reflections from five horizontal reflectors after NMO 
correction. The NMO velocity in (a), which did not quite align reflections, is calcu
lated directly from equation (3.9) for v = 2000 m /s and 7 =  0.5. The NMO velocity 
in (b), which is 5% higher than that in (a), yields better alignments.

reflections are better corrected using a slightly higher NMO velocity, alignment is still 

imperfect and nonelliptical, as shown in Figure 3.1b. This shortcoming stems directly 

from the fact that mode-converted reflections are nonhyperbolic, even for horizontal 

reflectors in a constant-velocity medium, as in this case. This nonhyperbolic move

out, consequently, results in a stacking velocity that depends on the maximum offset 

under consideration.

This phenomenon is analogous to the “spreadlength bias” (stacking velocity be

ing dependent on spread length) known for ordinary p-waves when the medium ve
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locity varies with depth (Hubral and Krey, 1980). But, for mode-converted waves, 

this dependence of stacking velocity on spreadlength is more severe and is observed 

even when the medium is homogeneous. Based on numerical tests, I have used the 

following time- and offset-independent empirical relation for estimating a percentage 

increase (% Inc) above vnmo to obtain stacking velocity that reasonably flattens events 

on CMP gathers:

% Inc  =  10 . (3.10)
7

Although this relation was based on the assumption that the maximum offset is 

4000 m, numerical tests show that the above % Inc  should not be exceeded even 

when dealing with offsets larger than 4000 m; use of higher stacking velocity than that 

in equation (3.10) imposes excessive undercorrection on small-offset reflections, thus 

degrading the stack. Moreover, the above relation can be used for smaller offsets, since 

the smaller offsets are significantly less sensitive to the choice of NMO velocity. For 

example, although the velocity in Figure 3.1b is 5% higher than that in Figure 3.1a, 

both figures exhibit reflection times that are practically the same at offsets less than 

1000 m.

The spreadlength bias for ordinary p-wave reflections in a vertically inhomoge- 

neous medium is known to decrease with depth (or time). That is, reflections at later 

times in CMP gathers tend to more closely follow hyperbolic trajectories (Yilmaz, 

1987). In contrast, the nonhyperbolic behavior, for the constant-velocity mode con

version here, persists even at later times (see reflections between 2.5 and 3.5 s from 

the deepest two reflectors in Figure 3.1). As with ordinary p-waves in media with 

depth-variable velocity, departure of moveouts from hyperbolas increases with offset 

for mode-converted waves, but now even in homogeneous media.

Before concluding this section, I should point out that relations (3.9) and (3.10)
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are not intended for estimating NMO velocity for mode-converted data. In practice, 

one would typically obtain the NMO velocity from velocity analysis (t2-x2 analysis, 

for example) on reflections from near-horizontal reflectors. However, relations (3.9) 

and (3.10) will be useful if, for example, one attem pts to infer the velocity ratio from 

the NMO velocity so obtained, assuming the downgoing velocity v is known.

3.4 TZO for converted waves by Fourier transform

Following Hale (1984), but now dealing with mode-converted waves, I now derive 

an f - k  TZO formulation based on the approximate moveout relation given by (2.16). 

Using equation (3.8) to replace t by t n in equation (2.16), this latter equation yields a 

quadratic relation in zero-offset time to as a function of NMO-corrected time tn. We 

then obtain to as

2(7 — l)h s in 0 +  7 )2Vq +  167/i2sin20
 ■ i 3 'n >

where it is assumed, again, that p o ( t o , y , h )  =  p n{ t n , y , h ) .  Notice the dependence of 

to on the unknown quantity sm 0 /va.

For a given half-offset /i, the 2-D Fourier transform of the unknown P o { t o , y , h )  

is, by definition,

P0(u ,k ,h)  = J dt0 elu;to J  dye~tkypo(to,y,h). (3.12)

As with f - k  TZO for ordinary p-waves, the integration over the unknown to in the 

above transformation can be expressed in terms of the known NMO-corrected time, 

tn, using the change of variables given by equation (3.11). Making use of the relations 

for the zero-offset slope (A to/A y) in the physical (time-distance) and Fourier (cj, fc)
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domains, i.e.,
Ato _  2 sin# _  & 
A y  va u

it follows from (3.11) that

(3.13)

<3“ >

and the transformation in (3.12) can then be written as

P0(u ,k ,h )  = J d t n A - '  eiwAt" eiBk J d y e - ik*pn(tn,y ,h) .  (3.15)

The quantity B, here, is a constant given by

B  =  1 ^ - h .  (3.16)
7 +  1

The fact that B is a constant (for a constant offset 2h) implies a linear spatial phase 

shift, i.e. in the Fourier domain. This linear phase shift, in turn, corresponds 

to a constant lateral shift in the space domain. Specifically, this constant shift is the 

asymptotic approximation (offset small compared with depth) for the spatial location 

of the conversion point for a horizontal reflector (Sword, 1984).

Finally, 2-D inverse transformation of equation (3.15) yields the desired TZO 

data, i.e., P o ( t o , y , h ) ,  as follows

Po(to,y,h) = J  d u e - * *  J  dke iky Po(pj,k,h).
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3.5 T h e  im pulse resp o n se

The corresponding TZO operator in the t - y  domain is obtained by finding the

inverse Fourier transform of Po(w, k, h) when pn(tn,y,h)  is an impulse. This is ac

complished by applying the method of stationary phase to equation (3.15) (see, for 

example, Bleistein, 1984; and Liner, 1988). The TZO operator in the t - y  domain is 

found to be an ellipse (Appendix C), given by

® ' - -  < - >

The quantity Lf is a scaled version of half-offset h, given by

H  = h. (3.18)
1 +  7

Equation (3.18) implies that the TZO impulse response for mode-converted waves is 

a squeezed version of that given by equation (3.5) for ordinary p-waves. The quantity 

>o is the location of the output zero-offset trace; it is shifted from the output location 

for ordinary p-waves, ?/o, and is given by

=  2/o ~  1 —— h. (3.19)
1 +  7

When 7 = 1  (no mode conversion), equation (3.17) reduces, again, to the well-known 

DMO ellipse for ordinary p-waves as given by equation (3.5).

The offset scaling as implied by (3.18), and the shift in the output zero-offset 

trace as suggested by (3.19), are equivalent to the transformation introduced by Sword 

(1984). Sword suggested that each prestack seismic trace, in the time-space domain, 

be given a new midpoint location and a new offset, consistent with equations (3.18)
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and (3.19), prior to any processing. The TZO approach introduced here, on the other 

hand, accounts for the location of the new midpoints, as suggested by Sword, without 

having to deal with trace interpolation in the time-space domain; each trace is simply 

shifted to the desired location by introducing a spatial phase shift in the f - k  domain, 

as suggested by the transform in equation (3.15).

The formulation of this TZO approach was based on a truncated version of the 

series in equation (2.15). Considering only the first three terms of the series, as was 

done in the derivation above, results in a quadratic equation in to, as a function 

of tn, the solution of which is not difficult to find and is given in equation (3.11). 

If higher-order terms of the series are also considered, the resultant equation in to 

becomes cubic or higher order. Solutions to the cubic and higher-order equations are 

too lengthy for our purposes and are, therefore, deemed impractical to implement. 

Alternatively, the errors arising from truncating the power series can be alleviated by 

modifying the derived f - k  TZO operator.

One result of the truncation of the power series was that the phase shift obtained 

in (3.15) was constant and time-invariant. The actual spatial shift of the conversion 

point for a horizontal reflector, however, is known to vary with reflection depth, or 

time (Tessmer and Behle, 1988). Figure (3.2) shows the theoretical impulse response 

(solid), along with the derived, approximate impulse response assuming four input 

impulses. The lateral shifts of the apexes of the theoretical operators are clearly 

time-variant; the apexes correspond to horizontal reflections, i.e., zero dip. From the 

figure, it is also clear that the lateral, constant shift of the derived TZO operator 

needs to be adjusted (increased in this case), in a time-varying manner, so as to 

obtain a better match of the two operators near the vicinity of their apexes.
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Fig . 3.2. Theoretical (solid) and approximate (dotted) TZO impulse responses for 
four input impulses (1.75, 2.4, 3.2, and 4.0 s) at midpoint 0. The approximate operator 
has a constant (time-invariant) lateral shift, as opposed to the time-variant shift for 
the theoretical TZO operator. The offset is 2000 m. The downgoing and upgoing 
velocities are 2000 and 1000 m /s, respectively.

3.6 Im proving th e TZO operator

In this section, we attem pt to improve the derived, approximate TZO operator in 

two different ways. First, the constant, spatial shift of the operator will be modified 

to better resemble the behavior of the conversion point for a horizontal reflector. 

This modification is achieved by altering the phase of the TZO transform to be time 

variant. Second, a squeeze/stretch technique is applied to the operator to make it 

better match the theoretical one.
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3.6.1 Tim e-variant phase shift

It is easy to embed time-variance of the conversion point into the phase-shift term 

of the transform in (3.15), and thus partially alleviate errors arising from truncating 

the series given in (2.15). Let us again call the lateral position of the conversion point, 

relative to the midpoint, b. W ith D  denoting the depth of a horizontal reflector, the 

relationship between D  and b (Appendix D) is given by

where we recall from equation (2.3) that a  and /? are constants depending only on 

the velocity ratio 7 . In terms of normalized quantities D = D / h  and b =  b/h, 

equation (3.20) can be written as

D2 = ------ 11 -*»2)2 (3.21)
1 +  2ab/l3 +  i>2

showing that the relation between D  and b is totally determined if the velocity ratio 7 

is known. Naturally, we would prefer to find 6 as a function of D  using equation (3.20); 

this, however, requires solving a quartic equation in b. Rather, we directly calculate D 

as a function of b using equation (3.21), thus building a table of [D, b(D)] pairs for any 

given velocity ratio. Making use of a table constructed in this way aids the efficiency 

of the TZO process since such a table needs to be calculated only once (the only 

required parameter is the velocity ratio). Figure 3.3 shows an example of normalized 

6 as a function of normalized depth for different velocity ratios. In the TZO process 

itself, both D  and b are translated, respectively, into NMO-corrected time tn and 

actual lateral shift 5, using velocity and half-offset information. In other words, the 

pairs [D, b(D)] in the original table are trivially converted into pairs [tn, b(tn)]. Then,
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FlG. 3.3. Behavior of the conversion point in a homogeneous medium, as dictated 
by equation (3.21). Here, for different velocity ratios, normalized depth (D/h)  of 
the conversion point is plotted against the normalized, lateral position (b//i) for a 
horizontal reflector. The numbers shown on the plots are values of 7 . Note that plots 
for 7 and 1/7  are symmetric about the vertical line b/h  =  0 .
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we use this time-variant b(tn) in the phase shift of the transform given by (3.15), 

instead of the time-invariant B  given by equation (3.16). Figure 3.4 shows impulses 

and TZO impulse responses for TZO constructed in this way.

Figure 3.4a shows ten impulses on a common-offset (2h =  5000 m) section. 

Assuming a p-sv mode conversion with velocity ratio 7 =  0.5, the response of the

Midpoint
20

0.5

1.0

1.5

2.0

3.0

3.5

4.0-

a

Midpoint
4 0

FlG. 3.4. Ten impulses in a constant-offset section (a) used to test the response of 
the TZO operator for mode-converted waves (b). The offset here, 5000 m, is chosen 
large to emphasize the time-variant lateral shifts seen in the impulse responses in (b). 
The midpoint spacing is 100 m.

modified TZO operator to those impulses is as shown in Figure 3.4b. Each impulse 

response is an ellipse that has now been squeezed, relative to that for ordinary p- 

waves, in the sense that its horizontal axis, when extended to the surface, spans a 

distance 2H  (see equation [3.18]) that is smaller than offset 2h. Furthermore, each 

squeezed ellipse has been laterally shifted, in a time-varying manner, in such a way
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that the apex now corresponds to the conversion point for a horizontal reflector.

3.6.2 Squeezing and stretching the TZO operator

While proper, time-variant shift has been introduced, the elliptical shape of the 

TZO operator, as Figure 3.2 clearly shows, is still wrong. Squeezing (or stretching) 

the operator is a practical way to modifying its response to a nonelliptical shape 

that is closer to the correct one. Hale and Artley (1991) introduced a squeeze fac

tor tha t would squeeze the elliptical DMO response for ordinary p-waves. Although 

their squeeze factor was used primarily to tune the elliptical DMO response to better 

handle steep reflections for depth-variable velocity, the same squeeze concept may 

also be used even when velocity is constant. Specifically, Hale and Artley have em

pirically found that a squeeze factor of 0.62 is sufficient to improve the accuracy of 

constant-velocity DMO if the Fourier-transform approximation introduced by Not- 

fors and Godfrey (1987) is used. I find that this squeeze concept is also beneficial in 

improving the f - k  TZO process for mode-converted waves. I adopt Hale and A rt

ley’s squeeze idea here to distort the shape of the approximate, mode-converted TZO 

operator. As we will see, TZO based on the resulting shape, which is closer to the 

correct one than that without distortion, yields better alignment of reflections in CRP 

gathers.

Figure 3.5a shows the shapes of four impulse responses of TZO (dashed), where 

only proper, time-variant lateral shifts have been applied. For comparison, the correct 

responses (solid) are also shown in the figure. Negative zero-offset slopes correspond 

to the right segments of each curve, whereas positive zero-offset slopes correspond 

to the left segments. As Figure 3.5a suggests, to achieve a response that is closer 

to the correct one, negative slopes need to be squeezed, and positive slopes need to
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Fig. 3.5. Shapes of approximate TZO response (dashed) to four impulses, along with 
those of the correct responses (solid lines). Proper, time-variant lateral shifts have 
been applied in (a). The result in (a) after squeezing/stretching is shown in (b); the 
squeeze and stretch factors are, respectively, 0.05 and 5.0. A p-sv mode conversion 
(7 =  0.5) is assumed here. Offset is 2000 m. Input impulses are the same as those 
for Figure 3.2.

be stretched. In other words, for the p-sv mode conversion shown in Figure 3.5a, 

the sign of the slope, alone, determines whether stretching or squeezing should be 

applied. Figure 3.5b exhibits a squeezed/ stretched version of the responses shown in 

Figure 3.5a. Figure 3.6 shows the response of an actual TZO algorithm without and 

with stretching/squeezing applied, for six input impulses.

The empirical process of squeezing or stretching would have little practical value 

if it were dependent on either dip or time. Moreover, the stretch and squeeze factors 

must not depend too sensitively on 7 . Although the stretched/ squeezed curves could 

be made to fit the correct ones if the stretch/squeeze factors were allowed to vary 

with time and dip, I choose stretch and squeeze factors here tha t depend only on the 

velocity ratio, 7 , and yield Hale and Artley’s squeeze factor when 7 =  1. Because
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a b

Midpoint (m) Midpoint (m)

Fig . 3.6. Response of a TZO algorithm to six impulses, along with the correct 
responses (solid lines), (a) No squeezing/stretching, (b) Stretch and squeeze factors 
of 5.0 and 0.05, respectively, have been applied. The responses in (b) are closer to the 
correct shapes. A p-sv mode conversion (7 =  0.5) is assumed here. Offset is 2000 m. 
Input impulses were originally at midpoint 0.

the stretch/squeeze factors here depend on the velocity ratio only, the match between 

a stretched/squeezed curve and its theoretical counterpart is imperfect, but, as we 

shall see, yields quite acceptable moveout correction. The TZO operator is thus either 

squeezed or stretched, depending on the sign of the zero-offset slope as well as on the 

mode of conversion (p-sv or sv-p). I empirically determine this factor by comparing 

squeezed/ stretched TZO impulse responses, using different velocity ratios, to correct 

impulses given by equation (2 .11).

For convenience, let us define 51 as a parameter that achieves either squeezing 

or stretching and apply it to the positive zero-offset slopes, i.e. the left segment 

of the TZO operator, regardless of the mode of conversion (p-sv or sv-p). By the
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same token, we define 52 as a parameter differing from 51 in that (1) 52 is always 

associated with the negative zero-offset slopes, and (2) 52 performs the opposite

action of 51 (e.g., if the action of 51 is squeezing, then that of 52 is stretching). 

W ith this convention, and assuming p-sv mode conversion, the stretch and squeeze 

factors, 51 and 52, respectively, may be approximated using the following relations

which were empirically determined using a least-square fit on experimental data. 

Figure 3.7 shows plots of 51 and 52 calculated from the above relations, along with the 

experimentally determined factors, as a function of 7 , assuming p-sv mode conversion. 

For sv-p mode conversion, the empirical squeeze and stretch factors, 51 and 52, 

respectively, are given by

In general, any of these four expressions achieves squeezing when its value is less than 

1, stretching if the value exceeds 1, and does nothing to the TZO operator when it is 

equal to 1.

Neither relation for 51 and 52, however, yields a value of unity when the velocity

negative slopes. As shown by Liner (1990), the Fourier-transform approximation 

(Notfors and Godfrey, 1987), which we assume is used here, results in a stretched

(3.22)

(3.23)

ratio is 1; they both give a value of 0.62 which implies squeezing of both positive and



T-4344 38

1.0

0 .8 -

0.6 -

co
0.4-

0 .2 -

0.60.4 0.8 1.0
Gamma

8 -

6-

03

2 -

0.4 0.6 0.8 1.00.2
Gamma

FlG. 3.7. Stretch factor S I (a) and squeeze factor S2 (b) as a function of the velocity 
ratio 7 for p-sv mode conversion. S I here stretches positive zero-offset slopes, whereas 
S2 squeezes negative ones. For sv-p mode conversion, factors S I and S2 are given 
by equation (3.23). Asterisks in the plots indicate experimental data.

impulse response that is wider than the theoretical constant-velocity DMO ellipse. 

The squeeze factor 0.62 compensates for this stretching (Hale and Artley, 1991).

3.7 Full-offset TZO

Recall, this analysis for mode-converted waves has been based on a truncated 

moveout relation, equation (2.16). The f - k  TZO formulation, which was based on 

the approximate moveout relation, suggested that the half-offset h be scaled, in ac

cordance with equation (3.18), before TZO implementation. In fact, the TZO results 

shown so far honored this offset-scaling result. Let us refer to TZO constructed in 

this way as scaled-offset TZO.  Alternatively, we could simply have applied squeezing 

and stretching factors directly within Hale’s f - k  TZO approach, which ignores mode 

conversion. I will call that approach full-offset TZO, and shall investigate it next.
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As with scaled-offset TZO, full-offset TZO, here, also honors time-variant lateral 

shifts of the impulse responses and makes use of approximate squeeze/stretch factors. 

That is, full-offset TZO differs from scaled-offset TZO only in that it ignores the offset 

scaling given by equation (3.18). Figure 3.8 shows the same data as in Figure 3.5 but

a b
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FlG. 3.8. Impulse-response shapes of full-offset, approximate TZO operator (dashed) 
to same input data as in Figure 3.5 before (a) and after (b) applying squeeze/stretch 
(0.04/3.0) compensation. Solid lines indicate theoretical impulse responses. Down- 
going and upgoing velocities of 2000 and 1000 m /s, respectively, are assumed. Offset 
is 2000 m.

now assuming full-offset (no offset scaling). Since offset (and hence the lateral extent 

of the elliptical impulse response) is now wider than that in the scaled-offset case, 

both the squeeze and stretch factors required here will be smaller. Squeeze/ stretch 

factors of 0.04/3.0 are used for the full-offset TZO in Figure 3.8b, as opposed to 

0.05/5.0 for the scaled-offset TZO in Figure 3.5b.

Comparison of Figures 3.5b and 3.8b shows tha t the major difference between 

the two methods is in their treatments of positive zero-offset slopes (left segments of
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their impulse-response curves). While the full-offset case yields a shape tha t is closer 

to the correct one for large dips (far from the apex), the scaled-offset case gives a 

better fit for moderate dips (near the apex). Thus, full-offset TZO better handles 

large dips at the expense of further undercorrecting moderate dips.

This is also evident in Figure 3.9, which compares CRP gathers based on the 

two methods, for p-sv synthetic data assuming a downgoing velocity of 2000 m /s and
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FlG. 3.9. CRP gathers obtained by applying scaled-offset TZO (a) and full-offset TZO 
(b). Reflections here are from five reflectors with dips ranging from 0 (shallowest) to 
80 degrees, in increments of 20 degrees. A downgoing velocity of 2000 m /s, and a 
velocity ratio 0.5 are assumed.

a velocity ratio of 0.5. The data consist of reflections from five reflectors, with dips 

ranging from 0 to 80 degrees in increments of 20 degrees. The signs of the dips in 

this example are such that the resulting zero-offset slopes are positive. The velocity 

used in the NMO correction is 1485 m /s (Section 3.3). In the TZO implementation, 

squeeze/stretch factors of 0.05/5.0 and 0.04/3.0 have been applied to the data  in Fig

ures 3.9a and 3.9b, respectively. While full-offset TZO better corrects reflections from
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steep reflectors (see the deepest reflector in Figure 3.9b, which dips at 80 degrees), 

reflections from the moderately dipping reflectors (near 1.0 and 1.7 s, respectively) 

are more undercorrected than those from scaled-offset TZO (Figure 3.9a).

One would naturally prefer to use a TZO operator that gives reasonable results 

for all dips; unfortunately, a compromise is required here between moderate and steep 

dips in the positive-slope segment of the TZO operator for mode-converted waves. 

In general, however, one should account for both negative and positive zero-offset 

slopes in seismic data to accommodate, for example, conflicting dips. Although the 

examples shown here are such that they all pertain to end-on seismic shooting, for 

split-spread shooting the TZO approach described here still holds, but care must be 

taken by accounting for the polarity reversal of amplitude. That is, for split-spread 

geometry the polarities on the two sides of the spread of recorded, mode-converted 

seismograms are known to be opposite to one another (see DeSanto [1986] for a 

thorough discussion of displacements associated with mode-converted waves). One 

solution to this problem is to simply reverse the amplitude polarity of one side of the 

spread before any processing. Another solution is to process each side of the spread 

separately, and then reverse the polarity of one side of the spread before stack.

Figure 3.10 shows the same data as in Figure 3.9 but now with signs of dips re

versed. That is, the sv-leg of the reflection path is updip of the p-leg. Squeeze/stretch 

factors here are the same as in Figure 3.9. In this case, both scaled-offset TZO (Fig

ure 3.10a) and full-offset TZO (Figure 3.10b) yield similar, and quite good, results. 

Based on observation of results from the previous two examples, scaled-offset TZO 

seems favorable over full-offset TZO when reflectors have moderate dips. Scaled-offset 

TZO reduces the undercorrection seen on reflections from moderately dipping reflec

tors. When steeply dipping reflectors are known to be present, however, full-offset
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F ig . 3.10. CRP gathers obtained by applying scaled-offset TZO (a) and full-offset 
TZO (b). Reflections here are from the same five reflectors in Figure 3.9 but with 
dips reversed in sign.

TZO is favorable as it better handles large dips than does scaled-offset TZO. Since 

the values and orientation of dips are generally unknown, either TZO method (scaled- 

or full-offset) may be used since both approaches yield flattening of events tha t is far 

superior to tha t when mode conversion is ignored in TZO. Based on numerical tests, 

the stretch/ squeeze factors SI and 52 given by equations (3.22) and (3.23) for scaled- 

offset TZO must be scaled by a factor of 0.65 if full-offset TZO is used. I shall refer 

to both scaled- and full-offset TZO as the mode-converted TZO method and use them 

both for the remainder of this thesis; the method used, be it scaled- or full-offset, will 

be clearly indicated for each problem under consideration.
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Chapter 4 

A PPLIC A T IO N  TO SY N T H E TIC  DATA  

4.1 Introduction

In this chapter, we start by applying the mode-converted TZO method to syn

thetic, mode-converted seismic data, assuming a homogeneous medium. We then ex

amine the situation when velocity varies with depth, showing that the mode-converted 

TZO method can be tailored to deal with reflections in vertically inhomogeneous 

media. Again, we use synthetic data to assess the reliability of tailored TZO for 

depth-variable velocity.

Finally, we study the sensitivity of the mode-converted TZO method to the choice 

of the velocity ratio 7 , for both homogeneous and inhomogeneous media. As we will 

see, the mode-converted TZO method introduced here is insensitive to the choice of 

7 for horizontal reflections (assuming a proper NMO velocity is used), quite sensitive 

to 7 for moderately dipping reflections, and highly sensitive when dips are large.

4.2 C onstant velocity

Recall, the formulation developed here for mode-converted TZO is based on 

the assumption that the medium is homogeneous (constant velocity). We now test 

the proposed TZO method on synthetic, mode-converted seismic data, assuming a 

constant downgoing velocity of 2000 m /s and a velocity ratio 7 =  0 .5 , thus implying 

p-sv mode conversion.
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As discussed in Chapter 2, the traveltime for mode-converted waves depends not 

only on dip, but also on the sign of dip. To see how TZO treats reflections from 

reflectors with arbitrary dip, we will consider two depth models tha t differ only in 

tha t their reflectors have opposite dip orientations. That is, the two depth models are 

mirror images of each other. Figure 4.1 shows the zero-offset sections associated with
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FlG. 4.1. Zero-offset data for the two test models used to generate synthetic p-sv data. 
Each figure shows zero-offset reflections from five reflectors in a homogeneous medium. 
The downgoing velocity is 2000 m /s, and 7 is 0.5. For each model, the shallowest 
reflector is horizontal, the deepest reflector dips at 80 degrees, and the dip increment 
is 20 degrees. Since reflectors in both models have opposite dip orientations, we shall 
refer to models (a) and (b) as the positive- and negative-dip models, respectively.

each model. Each depth model consists of five reflectors in a homogeneous medium, 

with reflector dips ranging from horizontal (shallowest) to 80 degrees (deepest); dip 

increment is 20 degrees. Since the two models are symmetric, the two middle mid

points, at 500 m, in both zero-offset models have the same zero-offset time. We will 

use these midpoints as test points at which to compare uncorrected CMP gathers,
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NMO-corrected CMP gathers, and CRP gathers.

Synthetic p-sv seismic data are generated by ray tracing, assuming the source 

is situated to the left of receivers (i.e., at lower midpoint locations) for both models. 

For convenience, I will refer to Figures 4.1a and 4.1b as positive- and negative-dip 

models, respectively. For each model, 126 CMP gathers are generated, each with 

125 traces. The distance separating two adjacent CMP gathers is 8 m. W ithin each 

CMP gather, the trace spacing, and also the offset of the nearest trace, is 16 m; the 

maximum offset is 2000 m. A zero-phase (symmetric) wavelet is assumed, with a 

dominant frequency of 25 Hz. The time sampling interval is 4 ms.

The CMP gathers corresponding to the test points of both models are shown 

in Figure 4.2. The two models have the same moveout only for reflections from the
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FlG. 4.2. Synthetic p-sv CMP gathers, (a) and (b) correspond to the middle mid
points of Figures 4.1a and 4.1b, respectively. The downgoing velocity is 2000 m /s, 
and the velocity ratio is 0.5.

horizontal (shallowest) reflectors. The nonhyperbolic moveout is obvious, especially
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on reflections from steep reflectors. The two CMP gathers exhibited in Figure 4.2a 

and 4.2b would have had the same (hyperbolic) moveouts if the velocity ratio had been 

unity (no mode conversion). Moreover, reflections from the dipping reflectors in the 

negative-dip model, Figure 4.2b, exhibit reverse (i.e., negative) moveout. Such reverse 

moveout (i.e., energy arriving earlier on the far offsets than on the near) is familiar 

for p-waves in areas of complex overburden, but here the medium is homogeneous. 

Also, unlike the situation for ordinary p-wave reflections in CMP gathers, apexes of 

the moveout curves here are not situated at zero offset. For example, see the second 

moveout curve (near 1 s) in Figure 4.2b, which has its apex beneath offset «  300 m; 

the middle reflector (near 1.7 s) has its apex at offset «  1300 m.

For these two models, the NMO velocity that would reasonably flatten reflections 

from horizontal reflectors is 1485 m /s (see Section 3.3). Using this NMO velocity, the 

NMO-corrected gathers corresponding to Figure 4.2 are shown in Figure 4.3. In these 

gathers, truncation of reflections on far offsets and earlier times is due to stretch 

muting, typical in NMO-corrected gathers. For both models, reflections from the 

horizontal reflectors (shallowest) are properly aligned after NMO correction. For dip

ping reflectors, however, the positive-dip model (Figure 4.3a) shows moveouts that 

differ from those familiar in NMO-corrected ordinary p-wave data. Ordinarily, move

out of reflections becomes overcorrected after such NMO correction. Here, after NMO 

correction the moveout is undercorrected, and in a peculiar manner; it is concave up

ward or downward, depending on the magnitude of the dip. On the other hand, the 

moveouts in the negative-dip model exhibited in Figure 4.3b are now severely overcor

rected relative to the ordinary p-wave case. Furthermore, the overcorrected moveouts 

here do not follow the elliptical trajectories familiar in overcorrected, p-wave data.

Before applying the mode-converted TZO method to the data, let us first in-
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F ig . 4.3. NMO-corrected gathers corresponding to the CMP gathers shown in 

Figure 4.2. The NMO velocity used is 1485 m /s.

vestigate the situation when the mode-converted data are TZO-processed using a 

conventional method that ignores mode conversion (i.e., 7 =  1 is assumed in the 

processing). The NMO-corrected data were TZO-processed using Hale’s f - k  TZO 

method, which does not honor mode conversion. Figure 4.4 shows the resulting (er

roneous) CRP gathers that correspond to the CMP gathers of Figure 4.2. It is clear 

from both models in Figure 4.4 that only reflections from the horizontal reflector 

are properly corrected (horizontally aligned). Notice, also, that reflections from the 

dipping reflectors are either undercorrected or overcorrected, depending on the sign 

of dip; reflections in the positive-dip model show undercorrection, whereas those in 

the model of opposite dips reveal overcorrection. Moreover, the misalignment of the 

positive-dip data is actually made worse by the conventional DMO processing.

CRP gathers processed erroneously in this way produce unacceptable stacks, 

as the CRP stacks in Figure 4.5 clearly show. For both models, reflections from
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FlG. 4.4. Erroneous CRP gathers obtained by processing the mode-converted data 
with a conventional TZO algorithm that ignores mode conversion. Only horizontal 
reflections (shallowest) are properly aligned.

only the horizontal reflectors stack properly; in the stack, reflections from dipping 

reflectors are almost completely wiped out. These examples clearly illustrate that 

mode-converted seismic data should never be processed with a TZO algorithm that 

ignores mode conversion.

We now process the NMO-corrected data from both models using the mode- 

converted TZO method, thus honoring mode conversion. In implementing TZO here, 

I choose a velocity ratio 7 of 0.5, the same as that used in generating the synthetic 

data. Sensitivity of TZO to the choice of erroneous velocity ratios will be discussed 

later in this chapter.

Figure 4.6 shows TZO-corrected gathers corresponding to the NMO-corrected 

gathers of Figure 4.3. The positive-dip model, Figure 4.6a, was processed by apply

ing full-offset TZO; the result would have been slightly different (better or worse,
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FlG. 4.5. Stacks of erroneous CRP gathers processed by ignoring mode conversion. 
For both the positive- and negative-dip models, (a) and (b), respectively, reflections
from only horizontal reflectors (shallowest) stack properly.

depending on dip, Section 3.7) if, instead, scaled-offset TZO had been applied. The 

negative-dip model, Figure 4.6b, was processed assuming scaled-offset TZO (full-offset 

TZO would have produced similar results).

As Figure 4.6 shows, for both models the mode-converted TZO method is success

ful, to a great extent, in correcting (i.e., horizontally aligning) reflections, including 

those from the reflectors that dip at 80 degrees. Recall, the TZO method that ignored 

mode conversion (Figure 4.4) resulted in either undercorrection or overcorrection of 

reflections, depending on the sign of dip. On the other hand, the TZO method here, 

which honors mode conversion, corrects data regardless of the sign of dip. Hence, the 

TZO method proposed here is far superior to that implemented by ignoring mode 

conversion in TZO. But, since our TZO method is only approximate, it is not surpris

ing to see imperfect alignments of reflections in CRP gathers. This is evident in the
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FlG. 4.6. CRP gathers obtained by processing the mode-converted data with the 
proposed TZO method that honors mode conversion. Flattening of events is superior 
to that seen in Figure 4.4 where mode conversion was ignored.

CRP gather of Figure 4.6a, where reflections near 1.7 s are slightly undercorrected 

on the far-offset traces. Also, both models in Figure 4.6 show slight overcorrection, 

on the far offsets, of reflections from the deepest reflectors, which dip at 80 degrees.

Unlike the previous situation when poor stacks were obtained by ignoring mode 

conversion (Figure 4.5), reflections from all reflectors can now be readily stacked 

without fear of severe signal degradation. Figure 4.7 shows stacks of CRP gathers 

processed using the mode-converted TZO method; the stacks show structures that are 

the same as those in the zero-offset models of Figure 4.1, although the wavelet here 

is mildly distorted due to less than perfect alignment of reflections within the CRP 

gathers. The weak amplitude seen at lower midpoint locations of the stacks (more so 

for the negative-dip stack) is attributable to two reasons. First, the mode-converted 

TZO operator, as with the conventional DMO operator, moves the energy updip.
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FlG. 4.7. Stacks of CRP gathers processed using the mode-converted TZO method. 
Unlike those shown in Figure 4.5 for the TZO method that ignores mode conversion, 
the stacks in both (a) and (b) here are comparable to the zero-offset data in Figure 4.1.

Second, with the receivers situated to the right of the source, the TZO operator 

further shifts reflection points for p-sv data to the right. This latter reason also 

explains the weakened amplitudes seen at lower midpoint locations for the horizontal 

reflectors (shallowest) in both models. The weakening of amplitudes for the negative- 

dip case (Figure 4.7b) is due to the combined action of these two shifts.

4.3 D epth-variable velocity

In the preceding section, we saw how the mode-converted TZO method was able, 

to a great extent, to correct mode-converted seismic data when the medium velocity 

was assumed constant. We now investigate the situation when the velocity function 

varies with depth. We begin by showing that the proposed, constant-velocity TZO 

method can be modified, in a simple and a practical way, to handle velocity variations
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with depth. The modification here is simply achieved by further squeezing the derived 

(stretched/ squeezed) TZO operator given in Section 3.6. We then apply the modified 

TZO method to synthetic, mode-converted seismic data, assuming a velocity function 

th a t varies linearly with depth.

4.3.1 TZO operator for depth-variable velocity

To approximately handle velocity variations with depth for ordinary p-waves, 

Hale and Artley (1991) proposed the concept of squeezed DMO, an efficient method 

th a t yields reasonably accurate results. We have already made use of their squeeze 

concept in Section 3.6. There, the TZO operator for mode-converted waves was 

squeezed/ stretched to better resemble the theoretical operator in a constant-velocity 

medium. Here, we use Hale and Artley’s squeeze concept, once more, but the aim now 

is to allow the constant-velocity TZO operator for mode-converted waves to better 

handle velocity variations with depth.

To study TZO when velocity varies with depth, I empirically analyze synthetic, 

mode-converted seismic data, assuming a linear velocity function with depth, given 

by

v(z) = Vq + G z,

where v is the downgoing velocity as a function of depth z, vq is the downgoing ve

locity at the surface, and G =  A y / A z denotes the downgoing-velocity gradient with 

respect to depth. I then apply a slightly modified version of Hale and Artley’s squeeze 

idea to the data. The modification is solely that I choose a different squeeze factor 

than theirs, keeping in mind that this squeezing action is in addition to the modifica

tions (squeezing/stretching) already incorporated into the TZO operator developed 

in Section 3.6. The additional squeeze factor here, which I also choose as a function
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of only the velocity ratio, is just to make the constant-velocity TZO operator better 

cope with situations when velocities vary with depth.

For ordinary p-waves, Hale and Artley found that an additional squeeze factor 

A =  0.6 is sufficient to make the constant-velocity TZO approximately handle velocity 

variations with depth. Applying the constant-velocity TZO to vertically inhomoge

neous media, therefore, requires an overall squeeze factor given by

S  = A S ,

where we recall from Section 3.6.2 that S  =  0.62 is a squeeze factor Hale and Artley 

applied even when velocity is a constant. For mode-converted waves in homogeneous 

media, however, we needed two factors, 51 and 52 in equations (3.22) and (3.23), 

to tailor the TZO operator to better resemble the theoretical one. Consequently, 

we deal with two overall factors, 51 and 52, when velocity changes with depth for 

mode-converted waves.

Numerical results of tests with different velocity ratios and different velocity 

gradients show that the required overall factors for mode-converted waves can be 

estimated from the following relations

51 =  7 A  51,

52 =  7  A 52, (4.1)

where A =  0.6 is the additional squeeze factor given by Hale and Artley (1991) for

ordinary p-waves (7  =  1) when velocity varies with depth. From equation (4.1),

the additional squeeze factor needed for depth-variable velocity for mode-converted 

waves is thus 7A, which reduces to A, Hale and Artley’s additional squeeze factor for
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ordinary p-waves (7 =  1).

Figure 4.8 shows four examples of CRP gathers processed using overall 

stretch/squeeze factors calculated from equation (4.1), assuming different velocity 

gradients (0.4, 0.5, 0.6, and 0.8 s-1). Each CRP gather contains reflections from 

five reflectors, with negative reflector dips ranging from zero (shallowest) to 80 de

grees (deepest), in increments of 20 degrees. In each model, p-sv mode conversion is 

assumed, with 7 =  0.5, and the downgoing velocity at the surface is 2500 m /s.

The good alignment in the results of Figure 4.8 suggests that the squeezed TZO 

approach for mode-converted waves provides a natural and efficient method of TZO 

correction for depth-variable velocity. The empirical relation for the squeeze factor 

given by equation (4.1) therefore provides an extension, to mode conversion, of the 

concept of squeezed DMO for depth-variable velocity introduced by Hale and Artley 

(1991) for ordinary p-waves. Next, I show, more fully, implementation of squeezed 

TZO on mode-converted seismic data, using relation (4.1), for a velocity function that 

varies linearly with depth.

4.3.2 D epth-variable velocity: synthetic exam ples

Here, we consider a depth model consisting of five reflectors with negative dips. 

The shallowest reflector is horizontal, the deepest dips at 80 degrees, and the dip 

increment is 20 degrees. We assume a downgoing velocity v tha t increases linearly 

with depth z, i.e.,

v(z) = vq + G z , (4.2)

where the downgoing velocity at the surface v$ =  2500 m /s, and the gradient of the 

downgoing velocity G =  0.7 s-1 . We assume p-sv mode conversion, with a velocity 

ratio of 0.5. The zero-offset section associated with this depth model is exhibited
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FlG. 4.8. CRP gathers processed with a squeezed TZO operator tha t approximately 
handles velocity variations with depth. The velocity gradients used in generating the 
data  in (a), (b), (c), and (d) are, respectively, 0.4, 0.5, 0.6, and 0.8 s-1 . The velocity 
ratio and the downgoing velocity at the surface are 0.5 and 2500 m /s, respectively. 
The overall stretch and squeeze factors used here are 51 =  1.5 and 52 =  0.01, 
calculated from equation (4.1).
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in Figure 4.9. Note that, since velocity varies with depth, the reflections from the
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FlG. 4.9. Zero-offset model used to generate synthetic p-sv data. The model shows 
zero-offset reflections from five reflectors in a medium where velocity varies linearly 
with depth. The downgoing velocity at the surface and the gradient of the downgoing 
velocity are 2500 m /s and 0.7 s-1 , respectively, and the sv-p velocity ratio is 0.5. The 
shallowest reflector is horizontal, the deepest reflector dips at 80 degrees, and the dip 
increment is 20 degrees.

various flat, dipping reflectors are slightly curved. Again, we shall use the middle 

midpoint at 500 m as a test point to study various output results. The synthetic data 

here have the same properties (spacing, wavelet, sampling interval, etc.) as those of 

the constant-velocity case (Section 4.2).

The CMP gather corresponding to the test point of the model is shown in Fig

ure 4.10a. As with the constant-velocity case, the moveout curves are nonhyperbolic,
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FlG. 4.10. Synthetic p-sv CMP gather (a), and (b) after applying NMO correction. 
Both gathers correspond to the middle midpoint of Figure 4.9. The downgoing ve
locity at the surface and the downgoing-velocity gradient are 2500 m /s and 0.7 s_1, 
respectively; the velocity ratio is 0.5.

and their apexes are not located at zero-offset. The CMP gather, again, exhibits re

verse moveout for dipping reflections, as in the constant-velocity case (Figure 4.2b).

To perform the NMO correction for this depth-variable velocity, we use a root- 

mean-square (RMS) velocity, Vnmo, which is an extension of vnmo given by equa

tion (3.9) for the constant-velocity case. We replace the constant downgoing velocity, 

v in equation (3.9), by the corresponding RMS velocity, vrTns, since the medium ve

locity is no longer a constant. That is, for depth-variable velocity the NMO velocity 

for mode-converted waves, Wmo, is given by

Kimo — 7 Vrm31 (4.3)

where the RMS velocity vrms is calculated based on the downgoing velocity function
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v(z) given in equation (4.2). As with the constant-velocity case, the velocity required 

here to approximately flatten reflections from horizontal reflectors on CMP gathers is 

also somewhat higher than Vnmo given by equation (4.3). Numerical results show that 

the required increase above Vnmo here can also be estimated from the same relation 

for the constant-velocity case given by equation (3.10).

The NMO-corrected gather corresponding to Figure 4.10a is shown in Fig

ure 4.10b. In that figure, only the horizontal reflections (shallowest) are correctly 

aligned. In addition, and as with the constant-velocity case, dipping reflections are 

now severely overcorrected. Obviously, NMO correction alone is not enough to pro

duce a good stack since reflections from dipping reflectors are present.

Just as in the constant-velocity case, let us emphasize, once more, the neg

ative consequence of erroneously TZO-processing the mode-converted data  by ig

noring mode conversion. Figure 4.11a shows a CRP gather corresponding to the 

NMO-corrected gather of Figure 4.10b, resulting from application of Hale’s f - k  TZO 

method. Again, TZO applied erroneously by ignoring mode conversion fails to correct 

the data. CRP gathers processed in this way, therefore, will produce a poor stack.

Figure 4.11b shows the same CRP gather, but processed now using the mode- 

converted TZO method. For this CRP gather, the overall stretch and squeeze factors, 

51 =  1.50 and 52 =  0.01, were calculated using equation (4.1). Alignments of 

reflections are much improved.

Stacks of the processed data from both the conventional and the mode-converted 

TZO methods are shown in Figure 4.12. While dipping events are almost completely 

wiped out in the stack of the conventional-TZO data, the mode-converted TZO me

thod was able to produce the same structure as that of the zero-offset model (Fig

ure 4.9). As discussed in the constant-velocity case, the weak amplitude at lower
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FlG. 4.11. CRP gathers corresponding to the NMO-corrected gather of Figure 4.10b. 
(a) is obtained by processing the mode-converted data  with a conventional TZO 
algorithm that ignores mode conversion. Only the horizontal reflection (shallowest) 
is properly aligned, (b) is the same gather obtained by applying the mode-converted 
TZO method.

midpoints in Figure 4.12b is due to the tendency of the mode-converted TZO opera

tor to move energy toward the right.

Finally, we study the sensitivity of the mode-converted TZO method to the 

choice of the overall stretch/squeeze factors when velocity varies with depth. Fig

ure 4.13 shows two CRP gathers, which are the same as the CRP gather depicted in 

Figure 4.8b, but processed now using different stretch/squeeze factors. Recall, for a 

velocity ratio 7 =  0.5, the additional squeeze factor 7A =  (0.5) (0.6) =  0.3, so that 

equation (4.1) gives the overall stretch and squeeze factors 51 =  1.5 and 52 =  0.01 

used in generating the CRP gather of Figure 4.8b. In Figure 4.13a, the additional 

squeeze factor used was just 7A =  0.6 (as if 7 =  1), the same factor suggested by 

Hale and Artley (1991) for ordinary p-waves when velocity varies with depth. The
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FlG. 4.12. Stacks of CRP gathers. The data in (a) were processed by ignoring 
mode conversion; those in (b) were processed using the mode-converted TZO method. 
Reflections from only the horizontal reflector (shallowest) stack properly when mode 
conversion is ignored (a). The mode-converted TZO method produces a stack that 
has the same structure as that of the zero-offset model depicted in Figure 4.9.

corresponding overall stretch and squeeze factors in this case are (equation [4.1]) 

51 =  3.0 and 52 =  0.025. In Figure 4.13b, the additional squeeze factor used was 

7A =  1.0, implying no additional squeezing at all. The corresponding overall stretch 

and squeeze factors in this case are 51 =  5.0 and 52 =  0.04.

Comparing Figures 4.13a and 4.13b with Figure 4.8b, we observe only minor 

differences. Namely, far-offset steep reflections are slightly undercorrected in the 

CRP gathers of Figure 4.13. Nevertheless, use of overall stretch and squeeze factors 

based on equation (4.1) yields better results, as Figure 4.8b shows.
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FlG. 4.13. CRP gathers corresponding to the CRP gather depicted in Figure 4.8b, 
but now processed using different stretch and squeeze factors. The overall stretch and 
squeeze factors in (a) are S I =  3.0 and S2 =  0.025; those in (b) are S I =  5.0 and 
S2 =  0.04.

4.4 Sensitivity to velocity ratio

Because of added modifications (empirical for the most part), the TZO operator 

now is hard to describe analytically. However, we can still use equation (3.11), which 

analytically describes the TZO operator in its first stage (no modifications), to get 

a general idea as to how the operator behaves with varying parameters. Specifically, 

we study equation (3.11) to get a rough idea as to the sensitivity of the TZO method 

to the choice of the velocity ratio 7 used in the processing.

By sensitivity to the choice of the velocity ratio, we mean how the zero-offset 

time to changes, after applying TZO, when we choose an erroneous 7 . As a sensitivity 

measure for TZO, we use the rate of change of t0 with respect to 7 , i.e. d to /d j.  

Taking the partial derivative of t0 in equation (3.11) with respect to 7 , and after
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simplification, we obtain

dtn 4h sin 0 2h(l — O') sin 5
(4.4)

where we recall that 0 is the dip angle, and tn is the NMO-corrected time. Error in 

to, i.e. Ato, can be estimated from the following expression

analysis is given later in this section, but for now we can draw a few trivial conclusions. 

First, for reflections from horizontal reflectors, the TZO method is insensitive

is 0, too, as equation (4.4) implies. That the TZO method is not sensitive to 7 for 

horizontal reflections is also true for depth-variable velocity, although the sensitivity 

measure is derived here based on constant-velocity TZO. Figure 4.14 shows two CRP 

examples for a velocity function that varies linearly with depth. In both examples, 

reflections are the same as those depicted in Figure 4.11b, but now using erroneous 

velocity ratios in the TZO processing. The velocity ratio in Figure 4.14a is 20% too 

high, and tha t in Figure 4.14b is 20% too low. As expected, in both examples the 

horizontal reflections (shallowest) are not altered by the erroneous choice of velocity

A second observation is that, due to the dependence on the term sin# in equa

tion (4.4), not only does the sensitivity depend on dip, but also on the sign of dip. 

Third, the sensitivity, and thus the error Ato, increases with increasing offset. This is

(4.5)

where A 7 is the error in the estimation of the velocity ratio 7 . The general behavior of 

the sensitivity measure d to /d j  in equation (4.4) is hardly obvious. Detailed sensitivity

to the choice of 7 . That is, because sin# is 0 for horizontal reflectors, then d to /d j

ratio.
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FlG. 4.14. CRP gather of Figure 4.11b, but now processed erroneously. The velocity 
ratio used in (a) is 20% too high (0.6), that in (b) is 20% too low (0.4), both relative 
to the correct value 7 =  0.5.

obvious in both Figures 4.14a and 4.14b, where error in to (poor horizontal alignment) 

increases with increasing offset for reflections from dipping reflectors.

Let us now further investigate the sensitivity measure given by equation (4.4), by 

incorporating two simplifying assumptions. Namely, we shall assume the presence of 

steep reflectors (sin# % 1), and that the maximum offset is equal to the depth of the 

reflector under consideration. The first assumption (sin# % 1) is extreme because the 

proposed TZO method is clearly most sensitive to 7 for steep reflectors. The latter 

assumption implies that half-offset can be expressed as h = tova/4. Substituting this 

into equation (4.4), setting sin# =  1, and simplifying, gives

dtp _  t0 
d'y (1 +  7)2 1 + to(l -  7 )

2 \ / ( l  +  7 )2*n +  7*0.
(4.6)
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We then use equations (3.8) and (2.16) to express t„ in terms of £§ as follows

2  2  4hto(l —  7 )sin<? 4fe2[(l -  7)2 -  47]sin26>
n 0 (1 +  7)». (1 +  7)2v2 ' ( '

Setting sin# =  1 and h =  tova/4  in equation (4.7), substituting the resulting into 

equation (4.6), and after simplification, we get

^  = (TtV  0  + ’ (48)

which implies that the sensitivity of TZO, for large dip and at large offset, depends 

on zero-offset time to as well as on the velocity ratio 7 .

To see how much error in 7 we can tolerate without severely degrading the data, 

let us allow a maximum error in to that is equal to half a cycle. That is

Ato <  ±

where /  is the dominant frequency. Then, from equations (4.5) and (4.8), the error 

that we can tolerate in this case is given by the following inequality

(4 9 )

For a velocity ratio of 0.5, and a frequency of 25 Hz, as in the synthetic data considered 

previously, and assuming t0 =  2 s, the above inequality allows for a maximum error 

in 7 of about 4%. Such a small tolerable error indicates that the TZO method here 

is highly sensitive to the choice of the velocity ratio if steep reflectors are present. 

Figure 4.15 shows erroneous versions of the CRP gather depicted in Figure 4.6b for 

the constant-velocity case. The erroneous velocity ratios used here are 5% too high
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FlG. 4.15. CRP gather of Figure 4.6b, but now processed erroneously. The velocity 
ratio used in (a) is 5% too high (0.525), that in (b) is 5% too low (0.475), both relative 
to the correct ratio 7 =  0.5.

in Figure 4.15a, and 5% too low in Figure 4.15b, relative to the correct ratio 7 =  0.5. 

Horizontal reflections in both examples (shallowest) are not altered, reflections from 

small to moderate dips are slightly misaligned, and those associated with large dips 

(deepest) are most misaligned, but not too severely.

As suggested by equation (4.5), when the error in the velocity ratio 7 further 

increases, we should expect to see more error in to from reflections associated with 

dipping reflectors. Figure 4.16 shows the data in Figure 4.15 but now processed using 

erroneous velocity ratios that are 10% different from the correct value. Again, hori

zontal reflections here are not altered by choosing erroneous velocity ratios. However, 

reflections from steep reflectors are now severely erroneous and, consequently, will not 

produce a good stack (see reflections from the two deepest reflectors in Figures 4.16a 

and 4.16b).



T-4344 66

Offset (m) Offset (m)
500 1000 1500 20001500 2000*~41000500

0.50.5

1.0

<o
® 1.51.5

F
2.02.0

2.5-2.5

3.03.0 ba
FlG. 4.16. CRP gather of Figure 4.6b, but now processed erroneously. The velocity 
ratio used in (a) is 10% too high (0.55), that in (b) is 10% too low (0.45), both relative 
to the correct ratio 7 =  0.5.

Based on the analysis and numerical examples given in this section, we conclude 

that the proposed TZO method can tolerate error up to about 10% in 7 for small 

dips (up to about 30 degrees). The method is highly sensitive to 7 when large dips 

are present.

4.4.1 Error in P oisson’s ratio

As an aside, let us investigate the error in Poisson’s ratio (an elastic modulus) 

arising from assuming an erroneous velocity ratio. Assuming p-sv mode-conversion, 

Poisson’s ratio, <jp, is expressed in terms of the velocity ratio 7  as

9-y2 — 1
ap =  2(7 2 - 1)- (4-10)
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Differentiating equation (4.10) with respect to 7 , and simplifying, we get

dop _  7
d'y (72 — I)2’

d?<7P _  372 +  1
d'y2 (72 — I)3

(4.11)

Assuming a second-order Taylor-series expansion, error in o>, i.e. Ao>, is found from 

the expression

( 4 J 2 )

where A7 denotes error in the velocity ratio 7 . Then, from equations (4.10), (4.11), 

and (4.12), we get

_  A a P 27A 7 (A7)2(372 + 1 )
P ~  <yp _ (72- l ) (2 7 2- l )  (72- l ) 2(272- l ) ’ K ’

which gives the normalized error in Poisson’s ratio as a function of A7 , the error in 

the velocity ratio. For velocity ratios 7 =  0.4, 0.5, and 0.6, and assuming 10% error 

in 7 , tha t is,

£ 7 =  ^  =  0.1, (4.14)

the corresponding errors in Poisson’s ratio, calculated from equation (4.13), are 5%, 

12%, and 34%, respectively. For 20% error in 7 , the above errors in Poisson’s ratio 

become 9%, 20%, and 54%. Thus the error in Poisson’s ratio increases with increasing 

velocity ratio.

To study the implication of the above error, let us further analyze the error in 

Poisson’s ratio relative to that in the velocity ratio. For simplicity here, we ignore the 

second term on the right-hand side of equation (4.11), implying a first-order Taylor 

expansion as opposed to the original second-order. Then from equations (4.14) and
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the truncated version of (4.13), we have

_ Eap 2 r
R -  EL, (72 - l ) ( 2 7 2 - l ) '  (4'15)

To find the value of velocity ratio at which the two errors Eap and E 1 are equal, we 

set jR =  1 in equation (4.15) and solve for 7 . This gives a value of 7 =  0.47. For 

velocity ratios less than this threshold value, errors in Poisson’s ratio are less than 

those in the velocity ratios; for greater velocity ratio, error in Poisson’s ratio is quite 

magnified. For example, 7 =  0.3 yields R  =  0.24, indicating that Eap is much less 

than 2£7; however, 7  =  0.7 corresponds to R  = 96, implying a remarkably large error 

in Poisson’s ratio.

A practical way of looking at the implication of the error is to study the lower and 

upper limits that one is likely to encounter in exploration geophysics, for both 7 and 

<7p. For example, the maximum value of found in sedimentary rocks is 0.32—for 

limestone (Clark, 1966). This corresponds to 7 =  0.51. At the other extreme, shale 

can attain  the smallest possible values of ap (0.04-0.12, Clark, [1966]), corresponding 

to a range of velocity ratios of 0.69-0.66. Although we observe that a typical velocity 

ratio is most likely to lie in the range 0.5-0.7, ratios as low as 0.2 have been reported in 

geophysical literatures (e.g., Corbin, at al., 1988). Moreover, Dobrin and Savit (1988) 

noted that the velocity ratio, for many rocks encountered in exploration geophysics, 

is typically 7 =  0.5; error in Poisson’s ratio for such rocks, as we have found above, 

will be comparable to tha t in the velocity ratio.
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Chapter 5 

A PPLIC A T IO N  TO FIELD DATA

5.1 Introduction

In this chapter, we discuss results of processing two field data  sets consisting of 

mode-converted (p-sv) reflections. The data, acquired in the southern San Joaquin 

Valley of California, are courtesy of Chevron Oil Field Research Company. The two 

data sets were recorded over the same area, but each shot in a different direction. 

That is, the two data sets differ in that the receiver locations were on opposite sides 

of the source position in the two surveys. I shall refer to the data set whose receivers 

are located on the right of the source as Line 1, and to the other set (receivers on the 

left of source) as Line 2.

For comparison, I process the data in different ways: (1) processing with no 

regard to TZO; that is, the data are stacked using conventional stacking velocity; 

(2) processing with conventional TZO that does not honor mode conversion; and (3) 

processing with mode-converted TZO.

To apply mode-converted TZO, I start by estimating a velocity ratio that would 

be suitable for processing the entire data. I achieve this by conducting both quali

tative and quantitative analyses on the data. In the qualitative approach, I simply 

compare TZO-processed gathers, obtained from applying different velocity ratios, 

with one another as well as with unprocessed gathers. I then choose that ratio which, 

in my view, yields the best reflection continuity, as the velocity ratio to use in TZO
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processing. I complement this qualitative analysis by also studying constant-velocity 

stacks (CVSs), obtained both conventionally and after TZO (assuming different ve

locity ratios) has been applied.

The quantitative approach for estimating 7 , on the other hand, is based on a 

formula that, as we shall see, makes use of lateral shifts of stacked reflections in 

Line 1 relative to those in Line 2. Based on both the qualitative and quantitative 

approaches, I find that any velocity ratio 7 in the range 0.4-0.5 (corresponding to 

Poisson’s ratios =  0.4-0.3) is a reasonable estimate for the data  here. I choose to 

use 7 =  0.4 in applying mode-converted TZO to the two lines.

Finally, I compare the stacking velocities obtained without and with mode- 

converted TZO.

5.2 Field geom etry and preprocessing

Each data set consists of 188 shot gathers, each gather has 60 receivers, covering 

a total surface distance of about 26000 ft. W ithin each shot gather, the nearest 

receiver is located 1080-ft from the source, and the receiver spacing is 120 ft, thus 

yielding a maximum source-receiver offset of 8160 ft. The recorded time is 6 s.

The source is a vertical-motion vibrator; the horizontal-component geophones 

are oriented so as to detect radial (horizontal, in-line) particle motion. Thus, we 

assume that the recorded reflections are dominated by mode-converted (p-sv) waves.

Preprocessing consists of applying residual-statics correction (provided by 

Chevron), muting of early times, gain, and filtering. Two forms of gain were applied 

to the data, trace balancing and automatic gain control (AGC). In the trace bal

ancing, amplitudes of each trace were divided by the trace root-mean-square (RMS) 

amplitude, thus compensating for erratic trace-to-trace amplitudes typical in land
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surveys. The AGC time window was 0.5 s. The filter is trapezoidal bandpass, with 

corner frequencies of 5, 10, 30, and 50 Hz.

The preprocessed data were sorted into common-midpoint (CMP) gathers. A 

total of 444 CMP gathers are formed for each data set. W ith a nominal fold of 

30 traces, the trace spacing within each CMP gather is now 240 ft, and the spacing 

between adjacent CMP gathers is 60 ft. These CMP gathers are used as inputs to 

the subsequent processing.

5.3 Conventional processing

In this section, I discuss data processed with no regard to TZO. I first perform 

velocity analysis on the preprocessed CMP gathers, and then use the velocity func

tions so-obtained to NMO-correct the data. The stacks of the NMO-corrected gathers 

for both Line 1 and 2 are shown in Figures 5.1 and 5.2, respectively.

As we recall in the acquisition of the data, the receivers are situated to the right 

of the source for Line 1, and to the left of the source for Line 2. W ith this, and since 

we are dealing with p-sv mode conversion, we expect to see events in Line 2 shift to 

the right relative to those in Line 1. A close examination of the two stacks reveals 

tha t the events are indeed shifted in accordance with the above assertion. Take, for 

example, the portion of the anticline at 4 s in Line 1, just to the left of the broad 

horizontal region (about midpoint 245). Now, the same feature in Line 2 intersects 4 s 

at about midpoint 215, resulting in a total relative shift to the right of 245 — 215 =  30 

midpoints. Allowing ±5 midpoints for error tolerance, and recalling that the midpoint 

spacing is 60 ft, the total relative shift is thus (30 ±  5) • 60 =  1800 ±  300 ft, a quantity 

I will later use to estimate the velocity ratio.

In Line 1 (Figure 5.1), note that the signal-to-noise ratio is poor on the right
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Fig . 5.1. Conventional stack of Line 1 with no TZO. In the acquisition of the data 
here, the receivers are situated to the right of the source.
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F ig . 5.2. Conventional stack of Line 2 with no TZO. In the acquisition of the data 
here, the receivers are situated to the left of the source.
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portion of the section, particularly after 2 s; Line 2 (Figure 5.2) has a better data 

quality in the same region, though still poor. In other regions, the data quality of 

Line 1 is, in general, better than that of Line 2. Compare, for example, the sloping 

reflections on the left of both sections, between 1 and 3 s. Also, it is obvious from the 

two stacks tha t there are no conflicting dips present in the subsurface (e.g., fault-plane 

reflections). Conflicting dips would have further aided in the assessment of results 

after applying mode-converted TZO to the two data sets. Below, I compare these 

sections to their counterparts when mode-converted TZO is performed.

The maximum reflection slope in the data is about 0.2 m s/ft, seen in Figure 5.1 

at about 2 s and midpoint 350. I use this slope, assuming parallel bedding, to estimate 

the maximum dip present in the subsurface. To determine this, I use equation (3.13), 

which requires knowing the average velocity va. Since va and the stacking velocity vs 

are typically in the same ball park when dip influence is removed from us, I take va =  

vs after removing the dip influence from vs, i.e., vs obtained after applying TZO. As 

we shall see when I analyze velocity, vs =  4000 ft/s  is a reasonable estimate of stacking 

velocity near the surface. Taking va =  4000 ft/s  at the surface, and substituting this 

along with the slope (0.2 m s/ft) into equation (3.13), yields a maximum dip angle of 

about 25 degrees. This is a modest dip value when attem pting to assess the value 

of TZO; therefore we should not expect TZO to have a dramatic influence on the 

imaging of the data in these lines.

5.4 E stim ation o f velocity ratio

Before applying mode-converted TZO, we first need to estimate a reasonable 

velocity ratio. In this section, I estimate the velocity ratio in two ways: (1) performing 

a qualitative analysis of both prestack and poststack data, assuming different velocity
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ratios; and (2) calculating the velocity ratio based on quantities measured from the 

two data sets. As we shall see, both approaches suggest that 7 in the range 0.4-0.5 

is a good estimate for the velocity ratio.

5.4.1 Q ualitative analysis

Here, I apply TZO assuming different velocity ratios, and then compare their 

results with one another. The tests include eight choices of velocity ratio, from 0.3 

to 1.0, in increments of 0.1. Applying TZO assuming both depth-variable velocity 

and constant velocity, I have found the results to be comparable, as might be ex

pected given that dips do not exceed about 25 degrees. For constant-velocity TZO, 

the velocity used was 4500 ft/s; this velocity controls two features of the TZO op

erator, its aperture (lateral extent) and its lateral shift. In addition, since TZO is 

not too sensitive to the choice of NMO velocity (Hale, 1984), the velocity used for 

NMO prior to the constant-velocity TZO was also 4500 ft/s. For TZO with depth- 

variable velocity, the velocities used for both NMO and TZO were those obtained 

from conventional velocity analysis of prestack data. Below, I show results from only 

constant-velocity TZO. For each test, the data were first NMO-corrected, then sorted 

into common-offset gathers prior to TZO.

Let us compare TZO-corrected data resulting from use of different velocity ratios. 

We first look at unstacked gathers from Line 1, at midpoints 100, 150, and 275. 

To compare CRP (TZO-corrected) gathers with CMP gathers, I have removed the 

NMO correction from the CRP gathers. The gathers shown in Figure 5.3 pertain to 

midpoint 100 of Line 1. Figure 5.3a shows the CMP gather with only preprocessing 

applied. Figure 5.3b is a CRP gather after applying conventional TZO (7 =  1). 

Figures 5.3c, 5.3d, and 5.3e show CRP gathers after applying mode-converted TZO
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a b o d e

F ig . 5.3. Unstacked gathers corresponding to midpoint 100 of Line 1. The CMP 
gather with only preprocessing applied is shown in (a). CRP gathers, after undoing 
the NMO correction, are shown in (b), (c), (d), and (e), with velocity ratios 1.0, 0.6, 
0.5, and 0.4, respectively.

assuming velocity ratios of 0.6, 0.5, and 0.4, respectively. In the unstacked gathers of 

the two mode-converted data sets, the signal-to-noise ratio is poor compared to that 

of conventional p-wave data from the same area (not shown).

In terms of reflection continuity, I judge CRP gather 5.3e, with 7 =  0.4, to be 

the best among the CRP gathers shown, including 5.3b which assumes conventional 

TZO. Compare, for example, the shallow event at 1.2 s, and the events just below 2 s 

in all gathers. Midpoint 100 is, of course, in the poor-signal portion of the section. 

The unstacked gathers for midpoints 150 and 275, over better-signal parts of the 

line, are shown in Figures 5.4 and 5.5, respectively. Again in terms of reflection 

continuity, the CRP gathers with 7 =  0.4 or 0.5 appear to be best among other
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F ig . 5.4. Unstacked gathers corresponding to midpoint 150 of Line 1. The CMP 
gather with only preprocessing applied is shown in (a). CRP gathers, after undoing 
the NMO correction, are shown in (b), (c), (d), and (e), with velocity ratios 1.0, 0.6, 
0.5, and 0.4, respectively.

gathers, although the reflections quality is far from ideal in any of the panels. Any 

of the choices, 7 =  0.4-0.6, gives better reflection continuity than that in either the 

original data or the TZO-corrected data with 7  =  1. However, as we recall from the 

study of the conversion point (Figure 3.3), the choice of velocity ratio also controls 

the time-varying lateral shift of reflections imposed by the TZO operator. Since the 

magnitude of shift depends on the choice of velocity ratio, only those choices of ratio 

tha t are close to the actual one in the subsurface will eventually place reflections in 

their correct positions. Hence, we can expect that reflector continuity might improve 

with those choices of velocity ratio that are close to the actual one. The conclusion 

here, tha t 7  =0.4-0.5 for the data, was also supported by results from analyzing
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FlG. 5.5. Unstacked gathers corresponding to midpoint 275 of Line 1. The CMP 
gather with only preprocessing applied is shown in (a). CRP gathers, after undoing 
the NMO correction, are shown in (b), (c), (d), and (e), with velocity ratios 1.0, 0.6,
0.5, and 0.4, respectively.

constant-velocity stacks (results not shown).

Pleasing as it is to see the best continuity in the gathers produced by mode- 

converted TZO, one could ask whether that result is to be expected. From the 

synthetic data in Section 4.2, we saw that mode-converted TZO altered moveouts, 

but it did not actually change reflection continuity.

5.4.2 Q uantitative analysis

To further support the qualitative assertion made above, that a velocity ratio 

7 =  0.4-0.5 is a reasonable choice, here I estimate the ratio based on measurements 

from the data.
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Recall in Chapter 2, equation (2.11) gives an expression for zero-offset time. We 

start by splitting this relation into two parts, namely

a 2
ah  +  (5b

and

=  a, (5.1)

2h
©

(5.2)
h? -  b2

Recall that or, a, and (5 are quantities that depend on only the velocity ratio. The 

reason for the above splitting, as equation (5.2) implies, is to express a in terms of 

quantities that can be measured from seismic data (including the lateral shift b). 

W ith quantities b and a known, we can then solve for 7 from equation (5.1). Solving 

for 7 from that equation, and simplifying, we get

7  = ------- -  (5.3)
1 — yj2ah — a2(h2 — b2)

For simplicity here, we shall take va as the stacking velocity and t can be 

simply found from the expression

t2 =  t§ +  ^ .
us

Also for simplicity, we shall assume near-horizontal reflectors, implying 6 =  0 for 

conventional p-waves. One check on the validity of relation (5.3) is to check it for the 

case of ordinary p-waves (6 =  0). In such a case, a in equation (5.2) reduces to just 

2/h. Substituting a = 2 /h  in equation (5.3) yields 7 =  1, as expected for ordinary 

p-waves reflected from horizontal reflectors.

The quantity 6 can be estimated from two stacked sections shot in two different
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directions, e.g., Lines 1 and 2 discussed earlier. We recall that the relative shift 

between the two sections at 4 s was 1800 ±  300 ft, corresponding to b = 900 ±  

150 ft (half the relative shift between the two sections). Since we are dealing with 

stacked data, the question now is: what value of half-offset h shall we use in the 

above relations? I choose to pick half the maximum h present in the data; i.e., 

h =  2040 ft—an average value that, I believe, is fairly representative of all half- 

offsets. As for velocity at 4 s between midpoints 248 and 215 (the vicinity of the shift 

under investigation), I choose a value of 4500 ft/s , a reasonable value as we shall see 

when I analyze velocities.

W ith the above assumptions, relation (5.2) yields the range a =  0.00113- 

0.00132 ft-1 . Equation (5.3) then gives the corresponding range of velocity ratio 

7 =  0.41-0.52. A similar calculation at 2 s (peak of anticline at midpoint 180 in 

Line 1 shifts to midpoint 140 in Line 2) gives a =  0.00126-0.00159 ft-1 , and 7 =  0.40- 

0.53. Both ranges of velocity ratio are consistent with that (7 =  0.4-0.5) from the 

qualitative analysis.

From the above analysis, and since TZO is not too sensitive to the choice of 

velocity ratio, I choose 7 =  0.4 in the TZO processing of the two data sets.

5.5 A pplication o f TZO

I now apply TZO to both data sets assuming 7 =  0.4. For comparison, I also 

show the same data processed with conventional TZO. The processing sequence for 

the stacked sections to come is as follows

1. NMO-correct preprocessed CMP gathers;

2. sort into common-offset gathers;
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3. apply TZO;

4. sort into CMP gathers;

5. remove NMO correction (applied in Step 1) from data in Step 4;

6. perform velocity analysis;

7. use velocity function from Step 6 to NMO-correct and stack the data in Step 5.

Next, I show results of velocity analysis (Step 6), and compare them to their coun

terparts when TZO is not performed.

Figures 5.6 and 5.7 show stacks of TZO-corrected data for Lines 1 and 2, respec

tively, assuming 7 =  0.4. Ideally, the two sections should display the same subsurface 

image, with no lateral shift of reflections. Let us compare these two sections to one 

another, and then compare each one to its counterpart when conventional processing 

(no TZO) is performed.

At first glance, it seems as though there is a prominent lateral shift of reflections 

between the two stacks on the left of the sections (midpoint 400) between 2 and 3 s 

(Figures 5.6 and 5.7). However, a closer look shows that this is not the case; instead 

the major difference here is that amplitudes of events on the left end of Line 1 are 

weaker than those in Line 2. This can be attributed to the fact that the two lines 

were shot in opposite directions, resulting in each line having a different (shifted) 

subsurface coverage at the left and right ends of the section. This also explains the 

weakened amplitudes seen on the right end of Line 2.

I have asked several colleagues to compare the two stacks on a workstation. 

Not knowing my personal bias, and not knowing how the data were processed, most 

of them confirmed that the major difference between the two sections was in their 

amplitudes, and not in their shifts. Elsewhere in the two sections, locations of events
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. 5.6. Stack of TZO-corrected data of Line 1, assuming 7 =  0.4.
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F i g .  5 .7. Stack of TZO-corrected data of Line 2 ,  assuming 7  =  0 .4 .
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generally match each other, although differences between the two sections are present 

(due to data quality and independently chosen stacking velocities). Take, for example, 

the anticline that intersects 4 s; in both sections, the intersection takes place at about 

midpoint 230. Another example is the anticline intersecting 2 s a t  midpoint 235 in 

both stacks.

We now compare the TZO-corrected stacks with conventional stacks for both 

lines. For Line 1, we note an improvement (flattening) of the dipping shallow reflector 

(Figure 5.6, midpoint 100, 1.2 s), as compared with its counterpart when conventional 

stack was used (Figure 5.1). Also, among other differences between the two stacks 

of Line 1, notice how the reflector at midpoint 175 and 3 s is  smoother in the TZO- 

corrected section. In addition, dipping reflections below 5 s at midpoint 350 are 

present only in the TZO-corrected section. Note, also, tha t the reflections here have 

been shifted to the right; this is most prominent up shallow (compare, for example, 

the dipping reflections around 2 s between midpoints 350 and 400).

As expected for Line 2, the relative shift of events between the conventional stack 

(Figure 5.2) and the TZO-corrected stack (Figure 5.7) is opposite to tha t seen in the 

stacks of Line 1. That is, events in the TZO-corrected section are now shifted to the 

left, relative to those in the conventional stack. This opinion is shared, again, by 

colleagues with no knowledge as to how the data were processed. As for data  quality, 

reflector continuity has improved on the left of the TZO-corrected section (between 

midpoints 350-400,1.5-3 s). Meanwhile, data in the shallow part of the conventional 

stack have better quality than those in the TZO-corrected section.

For comparison, I show the same lines but now processed with conventional TZO 

(7 =  1). Figure 5.8 shows the stack of Line 1, and Figure 5.9 shows that of Line 2. 

The stack with conventional TZO for Line 1 (Figure 5.8) shows poorer reflectors
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continuity than when 7 =  0.4 (Figure 5.6). For instance, compare the continuity 

of the reflector at midpoint 350 and 4.6 s in Figures 5.6 and 5.8. As for Line 2, 

the continuity of reflectors on the right of the section seems better in the stack with 

conventional TZO (Figure 5.9) than that with mode-converted TZO (Figure 5.7). 

However, data  quality on the left of Line 2 is far superior with mode-converted TZO.

Unfortunately, but unsurprisingly, the data comparisons here are much less dra

matic demonstrations of the effectiveness of mode-converted TZO than were the syn

thetic data examples. Given the sensitivity of any stack section to the choice of 

velocities for NMO correction, a look at the velocities used and the influence of ve

locity on these stacks may further help in assessment of the results.

5.6 V elocity analysis

We now look at stacking velocities for both lines, obtained before and after TZO 

has been applied. For data after TZO correction, I show stacking velocities for both 

mode-converted TZO and conventional TZO.

For Line 1, contours of stacking velocities, vs, are shown in Figure 5.10. Note that 

the velocity values shown (4000-6000 ft/s) are obviously lower than those expected 

for ordinary p-waves; this is so because we are dealing with mode-converted waves 

with a relatively low velocity ratio (7 =  0.4). See Section 3.3 for more details.

The conventional stacking velocities (no TZO) are shown in Figure 5.10a. Note 

the general decrease in velocity from left to right. This velocity trend is consistent with 

observations tha t I discuss in Chapter 6—that not only does the stacking velocity for 

mode-converted waves depend on dip, but also on the sign of dip. More specifically, 

and as we shall see in Chapter 6, the stacking velocity increases when the shooting 

is updip from source to receivers; the increase is relative to when the reflector is
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F ig .  5.10. Contours of stacking velocities for Line 1. (a) processing with no TZO;
(b) mode-converted TZO; (c) conventional TZO.
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horizontal. On the other hand, when the shooting is downdip, the stacking velocity 

decreases. (The stacking velocity for ordinary p-waves always increases with dip, 

regardless of the sign of dip.)

Recall tha t the shooting in Line 1 was from left to right. Given the anticlinal 

features present in the subsurface for this case, the shooting from left (midpoint 400) 

to right (midpoint 200) is then seen in the updip direction from source to receivers. 

Hence, the stacking velocity in this region (Figure 5.10a) is, as expected, relatively 

higher than that on the right portion of the section (midpoints 50-200) where shooting 

is now downdip.

The velocity contours for Line 1 after applying mode-converted TZO are shown 

in Figure 5.10b. Note that the velocities are consistent across the section, and are gen

erally structure-independent. This indicates that mode-converted TZO has removed 

the influence of dip on stacking velocity, as one would hope.

For comparison, I show velocity contours for the same data  but now processed 

with conventional TZO (Figure 5.10c). The general trend here is similar to that 

with no TZO (Figure 5.10a), implying that conventional TZO did not remove the 

dip influence from stacking velocity; this is not surprising. Since we are dealing with 

mode conversion, we should not expect conventional TZO (ignoring mode conversion) 

to correct mode-converted data as effectively as does mode-converted TZO.

As for Line 2, results of velocity contours are shown in Figure 5.11. The shooting 

geometry here is the reverse of that for Line 1. Hence, what was updip shooting 

for Line 1 is now downdip shooting here, and visa versa. As a result, the velocity 

trend in the conventional stack (Figure 5.11a) is now the reverse of tha t from Line 1 

(Figure 5.10a). The velocities after mode-converted TZO has been applied are shown 

in Figure 5.11b. Clearly by comparing Figures 5.11a and 5.11b, mode-converted
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F ig . 5.13. Stack of conventional CMP gathers (Line 2), but using NMO velocity 
obtained after mode-converted TZO has been applied.

The central point in the “improper” stacks in Figures 5.12 and 5.13 is that the 

stack quality deteriorated when the rather stable, dip-independent NMO-correction 

velocities, as opposed to the dip-corrected velocities, were applied to the data. The 

conventional stacks were aided by the option to pick dip-dependent stacking velocity. 

That option would not have been available if the unmigrated data had contained cross

ing reflections having widely differing dips. We should not be surprised, therefore, 

that for these data, the mode-converted TZO, stacked data in Figures 5.6 and 5.7 were 

not dramatically superior to the conventionally stacked data in Figures 5.1 and 5.2.

I conclude from the analysis of the San Joaquin Valley data that, despite its poor 

signal quality and consequent difficulties in picking stacking velocities, and despite the 

fact that the data do not contain steep reflectors or conflicting slopes, the diagnostic 

results support the conclusion that mode-converted TZO yielded the best-processed
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results, (results tha t are most consistent on the two reversed lines), and did so with 

stacking velocities that were essentially independent of dip.
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Chapter 6

MODE-CONVERTED TZO IN THE fc-t, DOMAIN

6.1 Introduction

In this chapter, we consider an alternative method for doing mode-converted 

TZO. The principles underlying the Gardner DMO approach (Forel and Gardner, 

1988), which was originally developed for ordinary p-waves, are readily extended to 

mode-converted waves. The process achieves TZO in two steps. First, DMO cor

rection is applied by simply transforming the prestack data  into a new nonphysical 

offset-time domain. That is, the physical half-offset and recorded time, h and t, are 

transformed into new quantities, k  and ti, having units of offset and time, respec

tively. Velocity analysis in the nonphysical domain yields a dip-independent average 

velocity as the velocity that best stacks the data. TZO is then achieved by applying 

NMO correction, using the average velocity, and finally stacking the gathers in the 

nonphysical domain.

Implementation of this TZO method, however, is deemed unfavorable due to 

three problems. In increasing order of severity, the problems are: amplitude and phase 

distortion, an amplitude-versus-offset (AVO) problem, and a large-offset problem. 

The problem of amplitude and phase distortion seems unsolvable for mode-converted 

waves when using this TZO method. In addition, neither the AVO nor the large-offset 

problems can be overcome, even when dealing only with ordinary p-waves.

Despite these problems, useful information can still be obtained from this TZO
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method. Brute zero-offset sections, with coarse treatment of amplitudes, can be 

generated. Also average velocities, for converted-wave reflections, can be obtained 

from conventional velocity analysis performed on gathers in the nonphysical domain. 

The average velocity, so-determined, is useful in exploration applications such as 

migration and conversion from time to depth.

In the following, we derive TZO for mode-converted waves in the nonphysical 

domain, showing that it is a special case of Gardner DMO, which was developed for 

ordinary p-waves. We then present a detailed analysis of the problems associated 

with this TZO method.

6.2 T he fc-ti TZO m ethod

TZO for mode-converted waves is achieved here in two steps. First, the seismic 

data  are corrected for DMO; second, NMO correction is applied to the data. The 

first TZO step, i.e., DMO correction, is independent of velocity. This indeed was 

the primary rationale for Gardner’s development of the method. DMO correction is 

automatically applied to the data by transforming the recorded seismic data from the 

physical (offset-time) domain into a nonphysical domain, Gardner’s k - ti  domain.

To transform the data to the k -t\  domain, consider a seismic trace whose half- 

offset between source and receiver is h and whose recorded time is t. Ignoring the 

fact that there is no mode conversion at zero-offset, as before, b denotes the position, 

relative to the midpoint, of an equivalent zero-offset trace, as shown in Figure 6.1. 

An expression for the square of the zero-offset time, £§, was given in equation (2.11), 

which we rewrite here as

<T2(ft2 — 62) 2 2 4(/i2 - f r 2)
2h(ah + pb) 0 v2a ’ ( J
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Fig . 6.1. Depth section depicting mode-converted reflection. Here, 2h is the offset 
distance between source s and receiver g. The midpoint is located at the surface 
point z  =  0. The downgoing and the upgoing velocities are, respectively, v and jv .  
The equivalent zero-offset trace, for this geometry, is located a distance b from the 
midpoint.

where we recall from Section 2.2 that a , /?, and a are constants depending only on

the velocity ratio. Equation (6.1) can be written as

t2 = i 2 + g )  , (6.2)

where the new “offset” k is defined by

k2 = h2 — b2, (6.3)
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and the new time is
frlc

ti =  -ÿ-    1. (6.4)
^2 h (a h  +  (3b)

The quantity k is the same offset-dependent parameter obtained by Forel and Gardner 

for ordinary waves. The newly defined time t\ is a scaled version of the recorded time 

t. For 7 =  1 (e.g., ordinary p-waves), the scaling factor reduces to k /h , the same factor 

derived by Forel and Gardner. Note, also, that the mapping given by equation (6.4) is 

a function of the velocity ratio, 7 , but not of the individual p- and s-waves velocities 

themselves. We use equations (6.3) and (6.4) to transform the physical quantities, h 

and t, into their nonphysical counterparts, k  and £1, respectively.

The transformation automatically DMO-corrects the data. That is, in terms of 

the transformed offset k and the transformed time £1, equation (6.2) is seen to be just 

a simple hyperbolic time-offset relationship (i.e., standard NMO equation) for mode- 

converted waves. It maps nonzero-offset data at transformed time £% to zero-offset 

time £q. Moreover, just as for ordinary waves, by equation (2.9) the moveout velocity 

va in equation (6 .2) is independent of dip, one of the primary goals in transforming 

data to zero offset. Furthermore, as shown in Figure 6.1, after TZO the zero-offset 

data and the recorded nonzero-offset data pertain to a common reflection point. That 

is, TZO has removed the problem of reflection-point dispersal (Deregowski, 1986) for 

mode-converted data, just as it does for ordinary-wave data. In addition, recall that 

for ordinary p-wave data, reflection-point dispersal is not an issue when the reflector is 

horizontal. For mode-converted data, however, it is. TZO, as described here, removes 

reflection-point dispersal for mode-converted data when the reflector is horizontal, as 

well as when it has dip.

Having applied DMO correction by simply transforming the data to the k - t\  

domain, TZO can now be completed by applying NMO correction to the data. As
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equation (6.2) implies, conventional velocity analysis in the k - ti  domain yields the 

dip-independent average velocity, va, as the velocity that best stacks the data. Con

sequently, the data can be stacked, after NMO correction, to yield reflections at their 

true zero-offset times.

6.3 Problem s w ith  the k —t 1 TZO m ethod

6.3.1 A m plitude and phase distortion

Although the theory holds from the kinematics point of view, implementation 

of this k - ti  TZO method does not treat amplitude and phase properly. Figure 6.2b 

shows an output k - ti  gather. The input data consist of 101 synthetic common-

offset 2h (m)
0 200 400 600 800 1000

0.S

1.0

1.S

2 .0-

Offset 2k (m)
800200 400 600 1000

0.5-

-  1.0

I

1.5-

2 .0-

FlG. 6.2. (a) representative synthetic CMP gather over a horizontal reflector at 400- 
m depth, (b) output k - ti  gather, with severely distorted amplitude and phase. The 
input data are ordinary p-wave (7 =  1) synthetic CMP gathers, and the medium 
velocity is 1000 m /s.
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midpoint (CMP) gathers over a single horizontal reflector. Only ordinary p-waves 

are considered in this example, i.e., 7 =  1. The input wavelet is a sine function, with 

unit amplitude and a dominant frequency of 12.5 Hz (a low frequency is assumed 

here to emphasize the shape of the output wavelet). Each input CMP gather consists 

of 51 traces (including the zero-offset trace), with an increment in source-receiver 

separation distance of 20 m. The distance separating two consecutive CMP gathers 

is 10 m. For this horizontal-reflector model, all input CMP gathers are identical; one 

such gather is shown in Figure 6 .2a. The location of the output k - t\  gather is at 

CMP location 51, midway along the line. All 101 CMP gathers contribute equally, 

without any special weighting, to the output k - ti  gather shown in Figure 6.2b.

For such a trivial model as this, the data in the k - ti  domain ideally would be 

unchanged from any one of the input CMP gathers. The k - t\  result depicted in 

Figure 6.2b clearly shows an increase in amplitude with offset (with the exception of 

the last few traces). The maximum amplitude (offset «  900 m) is about 40 times larger 

than the input unit amplitude (the zero-offset trace). The variation in amplitude is 

related to changing Fresnel-zone width as a function of k and t\. The Fresnel-zone 

width for this model (Appendix E) is shown in Figure 6.3 for different values of k. 

For the range of k values shown in Figure 6.3a, the Fresnel-zone width, and therefore 

the amplitude, increases as k increases across the time window of interest (0.8—1.25 

s). Figure 6.3b shows the Fresnel zone for another range of fc’s, this time the large fc’s. 

Consistent with the observation that amplitude starts to decrease with increasing k 

in this offset range (starting at offset 2k «  900 m in Figure 6.2b), the Fresnel-zone 

width also decreases with increasing k.

Compared with the zero-phase input wavelet in Figure 6.2a, the wavelet in the

output k-ti  gather has undergone a significant amplitude and phase distortion that
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Fig . 6.3. Fresnel-zone width for the k - ti  gather depicted in Figure 6.2b. The Fresnel 
zone increases with increasing k in the time window 0.8 -  1.25 s for the range of k 
shown in (a). In (b), the Fresnel-zone width decreases as k (large) increases for the 
same time window. Corners seen on the curves are explained in Appendix E.

varies with time and offset. The distortion is worst at offset 2k % 600 m, where 

the wavelet contains a low-frequency precursor. To see how this distortion takes 

place, first note again that each output trace gets contributions from many midpoints 

and many offsets. In fact, any offset-midpoint combination satisfying equation (6.3) 

will contribute to this single, constant-offset (2k) output trace in the k - ti  domain. 

Furthermore, the number of physical traces, contributing to a single k - ti  trace, varies 

as a function of k and ti. The final k - ti  trace is a result of stacking the contributions 

from all possible traces in the h -t domain. In other words, each output trace is a 

mixture of traces from different offsets and midpoints.
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Figure 6.4 shows the contributions from all possible midpoints, before stack, to 

the k - t\  trace whose offset, in Figure 6.2b, is 600 m. In this figure, it is clear that

Midpoint location (m)
- 4 0 0  - 2 0 0  0  2 0 0  4 0 0

- 1.0

Fig . 6.4. Contributions from many midpoints to a single output trace in the k -t\  
domain. In this example, the stack of this gather forms the trace whose offset is 600 m 
in Figure 6.2b. The locations of contributing midpoints are relative to the location 
of the output k - t\  gather.

the stacked trace will eventually have an amplitude that depends on the width of the 

Fresnel zone for the event. Besides, stacking the curved event (smile) in tha t figure 

introduces a rho-filtering of the input wavelet (Newman, 1990), and gives rise to the 

precursor seen in the final stacked trace. Due to the complexity arising with the 

kinematics of mode conversion, an analytic description of those smiles is not available 

when 7 ^  1 (even for horizontal reflectors) and, therefore, an inverse rho-filter cannot 

be readily designed. For ordinary p-waves, the analytic expression describing such
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smiles depends, among other things, on dip. Consequently, when generating a k 

trace, an expression for the Fresnel-zone width derived assuming some dip, will be 

correct for only that dip. The Fresnel-zone widths shown in Figure 6.3 were obtained 

assuming a horizontal reflector. Widths based on this assumption (Appendix E) are 

later used to balance amplitudes in k - ti  gathers.

Aside from the amplitude and phase distortion, as the theory predicts, the event 

in the k - t\  gather of Figure 6.2b is approximately hyperbolic, with a moveout velocity 

equal to that of the medium. This is shown by applying a const ant-velocity (1000 m /s) 

NMO correction to the synthetic gather of Figure 6.2b. The result, depicted in 

Figure 6.5, shows that the main energy of the (distorted) event is now flattened.

O f f s e t  2 k  ( m )
10004 0 0 6 0 0 8 0 0200

0 . 5

-  1.0

1 .5

2.0

Fig . 6.5. The k -t\  gather of Figure 6.2b is flattened after applying a constant-velocity 
NMO correction to the data. The velocity used is the medium velocity, 1000 m /s.
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For ordinary p-waves, Forel (1986) avoided this amplitude and phase problem 

completely by not transforming the data to the k -t\  domain. Instead, he selected a 

different method for implementing DMO—the constant-velocity-migration approach 

outlined by Ottolini (1982). Forel and Gardner (1988), however, did apply the k -  

ti TZO implementation to ordinary p-wave, 3-D synthetic data. They observed, 

just as I have shown for the 2-D case, that the amplitude and phase had undergone a 

distortion tha t varied with time and offset, although the kinematics (timing of events) 

were correct.

6.3.2 T he AVO problem

It is only when b is zero that the new offset k  is the same as the physical off

set Zi, as equation (6.3) shows. This condition (i.e., 6 =  0) is always true only for 

horizontal reflectors with no mode-converted waves, in which case TZO is not even 

needed. In general, however, k and h are not the same; for mode-converted waves, 

they differ even when the reflector is horizontal. Even when k and h are the same, 

the final k - t\  trace is always a mixture of traces from different offsets and different 

midpoints. This drawback certainly makes AVO analysis in the k -ti  domain mean

ingless. Stated differently, the k - ti  approach to TZO is seen as a device for obtaining 

a good approximation to a zero-offset trace after stacking, not for producing improved 

unstacked traces. We shall see, nevertheless, that velocity analysis is aided by the 

transformation to the k -ti  domain.

6.3.3 T he large-offset problem

Further investigation of equation (6.3) reveals yet another problem intrinsic to

the k-ti  domain—one that arises for large offsets 2k. Large-A: traces cannot be cor-
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rectly constructed in most cases. The half-offset k is considered large when its value 

is comparable to the largest physical half-offset, h, in question.

The relationship between the physical and the nonphysical offsets, given in equa

tion (6.3), is schematically shown in Figure 6 .6 . In that figure, each circle, whose

k

Fig . 6 .6. Schematic diagram showing the relationship between the physical and the 
nonphysical half-offsets as given in equation (6.3). Here, circles represent constant, 
physical half-offsets. The maximum physical and nonphysical half-offsets are H  and 
km, respectively.

radius is equal to a constant physical half-offset h, shows the relationship between 

k and b. The largest circle has a radius H, corresponding to the maximum physical 

half-offset in question. As k increases, larger circles, and hence larger physical offsets, 

are involved; this, in turn, limits the values allowed for b to progressively smaller 

ranges in constructing k traces. In the extreme case, when the nonphysical half-offset 

is maximum km and is equal to if ,  only one value for b (b = 0) is allowed.

For horizontal reflectors with no mode conversion (the case when b is really 

zero), there should be no problem with generating traces with large fc’s. Figure 6.2b
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is an example of this case. For dipping reflectors (with or without mode conversion), 

however, large-/: traces will always be erroneous. That is, the time *i will depart from 

the hyperbolic trajectory given by equation (6.2). For mode-converted waves, large-/: 

traces will always be also erroneous even for horizontal reflectors. The reason for the 

error in these two cases is simply tha t the actual 6, in the corresponding physical 

seismic traces, is never zero, whereas only small values for b are used (allowed) in the 

process of generating the k trace.

Synthetic k - ti  gathers from different models, Figure 6.7, show the problem en

countered with the large-/: traces. To minimize the amplitude variations from trace 

to trace, each trace has had a gain (based on the Fresnel-zone width, as discussed 

earlier and in Appendix E) applied to it as a function of k and t\. For all these k -ti  

gathers in Figure 6.7, the input data consist of 101 CMP gathers synthesized over a 

reflector whose depth is 400 m; the largest offset (2h) is 1000 m. The medium velocity 

is 1000 m /s, and the input wavelet is zero phase with unit amplitude. The reflector 

in gather (a) is horizontal, with only ordinary p-waves. Since the actual b is exactly 

zero for this model, the event is hyperbolic as expected—no kinematics problems 

arise with the large-/: traces. Gather (b) is the same as (a), but now the reflector 

dips at 20° downward from source to receiver; note the nonhyperbolic behavior of the 

event in the large-offset traces. Gathers (c) and (d) show the case when dealing with 

mode-converted waves (downgoing velocity =  1000 m /s, 7 =  0.5) for a horizontal and 

a dipping reflector, respectively. Events in the large-offset traces, of gathers (c) and 

(d), weaken and clearly follow a nonhyperbolic path, confirming the existence of the 

problem with the kinematics for large values of k.

In generating a k trace, contributions from different midpoints (i.e., from a range 

of b values) are stacked. Figure 6.4 is an example of the contributing traces before they
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Offset 2k (m) Offset 2k (m)

Offset 2k (m)
200 400 600 800 1000

Offset 2k (m)
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Fig . 6.7. The problem with large-A: traces. The event in (a) is hyperbolic for all 
k values because the reflector is horizontal with no mode-converted waves. When 
the reflector is dipping, or when mode conversion is present, large-A: traces become 
erroneous (i.e., nonhyperbolic), as depicted in (b), (c), and (d). In (b), the reflector 
dips at 20° downward from source to receiver. Events in (c) and (d) show the problem 
for mode-converted waves; the reflector in (c) is horizontal, whereas tha t in (d) dips 
at 20° downward from source to receiver.
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are stacked. For each k trace, the theoretical b range (Appendix F) may or may not 

be totally included within the available range calculated based on equation (6.3). In 

other words, large-& traces typically require large-h traces, which in turn may not have 

been recorded, especially when b is large. When generating a &-trace, reflections from 

contributing midpoints, before stack, typically form a ‘smile’ in the k - t\  domain. The 

maximum time ti along a smile is attributed to a midpoint that really pertains to the 

same reflection point as that dictated by b. That is, the appropriate midpoint (the one 

giving rise to the actual b value in question) yields the maximum t\ along a smile. The 

stack of the smile will ultimately have its timing close to that of the maximum ti of the 

smile (Appendix G). As long as the 6 range, used in generating a k  trace, encompasses 

the actual b associated with this k trace, the moveout of the corresponding fc-trace 

(after stack) will be hyperbolic, in accordance with equation (6 .2).

As an example, the smile in Figure 6.4 peaks when the midpoint location is equal 

to zero; this corresponds to the actual value for b in that model, for a horizontal 

reflector with no mode conversion. In general, the extent to which an event in a & 

trace (after stack) will follow a hyperbolic trajectory in a k - ti  gather depends on 

whether or not the actual value of b for that trace is within the range of b values 

used in generating the k trace itself; the actual b value for each k trace, however, is 

a complicated function of dip, depth, and velocity ratio (Appendix G).

6.4 A lternative solution

Despite the problems associated with the k - ti  TZO method, some useful infor

mation may still come out of use of this method. When amplitude is not of con

cern, for example, one can use the k - ti  approach to generate a zero-offset section 

for mode-converted waves. Off course, the zero-offset section will then have distorted
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amplitudes. The k - ti  method can nevertheless be used to deduce velocity information 

when dealing with mode-converted waves.

velocity, v0, as the velocity that will best stack the data. Again, although the velocity

not. W ith the average velocity determined, TZO by some alternative method (e.g., 

Harrison, 1990, or the frequency-wavenumber domain approach proposed earlier) can 

then be used. As we recall, equation (2.11),

data from recorded time t to zero-offset time to-

6.5 V elocity estim ation

We now perform velocity analysis for p-sv mode conversion in three models: 

one with a horizontal reflector and two with reflectors dipping at 25° downward and 

upward (from source to receiver), respectively. The parameters for all these models 

are such tha t all have the same zero-offset time (0.95 s) at the location where velocity 

analysis is performed. The dominant frequency of the input zero-phase wavelet is

12.5 Hz (this low frequency is again chosen to emphasize the shape of the output 

wavelet; higher frequencies yield similar results). The downgoing velocity is 2000 

m /s, and a 7 =  0.5 is chosen, yielding an average velocity va =  1333 m /s, based on 

equation (2.9). For comparison, velocity analysis was performed in both the h -t and 

k - ti  domains.

For the reflector dipping at 25° downward, the results from the k - ti  domain

As equation (6.2) implies, velocity analysis in the k - t\  domain yields the average

ratio 7 is required to do the transformation to the k - ti  domain, actual velocity is

shows that the average velocity can be used to directly transform the prestack seismic



T-4344 106

approach are shown in Figure 6.8 . Figure 6.8a shows the output k - ti  gather, whereas 

Figure 6.8b shows the same gather after applying a low-cut (3 Hz) filter. The filter 

was applied to suppress the near-DC precursors that arise in the transformation to 

the k - ti  domain. Because of the problem with the large-& traces, as discussed earlier, 

the last few traces were muted before doing the velocity analysis. The stacking 

velocity for this event is found to be 1370 m /s, which is close to the average velocity 

(1333 m /s). The NMO-corrected k - ti  gather is shown in (c) in tha t figure, and the 

stacked (zero-offset) trace is shown in (d). Note that the peak of the stacked trace is 

at 0.95 s, the correct zero-offset time.

A conventional CMP gather, at the same location as tha t of the above k -ti 

gather, is shown in Figure 6.9a. Velocity analysis on this gather yields an erroneous 

stacking velocity of 1200 m /s, 10 percent lower than the average velocity. This 

low value in stacking velocity clearly cannot be attributed to the familiar cos 0 dip- 

correction factor. The NMO-corrected gather is shown in (b), and the stacked trace, 

shown in (c), shows that the event is now 20 ms later than the expected zero-offset 

time. Note, however, the stacked k -ti  wavelet in Figure 6 .8d is not as close to being 

zero-phase (input wavelet) as that of the h -t  wavelet in Figure 6.9c; the quality 

degradation in the k - ti  wavelet is due to improper phase treatm ent (rho-filtering).

For the horizontal reflector, the results of the analysis in the k -ti  domain and the 

h -t domain are shown in Figures 6.10 and 6.11, respectively. The stacking velocity 

obtained in the k - ti  domain (1350 m /s) is practically the same as the average velocity, 

whereas tha t obtained in the h -t  domain (1480 m /s) is 11 percent higher than the 

average velocity. The timing of the event did not differ much from the true zero-offset 

time in either case.

For the reflector that is dipping at 25° upward, the results are shown in Fig-
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Fig . 6.8. Analysis in the k-ti  domain for a reflector dipping at 25°, downward from
source to receiver, (a) output k-ti  gather; (b) same gather after filtering; (c) NMO-
corrected gather (v =  1370 m /s); (d) stacked trace.
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Fig . 6.9. Analysis in the h-t domain for a reflector dipping at 25°, downward from
source to receiver, (a) CMP gather at the location where velocity is analyzed; (b)
NMO-corrected gather (v =  1200 m /s); (c) stacked trace.
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F i g . 6.10. Analysis in the k-ti  domain for a horizontal reflector, (a) output k-ti
gather; (b) same gather after filtering; (c) NMO-corrected gather (v =  1350 m /s);
(d) stacked trace.
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the location of the velocity analysis; (b) NMO-corrected gather (v = 1480 m /s); (c) 
stacked trace.
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ures 6.12 and 6.13. The stacking velocity obtained in the k - ti  domain (1360 m /s) is, 

again, practically the same as the average velocity. This time, however, the stacking 

velocity from the h -t  domain (2450 m /s) is about 85 percent higher than the average 

velocity, again not accounted for by the cos 9 factor.

From the foregoing examples, I conclude that velocity analysis in the h -t  domain, 

for mode-converted waves, can yield highly erroneous results; not only does the ve

locity depend on the dip, but also on the sign of the dip. Those velocities should not 

be used in time-to-depth conversion or any application other than CMP stacking. On 

the other hand, the velocity obtained in the k -t\  domain does not depend on dip; it is 

close to the average velocity va. This average velocity can be reliably used in seismic 

applications, such as transformation to zero offset, migration, and even time-to-depth 

conversion. Although the k -t\  approach is not highly sensitive to the choice of the 

velocity ratio 7 (results not shown), it is important to include a reasonable estimate 

for 7 in the transformation to the k -t\  domain. That is, Gardner’s conventional k -t\  

approach (assuming 7 =  1) yields poor velocity results if applied to mode-converted 

data.

6.6 Sum m ary

Investigation of the k -t\  TZO method reveals that this method has three prob

lems; namely, improper treatment of amplitude and phase, AVO distortion, and a 

problem with the large-offset traces. In addition, neither the AVO nor the large- 

offset problems can be overcome, even when dealing only with ordinary p-waves. I 

recommend, therefore, that the k - t\  TZO approach not be used as a primary scheme 

in processing seismic data, whether mode-converted or conventional p-wave. This ap

proach, however, could be useful in deducing velocity information for mode-converted
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F ig . 6.12. Analysis in the k-ti  domain for a dipping reflector (dip=25°, upward
from source to receiver), (a) output k-ti gather; (b) same gather after filtering; (c)
NMO-corrected (v =  1360 m /s); (d) stacked trace.
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F ig . 6.13. Analysis in the h-t domain for a dipping reflector (dip=25°, upward from
source to receiver), (a) input CMP gather; (b) NMO-corrected gather (v =  2450 m /s);
(c) stacked trace.
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seismic data  as long as mode-conversion is taken into account in the transformation 

to the k - t\  domain.
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Chapter 7 

CO N C LU SIO N

In addition to an existing KirchhofF (t-x) implementation, and as discussed in 

this thesis, TZO for mode-converted waves can also be implemented in either of 

two domains—the nonphysical k - ti  domain, and the frequency-wavenumber ( f - k )  

domain. I now summarize my views on these two TZO approaches.

For a constant-velocity medium, the k -ti  TZO approach is, in principle, exact. 

However, the k - ti  approach has three intrinsic problems associated with it: problems 

of amplitude and phase, of AVO, and of large-offset. Due to these unresolved prob

lems, the k - ti  TZO approach is deemed unfavorable for practical use in generating 

zero-offset sections. Although the discussion here pertains solely to mode-converted 

waves, the conclusion that the implementation of the k -t\  TZO method be avoided 

applies equally well to ordinary p-waves. However, one useful application on k -ti  

data  is velocity analysis, in which case resulting velocities are dip-independent, even 

for mode-converted waves.

The f - k  TZO approach for mode-converted waves, though approximate, is 

straightforward and easy to implement. Its implementation requires only slight mod

ification to an existing algorithm—the Hale’s f - k  TZO algorithm used in processing 

ordinary p-waves. The mode-converted TZO operator differs from the well-known, 

elliptical p-wave operator in two aspects. First, its non-elliptical shape is controlled 

solely by the velocity ratio which, depending on the mode of conversion, squeezes 

one side of the operator and stretches the other. Second, the operator is laterally
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shifted, and in a time-varying manner. Furthermore, when the velocity ratio is unity 

(no mode conversion) the mode-converted TZO operator reduces to the conventional 

operator. As with conventional TZO, Hale and Artley’s squeezing trick is readily 

extended to mode conversion so that mode-converted TZO can approximately handle 

velocity variations with depth.

Although the method is not too sensitive to the choice of velocity ratio, tests on 

synthetic data  show that it is essential to take mode conversion into account when 

applying TZO. Application of this mode-converted f - k  TZO method to synthetic 

seismic data reveals that the method is capable, to a great extent, of transforming 

data  to zero offset. The method corrects data from both dipping reflectors regardless 

of the sign of dip, and from horizontal reflectors by laterally shifting reflections to 

their appropriate zero-offset locations.

Results from two field data sets show that the dip influence on stacking velocity 

has significantly decreased after application of mode-converted TZO, a result that 

conventional TZO has failed to produce. Furthermore, this method can be used, in 

conjunction with velocity analysis, to qualitatively estimate a velocity ratio 7 from 

field data (since the mode-converted TZO method is not too sensitive to the choice 

of 7 , one would actually be able to estimate a range of 7 , rather than a single, precise 

value of 7 ). Also, with the availability of two data sets shot over the same area but 

in opposite directions (as the field example in this thesis), one can make use of the 

relative lateral shift between their two stacks to estimate a velocity ratio.

Finally, I recommend that this f - k  TZO method for mode-converted waves be 

further modified to handle the more general situation wherein the velocity ratio varies 

with depth. The influence of anisotropy on this mode-converted TZO process could 

also be investigated. More specifically, I recommend that the work by Larner (1993),
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on TZO error due to anisotropy for ordinary p-waves, be extended to mode conversion. 

Such a study on synthetic data would provide insight as to how mode-converted TZO 

would behave in transversely isotropic media.
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A ppendix A  

O FFSET A N D  TRAVELTIM E FO R  

M O D E-C O N V ER TED  WAVES

L e t  t h e  o f f s e t  d i s t a n c e  s e p a r a t i n g  s o u r c e  s a n d  r e c e iv e r  y  b e  j: , a s  s h o w n  in  t h e  

d e p t h  s e c t i o n  in  F ig u r e  A . I .  W e  a s s u m e  a  p l a n e  r e f l e c t o r ,  w i t h  d ip  0 ,  b e n e a t h  a  

c o n s t a n t - v e l o c i t y  la y e r .  F o r  m o d e - c o n v e r t e d  w a v e s ,  w h e n  t h e  d o w n g o i n g  w a v e  t r a v e l s  

a t  v e l o c i t y  v ( a l o n g  t h e  p a t h  la f r o m  s o u r c e  t o  r e f l e c t o r ) ,  t h e n  t h e  r e f l e c t e d  u p g o i n g  

w a v e  ( a l o n g  t h e  p a t h  lg) t r a v e l s  a t  a  d i f f e r e n t  v e l o c i t y ,  j v .  T h e  m o d e  o f  c o n v e r s i o n  

i s  d e t e r m i n e d  b y  t h e  v a lu e  o f  t h e  v e l o c i t y  r a t i o  7 . T h e  m o d e  o f  c o n v e r s i o n  i s  p - s v  

fo r  7  <  1 , a n d  s v - p  f o r  7  >  1 . T h e r e  i s  n o  m o d e  c o n v e r s i o n  ( o n l y  o r d in a r y  p -  o r  

s - w a v e s )  w h e n  7  =  1. T h e  i n c i d e n t  a n d  r e f l e c t i o n  a n g l e s ,  a s  m e a s u r e d  r e l a t i v e  t o  

t h e  p e r p e n d i c u l a r  t o  t h e  r e f l e c t o r  a t  t h e  r e f l e c t i o n  p o i n t ,  a r e  <f)s a n d  </>s , r e s p e c t iv e l y .  

U n l ik e  t h e  s i t u a t i o n  f o r  o r d in a r y  p - w a v e s ,  a n g l e s  </>s a n d  (f)g a r e  n o t  e q u a l  f o r  m o d e -  

c o n v e r t e d  w a v e s ;  t h e  r e l a t i o n  b e t w e e n  t h e m  i s  g iv e n  b y  S n e l l ’s  l a w ,  a s  f o l l o w s .

s in < ^  =  . ( A . l )

L e t  t h e  d i s t a n c e  f r o m  t h e  m i d p o i n t  y,  b e t w e e n  s o u r c e  a n d  r e c e iv e r ,  t o  t h e  r e f l e c t o r  

b e  D,  t h e  d i s t a n c e  f r o m  s o u r c e  t o  r e f l e c t o r  b e  D s , a n d  t h a t  f r o m  r e c e iv e r  t o  r e f l e c t o r  

b e  D g, a s  s h o w n  in  t h e  f ig u r e .

T h e  o f f s e t  d i s t a n c e  x c a n  b e  o b t a i n e d  a s  t h e  s u m  o f  t w o  d i s t a n c e s ,  xs a n d  xg, a s
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g" g

Fig . A . I .  D e p t h  s e c t i o n  d e p i c t i n g  a  m o d e - c o n v e r t e d ,  r e f l e c t i o n  r a y p a t h  in  a  

h o m o g e n e o u s  m e d i u m  w i t h  a  d i p p i n g  r e f l e c t o r .

s h o w n  in  t h e  f ig u r e .  U s i n g  t h e  la w  o f  s i n e s ,  xs a n d  x9 a r e  o b t a i n e d  a s

Ia s i n  <j)a
xs =

xn =

cos 6 ’
lg  Sin < ()g

cos 9

T h e  o f f s e t  d i s t a n c e  c a n  t h e n  b e  e x p r e s s e d  a s

1
x =  xs +  x. (ls s i n  4>a +  lg s i n  ÿ g ) ( A .2 )

9 cos 9

U s i n g ,  o n c e  a g a i n ,  t h e  la w  o f  s i n e s  ( s e e  t h e  g e o m e t r y  o f  t h e  f i g u r e ) , d i s t a n c e s  ls a n d
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lg in  e q u a t i o n  A .2  c a n  b e  w r i t t e n  a s

D,
Im =

COS (j)a ’

' '  =  ( A - 3 )

w h e r e  D a a n d  D g a r e  g iv e n  b y

D. =  D - XsXue
2  ’

B y  s u b s t i t u t i n g  e q u a t i o n s  ( A .3 )  a n d  ( A .4 )  i n t o  e q u a t i o n  ( A .2 )  a n d  s i m p l i f y i n g ,  I 

o b t a i n

_  2 D  ( t a n  <f>a +  tan</>g ) , ,

2cos0 +  s i n  5 ( t a n  </>5 — t a n  </)5 ) ’

w h ic h  i s  t h e  s a m e  a s  e q u a t i o n  ( 2 . 1 2 ) .

T r a v e l t i m e  t, f r o m  s o u r c e  t o  r e f l e c t o r  ( a l o n g  p a t h  la) a n d  b a c k  t o  r e c e iv e r  ( a l o n g  

lg), c a n  b e  e x p r e s s e d  a s

t = ï ( l* + y ) -  (A-6)

A f t e r  s u b s t i t u t i o n  fo r  l a a n d  lg t h e i r  e x p r e s s i o n s  f r o m  e q u a t i o n  ( A .3 )  a n d  s i m p l i f i c a t i o n  

u s i n g  e q u a t i o n  ( A . 4 ) ,  e q u a t i o n  ( A . 6 ) r e d u c e s  t o

t =  i
v

_ / l  1 X xsmO (  1 1
D  ------ -  + ----------  +

cos<j)a 7  c o s  <f)g J 2 \ 7 cos<f)g cos(j)s

which is the same as equation (2.13) in the main text.

( A .7 )
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A ppendix B  

SERIES E X PA N SIO N

F o r  m o d e - c o n v e r t e d  w a v e s ,  t h e  t r a v e l t i m e  i s  n o t  a n  e v e n  f u n c t i o n  o f  o f f s e t  w h e n  

d i p  i s  p r e s e n t .  A  s e r i e s  e x p a n s i o n  o f  t r a v e l  t i m e  a s  a  f u n c t i o n  o f  o f f s e t  s h o u l d ,  t h e r e f o r e ,  

c o n t a i n  b o t h  e v e n  a n  o d d  p o w e r s  o f  o f f s e t .  F o r  c o n v e n ie n c e ,  I c h o o s e  t o  e x p a n d  t h e  

s q u a r e  o f  t h e  t r a v e l t i m e ,  a s  f o l l o w s

t 2 =  c 0 +  C ia  +  c23 2 +  c33 3 +  c43 4 +  . . . ,  ( B . l )

w h e r e  x  i s  t h e  o f f s e t  d i s t a n c e  s e p a r a t i n g  s o u r c e  s a n d  r e c e iv e r  <7, a s  s h o w n  in  F i g 

u r e  B . l .  T h e  g o a l  h e r e  i s  t o  d e t e r m i n e  t h e  c o e f f i c i e n t s  c , in  e q u a t i o n  ( B . l ) .

D e f in e  a  s l o w n e s s  p a r a m e t e r  1/ ,  a l o n g  t h e  d i p p i n g  i n t e r f a c e ,  t h a t  r e l a t e s  t h e  i n c i 

d e n t  a n d  r e f l e c t i o n  a n g le s ,  <j)s a n d  </>g , r e s p e c t iv e l y ,  a s  f o l l o w s

i/ =  s i n ^  =  s i n ^
v 'yv

w h e r e  w e  r e c a l l  t h a t  v  a n d  71 ; a r e  t h e  d o w n g o i n g  a n d  u p g o i n g  v e l o c i t i e s ,  r e s p e c 

t i v e ly .  U s i n g  t r i g o n o m e t r i c  s u b s t i t u t i o n ,  t a n </>5 a n d  ta n < £ g a r e  e a s i l y  f o u n d  f r o m  

e q u a t i o n  ( B .2 )  a s  f o l lo w s

s i n  <&, vu
tcLH (J)ÿ —

cos^  v/ i - m 2’

- Si-A



F ig . B .l. Depth section depicting a mode-converted, reflection raypath in a 
homogeneous medium with a dipping reflector.

T h e  o f f s e t  d i s t a n c e  x, g iv e n  b y  e q u a t i o n  ( A . 5 ) ,  c a n  t h u s  b e  e x p r e s s e d  a s  a  f u n c t i o n  

o f  t h e  s l o w n e s s  p a r a m e t e r  z/ a f t e r  s u b s t i t u t i n g  fo r  t a n  <̂ s a n d  t a n  < j> g t h e i r  e x p r e s s i o n s  

f r o m  e q u a t i o n  ( B . 3 ) .  E x p a n s i o n  o f  x  in  t h e  p a r a m e t e r  z/, t h e n ,  i s  g iv e n  b y  t h e  f o l l o w i n g  

T a y lo r  s e r i e s

x
D v i l  +  7 ) Dv2hf2 — 1 ) s i n #  2
   - v  4---------------—̂-------v

c o s  6 2  c o s 2 9

z /,3

.D ( 7 2 — l ) vA s i n  9[A c o s 2 6{\  4 - 7 2) 4- s i n 2 0 ( 1  — 7 2)]

8  c o s 4 9
z/4 4- . . .  (B.4)
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S im i l a r ly ,  e x p a n s i o n s  o f  re2 , x3, a n d  x4 a r e  g iv e n  b y

x2 =
D 2v2(1 +  7 )2 2 D 2v3( j  — 1)(1 +  7)2sin5 a 

c o s 2 0 c o s 3 0
. n 2 4 [ ( l  +  7 ) ( l  +  7 3) , 3 ( 1  — 7 2 ) 2 s i n 2 

*  c o s 2 6 4  c o s 4 6
v4 +  . (B.5)

a n d

3  D 3v3(1 +  7 ) 3 3  3D3v4( 7  -  1 ) ( 1 +  7 ) 3 s i n 0  4
x 3 =  v v"   + ---------J—7r-̂ ±T7>— --------- z/4 +  . . . ,

c o s 3 a 2  c o s 4 6

4 D V ( 1 + '? ) 4X =
cos4 9

v '  + . . .

(B.6)

(B.7)

T h e  r e l a t i o n  fo r  t h e  t r a v e l t i m e ,  e q u a t i o n  ( A .7 ) ,  c a n  a l s o  b e  e x p r e s s e d  a s  a  f u n c 

t i o n  o f  t h e  s l o w n e s s  p a r a m e t e r  z/, b y  s u b s t i t u t i n g  fo r  t a n  (f> a  a n d  t a n  < f> g t h e i r  e x p r e s 

s i o n s  f r o m  e q u a t i o n  ( B .3 ) .  T a y lo r  e x p a n s i o n  o f  t h e  s q u a r e  o f  t h e  t r a v e l t i m e  in  t h e  

p a r a m e t e r  v  i s  f o u n d  t o  b e

r = J92( l  +  7 ) 2 JD2(7 — 1)(1 +  7 ) 2 s in 5
72y2 7 2v  c o s  6

D 2(l  +  7 2 ) [ ( 1  — 7 ) 2 s i n 2 0  — 4 7  c o s 2 0] 2

4 7 2 c o s 2 6 
D 2v ( i 2 — 1 ) (1  +  7 3) s i n 0

z/

2 7 2 c o s  5
(B.8)

T h e  c o e f f i c i e n t s  c* a r e  t h e n  r e c u r s i v e ly  f o u n d  b y , f i r s t ,  s u b s t i t u t i n g  e q u a 

t i o n s  ( B . 4 ) ,  ( B . 5 ) ,  ( B . 6 ) ,  ( B . 7 ) ,  a n d  ( B . 8 ) i n t o  e q u a t i o n  ( B . l )  a n d  , s e c o n d ,  m a t c h i n g  

l ik e  p o w e r s  o f  u a f t e r  t h e  s u b s t i t u t i o n .  T h e  f i r s t  f iv e  c o e f f i c i e n t s  a r e

Co

ci

®  -  *
2 (1  — 7 ) t 0 s i n  0

(1 +  7)v0



T-4344 126

_  47 cos2 6 +  (1 — 7 )2 sin2 9
02 (1 +  7)2̂ a

_  87(1 — 7 ) cos2 6 sin 9
C3 (1 +  l ) 3tovï

47(1 — 7 ) cos2 9 [(7 — 1) cos2 # +  (2 — 27 — 72) sin2

C* ~  (1 +  7)4*oyo

where va is the same average velocity given by equation (2.9), i.e.,

2 1 1
va v 7 %
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A ppendix C

IM PU LSE R E SPO N SE  V IA  STATIO NARY PH A SE

The method of stationary phase (Bleistein, 1984) is useful in finding asymp

totic solutions to certain integrals that are, otherwise, hard to solve analytically. In 

particular, an integral of the form

=  /  m e ^ d t (C . l )

will have an asymptotic solution given by the stationary phase-formula if I  has at 

least one stationary point.

Any point in the range of integration of I  is defined as a stationary point, £fl, if 

it satisfies the following relation

d m
dt

= $'(&) =  0,
(—(a

where $(£) is the phase seen in the integrand of I. If such a stationary point exists, 

then I  in equation (C.l) is asymptotically given (Bleistein, 1984) by

27T

M W I .

1/2
f ^ em s ) + i ï s 9n[*"(Za)]̂ (C.2)
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where the sgn function is defined by

f 1 ’ c > 0 ’sgn(Q = <
( —1 , C <  0 .

If there exists more than one stationary point along the range of integration, then 

the superposition of their individual contributions, each given by relation (C.2), gives 

the asymptotic value of I.

We follow the approach of Liner (1988), but dealing with mode-conversion here, 

to derive an impulse response based on the approximate TZO formulation given by 

equation (3.15). We start by rewriting that equation as

Po(w,fc) =  J d t nA - ' e ^ Ai°+BV J d y e ~ ' typn(tn,y )1 (C.3)

where, for convenience here, the dependence of both Pq and pn on the constant half- 

offset h is not shown. Definitions for A  and B  are given in equations (3.14) and (3.16), 

respectively. Equation (C.3) can also be expressed as

Po(w,k) = J  dtnG (u , tn,k)pn(tn,k),  (C.4)

where G(w,t„, k) is given by

G(w,t„, t )  =  A -i (C.5)

and the parameter C, introduced for convenience, is defined by

1 - 7
C =
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The scaled-offset, H,  was defined in equation (3.18). Taking the inverse Fourier 

transform over wavenumber in equation (C.5), we get

G(u>,tn,y) = j z j  d k A - 1eil -CHh+aA,*) eihy, (C.6)

We now apply the method of stationary phase to the integral in equation (C.6). 

If we express that integral as

G(u,tn ,y)  =  ^  /  d k A - 1 e ^ k\  (C.7)

then the phase <&(&) is given by

$(&) =  - C H k  + +  H W  +  ky.

Solving for the zeros of d$(k)/dk,  we find a single stationary point, ks, given by

The asymptotic value of the integral in equation (C.6), using the stationary-phase 

formula given in equation (C.2), is then

G{u,tn,y) ~
27T

1/2

(C.9)

In order to apply the stationary-phase formula here, we need to evaluate the following 

expressions at the stationary point
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H  

and [H? - ( y -  Cg)2]3/2
(

Noting that the sign of the argument of the sgn function is totally determined by the 

sign of w, and applying Euler’s identity to the exponential with the sgn function, the 

expression in equation (C.9), after simplification, becomes

G{u, tn,y)
1  _• U)tn  r  TTl  ^ „ X 2 l V 2

27T i f 1/ 2 [ / f 2 -  ( j/ -  C H ) 2] 1/4
(C.10)

To proceed, refer to equation (C.4) and express the product of the two terms 

G(uj,tn,k) Pn(tn, &) as a convolution over midpoint y. That is, using the convolution 

theorem, equation (C.4) is written as

Po(v,y) = J  dtnJ  dy'G (u ^ n , y  -  y^Pnitn^y'), (C .n )

where y and y' are output and input midpoint coordinates, respectively. Substituting 

for G (u , tn,y  — y') its counterpart from equation (C.10), equation (C .ll)  then yields

P o(» ,v )  = ( y 1/2/  d tn J  d y 'H [ l _ ^  c)2]1/4e^P-«-c)2],/2pnfa, j/'), (C.12)

where
Po(u, y)

p o(^,y)  [^iZ„(u,)a,]i/2’

and

H
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We now take the inverse Fourier transform over frequency of equation (C.12), 

obtaining

(C.13)

Realizing that the last integral is 27r times a delta function, equation (C.13) can be 

written as

# .(« .,„ ) -  { ^ ) ' l ^  J (C » ,

We make use of the scaling property of the delta function to simplify equation (C.14). 

Specifically, we apply

6 {to - [ ! - ( ? -  C ) T % }  =  [ ! - « -  C )2] - ‘/26{t„ -  t0[l - ( ( - C)2]"1/2} ,

and then sift t]/2 = — (f — C)2]-1/4, to obtain

Finally, we get the geometry of the impulse response from the zero of the delta- 

function argument, given by

tn = t0[l — (£ — C)2] 1/2.

For convenience, we assume the input midpoint location, %/, to be at the origin. The
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a b o v e  r e l a t i o n ,  t h e n ,  c a n  b e  w r i t t e n  a s

'Yo
©  ♦ ( £ )  '=■«>

w h e r e  I q  =  2/ — [(1  — 7 ) h / ( l  + 7 ) ] .  F o r  c o n s t a n t s  t n a n d  H,  e q u a t i o n  ( C .1 6 )  d e s c r i b e s  

a n  e l l i p s e  i n  to  a n d  Y q. T h i s  e q u a t i o n  i s  t h e  s a m e  a s  e q u a t i o n  ( 3 .1 7 )  in  t h e  m a i n  t e x t .
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A ppendix D

QUARTIC EQ U A TIO N FO R b

For ordinary p-wave reflection, the location of an equivalent zero-offset reflection, 

i.e., b, can be analytically derived, as a function of offset, depth, and dip. Figure D .l, 

which shows a depth section with a dipping reflector, is used to find b in the presence 

of mode-conversion.

2 h --------------------

Z

Fig. D .l. Depth section depicting a raypath for p-sv mode conversion. The trace 
has offset 2h between source s and receiver g. The distance from the midpoint y to 
the dipping reflector is Dy, and that from b (the location of an equivalent zero-offset 
trace) to the reflector is D. The distance from s along the raypath to the reflector is 
Zs, and tha t from the reflector to g is lg. The incidence and reflection angles are 63 
and 0g, respectively, and reflector dip is 9.
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From the Pythagorean theorem, and noting that

D = Dy + bsinO, (D.l)

the distance along the raypath from the source to the reflector, ls, and that from the 

reflector to the receiver, Z5, can be expressed as

ls = yj(h + b)2 cos2 6 +  (Dy — h sin 0)2, (D.2)

lg = yj(h — b)2 cos2 6 +  (Dy +  h sin 0)2. (D.3)

At the reflection point, Snell’s law is

sin 0. 1
sin 7

(D.4)

From the geometry of Figure D .l, and taking positive dips downward from source to 

receiver,

sin*, =  (/t +  y C°S e , (D.5)
•'3

and

sin*, =  ( / t - y C° Sg. (D.6)

By substituting equations (D.5) and (D.6) into equation (D.4), we get

=  (D.7)

For a downgoing velocity v, and recorded time t, we have

vt = ls + lg /j .  (D.3)
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Substitution of equation (D.7) into equation (D.8) yields

^  = z» ( 1 +  ^ âT ï )  • (D-9)

Equation (D.9), upon substituting expression (D.2) for ls and squaring both sides,

becomes

(vt)2 = [(h +  6)2cos25 +  (Dy — Zisin^)2] ^  +  ” 2^ 7^  • (D.10)

But the term (vt)2 can also be solved for, from the kinematics relations for mode-

converted waves (equations [2.11] and [2.9]), as

(vt)2 = 2h(ah +  (3b) ^1 +  , (D .ll)

which can also be expressed in terms of D y (equation [D.l]) as

(Dy +  bsinO)2
(vt) =  2h(ah +  (3 b) 1 + h2 — b2

(D.12)

Eliminating (vt)2 from equations (D.10) and (D.12) and simplifying yields the follow

ing quartic equation in b

[(/i +  b)2cos20 +  (Dy — h sin 0)2] (ah +  /3b) (h — b) =

2h(h +  6) [h2 - b 2 + (Dy +  6sin6)2] . (D.13)

For a horizontal reflector, 0 =  0, equation (D.13) simplifies a bit, but remains 

quartic in b. In this case, the depth D =  Dy of the horizontal reflector is trivially 

found in terms of 6,

D z =
(h2 -  b2)2

h2 +  2ahb/(3 4- b2
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which is the same as equation (3.20) in the main text.
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A ppendix E 

FR ESNEL-ZO NE W ID T H

Before discussing the Fresnel zone, I first derive the general form of the smile, 

the stack of which generates a k- t \  trace. Only ordinary p-waves are considered, 

i.e., 7 =  1. For 7 ^  1, the mathematics become rather tedious, as quartic symbolic 

equations arise.

Consider the surface point a (Figure E .l) at which a k- t \  gather is to be generated 

from input CMP gathers. A constant-velocity, single-reflector medium is assumed.

Z

Fig . E .l. Subsurface model consisting of a single dipping reflector in a constant- 
velocity medium. An output k- t \  gather is desired at location a. Any midpoint y  with 
source-receiver (s-g) offset (2/i) encompassing point a will contribute to the output 
k- t \  gather. The zero-offset time, which the k- ti  gather inherits, is experienced along 
path D.
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W ith D  being the distance from point a to the reflector, the theoretical zero-offset 

time at point a is given by
o n

to = — , (E.l)v

where v is the medium velocity. Any trace whose source-receiver line encompasses 

point a will contribute to the output k- t i  gather. One such trace is depicted in 

the figure, with distance 2/i, between source s and receiver <7, encompassing point 

a. Because the reflector is dipping, the distance Dy from midpoint y to the reflector 

varies with location of midpoint.

The recorded time t from the source down to the reflector and back up to the 

receiver can be expressed as

where toy is the midpoint zero-offset time, given by toy = 2Z)y/v. For convenience, let 

point a be the origin. Then t0y can be expressed as

t0s =  t0 +  ^ ,  (E.3)

with positive dip being downward from source to receiver. Substitution of equa

tion (E.3) into equation (E.2) yields

t2 = j ; 0 + ^ y + p ^ y .  (E.4)

For 7 =  1, equation (6.4) becomes ti = kt /h,  which, from equation (E.4), can

be written as

ZÏ =  ^2 (*0 +  —  ) +  I — : —  ) • (E.5)
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Noting that y (Figure E .l) and b (Figure 6.1) are equal, but with opposite signs, 

equation (6.3) can be used to eliminate h from equation (E.5). The result, after 

simplification, becomes

For constant k, equation (E.6) gives the general form of the smile in generating a k 

trace.

The behavior of the smile depends, among other parameters, on dip, which is 

normally unknown. In deriving the Fresnel-zone width, I shall assume a horizontal 

reflector (0 =  0). Then equation (E.6) reduces to

=  'E 7 >

which describes a symmetric smile whose maximum time is t imoz (occurring at %/ =  0) 

given by

*lmaz =  *0 +  • (E .8 )

Let the width of the zone that the smile spans within a time interval A ti be 2Ay.  

W ith A t i  =  t \max — ti, then t imaz, t\,  and A ti are also related by

t\max ~A.  — (At i )2 +  2 tiA ti. (E.9)

From equations (E.7) and (E.3), we can write

4 m a x  - 4 = t l -  ^ 2 + ^ ) 2 ’ (E -1 0 )
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which, after substituting for to its value from equation (E.7) and simplification, can 

be written as
(Ay)2t2 - t 2 -I m a x  H —

2 k \

« - { T

Equating the right-hand sides of equations (E.9) and (E .ll)  and solving for Ay, we 

obtain

A y  =  k (Atl)2 +- .%Atl:  (E.12)

If A ti is chosen to be half a cycle, i.e., A ti =  T /2 , where T  is the dominant pe

riod of the wavelet, then Ay (half the Fresnel-zone width) can be expressed from 

equation (E.12) as ___

Ay =  k )  ( è  + (i) (E.13)

where f  is the dominant frequency of the wavelet.

It should also be noted that the Fresnel-zone width cannot exceed a maximum 

value determined by the maximum offset present in the data. Take, for example, 

the case when k = 300 m in Figure 6.3a. The maximum half-offset was 500 m. As 

equation (6.3) implies, the maximum Fresnel-zone width should be 2\/5002 — 3002 =  

800 m. In other words, Fresnel-zone widths greater than 800 m, in this example, 

require larger offsets that are not present in the data. This explains the corners seen 

in the curves of Figure 6.3.
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A ppendix F 

R A N G E  OF b

When dealing with ordinary p-waves, the DMO impulse response (i.e., the DM 0 

ellipse) has a lateral extent of 2h. The part of that lateral extent corresponding 

to non-evanescent seismic data (i.e., the range of b) is, Forel and Gardner (1988), 

bounded by
Oh2

5 =  ± _ ,  (F.1)

relative to the midpoint.

Now, consider mode-conversion. Let the range of b be bounded by bmax and 

bmin relative to the midpoint. A surface of constant traveltime (pseudo-ellipse) is 

schematically depicted in Figure F .l. The extreme points, x max and xmtn, are trivially 

deduced as

(F.2)

and
vt +  rjh .

x min — ~ ) (F.3)

where a is given by equation (2.10), and rj = 1 —1/7  is another constant that depends 

only on the velocity ratio. For reflections from a vertical wall (z=0), the distance R,  

from point b to reflection point (x, z  = 0), can be expressed as

— 3'max (F .4)
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2k
m a xm in

Fig. F .l. Surface of constant traveltime (pseudo-ellipse) for a mode-converted wave. 
The range of b corresponding to possibly recorded seismic data is along the line 
connecting source s and recorder g, but shorter than offset 2h.

or

—  'E m in  bm in , (F.5)

depending on whether the vertical wall is situated to the right or to the left of the 

midpoint ?/, respectively. Recalling equation (2.7), the expression for R 2 is given by

R 2 = (h2 -  b2)
2h(ah +  /3b)

- 1 (F.6)

where a  and (3 are defined in equations (2.3) and (2.10). Substituting for x max and 

x min their respective values from equations (F.2) and (F.3), squaring equations (F.4) 

or (F.5), and inserting the result in equation (F.6) yields quadratic equations for bmax 

and bmin, respectively. Their solutions are

u _  h(2ah — rjvt) 
max ~  a(vt  -  277/1)

(F.7)
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and

‘ - - S E S -  M
For 7 =  1, the range of 6 as given by equations (F.7) and (F.3) reduces exactly 

to tha t in equation (F.l) for ordinary p-waves.
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Appendix G 

MAXIMUM t, ALONG A SMILE

From the relationship between D  and D y (Figure E .l), with positive dips being 

downward from source to receiver, and noting that b = a — y, relation (E.3) between 

to and toy can be expressed as

26 sin#
t0 — toy H----------- , (G .l)

where, again, we take a to be the origin, giving y = —6. As an aside here, if we 

substitute equation (G.l) into equation (2.11) and simplify, we obtain the following 

general expression for the square of the traveltime

2 _  2h(ah +  /3b) 
~  <72(h2 - 6 2)

f 26 sin# V  4(h2 — b2) 
+  — :— ) + — ~2—Vi

(G.2)

which is valid for any velocity ratio 7 .

Recall, each A:-trace in a k- t i  gather is obtained by stacking contributions from 

many midpoints. As shown in Section 6.3.1, a “smile” in the y- t i  domain, after stack, 

typically generates an event on a & trace. The maximum ti, along a smile, occurs at 

a midpoint y  corresponding to a 6 value that is truly the location of the equivalent 

zero-offset trace. The proof of this assertion, when 7 =  1 (no mode conversion), 

follows.

Consider the relation for t2 as given by equation (E.6). Differentiating that
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equation with respect to y and setting dt i /dy  to zero yields the following quadratic 

relation in y

2y2 sin 9 +  tovy — 2h2 sin 0 =  0. (G.3)

Keeping in mind that y = —b (the output location a is arbitrarily taken to be zero), 

equation (G .l) can be written as

*0 =  ^ - ^ .  (G.4)

Substituting for to its value from the above equation, and solving equation (G.3) for 

y  yields
2h2 sin 6 h2 sin 0 . .

y  =  — ;------ =  — B ( G - 5 )VvQy

which is the same as that derived by Levin (1971). This proves the assertion made 

above.

Although not proven analytically, this same assertion also holds for mode- 

converted waves (7 7̂  1); I have shown this numerically.


