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ABSTRACT
The scheduling of production from open pit mines such 

that returns from the mining operation are maximized has 
been an unsolved problem. The current production scheduling 
methods are geared toward obtaining a feasible solution 
which has at best the largest net present values of 8 to 10 
different scenarios considered. With these "optimum” 
solutions there is no guaranty that the mine plan achieved 
is the true optimum. The various attempts to apply 
mathematical optimization to the production scheduling 
problem have proved unproductive because of the large 
computer memory requirements and solution time for a problem 
with 300,000 variables and about 900,000 constraints.

The open pit scheduling problem considered in this 
dissertation is formulated as a large scale linear program 
and solved by decomposing the problem using lagrangian 
relaxation. Subgradient methods are used in modifying the 
lagrange multipliers corresponding to the side constraints 
consisting of blending and capacity requirements of the 
mining system. The lagrangian subproblem which is the multi 
time period sequencing problem is solved by another 
algorithm developed in this dissertation. This algorithm 
which is based on the network structure of the sequencing 
constraints decomposes the multi time period sequencing
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problem into series of efficiently solvable single time 
period problems.

The relationship between the lagrange multipliers and 
the traditional cut off grade concepts is discussed. A new 
interpretation of cut off grades is given.

The proposed method's applicability to real problems is 
demonstrated by developing necessary computer programs in 
FORTRAN on the VAX 11-750 computer. The Lerchs and 
Grossmann's 3-Dimensional Graph theoritic three algorithm is 
programmed to solve the subproblems of the multi time period 
sequencing problem.

The proposed method will overcome the limitation of 
existing techniques tiy improving the discounted cash flows 
and by decreasing the engineering time spent on scheduling 
open pit mines.
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I. INTRODUCTION
In recent years, the quantity of metals produced from 

open pit mining operations increased at the expense of 
underground mining. Today, open pit mining provides 60% of 
the metal needs of the modern world's consumption. The 
shift to greater production from open pit mining came mainly 
as a result of productivity improvements through economics 
of scale. In general, large scale, low grade operations 
characterize today's open pit mines. These large scale open 
pit mines are very capital intensive, with initial capital 
requirements in the range of five hundred million to a 
billion dollars. Mining the low grade ores does not leave 
much room for inefficiencies. There is a greater need for 
these operations to be planned and operated very efficiently 
to achieve the best returns on investments. The most 
efficient mining plan is defined as the mine plan which 
under existing economic conditions and technological 
capabilities would provide maximum profits for the mining 
company. The methodology for defining the optimum mine plan 
for an open pit mining system is the topic of this 
dissertation.
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1.1 NEED FOR OPTIMUM OPEN PIT MINE DESIGN
It is generally accepted that the objective of a modern

\firm should be to maximize the wealth of the stockholder, 
the legal owners of the firm . In order to reach this
objective, every project should be designed and operated so
as to maximize the firm's investment decision criteria. 
There are a number of investment decision criteria used in 
evaluating the profitability of a given deposit. The most 
widely used technique of project evaluation is Net Present 
Value (NPV) analysis. The NPV of a project is generally 
maximized when optimizing a mine design.

The decision variables that influence the NPV of an 
open pit mining operation can be given as (Blackwell 1971):

1. physical capacities of various stages in the
production process,

2. cutoff grades,
3. sequence of extraction.

The influence of the first variable, the physical
capacities of various stages in the production process on 
NPV, is twofold. First, the capacities of various stages 
determine the magnitude of capital investments and costs. 
Second, these capacities determine the rate at which
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valuable minerals will be recovered. As a result this first 
variable influences the NPV by affecting both the cash 
inflows and the cash outflows.

The mining industry is one of the few industries where 
capacities of various stages in the production process do 
not directly determine the rate of final output alone. The 
rate of recovery of metals from a deposit is influenced by 
cutoff grades, and the sequence of extraction as well as 
limitations imposed by different capacities. Therefore, it 
is through a combination of factors that these variables 
affect both the positive and negative cashflows and as a 
result the NPV of a mining operation.

As stated by Johnson (1968), given the capacities of 
various stages of the production process, determining cutoff 
grades and the sequence of extraction such that the maximum 
possible NPV is realized, has been an unsolved problem. Yet 
it is stated by Blackwell (1971), Lilico (1973), and Wells 
(1978) that policy decisions made with respect to each one 
of these variables are so important that an arbitrary choice 
may have substantial negative effects on the NPV of a depos
it and can cause a mine to operate with lower profits than 
the maximum attainable, or in some cases a wrong choice can 
cause a deposit to be uneconomic and submarginal even though 
the deposit could be mined at a profit.
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As the mining industry mines lower and lower grade 
ores, planning of a mine with an optimum combination of 
these decisions parameters is becoming more important. 
Realizing this point, Johnson (1968) said:

The mining of a mineral deposit in such a manner 
that at depletion the maximum possible profit is 
realized, has been an unsolved problem since man's 
discovery of usable elements buried beneath the 
earth's surface. In the days when high grade 
reserves were adequate to supply our needs, the 
attention given to this problem was negligible. 
The philosophy at the time was to extract the 
material in an orderly fashion, keeping in the high 
grade until depletion. Right or wrong, profits 
were high, so no question of optimum profitability 
confronted the operators. Since World War II and 
the depletion of the most accessible of the world's 
high grade reserves, the mining industry has been 
forced into working with lower grade material. The 
sequence of extraction has now become more impor
tant; and in many cases, has become a problem whose 
solution is vital to the existence of a profitable 
operation.

Although the need to obtain a mine plan with optimum 
combinations of values for these parameters has been obvi
ous, the methods to obtain it has not been (Johnson 1968 ; 
Blackwell 1971 ; Gangwar 1974). Since the relationship 
between these variables and NPV is complex and each one of 
these variables are interdependent, the mine planning 
methods used in the mining industry today are geared toward 
a feasible solution and at best usually results in the 
largest NPV of the 8-10 different scenarios considered.
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With these "optimum" solutions there is no guaranty that the 
mine plan achieved is optimum and there is not even a clue 
of how far one is from the true optimum,

1.2 Scope of Work
The overall objective in mine planning is to come up 

with a mine plan which results in a maximum NPV of depletion 
of the deposit. Although this objective is the ultimate 
goal in mine planning, its achievement requires analysis of 
a broad spectrum of interrelated parameters : optimization
with respect to physical capacities ; optimization with 
respect to capital and operational expenditures ; 
optimization with respect to extraction schedule of the 
deposit.

Although optimization of a mine plan in terms of these 
parameters are interrelated, the scope of this research 
primarily encompasses optimization with respect to 
extraction scheduling of a deposit. This means that the 
critical parameters with respect to physical system capaci
ties, their capital and operational expenditures are assumed 
to be known and the optimum production schedule which will 
give maximum discounted cash flows at depletion of the 
deposit is searched for.
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Hence, the objective of this thesis is twofold. The 
first one is to formulate a mathematical model which will 
take into account complex interactions of interdependent 
planning variables in order to come up with an optimum 
production schedule which will give maximum discounted 
cashflows at the depletion of the reserve. The second 
objective is to develop a solution algorithm that will solve 
this model in a reasonable amount of time.

In Chapter 2, traditional mine planning methods will be 
reviewed and the structure of the complex interactions 
between design parameters and NPV will be explored. Also a 
critical review of heuristic optimization techniques will be 
given along with a discussion of previous attempts for 
solving production scheduling problems by mathematical 
optimization techniques. In Chapter 3 a mathematical model 
which describes the interaction of design elements such that 
their combined effect is considered in coming up with an 
optimum mine plan is formulated. The structure of the 
problem formulated in chapter 3 plays a very important role 
in the development of a solution algorithm. Hence, in 
Chapter 4 the structure of the production scheduling model 
formulated in Chapter 3 will be described. The solution 
algorithm developed in this dissertation is based on the 
concept of lagrange multipliers. Chapter 5 discusses the
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concept of lagrange multipliers as they relate to mining. 
In Chapter 6 a solution algorithm to the mine production 
scheduling problems in terms of subgradient optimization
will be given. In Chapter 7, the algorithm for multi-period 
sequencing problems is presented. Chapter 8 will discuss
the development of a computer program to implement the
solution algorithm. This chapter also discusses the possi
ble modification necessary for implementation of the model 
to a full size mine. Chapter 9 gives conclusions of the
research study and recommendations for future research.
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CHAPTER 2
CRITICAL REVIEW OF MINE PLANNING METHODS

2.1 MINE PLANNING
The planning of an extraction schedule over a 

particular time horizon, typically the life of a deposit, is 
referred to as mine planning (Johnson, 1968). Figure 1 
shows the generally accepted circular analysis one follows 
during mine planning. With present practice, mine planning 
usually starts by assuming capacities for different units in 
the production process (i.e. mine, mill, refinery) and 
continue with attempts to determine the size of the pit. 
What follows after this initial step are the trials made by 
the design engineers to develop a plan of extraction through 
time until the depletion of the deposit. This plan must be 
within the limitations imposed by economic, physical, legal 
and geological constraints such that maximum possible NPV 
will be realized at the depletion of reserves.

2.2. TRADITIONAL APPROACH TO MINE PLANNING
Traditionally, the individual steps of mine planning 

are categorized as long range, medium range and operational 
(or short range) planning (Johnson, 1968; Pana, 1965; Pana 
and Carlson, 1966).
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The traditional approach to mine planning, until the 
advent of the computer and its general acceptance was the 
trial and error hand calculated, cross sectional method 
(Koskiniemi, 1979; Soderburg, 1968). Using this method, the 
deposit is divided into cross sections, and the pit limits 
are drawn on the cross-sections by visually observing the 
ore grades and considering pit slope angles, geology and the 
economic objectives.

In an effort to locate the pit limits on a cross- 
section, a number of trial and error approximations are 
made ; the trial pits are expanded or contracted to obtain a 
pit increment that satisfies the minimum required 
profitability. This profitability is directly related to 
the ratio of tons of waste to the tons (yards) of ore. This 
ratio is commonly known as the break-even stripping ratio 
(Soderburg, 1968) and defined as:

n r c D - (Recoverable value)/(ton ore) - Production Oosts/ton ore 
" " " Stripping Cbst/ton waste

(In addition to the above formula, the definition of break
even stripping ratio sometimes include a minimum acceptable 
profit as a cost.)
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The classification of ore and waste within the 
increments are made by calculating a fixed break-even cutoff 
grade. Based on this classification, tons of material 
within the various zones are estimated by planimetering the 
areas on the sections (Pana 1965, Johnson 1968). The 
sections are then put together such that they make a 
workable pit by smoothing between sections. As discussed by 
Lane (1964), Johnson (1968) and Mason (1984), there are many 
limitations in mine planning with the traditional methods, 
especially with respect to the basic foundations that these 
traditional methods rely on. For one, the basis for the 
final pit limits is an arbitrary trial and error process 
which cannot assure optimality. Second, the concepts of 
constant cutoff grades and break-even stripping ratios have 
serious short-comings because these do not maximize 
discounted cashflows.

2.3. COMPUTERIZED APPROACH TO MINE PLANNING
In recent years, however, most of the mine planning 

techniques traditionally done by hand have been replaced by 
computer techniques. The computerized approach to planning 
mines eliminated some of the limitations imposed by 
traditional techniques. The most important changes are 
discussed in the following sections.
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2.3.1. Block Model Development
In recent years, most mine plans for open pit mining 

are based on geologic and economic block models. The block 
models are developed by partitioning the deposit into 
rectangular blocks (Barnes 1982; Carlson, et al., 1966; Chen 
1976; Johnson 1968; Pana 1965; Crawford 1979) (Figure 2). 
The various grades and material characteristics are assigned 
to the blocks by interpolating the drill hole information. 
In recent years often inverse square distance and the 
kriging are used as the interpolation technique for geologic 
block model development (David, 1975, Journel 1978).

The information assigned to a given block in the 
geologic block inventory are the grades of different 
minerals existing in the orebody and their respective 
recoveries when processed (sometimes volumes). Crawford 
[12] provides a list of items which are normally included in 
a typical geologic block model for a porphyry type copper 
deposit (Table 1) . For a more detailed discussion of block 
models one can refer to Stanley (1979).

The information required to convert the geologic block 
model into an economic block model is given in Table 2. The 
typical information contained in Table 2 are the various
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Table 1. Information Contained in a Block of Typical
Copper Porphyry deposit. (After Crawford, and 
Davey 1979)

Items Units

Copper (Cu) %
Molybdenite (M0 S2 ) %
Gold (Au) oz/ton
Silver (Ag) oz/ton
Copper Concentrate Recovery %
Copper Concentrate Grade %
Copper Smelting Recovery %
Copper in Blister %
Copper Refining Recovery %
M0 S2 Concentrate Recovery %
M0 S2 Conversion Recovery %
Gold Concentrate Recovery %
Gold Refining Recovery %
Silver Concentrate Recovery %
Silver Refining Recovery %
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Table 2. List of Unit Cost Items for Block Evaluation. 
(After Crawford and Dawey, 1979)

Drilling 
Blasting 
Loading 
Hauling 
Haul roads 
Waste dumps 
Pit pumping 
Mine general

Ore reloading 
Ore haulage 
Concentrating 
Concentrate delivery 
Smelting 
General plant

$/ton ore and waste 
$/ton ore and waste 
$/ton ore and waste 
$/truck hour 
$/truck hour 
$/ton waste 
$/ton ore 
$/ton ore 
$/ton waste 
$/ton ore 
$/ton of ore 
$/ton or ore 
$/ton concentrate 
$/ton concentrate 
$/ton ore

B l i s t e r  c a s t i n g  l o a d i n g  $ / t o n  b l i s t e r

and freight
Refining $/ton blister
Selling and Delivery $/lb refined copper

Metal Prices 
Copper $/lb Gold $/oz
M0 S2 $/lb Silver $/oz
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cost items and prices of the metals contained in the 
deposit.

Based on the economic information given in Table 2, and 
grade, recovery and volume information given in Table 1, the 
economic value of each block is determined. The mining 
costs are further modified according to some linear function 
of elevation of the block being evaluated to take cost 
variations with respect to mining depths into account.

It is very important to note here that all the 
variables are in current year dollars and therefore the 
value of each block is the value one would get if the block 
is mined today. Also the information given in tables 1 and 
2 is only provided as an illustration and will of course 
vary for different operations.

2.3.2. Ultimate Pit Limit Analysis
Ultimate pit limit analysis is one area of mine 

planning which has received a lot of attention in terms of 
computer use in recent years. There are many efficient 
algorithms and computer programs developed to determine the 
ultimate pit limits.

The computerized ultimate pit limit algorithms are 
classified by Kim (1979) as either heuristic or true 
optimizers. Kim (1979) defined heuristics as methods which
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work in most of the cases but lack rigorous mathematical 
proof. On the other hand the true optimizing algorithms are 
mathematically proven techniques that are guaranteed to find 
the economically optimum pit.

The list of ultimate pit limit algorithms can be given 
as follows.

a.) Moving Cone Heuristics Algorithms
1. Moving Cone of Kennecott (Pana, 1965; Pana and 

Carlson, 1966)
2. Heuristic Moving Cone by Lemieux (1979).
3. Heuristic Moving Cone by Mario and Slama

(1973).
4. Heuristic Algorithm by Phillips (1973).
5. Heuristic Algorithm by Korobov (1974).

b.) Dynamic Programming Heuristics
1. Lerch and Grossmann 2-D Dynamic Programming 

(Lerchs and Grossmann, 1965)
2. Johnson's 3-D Dynamic Programming Heuristic

(Johnson, 1970? Johnson and Sharp, 1971)
3. Barnes' Best-Valued Dynamic Programming

(Barnes, 1980 and 1982)
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4. Braticevic 3-D Dynamic Programming (Braticevic, 
1984)

c.) True Optimizing Algorithms
1. Lerchs and Grossmann's 3-D Graph Algorithm

(Lerchs and Grossmann1s; 1965, Gilbert, 1966 ;
Lipkewich and Borgman, 1969; Chen, 1976)

2. Johnson's Network Flow Algorithm (Johnson,
1968? Davis and Williams, 1973)

The moving cone methods are the most commonly used
heuristics in the mining industry because they are simple to 
understand and simple to implement on the computer.

The moving cone algorithm is a simple trial and error 
process of analyzing many pits by moving the vertex of the 
inverted cone from one positive block to another. At each 
positive valued block in the economic inventory, a set of
blocks are identified by a cone with its sides designed to
comply with maximum slope angles of an actual pit and with 
its vertex being on the positive block. If the sum of the 
value of all the blocks enclosed within the cone is positive
then these blocks are made part of the overall optimum
pit. The algorithm stops after all the cones centered on 
positive blocks are evaluated. Despite its popularity, one
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of the problems with the moving cone method is that since 
the vertex of the cone is positioned on a single positive 
block, the evaluation of a particular cone cannot take into 
consideration the possible contribution of other cones. 
Barnes (1982) and Gauthier and Gray (1971) gave examples of 
cases where the moving cone algorithms, because of what is 
referred to as "the effect of overlap", will not identify 
the optimum pit.

The second type of heuristic algorithms are based on 
the dynamic programming concept. The Learch-Grossman 2-D 
algorithm is a method to determine the final pit limits on a
2-dimensional cross-section. The other dynamic programming 
heuristics are based on the original 2-D Lerchs-Grossman 
algorithm and they try to find the 3-dimensional pit limits 
by repeated applications of the 2-D dynamic programming 
algorithm. Barnes (1982) showed that these dynamic
programming algorithms, while not optimizing routines, will 
provide good outer bounds on the ultimate pit limit.

As to true optimizing algorithms there are two. The 
first one was again developed by Lerchs and Grossman (1965) 
and is based on the concepts of graph theory. The 
application of this algorithm is reported by Lipkewich and 
Borgman (1969) and by Chen (1976). The second one is the 
network flow algorithm which was developed by Johnson (1968)

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL of MINES 
GOLDEN, COLORADO 80401
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based on the theory of network flows. Its application is 
reported by Davis and Williams, (1975) and Williams (1974).

Whether it is moving cone or true optimizing ultimate 
pit limit routines all these algorithmically different 
methods have a common objective. The objective of all the 
algorithms is to find a pit such that the sum of the
undiscounted block values contained in the pit is maximized ;
i.e., the optimal pit.

2.3.3. Design of Incremental Cuts
Having defined the ultimate pit limits by computerized 

techniques, the next step in mine planning is to design a 
extraction sequence for the deposit. The sequence of cuts 
are like road maps to be followed in mining a deposit 
(Figure 3). They are needed for orderly extraction and
development of the mine through the years. They also lay 
the necessary foundation for determining the cashflow 
distribution from the project.

There are two reported approaches to design incremental 
cuts by computers. One is by using a interactive computer
program referred to as "cone miner", and the other is by
using one of the ultimate pit limit algorithms repeatedly, 
on a modified block model.
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The first use of the computerized "cone miner" approach 
is reported by Kennecott engineers (Pana, 1965? Pana and et 
al., 1966). Later Fairfield and Leigh (1969) described its 
use in RTZ Consultants. The most recent description of the 
use of the "cone miner" in sequencing of cuts is given by 
Mathieson (1982).

The "cone miner" is an interactive computer program 
used in order to generate incremental pits starting from an 
initial pit position and leading toward the ultimate pit. 
The incremental pits are generated by the "cone miner" for a 
given location of a polygon base and pit slopes. The total 
values of all the blocks falling within the cone, the total 
tons of material and its average grade are calculated by the 
program and outputed for an engineer's evaluation.

Analyzing through different incremental pits by way of 
fast computer calculations, and mining the "next best" pit 
increment in the deposit, yields a sequence of phases or 
cuts leading towards the ultimate pit limit.

Another method which is employed for medium range 
planning is the repeated use of existing ultimate pit limit 
algorithm on a modified block model to obtain nested pits. 
As reported by Crawford (1976), and Mathieson (1982), this 
approach is based on the fact that increasing or decreasing 
either cutoff grades or the price of a metal, the size of
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the pit can be expanded or contracted. By successively 
changing cutoff grades, a number of nested incremental pits 
can be generated which can in turn be used as the sequences 
to be followed in development of the pit.

2.3.4. Cutoff Grades
The cutoff grade is defined as the criterion used to 

distinguish between ore and waste in a mineral deposit (Lane 
1964, Johnson 1968).

In many cases, grade tonnage curves are determined for 
each cut increment during planning of cuts (Lilico 1973). 
Having obtained these, the next step in planning is to 
schedule various ore and waste extractions such that unit 
operations of the mining system are compatible with one 
another in providing the maximum NPV (i.e., all constraints 
are satisfied and the objective of maximizing NPV is 
realized).

The classification of ore and waste in each increment 
requires the decision variable, cutoff grade, to be defined.

The cutoff grade used to classify ore and waste for 
production scheduling purposes is generally taken as a fixed 
break-even cutoff grade (Milner, 1977 ; Mathieson, 1982 ; 
Mason, 1984). The break-even cutoff grade is defined as the
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minimum grade of ore such that the revenues generated just 
cover all the costs of mining and processing.

2.3.5. Production Scheduling
Having determined various cuts to be developed and the 

cutoff grade to distinguish between ore and waste, the next 
step in open pit mine planning is to develop a schedule of 
extraction during the life of the mine.

To accomplish this, a deposit is analyzed bench by
bench and the quantities of ore and waste material in each 
bench are tabulated by phases or cuts as seen in Table 3. 
Table 3 is a hypothetical tonnage inventory of cut sequences 
as illustrated in Figure 4.

The timing of increments and the outline of yearly
mining schedules are determined by considering various
constraints such as ore production requirements, waste
removal capacities and the average mill feed grade
requirements. This is normally done by utilizing a hand
held calculator or a computer by a trial and error
approach. Such hypothetical annual production schedules are 
illustrated in Figure 5.



3073



3073

•H

•H

£&U)
ClCL

xn

<NI
1 C o

ro

•H

LD



Ta
bl
e 

3. 
Hy
po
th
et
ic
al
 
To
nn
ag
e 

In
ve
nt
or
y 

of 
Cut

 
Se
qu
en
ce
s 

Gi
ve
n 

in 
Fi
gu
re

T-3073 21

œz
8
CiuO
VDQZ<œDOŒH

<DjJ
CD
m

u
<v<D uCD o<0

s:
04

3u

0)JJ
CD
ro

CO
(D

<D U
CD O<0
Ou

Q)
4J
CD
ro
2

<

0)
Q) k
CD Oro
JZ
04

3U

0-0 o oo o o o o o o o
o o o o o oo o o o o o0 0 0.0 0 0

VC 00 m vc ro
CM

o o o o oo o o o oo o o o o
O  O  00 xr

CM

o o o o oo o o o oo o o o o
ro in o vc

CM 1-1

xr oo vc 
ro ro vc

O O OO O oo o o
^  ro cm

ro

o o oo o oo o o
00 00 C"

ooo
vc

^ in f—i o
ro ro ro cm

© © O © o © O ©
© © © © © © © ©
© O © © © © © ©
© CM in o o in CM
CM ro CM

© o ©
o o ©
o © ©
CM ro in

I in in
CM

r.uc(DCO

o o o m 
r-i o 
ro ro

OOo
ro

o o m o ov (T\ 
CM CM

O
inoo
CM

Oc
00
CM

O
inr~-
CM

oor-
CM

oinvc
CM

© © oo in ovc m m
CM CM CM



T-3073 28

2.3.6 Summary
The changes that the application of computers brought 

in mine planning methods can be summarized as:

1. The 2-dimensional cross-sections were replaced by
3-dimensional geologic and economic block models 
(Pana 1965 ? Pana and Carlson 1966 ; Johnson 1968; 
Gauthier and Gray 1971; Chen 1976; Crawford 197 9, 
Stanley 1979; Barnes).

2. The trial and error break-even stripping ratio 
analysis of ultimate pit limits are being phased

* out and 3-dimensional ultimate pit limit algorithms
are taking their place (Pana 1965 ; Lerchs and 
Grossmann 1965; Pana and Carson 1966; Gilbert 1966; 
Johnson 1968 ; Libkewich and Borgman 1969; Johnson 
and Sharp 1971; Marino and Slama 1973 ; Phillips 
1973; Korobov 1974 ; Chen 1976; Lemieux 1979 ; Barnes 
1982; Braticevic 1984).

3. Medium range incremental pit development sequences 
are carried out by interactive computer programs 
such as a "cone miners" (Robinson and Prenn 1973; 
Milner 1977; Mathieson 1982; Decker, Garg and Steel
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1984) or by the repeated use of ultimate pit limit 
computer programs on the modified block models 
(Crawford 1979; Barnes 1980, 1982; Mathieson 1982).

2.4 SHORTCOMINGS OF CURRENT MINE PLANNING PRACTICES
Although the application of computer methods overcame 

some of the limitations imposed by traditional techniques in 
obtaining an optimum mine plan most of the improvements came 
solely in the way of speed of data manipulations and 
calculations. An examination of computerized techniques 
reported in the literature reveals that even though the 
techniques of mine planning have appeared to change, the 
fundamental concepts have not. The building blocks of mine 
planning are still the break-even analysis and a trial and 
error approach.

2.4.1 Shortcomings of Break-even Pit Limit Analysis
The ultimate pit limit analysis performed by any one'of 

the open pit algorithms mentioned in section 2.2.2 give the 
break-even pit, i.e., the pit where overall revenues from 
the pit are maximized by mining every increment of material 
for which revenues are at least equal to or greater than the 
costs. The inherent assumption made in determining these
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revenues and costs is that the deposit can be mined and
processed instantaneously with unlimited capacities.

There is not a single mine where the capacities of 
various subsystems, grades and other requirements do not
constrain the mining process. Hence, the size of the pit 
determined by assuming an unconstrained mining system may 
not represent the actual mineable reserves, when the
constraints are imposed and the objective is to obtain a 
return on investment at least equal to the discount rate. 
The pit limits obtained by the ultimate pit limit algorithms 
may over estimate the size of the mineable reserves by 
including the increment of ore whose contribution is less 
than the rate required on a given investment.

The true optimum pit limit is a function of the 
production schedule for the mine and depends on the 
limitations imposed by the various subsystems; its true
location can only be determined by taking into account 
complete interactions between the subsystems and the grade 
variability of the deposit. Without these considerations, 
the ultimate pit limit obtained by sophisticated computer 
programs may be an inferior NPV pit which maximizes the 
undiscounted profits rather than the one that maximizes the 
NPV of the operation.
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There is nothing wrong however with this type of 
analysis if the ultimate pit limit determined this way is 
viewed as the probable reserve picture of the operation. 
There are serious limitations when this is not the case and 
this pit outline is viewed as the true optimum pit which 
will provide maximum discounted returns for the operation.

2.4.2 Shortcomings of Fixed Cutoff Grades
Cutoff grade is defined as the criteria used to 

distinguish between ore and waste in a mineral deposit. The 
grade at which marginal revenues equal marginal costs 
(break-even grade) is considered to be the lowest grade of 
ore one should mine and process (Vicker, 1961). Hence this 
grade is traditionally taken as the cutoff grade (see figure 
6) .

Inherent assumptions in using the break-even cutoff 
grade is again the assumption of instantaneous mining and 
milling with unlimited capacities. The decisions made based 
on the break-even cutoff grade make no attempt to consider 
the limitations imposed on the mining system by various 
mining, milling and smelting capacities and interactions 
they make^the deposit geology.

When the economic objective is the maximization of 
discounted profits (NPV's) the determination of what is an
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ore block depends upon when that block of material will be 
mined and the value of the blocks which follow it. Since 
the timing of when a block of material is to be mined 
depends on the limitations imposed by system capacities, and 
their interactions with the grade distribution of the 
deposit, the cutoff grade decision must be taken as a 
function of the production schedule if the objective is to 
maximize the discounted cash flows.

Hence, applying a fixed break-even cutoff grade to 
distinguish between ore blocks and waste blocks does not 
always lead to the best mining schedules because 
maximization of undiscounted profits does not necessarily 
give the best economic results when the objective is to 
maximize NPV of the project and the system is constrained.

It is not only the above assumption which imposes 
limitations on the breakeven cutoff grade. Another 
underlying assumption in using the fixed break-even cutoff 
grade has been the fixed cost assumption. The costs are 
assumed to stay constant not only through time but also 
through the deposit. Doing an analysis by assuming costs to 
be the same throughout the deposit is not a realistic 
assumption.

The following examples will illustrate the issues 
raised in the preceding discussion.
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2.4.3. Cutoff Grade Example
Mason (1984 ) gave an excellent example of a case

showing why the analysis of cutoff grades cannot simply be
based on a simple break-even analysis when the objective is 
to maximize discounted profits. His example will be 
included here.

Assume
1. Mining system is concentrator limited,
2. Mining capacity is unlimited,
3. Refinery capacity is unlimited,
4. The selling price and cost of mining and

processing are constant.
Assumption 1, 2 and 3 state that the production rate

from this operation will be determined according to what the 
concentrator can process.

Assume that an orebody as shown in Figure 7 is to be
mined in three push-backs going from the top cut 1 to cut
3. The ore and waste are intermixed in the most part and
the objective is to determine the cutoff grade in order to
separate ore from waste in each cut such that maximum 
economic outcome is realized.

Given the above assumptions, the cutoff grade chosen 
for each cut will determine what proportion of the cut is 
ore and what proportion is waste. As a result the time
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required to mine the individual cuts will depend on how much 
ore is in the cut (therefore it depends on the cutoff grade) 
and how fast it can be concentrated.

The analysis of the cutoff grade in cut 3 is the
simplest one to analyze because decisions with respect to 
this cut are not influenced by any future cuts. If the
cutoff grade is set to zero in this cut, all the material in 
the cut would be treated as ore and the value of the cut
will at best be some small amount because much of the
material concentrated would cost more to process then the 
revenues they would generate. If the cutoff grade is 
increased slightly, some of the non-profitable material will 
be sent to the waste dump instead of the concentrater and as 
a result the value of the cut will increase.

The value of the cut will continue to increase with 
higher cutoff grades until the "break-even" cutoff grade is 
reached.

At the break-even grade, the material mined will 
generate just enough revenue to exactly cover its own 
variable costs for processing and marketing. If the cutoff 
grade is raised above this point, some material which could 
have made a contribution to the overall value of the cut 
would be sent to the waste dump and therefore the value of
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the cut would be reduced. The typical value of cut 3 vs 
cutoff grade is shown in Figure 8.

As indicated by Mason (1984), for the analysis of cut 
2, however there are additional complications. Analyzing 
the cutoff grade of cut 2 in the context of NPV indicates 
that the cutoff grade determination in cut 2 must consider 
its effect on the value of cut 3. The mining of cut 2 with 
a cutoff grade somewhat higher than the break-even grade 
will require some of the ore which is making only a slight 
contribution to the value of the cut to be thrown away. As 
a result, the cut would have less ore to be processed and 
the cut would be mined sooner, therefore the cash flows from 
cut 3 would be available earlier. For a small increase in 
the cutoff grade the value of bringing forward later cash 
flows will outweigh the value lost by throwing away material 
which is slightly above the break-even grade. As one 
increases the cutoff grade further, more valuable material 
will be thrown away and eventually the value lost will 
exactly balance the gains from bringing forward cut 3. At 
this cutoff grade the combined values of the two cuts is a 
maximum. If the cutoff grade is raised further, the value 
lost by throwing away material from cut 2 will outweigh the 
gains from bringing forward the cut 3. This analysis of cut
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2 with respect to varying cutoff grades is illustrated in 
Figure 9.

The mining of cut 2 with a cutoff grade below the 
break-even point will cause two things to happen; (1) The 
value of cut 2 will be reduced because non-contributing 
material would be mined and processed, and (2) The value of 
cut 3 will be reduced by delaying its cash flow. Therefore, 
mining cut 2 with a cutoff grade below the break-even would 
result in a serious reduction of the total values of cut 2 
and cut 3.

The major conclusions to emerge from this cutoff 
example is that the cutoff grade in a cut is a function of 
future values of cuts, yet future values of cuts are also a 
function of the very cutoff grade one is trying to 
determine. Therefore, the cutoff grades and p r o d u c t i o n  

scheduling are two interdependent variables that must be 
determined with respect to one another. The cutoff grade 
determined by considering the value of future cuts will 
generally be higher than the simple break even-cutoff grade.

2.4.4. Cutoff Grades As a Function of Total Mining System
The cutoff grade analysis in the previous example was 

based on the assumption that the mine was only constrained 
by the concentrator capacity and therefore the production
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rate was controlled by the concentrator (remember, the 
mining and refinery capacities were unlimited). These 
assumptions in essence are very simplistic and were made 
purposely to make a point that there is an important 
difference between the break-even cutoff grade which 
maximizes undiscounted profits and the optimum cutoff grade 
which maximizes the total discounted profits when the system 
is constrainted.

In a real mining situation, however, the assumptions of 
the previous example may not be true, the mining system will 
not only be constrained by a single concentrator capacity 
but also by the capacities of other subsystems of the 
production process. Depending upon the grade distribution 
of material being mined, the production rate, i.e., the 
timing of the revenues in future cuts, will be controlled 
not only by the concentrator capacity but also by the 
limitations imposed by other sub-units such as mining 
capacity of ore and waste and smelter capacity.

Lane (1964 ) was one of the pioneers who realized this 
and showed that the cutoff calculated by way of the cutoff 
grade example of the earlier section was actually one of six 
cutoff grades one would need to analyze in choosing the 
optimum. To see this let us look at the analysis of what he 
defined as balancing cutoff grades.
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Lane's theory of cutoff grade is based on a mining 
model which consisted of three stages: mining,
concentrating and refining. He viewed the mine as the area 
where ore is extracted from the ground, the concentrator as 
a facility where the crude ore is upgraded by various 
processes to a concentrate and a refinery as a plant where 
the concentrate goes through the finishing process to 
produce a product which is ready for manufacturing. In this 
model, each stage is assumed to have its own associated cost 
and limiting capacity.

Before going into this full model consisting of three 
stages, consider a new model where the mining system 
consists of two stages, mine and mill. In this context, the 
analysis of cutoff grades in cut 2 of Figure 9 will be 
carried out again, this time assuming the hypothetical 
deposit to be mined under the limitations of both the mining 
and the concentrator capacities.

Since the mine and mill both might have restricting 
capacity, depending on the grade distribution in the cut, 
the time it will take to mine cut 2 will be a function of 
the cutoff grade chosen. For instance, if the cutoff grade 
chosen defines most of the cut 2 material as ore, and 
concentrator capacity is greater than mining capacity the 
ore would be processed as fast as it is mined. Therefore



T-3073 43

the system will be limited by the mining capacity. On the 
other hand if the concentrator capacity is smaller than the 
mining capacity and the cutoff grade chosen again makes the 
major portion of cut 2 ore, then the system would be mined 
and processed as fast as the concentrator can process the 
ore, therefore the system would be limited by the 
concentrator. Now let us consider this last case again. 
This time assume that the cutoff grade chosen classifies 
most of the material in the cut as waste and very little as 
ore. Having the concentrator capacity less than mining 
capacity may not make this system concentrator limited 
because most of the mining capacity will still be engaged in 
removing waste. Therefore the time it takes to mine the 
increment may still be determined by the mining capacity.

Therefore, depending upon what cutoff grade is chosen 
and the grade distribution existing in the increment, one of 
the units in the mining system will determine when cut 3 can 
be mined. Therefore the limitations imposed by the capacity 
of various units in the system have a direct influence on 
the combined value of cut 2 and cut 3 and, as a result, 
influence the choice of cutoff grade in cut 2. Since the 
value of the cutoff grade in cut 2 is not known, its value 
needs to be chosen such that value of cut 2 will be maximum
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and at the same time its discounting effect on the value of 
cut 3 kept at a minimum.

Figure 10 shows two curves each representing the NPV of 
cut 2 and cut 3 at different cutoff grades. The curve 
labeled as Vm is the case when cut 2 is mined at the rate 
determined by the mining capacity and the curve labeled as 
Vc is the concentrator limiting case and represents the 
situation when the cut 2 is mined at the rate determined by 
the concentrator capacity.

There are three cutoff grades which are of interest on
these curves. They are indicated as gm, gcm and gc. The
cut off grade gm results in the maximum combined discounted 
value when cut 2 is mined at maximum mining capacity. The 
grade gc is the cutoff grade which gives maximum discounted 
value when cut 2 is mined at the maximum concentrator
capacity, the gcm is the cutoff grade at which there is 
enough ore and waste such that both the mine and mill can
operate at full capacity in mining of cut 2.

If one chooses gm as the cutoff grade in mining cut 2, 
the mining system as seen in Figure 10 will be concentrator 
limited i.e., cutoff grade gm will proportion ore and waste 
in cut 2 in favor of ore such that milling of this ore
cannot be accomplished as fast as it is mined and therefore
it will take longer to process the cut than to mine it. And
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the best the operation will be able to do in terms of 
combined NPV value for cut 2 and cut 3 will be at the point 
B on the NPV-axis. If the cutoff grade gc is chosen as the 
cutoff grade to be used in cut 2, most of the material in 
cut 2 would be considered as waste. Therefore most of the 
mining capacity will be engaged in removing waste material 
and therefore ore removal will not be able to keep up with 
the concentrator's daily tonnage requirements. At this 
cutoff grade the system is said to be mine limited and the 
combined value of cut 2 and cut 3 will at best be at point C 
on the NPV-axis.

At the cutoff grade gcm, however, both NPV curves 
intersect with each other. This indicates that both the 
mine and mill will operate at their full capacity in 
removing and processing the cut 2 material. This cutoff 
grade, gcm, will proportion the material in cut 2 such that 
the mining capacity can provide enough ore to the 
concentrator as well as removing all the waste necessary to 
uncover this ore. This cutoff grade is referred to as the 
balancing cutoff grade by Lane (39).

In this hypothetical example, it will be most 
advantageous to mine cut 2 with the balancing cutoff grade 
of gcm, because this is the grade where combined values of 
cut 2 and cut 3 will be maximized. This does not mean
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however that the balancing cutoff grades will be the optimum 
ones for all cases. As shown by Lane (1964), depending on 
the grade distribution of the cut being analyzed and the
assumed capacities, the optimum cutoff grade can be any one
of these three cutoff grades. Figure 11 shows a hypotheti
cal case where gm would be the optimum cutoff grade instead

of 9mc-
If the model in the proceeding discussion is upgraded 

to include all three stages of the mining system instead of 
just two, the actual cutoff grade would have to be
determined by choosing a cutoff grade from among 6 cutoff 
grades as shown in Figure 12. The grade values gm, gc, gr
are the limiting cutoff grades for the mine, mill and 
refinery and Gmc, Gmr, Gcr are the balancing cutoff grades 
between mine and mill, mine and refinery, and mill and 
refinery respectively.

As the preceding discussion has clearly shown there is 
more to the analysis of cutoff grades than simply calculat
ing the break-even cutoff grade when the objective is to 
maximize the net present value of a deposit rather than 
maximizing total profits when there are capacity limitations 
involved. The decision as to what to consider as ore and 
waste in a mining increment of the deposit is a function of
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the interactions of the mining units with the ore grade
distribution.

But all too often, the decision as to whether a block 
is ore or waste is taken in the context of the break even 
cutoff grade without considering the influence of the entire 
system and other blocks in the system. It is obvious that a 
prior decision like this as to what is ore and what is waste 
will not always lead to the best mining schedules. The 
model which will be proposed in this work will eliminate
this a priori decision process and will provide the context 
where this decision is made as a function of the total
mining, milling, refining system.

2.3.5 Summary
The economic break even analysis has significant merit 

when taken in the context of maximizing total profits from a 
deposit when the total mining system is assumed to be 
unconstrained. However, it has serious drawbacks when taken 
in the context of NPV analysis and when the problem is 
constrained such as in actual practice.

As pointed out by Carlisle (1954) the pit which is
optimized on the basis of break even analysis will result in 
a lower NPV than the maximum attainable NPV. The actual
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maximum NPV pit will always be smaller than the break even 
pit obtained for the unconstrained case.

The break even cutoff grade assumes operations are not 
constrained by the capacity limitations of various subunits 
of the system and therefore does not consider future effects 
of this cutoff grade decision. As a result, the break even 
cutoff grade when used in production scheduling will at best 
maximize the undiscounted profits. Therefore development of 
any mine plan based on maximization of undiscounted profits 
when considered within the time value of money framework is 
an inferior production schedule (i.e., lower NPV for the 
operation) than the one attainable.

As a result, it can be concluded that even with the
application of the computers, mining engineers are far from
getting a plan that is best as long as:

1. One does not realize the ultimate pit limits 
obtained by the existing algorithms are the outline 
of the probable reserves and mistakenly treat this 
pit limit as the optimum contour where one will 
maximize the NPV value of the operation.

2. The cut generation and sequencing of cuts are
designed on the basis of a trial and error approach
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using an arbitrary profitability criteria
(stripping ratios).

3. Production schedules are carried out by a trial and 
error approach based on fixed break-even cutoff
grades.

2.5 HEURISTIC OPTIMIZATION TECHNIQUES
If a deposit is analyzed, with the traditional concepts 

or with computerized techniques by following the sequence of
logic given in section 2.2, the deposit may be rejected
because it would not meet a company's required minimum rate 
of return. Furthermore, designing a mine based on a single 
ultimate pit limit and a single fixed cutoff grade and a 
single sequence of cuts will usually result in lower returns 
than the mine is capable of generating.

As a result, planning a mine with the approaches 
described has many faults. Realizing these limitations, 
many attempts have been made to address and alleviate some 
of the problems through various heuristic, empirical 
techniques.
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2.5.1. Concept of Profcost
It was pointed out as early as 1968 that the optimum 

ultimate pit limit which maximizes the NPV of the deposit 
may not be the same as one found by break even analysis 
(Ericson 1968, Halls, et al. , 1969, Wells 1978). This
realization might have resulted from observations that one 
can always find another pit, smaller in size, than the break 
even pit which gave higher discounted returns. Hence, in 
order to ensure an ultimate pit limit design which maximized 
discounted cash flows the concept of imposing some minimum 
profit from every increment of ore was suggested by Ericson 
(1968). (Incidehtly, the profit suggested by Ericson be
haves like any of the cost items in the calculations and 
therefore is referred to as "profcost".)

Although it was not clearly understood at the time of 
its invention, the idea of a profit requirement serves as a 
parameter to reduce the size of the ultimate pit limit so 
that the pit found by ultimate pit limit algorithms is 
smaller than the break-even pit.

Even though the idea of profcost is effective in 
reducing the size of the pit, there is no guarantee that the 
truly optimum pit can be found by this method. The 
assignment of a wrong value to prof cost can have a more 
serious effect than having the break-even pit at hand, by
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COLORADO SCHOOL of MÏNE& 
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causing the size of the pit found to be smaller than the 
optimum one ; hence, swinging things in the other extreme.

As a result of this difficulty of assigning values to 
profcost, various other methods were developed and suggested 
to find the NPV optimum pit.

2.4.2. Concept of Parametrization
Since the optimum size of the ultimate pit which yields 

the maximum NPV in a constrained system may be smaller than 
the break-even pit and its exact location cannot be known 
without knowing the optimum production schedule, current 
attempts to find the optimum schedule are based on a trial 
and error approach. Instead of basing the final overall
mine plan on a single pit, a number of different size trial 
pits are generated. Full mine planning as pertaining to
sequence design and production scheduling are then carried 
out considering all the pits generated, and choosing the one 
that gives maximum NPV (Halls, Bellum, and Lewis 1969, Wells 
1978, Suriel 1984).

There are various approaches to finding these different 
size pits. One way uses successively increasing profcosts 
as mentioned earlier. As the profcosts are increased 
progressively the generated pits become smaller and smaller.
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Another approach is to vary the cutoff grade for the 
deposit. It is common practice in mine planning to impose a 
planning cutoff grade on the geologic block model so as to 
differentiate between ore and waste blocks before the final 
mill or waste decision is made. By changing the value of a 
fixed cutoff grade and then preprocessing the blocks, one 
obtains a number of successfully different pits to analyze.

The generation of multiple pits by this method was 
first suggested by the Kennecott Engineers (Halls, Bellum, 
and Lewis 1969). Its use is reported by Blackwell (1971) in 
planning of the Bougainville deposit. Lilico (1973) also 
used this approach to demonstrate the concept of 
"optimization" in mine planning.

The most recent technique of generating multiple pits 
were suggested by Francois-Bongarcon (1978). This method, 
which is referred to as parametrization of reserves, works 
with original block grades and determines a series of 
different size pits, each containing the maximum quantity of 
metal for its size. The details of the algorithm are 
described in a number of publications (Francois-Bongarcon 
and Marachal, 1976; Francois-Bongarcon, 1978; Dagdelen and 
Francois-Bongarcon, 1982).

The advantages of the parametrization algorithm is that 
the generation of all the different pits is accomplished in
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one single run. This is in contrast to the previous 
procedures where the different size pits are obtained as a 
result of changing the same variable and applying the 
ultimate pit limit algorithm repeatedly. The disadvantage 
is that one has no idea where exactly the largest, upper 
bound, break even pit is unless the full economic analysis 
is carried out on all the pits found by the algorithm.

2.4.3. Alternate Sequences of Extraction
The design of extraction sequences starting from a 

known location in a deposit and leading towards the ultimate 
pit limit was discussed previously in section 2.23. There 
can be many different feasible extraction schedules in a 

reasonable size deposit leading towards the ultimate pit 
each having its own cash flow schedule depending upon the 
engineer's judgement and common sense.

These extraction schedules when coupled with the 
geology and grade distribution of the deposit will result in 
different ore and waste schedules. As a result each 
extraction schedule will produce a different realization of 
NPV for the deposit. Therefore, during mine planning with 
existing tools as described in 2.2.3, more than one plan of 
extraction needs to be analyzed. Referring to this aspect
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of mine planning for the Baugainville deposit Blackwell 
(1971) makes the following statement:

The final target was to establish the sequence in 
which the orebody should be mined. As can be 
imagined, an orebody of this size gives fairly 
considerable scope for different permutations. In 
simple terms, however, there were two obvious 
extreme possibilities, which consisted of commenc
ing operations at either end of the pit? the one 
possibility having a high grade and stripping 
ratio, the other extreme having these parameters 
with lower values. The choice of strategy was made 
by simulating these two extremes together with 
intermediate combinations.
In all, four mining sequences were considered.

Hence, it is common practice in heuristic optimization 
to do economic analysis on a number of different sequences 
of extraction for each pit generated by the parametrization 
algorithms.

Although looking at more than one sequence of extrac
tion is a good idea, there is still no assurance that the 
best sequence is included among the ones generated. 
Furthermore, nobody can prove that mining "next best" ore 
increments in the development of the deposit will result in 
an extraction schedule which will maximize the NPV.
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2.6 TRUE OPTIMIZING TECHNIQUES
As seen in previous discussions, there are many 

problems with the heuristic optimization techniques. 
Realizing the problems with existing heuristic optimization 
techniques, various attempts have also been made to 
formulate and solve the production scheduling problem as a 
mathematical program where the solution obtained is guaran
teed to be the optimum.

These attempts can be listed as;
1) Johnson's Linear Programming Approach (Johnson, 

1968).
2) Integer Programming Approach (Gangwar, 1973)
3) Asarco's Lagrange Multiplier Approach (Williams and

Davis, 1973)

Although the production scheduling problem can be
successfully formulated as a linear or integer programming 
problem, there have been problems in coming up with an
efficient solution algorithm. When formulated as a large 
scale mathematical optimization problem (See Chapter 3) the 
number of variables and constraints involved with the 
production scheduling model of a typical mine is in the 
hundreds of thousands and it is not possible to efficiently 
solve large scale linear programs simply by applying
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commonly available solution algorithms. The existing 
algorithms work efficiently on small problems yet become 
ineffective when applied to large ones.

It has been discussed in the literature that sometimes 
the only way to solve large problems is to recognize their 
special structure (Lasdon, 1970). For some problems which 
do not possess a special structure optimum solutions cannot 
be obtained due to the large memory and computational time 
requirements. The classical problems such as airline 
scheduling problem and the traveling salesman problem in 
operations research are of this type (Lasdon, 1970; Murty, 
1979).

Therefore in order to solve the production scheduling 
problem, past attempts have either tried to define the 
structure of the problem and made use of this structure in 
the solution algorithm (Johnson 1968, Davis and Williams 
1973) or tried to fit this large scale problem into a 
smaller model (Gangwar 1974).

2.6.1 Dantzig-Wolfe Decomposition Algorithm
Johnson (1968) applied the Dantzig-Wolfe decomposition 

principle for solving large scale linear programming 
problems to the production scheduling problem. Johnson's 
method was to decompose the problem into two problems by
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including the capacity blending constraints in the master 
problem and the sequencing constraints in the subproblem. 
As a result, solving the subproblem became a matter of 
solving ultimate pit limit problems and solving the total 
problem thus became a matter of solving ultimate pit limit 
problems a number of times for successive iterations until 
conditions for the termination are satisfied.

In solving subproblems, Johnson proved that the 
structure of the single time period subproblem is a network 
flow problem and therefore suggested using the maxflow 
algorithm for solving ultimate pit limit problem. Since his 
work this algorithm is considered one of the true optimum 
ultimate pit limit algorithms available to the mining 
industry.

2.6.2 Pure Integer Programming Algorithms
Gangwar (197 3) attempted to formulate and solve the 

production scheduling problem as a zero-one integer linear 
program. In order to take into account the uncertainties 
associated with grades assigned to blocks and for the demand 
of the final product, Gangwar (197 3) introduced an extra 
chance constraint in the formulation of the problem. In 
this formulation, depending upon the choice of approxima
tions made to convert a stochastic constraint into a
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deterministic one, the binary problem either becomes a non
linear binary integer model or binary linear model. Hence
the solution methodology suggested by Gangwar (197 3)
included either the existing 0-1 integer programming 
algorithms applicable to non-linear programs or to linear
integer programs. As such, as a possible solution
algorithm, Gangwar suggested use of Lawler and Bell's (1966) 
binary programming algorithms for the nonlinear case, and
Geofrian's (1966, 1967) implicit enumeration methods,
Lemke's and Spielberg's (1967) direct search algorithms or 
Gomory's (1963) integer programming algorithm for the linear 
case.

It is important to realize here that all these 
algorithms are capable of generating solutions in a 
reasonable amount of time for only a small number of 
variables and constraints. As a result, realizing the
limitations of the solution algorithms proposed to solve the
production scheduling problem Gangwar optimistically said:

All the available integer programming algorithms 
require the total number of binary variables to be 
kept reasonably small, in the neighborhood of 300- 
400 variables. For the open pit design problem 
this poses a serious limitation on the problem 
size. To circumvent this limitation for large pit 
designs we need to aggregate and disaggregate the 
blocks and the time span of the scheduling periods 
in a multistage programming approach; so that in



T-3073 62

the initial stage of planning (for the 
determination of the long range mining plans) the 
unit scheduling period can be 2 to 5 years and the 
unit block size will be kept as large as possible 
such that it can be mined, milled and processed in 
one time period.

The maximum number of blocks that can be considered 
with the direct application of an existing integer program
ming algorithm such as the one suggested by Gangwar (1973) 
is in the neighborhood of 30 to 40 blocks assuming a 5 year 
production scheduling span. This number of blocks, in this 
author's opinion, cannot realistically represent the problem 
being solved.

2.6.3 The Lagrange Multiplier Approach
In 1973, another attempt was made to solve the

production scheduling problem by taking the special
structure of the problem into account. This attempt came 
from Asarco's needs for a production schedule for their open 
pit mines : the problem was contracted out to Systems
Control Incorporated in California (Williams, 1973).

In their attempt to come up with a procedure to
determine which blocks of ore and waste should be removed in 
each mining period so as to maximize the discounted cash
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flow for the mine subject to the mining and milling 
operating constraints, S.C.I. used the idea of Langrange 
multipliers in coming up with a solution alogorithm to the 
problem. Although their application of Lagrange multipliers 
to the problem is very crude, at least they have expanded 
the idea of the penalty parameter concept introduced by 
Lerchs and Grossmann in 1965 and identified as the 
"assignment of Lagrange multipliers to the constraint set” 
by Johnson (1968).

Realizing the size of the full scale multi-time period 
production scheduling problem was extremely large, S.C.I. 
concluded it was not practical to optimize with respect to 
all mining periods and all types of constraints 
simultaneously. Instead, an approximate sequential
decomposition and synthesis procedure was employed which 
treats the scheduling problem as a sequence of tractible 
problems. Thus the scheduling problem in the S.C.I. 
approach was solved one period at a time. By doing this, 
they lost the ability to take into account the effect of the 
time periods on one another.

2.6.4 Summary
The decomposition of the production scheduling problem 

by way of the Dantzig & Wolfe method may lead to optimum
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solutions which are in terms of the fraction of blocks being 
mined. This, in turn, can result in a production schedule 
which is not feasible for a given mining condition.

The integer programming approach (Gangwar, 1973) 
eliminates the shortcomings of fractional mining of the 
blocks yet poses more serious problems in terms of realistic 
modeling of the problem and as a result obtaining an optimum 
production schedule.

Asarco's lagrange multiplier approach alleviates the 
problems of the previous two methods but still solves the 
problems incrementally on the basis of single time per
iods. By solving the problem as they have done, the 
production schedule which will result in maximum NPV can be 
missed.

To further overcome the difficulties of the existing 
mathematical optimization approaches, the production 
scheduling problem will be formulated as a large scale 
linear programming problem in Chapter 3. Based on the 
structures of the problem, a solution algorithm based on the 
generalized lagrange multipliers concepts of mathematics 
will be proposed in Chapter 6 and 7. The proposed method is 
the extension of the concept which are already familiar to 
the mining engineers. Before going into the development of
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the proposed method the relationship between lagrange 
multipliers and cutoff grades will be introduced in chapter 
5.
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CHAPTER 3

MATHEMATICAL FORMULATION OF THE PRODUCTION 
SCHEDULING PROBLEM

3.1 INTRODUCTION
The set of values assigned to the critical mine 

planning variables such as capacities of different units in 
the production process, cut off grades and sequence of 
extraction define an economic outcome. They also define 
three distinct sets of actions required during the 
production stage. These are:

1. To mine or not mine a block of material;
2. When to mine a block if it is to be mined;
3. Once it is mined what to do with it (i.e. whether or

not to process it).

The decision of when to mine a block of material and 
once it is mined what kind of action to take is commonly 
referred to as production scheduling and this is the basic
purpose of mine planning as discussed in Chapter 2. The
mathematical model which will provide mining engineers with
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the necessary guidance for the actions identified above will 
be referred to as the production scheduling model and the 
definition and formulation of this model will be the purpose 
of this chapter.

In coming up with a production scheduling model, such 
that analyzing the model will result in the best mining 
schedule, two factors must be carefully considered. ('First, 
the model should be a representation of reality. Secondly, 
with the production scheduling problem as discussed in 
^Chapter 2, no a priori decision should be made as to whether 
a block should be mined or not, nor as to whether the block 
is ore or waste.^ These decisions should be made by 
considering the influence of the entire system in the 
model.

Therefore, the mathematical model of the production 
scheduling problem being formulated must consider the state 
of the whole mining system by including all the pertinent 
geological, physical and economical constraints and factors.

With every mathematical model certain assumptions are 
made to represent the realities of the problem being 
solved. Under the guidance of the preceding discussion, the 
following assumptions are made for the production scheduling 
model formulated in this dissertation.
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2 ASSUMPTIONS OF THE MODEL

Assumption 1.
It is assumed that the mineralized orebody can 

be divided into a finite numbers of rectangular
blocks of material, and the expected value of 
average grade for each block can realistically be 
estimated.

Assumption 2.
The usual open pit mining process proceeds in a 
manner such that the practice of benching gives the 
sides of the pit a step like structure. Thus a 
block of any mineable shape having vertical sides is 
acceptable as long as its vertical height does not 
exceed the height of the bench.

Assumption 3.
The safe pit slope angle is the angle between 

the sides of a mining cut and a horizontal plane at
which the material can stand without support for 
orderly mining of the deposit. It is assumed that 
these slope angles are known before hand throughout
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the deposit for all rock types. This slope may vary 
in the vertical direction as well as horizontally.

Assumption 4.
Let N represent the total number of blocks to be 

considered for the T time period production 
scheduling problem. In order to remove a block n 
which is directly overlain (restricted) by another 
block in its cone, the overlaying blocks must be 
removed first in such a manner that the wall slopes 
of the resulting pit do not exceed the safe pit 
slopes in any direction. Therefore, if r x
represents the set of overlaying restrictive blocks 
which must be completely mined in order to expose 
block x, then it is assumed that the elements of r x 
are completely known for each block n where n = 1, 
2, ..., N•

Assumption 5.
All the pertinent economic information such as 

prices of commodities being mined, costs of mining, 
milling, smelting and marketing and discount rates 
are available or can be estimated not only for the 
existing year but also for the total duration of the
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production scheduling period. It is important to 
emphasize here that great care should be given to 
the collection and estimation of this basic data 
since the solution of the production scheduling 
problem is only as good as the data on which it is 
based.

Assumption 6.
It is assumed that the most critical con

straints in addition to the geometric constraints 
for the long and medium range production schedules 
may be classified into the following categories;

1. Mining capacity (including ore and waste)
2. Concentrator capacity
3. Refinery capacity
4. Mill feed grade
5. Production required.

Although these categories represent a somewhat 
simplistic classification, they represent the 
categories of most concern in present practice 
(Mathieson, 1982).
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It is further assumed that the upper and lower 
bounds for these constraints are known and can be 
expressed as linear relationships of the material 
being mined.

Assumption 7.
Conditions other than the geometric factors may 

influence the orderly mining of a pit. These 
conditions may arise due to operating procedures 
such as the location of haul roads. It is assumed 
that these influences play a rather important role 
in short term scheduling and not in long term 
scheduling. Therefore they are considered to be of 
only minor importance in determining long and medium 
range production scheduling and will not be 
considered in the model developed in this study.

Assumption 8 .
It is assumed that the economic effects of 

factors such as depreciation and taxes on production 
scheduling requires a separate research study and 
therefore are not taken into account in this model.
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3.3 DEFINITION OF VARIABLES AND TERMS OF THE MODEL

BLOCK

n

XmL Variable n

let indicates fraction of block n to be usedn
as material type m in time period t.

1 for ore
m =

2 for waste

x f  = 1  if block n is mined as material type m in
time period t.

Xmt = 0 otherwise.n

3.3.1 Objective Function
Since the objective of the model will be to maximize 

the NPV of revenues, decisions will have to consider the 
value of the block for each time period of the scheduling 
duration with respect to its material type.
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let

rKt+l)
n

c2(t+l)

c f  be the coefficient in the objective
\function for variables representing 

block n for material type m in time 
period t.

ItCn then is the dollar value per unit volume
of the block n when mined and 
processed in time period t as ore.

5 stripping cost per unit volume of 
the block n when it is mined as 
waste in time period t.

the coefficient for successive time 
periods is discounted by the 
interest rate (d) acceptable to the 
firm.

The cost of stripping will also be 
discounted by the interest rate d 
from one time period to another

,2t
n is the

= C It
n /(1+d)

= C^/U+d)

With these definitions the terms of the objective function 
will be;
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Maximize Z = E E E CmL Xmz 
t m n n n

where: n = 1, .. .N, N is total number of blocks in
the deposit

m = 1, ...M, M is 2 since the material type is
, either ore or waste.

t = 1,2...T where T is total number of
periods.

3.4.2. Constraints of the Model 

Mining Capacity:

let and be lower and upper bounds for stripping 
capacity. Also let an be the volume of the material in
block n. The stripping capacity constraints for time
period t will then be as follows:

The lower bound
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and the upper bound

* an Xn t < wt

Concentrator capacity:
let O S  0*" be the lower and upper bounds of the
concentrator capacity requirements respectively. Also 
let an be the volume of material in block n.

The lower bound constraint for concentrate capacity 
in time period t is:

: an Xnt > n

The upper bound constraint for concentrate capacity in 
time period t is:

For the feed grade requirements, let gn be the grade
assigned to block n. Also let G_ and G_ be the lower and—n, n
upper values for the concentrator mill feed grade require
ments repectively, then the lower limit constraint for the 
mill feed grade in time period t will be

I X
n n

It
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or.

ï <g - çt) > 0
n

and the upper bound will be

l gn . L

or

e (9 n  - G t )  x i t ( °n

3.4.3 Available Block Volume Constraints
Since a given block can only be mined once, either as 

ore or waste, the following constraint must be included to 
enforce this.

2 T
E I

m=l t=1
E E < 1  V n

or

Xn1 + Xn2 + " " +  XnT + Xn^ + Xn 2+*” *+ Xn^ < 1



T-3073 77

3.3.5. Sequencing Constraints
L/In order to mine a block n, in a given time period t, 

all the restricting blocks must be mined in or before time 
period t. The set of constraints to ensure these geometric 
limitations take the form shown on the following page for 
the hypothetical four block case given in Figure 13. ^

These constraints indicate that for a uniform 45 degree 
slope there might be as many as nine constraints per block 
per time period. If one is looking at a ten time period 
problem there would be 90 constraints per block. Hence, for 
a reasonable size deposit (100,000 block deposit) there will 
be about 900,000 constraints just for sequencing.

The feasible region formed by the sequencing 
constraints for a given block n will be represented by a set 
rn, and from now on, the sequencing constraints of block n 

will be referred to by e r T h e r e f o r e ,  this abstrac
tion e rn will mean the following: If the block n is
mined, all the blocks in its cone must also be mined. This 
representation will save time and space in describing the 
tedious sequencing constraints.

3.4 FORMULATION OF TWO TIME PERIOD PROBLEM
To illustrate the formulation of the production 

scheduling problem, assume that an open pit deposit is made
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up of four blocks and scheduling is to be carried out for 
two time periods and only upper bounds exist as various 
constraints. (See Figure 13).

With these assumptions the problem would be formulated 
as follows;

4 2
Maximize Z Z

n=l m=l
.m2 vm 2
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CHAPTER 4
STRUCTURE OF THE PRODUCTION SCHEDULING MODEL

4.1 INTRODUCTION
In order to solve large scale mathematical programs, 

similar to the one formulated in Chapter 3, one should make 
efficient use of the special structure of the problem. 
Therefore it is appropriate here to discuss the general 
structure of the production scheduling problem before 
discussing the solution algorithm given in the following 
chapters.

The compact representation of the problem formulated in 
the previous chapter can be given in terms of matrix 
notation. This representation is as follows:

Maximize C^X^ + C^X^+...CnXn 
Subject to

Capacity-Blending 
Constraints

AX
AX'

< b
< b

AX < b

< 0



T-3703

Sequencing
Constraints

Reserve
Constraint

where:

xnmt -

E

n
m

83

EX1 + EX2 < 0

EX1 + EX2 + + EXt < 0

lxn+ lxn+ + IXn < 1 V n

Xjf > 0 Vn, m, t

1 x (n.m) vector of objective function cost
coefficients
(n.m) x 1 vector of variables
(m.t) x 1 vector of variables
(K x (m.n) matrix of capacity and blending
constraint coefficents for time period t.
(K x 1) vector of right hand side coefficients 
in time period t.
w x (n.m) matrix of (0, 1 or -1) coeffients 
for the sequencing constraints 
block number
ore or waste indicator superscript
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K = number of capacity and blending constraints
for a given time period 

w = number of overlaying restrictive blocks in any

This formulation of the production scheduling problem 
contains an important mathematical structure. As indicated 
in the formulation, there are two distinct sets of 
constraints. The first set deals with the capacity 
restrictions and grade limitations in each time period. 
This set will be referred to as capacity blending 
constraints. The second set of constraints are for making 
sure that the geometric and sequence limitations imposed by 
the pit slopes are not violated. These will be referred to 
as sequencing constraints.

The characteristics of the sequencing constraints are 
that all the coefficients in the coefficient matrix E are 
either 0, 1, or -1. A matrix A is called unimodular if the 
determinant of every square submatrix of A equals 0, +1 or 
-1. It has been proven that if a problem with a coefficient 
matrix which is unimodular is solved, the solution set will 
be necessarily 0 or 1 if the right hand sides are also 0 or 
1 (Johnson 1968). This feature of sequencing constraints 
gives the sequencing problem a network structure and this
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plays an important role in obtaining integer solutions in 
the solution algorithm developed in Chapter 6.

4.2 STRUCTURE OF SINGLE TIME PERIOD PROBLEM
In order to explore and to further develop an 

understanding of the production scheduling problem as 
formulated in previous sections, let us look at the single 
time period production scheduling model.

Assuming that the objective is to maximize profits in 
mining the deposit in a single time period this model can be 
formulated as follows:

Maximize CX 

Subject to:

AX < b
EX < 0

I X,mn < 1 V n
m

> 0 V m and n
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If the capacity blending constraints of the single time 
period problem in the above formulation are removed one 
obtains the following problem:

Maximize CX

Subject to: EX

Sequencing Z xm  ̂ „
Constraints m n

This reduced problem may be stated so as to maximize 
the revenues (based on block current time period block 
values) subject to slope constraints.

Hence this problem is the formulation of the ultimate 
pit limit problem on which a number of papers have been 
published. As a result, the ultimate pit limit problem is a 
special case of the general single time period production 
scheduling problem.

If the feasible set of solutions for the sequencing 
constraints is represented as r the single time period 
problems can be written as
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Max CX
A X  < b  
X  £ r

Where r indicates the set of blocks which are feasible
for the slope constraints and includes the requirements
of I Xm < 1 and Xm > 0. 

m n n
In this form of formulation, constraints of type AX < b

will be referred to as side constraints. Constraints of
X e r will be refered to as the constraint set with special
structure. In coming up with a solution algorithm to the
production scheduling problem, the side constraints will be
relaxed by multiplying them by lagrange multipliers and
putting them into the objective function. This method, the
lagrangian relaxation method (Murty, 1979), will be the
basis of the solution algorithm developed in this thesis and
will be introduced in the next chapter.
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CHAPTER 5

BASIC CONCEPTS OF LAGRANGE MULTIPLIERS

5.1 INTRODUCTION
The concept of lagrange multipliers as presented in the 

mathematical optimization theory will be a very important 
part of the solution technique developed in this disserta
tion. In the area of mathematics, the theoritical develop
ments and subsequent use of the lagrange multiplier approach 
for solving optimization problems goes back to the early 
1960's (Everett, 1963). Since then, a class of integer 
problems with a special structure have been successfully 
solved by using this concept (Geofrian, 1974).

In the area of mining, use of the lagrange multiplier 
concept also goes back to late 1960. Although it was not 
realized as such, the concept of cutoff grades, profcosts 
and the concept of parameterization are all simplistic 
applications of the lagrange multiplier theory. In this 
chapter, the concept of lagrange multipliers will be 
introduced. Specifically, in order to make the reader more 
comfortable with the concept of Lagrange multipliers, the 
concept of classical constraint optimization will be
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reviewed and the similarities between cutoff grades and
Lagrange multipliers will be developed.

5.2 SINGLE CONSTRAINT PROBLEM AND ITS LAGRANGIAN
Assume a single layer deposit of six blocks with an 

assigned grade g^ for each block i (i=l, to 6 ) (Figure 
14). If the problem is to find n blocks such that n is 
greater than or equal to j) and less than or equal to 0 among 
the existing six blocks which yields the maximum quantity of 
metal, then the formulation of this problem in terms of the 
terminology discussed in Chapter 3 is as follows.

Max Q = gj X-l1 + g2 X2  ̂+ g3 Xg1 + g4 X ^  + g5 Xg1 + g6 X^ 1

Subject to:
0 < Xg1 + X21 + Xg1 + X41 + Xg1 + Xp1 < 0  (d)

Xj!j = 1 if the block is mined (b) (5.1)

X^ = 0 otherwise (c)

If the multiplier u^ is assigned to the constraint
(5.1) (a). The lagrangian of this problem can be written
(Murty 1979) as:
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Max L(u,x)= (g^ - uj) X^ 1 + (g2 
( 9 4 - û ) X4 1 + (g5

Subject to:
Xn  ̂ is 0 or 1

Uj_ > 0

In the classical optimization theory, in order to solve 
a constrained problem the general procedure is to transform 
the problem into a lagrangian form and then take the deriva
tive of the lagrangian with respect to the variables. Here 
we will deviate from this classical approach and look at the 
problem from another angle. This approach will be as 
follows.

Set u^ = 0 and solve the langragian in problem 2.
Setting = 0 gives lagrangian to be

Max L (0,x) = g-L X ^  + g2 X2 1 + g3 X3 1 + g4 X4 1 + g5 X5 1 

+ 9fi Xfi1

Xn 1 is 0 or 1 (5.3)

Clearly the function in problem (5.3) is maximized by 
setting Xn 1 equal to 1 if g^> O and setting Xn 1 = 0
otherwise.

ui) X2  ̂+ (g5 - Ul) X31 + 
Ul> X51 + (g6 - Uj) Xfi1

(5.2)
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Notice that setting the langrangian = 0 has the same 
effect as relaxing constraint (a) of problem (5.1).

Now that it has been determined which variables are 
going to be Xn* = 1 or Xn* = 0 one needs to check if the 
solution obtained satisfies constraint (a) of problem
(5.1).

If the number of blocks mined (I X^) is within the
1__ _ n

specified bounds, (0. * îi Xn < 0 ), the solution is feasible
and the solution is optimal for a problem with an upper
bound constraint equal to ZX^^ (Everett, 1963) . If the
number of blocks mined is larger than the allowable number 

1 —(E Xn > 0 ) then: set u^ = c^ > 0 and maximize the
n

lagrangian in problem (5.2), which is;

Max L(u, x ) = (ĝ  - Cj IX1-̂ + (g2 - c1 )X2 1 + (g3 - c1 )X3 1

+ (94 - C1 )X41 + (g5 - C1 )X5;L + (g6 - c1 )x61

Subtracting some value cj greater than zero from the block 
grades, g^, will reduce the grade coefficients in the 
objective function and depending on the value of block 
grades and the value of the multiplier c^, the coefficient 
(ĝ  - Cl) will become negative or zero for some of the 
blocks when g^ < c .̂
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Clearly the lagrangian in problem (5.2) is maximized by 
setting = 1 , if the objective function coefficient for 
the lagrangian is (ĝ  - c^) > 0 and Xn 1 = 0 for (ĝ  -
cj) < 0 .

After this step, the constraint must be checked
again. Since some of the blocks previously mined may not be
mined in this iteration, the number of block mined
(I X^) might be within the limitation imposed by the total 
n
concentrator tonnage requirements; if it is we stop.
Otherwise one increases the value of the lagrange multiplier
and the process is repeated. In some cases the amount of
material mined will be less than the lower bound
(E Xn < ()). When this happens, one needs to lower the 
n

value of the multiplier û  and iterate again. By doing this 
some of the blocks which are penalized more than they should 
have been and not mined in the previous iteration get a 
chance to be mined again in this iteration. This procedure 
continues until the total number of blocks mined are within 
the capacity limitation and the optimality conditions given 
in theorem 6.2 are satisfied. (It should be realized that 
the inherent assumption in the above discussion is of course 
that all blocks contain ore material).

It has been known in the mining industry for a long 
time that in order to come up with nested incremental pits.
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one can increase or decrease the value of the cutoff grade 
(Halls-Bellum 1969). As was demonstrated in the preceding 
paragraphs, a single static cutoff grade behaves like the 
lagrange multiplier of the one constraint problem in 
mathematical terms.

5.3 LAGRANGIAN FOR TWO CONSTRAINT PROBLEM
In the previous analysis, only a single constraint was 

considered. This was the constraint on the total ore tons 
to be processed by the concentrator. This single constraint 
case is very simplistic and does not represent any actual 
mining situation. In a realistic mining environment there 
are many other constraints which limit the system as. well. 
For example, there are constraints on the total tons to be 
mined in terms of ore and waste. Furthermore, mining of a 
given block is also constrained by the mining ofjoverlaying 
blocks, etc. Therefore, to make the mining model a little 
more realistic, a second constraint limiting the total tons 
moved from the mine will be introduced. (Assume also that 
only upper bounds exist on these constraints). At the same 
time the block configuration will be changed such that the 
six blocks are located on a cross section as shown in Figure 
15. Moving from the single level model of figure 14 to the 
two level problem of Figure 15 necessitates the inclusion of
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sequencing constraints in the model, hence the formulation 
of the problem becomes:

Max Q = 9! Xjl1 + g2 + g3 X31 + g4:L + g5 X51 + g6 Xg1

s.t.: Xj1 + X2 1 +X3 1 + X4 + Xg1 + Xg1 < Ü
(5.4)

X1 + x2 +x3 + X4 + X5x + Xg-' + Xxz + X2Z

>X 3 2 + X4 2 + Xg2 + Xg2 < T

Sequencing constraints:

(Xc1+ X c2 ) - f x ^ + X 2 ) < 0 (X,1+X,2 ) - ( X ^ + X  2 ) < 05 5 \ 1 1 ' " 6 " 6  ' 2 2
(Xc1+Xc2) - (Xn1+X02) < 0 (X,1+X,2 ) - (X^1+X02) < 05 5 ' 2 2 6 6 7 3 3

;51+ x 5 2 ) - ( x 31+ x 3 2 ) < 0 ( x 61+ x 6 2 ) -  ( x 41+ x 4

Xn -̂ = 1 if the block n is mined as ore

Xn* = 0 otherwise

Xn 2 = 1 if the block n is mined as waste

Xn 2 = 0 otherwise
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If the set of feasible pits satisfying the sequencing 
constraints are represented by the formulation of the two 
constraint problem becomes

Max Q = gx Xj1 + g2 X2  ̂+ g3 X2  ̂+ g4 + g5 Xg1 + g6 X ^  

Subject to:

X11 + X2X +X31 + X4X + Xg1 + Xfi1 < ÏÏ

X11 + X21 +x31 + X41 + X51 + X61 + xl2
X22 +X32 + X42 + X52 + X62 < T

Xn1, Xn 2 e rn set of feasible pits (5.5)

Xn1 , Xn2 are 0 or 1 and Xn1 + Xn2 < 1

When multiplier u^ > 0, and u2 > 0 are assigned to the 
concentrator capacity and to the total mining capacity 
respectively, the lagrangian of problem (5.5) becomes :

Max L(u,x) = (ĝ  - û  - u2 )X1 1 + (g2 - - UglXgl- (g2 - û  - u2 )X3 1
(g4 - ux - u2) x4 1 + (g5 - ui - u2) X51 + (g6 - ux - u2) x^ 1
- u2 X]̂ 2 - u2 x22 - u2 X3 2 - u2 X4 2 - u2 X5 2 - u2 X6 2



T-3073 98

Subject to:

Xn*, Xn 2 e rn set of feasible pits (5.6)

xnlf xn2 are 0 or 1 and xn^ + Xn2 < le Vrie

5.3.1 Solution To The Two Constraint Problem
As can be seen, the lagrangian of two constraint

problems has a modified objective function subject to the
sequencing constraints. This modification is the result of 
penalties assigned by the multipliers. This problem is 
nothing more than an ultimate pit limit problem with a 
modified objective function. Therefore, in solving a six
block, two layer, two constraint production scheduling 
problem, one c a n  start again by assigning 0 values to the
(uj = 0, U2 = 0) multipliers. Now problem (5.5) becomes

Max 0 = gi Xj1 + g2 + g3 Xg1 + g4 X ^  + g5 Xg1 + g6 X^ 1

Subject to:

xnlf xn2 e r set of feasible pits 
Xn1, Xn 2 are 0 or 1 Xn 1 + Xn 2 < 1.

(5.7)
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To solve problem (5.5) by the lagrange multiplier 
approach problem (5.7) is solved first to determine which 
blocks to mine (Xn* = 1). A given block is mined if g^ > 0 
(the grade assigned to a block) is positive. Of course 
mining a block with a positive g^ > 0 will require mining
some waste blocks that fall into the cone of a positive
block. Once it is determined what blocks should be mined, a 
check must be made to see if the mining capacity constraints 
and the concentrator capacity limitations are violated. If
the number of ore blocks mined(I X_^) exceeds the capacity

1 -  n n(I Xn >0), and/or the number of total blocks mined
n

exceeds the total mining capacity limitations
i n

(I X^ + E Xn > T) then one or both of the lagrange
n n

multipliers will be increased by a certain amount, (û  = ĉ , 
u2 = c2 * and problem 5.7 solved again. By repeated 
modification of the multipliers the number of blocks to be 
mined can be brought into the feasible region. This 
feasible solution is optimal for a problem where the 
capacity limitations are equal to the number of blocks mined 
(Everett, 1963).

There may be cases however that no matter how the 
multipliers are modified, one will not be able to obtain a 
feasible solution or optimal to the problem. This condition
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is referred to as the "condition of gaps" and will be 
discussed in more detail in Chapter 7.

The solution algorithm developed in Chapter 6 in terms 
of lagrangian optimization theory will simply follow a 
similar method of solution in solving production scheduling 
problems. The side constraints corresponding to each time 
period of the multi time period production scheduling 
problem (i.e., blending and capacity constraints) will be 
relaxed by multiplying each of them by a lagrange multiplier 
and including them in the objective function. The 
lagrangian problem will then be solved by the algorithm 
developed for the multi time period sequencing problem in 
Chapter 7. Each time, the results will be compared with 
constraint requirements. Before going into the theoretical 
development of the solution algorithm, let us look at the 
relationship between the lagrange multipliers and the 
traditional mining concepts such as cutoff grades.

5.4. CUTOFF GRADES AND THEIR ASSOCIATION WITH LAGRANGE 
MULTIPLIERS
In mining, generally one speaks of two types of cutoff 

grades. One cutoff grade is to decide if a given block 
should be mined or not and treated as ore; the other is to 
decide what to do with the block if it is mined and
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originally not designated as ore by the first cut off grade, 
i.e., for ore, and waste separation after mining. These two 
types of cutoff grades are known as "in situ" and "in pit" 
or "milling" cutoff grades and they correspond to the 
lagrange multipliers of the two constraint problem discussed 
in the previous section. This similarity will be formalized 
here.

In solving problem 5.5 one not only needs to decide 
what blocks to mine but also what blocks will be mined as 
ore and as waste. The decision whether to mine a block as 
ore or waste in general is taken as a result of the 
following comparison:

Case 1:

If the objective function coefficient of Xn  ̂ in problem
(5.5) is

( g n  - U j  -  U 2 ) > 0 ( 5 . 8 )

then one should set Xn  ̂ = 1 (i.e., the block n should be
mined as ore) to maximize the objective function in problem
(5.5).
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Case 2:

If the objective function coefficient of Xn* in problem
(5.5) is

(gn - U1 - u2) < 0 (5.9)

and the block n must be mined because of the slope 
constraints there are two alternatives one has to consider 
with respect to this block. If

(gn - Uj - u2) > ™ u2 => gn - uj > 0 (5.10)

then setting Xn* = 1 (i.e., block n should be treated as
ore) will maximize the objective function in problem
(5.5). However, if

(9 n - ux - u2) < -u2 => gn - ux < 0

then one should set X* = 0 and Xn  ̂= 1 (i.e., block n should
be mined and taken to the waste dump. Making decisions as
indicated above will determine the right choice in 
maximizing the objective function of problem (5.6).
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It should be apparent that the lagrange multipliers (uj 
and U2 ) assigned to the constraint set of problem (5.6) 
affects the decision making process and defines a choice 
with respect to alternative actions concerning what to do 
about a given block. In essence the combined value for (û  
+ U2 ) is the in situ cutoff grade and u^ by itself is the 
"after mining" cutoff grade. To further demonstrate that 
these lagrange multipliers are the two cutoff grades used in 
the traditional mine planning let us look at these cutoff 
grades from the mining point of view. The value function 
for a given block is;

Vn = (s - r) . y . gn - c - m

where ;
Vn = value of block n ($/ton)
gn = grade of block n (lbs/ton)
s = selling price ($/lb of metal)
r = refining cost ($/lb)
c = concentrator cost ($/ton)
m = mining cost ($/ton)
y = concentrator and smelter recovery.
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Normally if a given block value Vn

(s - r).y.gn - c - m > 0 (5.11)

then this block is mined as ore. However, if the block
value Vn is negative (Vn < 0) and the block n must be mined
because of the slope constraints then the block is normally 
considered as ore if

(s - r).y. gn - c - m > -m (5.12)

and the block is considered as waste if

(s - r).y. gn - c - m < -m. (5.13)

If both sides of inequalities (5.11), (5.12), and (5.13) are 
divided by [(s - r).y] and c/[(s - r).y], and m/[(s - r).y] 
are substituted for u^ and u^ respectively then inequality 
(5.11) becomes ;

9n - U 1 - u 2 > 0

and inequality (5.12) becomes
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gn - ul - u2 > - u2

and inequality (5.13) becomes

9n " U1 - u2 < - u2

which are the same set of conditions one checks in deciding 
mine, not mine, process, or not to process a block when 
lagrange multipliers u^ and U2 are assigned to the mining 
and milling constraints of problem 5.6.

5.5 FRENCH PIT PARAMETRIZATION AND LAGRANGE MULTIPLIERS
Francois-Bongarcon (1978) developed an algorithm to 

determine the number of nested pits for the ultimate pit 
limit analysis. This algorithm is known as the French pit 
parameterization method.

Although there are a number of papers published on the 
subject, it is still unclear to many mining engineers what 
the French parametrization concept really is.

The concept of French parametrization can be viewed as 
a single time period production scheduling problem using a 
two constraint model as discussed in section (5.3). In 
solving the two constraint problem every time the multi
pliers (û  and u2) are adjusted, a different pit is obtained
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which includes a fixed ore tonnage and a fixed total (ore 
and waste) tonnage. This is exactly what the French pit 
parametrization algorithm does and the parameters X 
and 6 they use (Maréchal and Francois-Bongarcon 1976) are 
identical to the Lagrange multipliers û  and u^. Although 
Matheron (1976) and Francois-Bongarcon (1978) never realized 
this was the case in parametrization of the reserves, 
looking at their algorithm from this perspective makes their 
algorithm more powerful than it was originally envisioned. 
Taking the original French approach a few steps further and 
considering the parametrization concepts within the 
framework of the lagrangian theory not only provides an 
efficient model to explain the concept of cutoff grades but 
also gives the necessary intuition in understanding the 
production scheduling algorithm developed in this thesis.

5.6 THE ASSOCIATION OF PROFCOSTS TO LAGRANGE MULTIPLIERS
In sections 5.2 and 5.3, the objective of the model for 

a single time period and single and two constraint cases was 
the maximization of the quantity of the metal recovered 
subject to a tonnage constraint. In general this objective 
funtion is not valid. No realistic analysis can be carried 
out without considering various economic factors.



T-3073 107

The commonly accepted objective function which 
incorporates various economic factors such as revenues and 
costs is maximization of profits or cash flows.

If the objective is to maximize profits from the pit 
subject to some concentrator and stripping capacity 
restrictions and if Cn* is the dollar value of the block as 
ore, and Cn 2 is the stripping cost per block, the 
formulation of the model for the six block, single layer 
case as shown on Figure 14, is as follows :

Max Z = Cjl1 X-l1 + C2 1 X2 1 + C3 1 X3 1 + C4 1 X4 1 + C5 1 Xg1 +
Cfi1 Xfi1 + C-L2 Xx 2 + C2 2 X2 2 + C3 2 X3 2 C4 2 X4 2 +
C52 x 52 + cfi2 x62

(5.13)

Subject to

X11 + X21 + X31 + X41 + X51 + X6 1 < Ô

Xj1 + X2 1 + X3 1 + X4 1 + Xg1 + X6 1 + X3 2 + x 22 + x 32 +
X4 2 + X5 2 + X6 2 < T

Xn 1 Xn 2 e rn where rn is the set feasible pits and
Xn 2 Xn 1 are 0 or 1.
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if one assigns muliplier to concentrator capacity
constraint and multiplier to the stripping capacity
constraint then the lagrangian of this problem 1 is:

Max L(u,x) = (Ci1 - Ui)Xi1 + (Ço - u^îXo1 (Co1 - UijXo1 +
(Cs1 - u3 )X51 + «
<C3 2 - u2 ) x22 +

<c42 - u2 ) x 42 +

(Cfi2 - u2 ) Xfi2

Subject to

Gfi1 - “l) * * 1 + (Cx2 - u2 )X1 2 + 
(C3 2 - u2) X3 3 +
(C5 2 - u2) X5 2 +

(5.14)

X^, X2 e rn where Tn is the set of feasible pits

1 2and X , and X are 0 or 1. n n

The solution to problem (5.13) can be obtained again by 
solving the lagrangian problem (problem 5.14) by modifying 
the multiplier u3 and u2 until the ore tonnage constraint is 
satisfied. It is clearly seen that trying to solve the 
single constraint profit maximization problem by modifying 
the lagrangian multiplier is identical to coming up with 
successive nested pits by either adjusting the mining costs
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or the price as discussed in section 2.4 which discusses 
heuristic optimization techniques.

5.7 ASSOCIATION OP THE LAGRANGE MULTIPLIERS TO CUTOFF GRADES 
UNDER AN ECONOMIC OBJECTIVE
When the objective function being maximized represent

the quantity of metal as in section 5.2 and 5.3, the
lagrange multipliers associated to capacity constraints can 
be defined as the cutoff grades. This relationship was 
shown in section 5.6. When the objective is maximization of 
net present value as in section 5.6, the multipliers
associated to ore tonnage and total tonnage constraints no 
longer represent cutoff grades. According to linear 
programming theory, (see Dantzig, 1960), they are defined as 
the marginal values of the constraints. For example, û  is 
defined as the marginal value of the concentration capacity
and ug as the marginal value of the total mining capacity
constraint.

Although defined as the marginal values of the
constraints, under an economic objective function, the
lagrange multipliers are still related to the original 
definition of cutoff grades of section 5.4. This
relationship will be shown next.
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When the objective function is maximization of 
revenues, a block of material should be mined as ore if

Cn1 - Ul - u2 > 0

Since Cn 1 = (P - r).y.g^ - c - m

[(P - r).y.g^ - c - m] - u^ - U2 > 0

and this defines an "in situ" cut off grade :

(c + m) + u1 + u0
H ------ (P— - rp— - (5-14)

Furthermore, if a block of marginal material is mined in 
order to uncover a block of ore, this block should also be 
considered as ore if:

Cn1 ~ U1 " u2 > Cn2 ' u2

where C,,1 = (P - r).y.g - c - m, and Cn2 is the stripping 
cost (Cn 2 - m). Hence

[(P - r).y.g - c - m] - - u2 > m - u2
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and this defines an "in pit" mill cutoff grade as :

C + u1
(5.15)g2 (P - r).y

5.7.1 The Fundamental Difference
Traditionally, when the mining system is considered to 

be unconstrainted, the "in situ" cutoff grade is defined as

It can be seen that the fundamental difference between 
the cutoff grades of the constrained case and the cutoff 
grades of the unconstrained case is the terms for the 
multipliers u^ and u^ in the nominator of equation (5.14) 
and equation (5.15).

It is a known fact in linear programming that if the 
system capacities have slacks, that is when there is more 
capacity than needed, the multipliers have to be equal to 
zero in the optimal solution in order to satisfy the 
optimality conditions. Thus when there is more capacity

(5.16)

and "in pit" mill cutoff grade is defined as

* _  c____
g2 (P - r).y (5.17)
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then needed, the system becomes as if it is unconstrained 
and multipliers u^ and u^ goes to zero and equation (5.14), 
and (5.16) become identical.

The same discussion can be extended to "in situ" 
milling cutoff grades. The only difference between the two 
cutoff grade equations, namely (5.15) and (5.17), is the 
term u^. This term, which is equal to the marginal value of 
concentrator capacity, again has to equal zero if the 
concentrator capacity is greater than what is needed. 
Therefore, when the problem is assumed to have unlimited 
capacities, again goes to zero (u^ ~> 0 ) and the "inpit" 
cutoff grade defined for the constrained case becomes 
identical to the "inpit" cutoff grade of the unconstrained 
case.

It should be pointed out here that the three cutoff 
grades Lane (Lane 1964) referred to in his paper for the two 
constraint case correspond to the cutoff grades of the 
constrained mining system we have been discussing in this 
section. For example. Lane's concentrator limited grade 
(gc) can be defined as:

(c) + u1 

gc (P - r).y

mine limited cutoff grade (gm ) can be defined as:
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(C + m) + u2 

(P - r)«y

balancing cutoff grade (gmc) can be defined as:

(C + m) + + u2

^mc ( P - r ) . y

and these cutoff grades can directly be determined when the 
multipliers are known.

The cutoff grade discussion up to now did not include 
the multipliers associated with the sequencing con
straints. When the mining system is constrained by the 
sequencing constraints as well as mining and concentrator 
capacities, then the in situ cutoff grades for a block of 
material will be:

(C + m) + + u 2 + tu 3 + ••• unl
91 (P - r).y

The "in pit" mill cutoff grade will be

(C) + Uj + [Ug + ... + u^]
g2 (P - r).y

where multipliers ug ... un will correspond to individual 
sequencing constraints 3 to n.



T-3073 114

In summary, this relationship between the Lagrange
multipliers and cutoff grades puts the concept of cutoff 
grades into the right perspective when the total mining
system is considered to be a constrained process.

5.8 EXTENSION OF A LAGRANGE MULTIPLIER APPROACH TO
PRODUCTION-SCHEDULING PROBLEM 
As shown in earlier discussions of this chapter, the

concepts of lagrange multipliers have been used in the 
mining industry under different names in solving the single 
time period production scheduling problem. Since it has 
been argued that the ultimate objective is not solving the 
single time period problem, but solving the multi time 
period production scheduling problem then it seems natural 
to extend the solution concepts of lagrange multipliers to 
the multi time period problem. This will be the basic 
approach to be used in developing a solution algorithm for 
the multi time period production scheduling problem. In 
solving the production scheduling problem multipliers will 
be assigned to each of the capacity-blending constraints for 
a given time period. And then, a systematic way to modify 
the multipliers will be presented. This approach is known 
as the lagrangian relaxation approach in operation research 
literature and will be the topic of the next chapter.
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CHAPTER 6

SOLUTION ALGORITHM OF MULTI TIME PERIOD SCHEDULING

6.1 THE PRODUCTION SCHEDULING PROBLEM AND ITS LAGRANGIAN
In this chapter, the solution algorithm to the multi 

time period scheduling problem will be given. The abstract 
form of the production scheduling problem as formulated in 
chapter 3 can be written as:

Max C1 X1 + C2 X2 + CTXT

AX1 < b1

+ AX2 < b2

+ AXT < bT

EX1 < 0
EX1 + EX2 < 0  (6.1)
EX1 + EX2 + EXT < 0

2 T
I Z
m=l t= 1
I E Xn < 1 Vn

x f  > 0  V n,m, t
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Problem (6.1) is difficult to solve because of a few
constraints of the type AXfc < bfc which are the capacity and
blending constraints for different time periods. Otherwise, 
without these constraints problem (6 .1 ) has a "nice" network 
structure.

As mentioned earlier in Chapter 4, unless this special 
structure is used it is quite difficult, if not impossible 
to solve a production scheduling problem.

In order to take advantage of the network structure of 
the sequencing constraints, it appears appropriate to use
lagrangian techniques (Lasdon, 1970, Geofrian 1974, Shapiro 
1979 and Fisher 1981) in the solution procedure for the 
production scheduling problem.

The Lagrangian technique provides an efficient approach 
to reduce the original problem from its present form to a 
less difficult form. The lagrangian of the problem is
formed by multiplying the constraints (AXT-b) by a set of 
non negative multipliers (uT ) and then subtracting their sum 
from the objective function.

Let ïï = (u*, u2 ... uT ) be the set of non negative
multiplier vectors for the capacity-blending constraints of 
the scheduling problem. Then the lagrangian of problem 6.1 
is:
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Max C1 X1 + C2 X2 + CT XT - u1 (AX1 - b1) -u2 (AX2 - b2) 
. . . uT (AXfc - bt)

subject to:

Let:

EX
EX1 + EX2

< 0 

< 0 (6 .2)
EX1 + EX2 EX1 < 0

2 T
I I X ^  < 1
m=l t=l

X ^  > 0  V m,t & n

C = 1 x T vector of time period cost coefficients (C1,
C2, C3 ... CT ).

X = 1 x T vector of variables X^ representing different
time periods. X = (X1, X2 ...XT), 

b ~ 1 x T vector of right hand side coefficients in 
each time period b = (b1, b2, ... bT) 

u = 1 x T vector of lagrange multipliers assign to 
capacity and blending constraints of each time 
period u = (u1, u2, ... uT)t
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r = the set of feasible solutions for the sequencing 
constraints. .

Using the previous notation the production scheduling 
problem of (6 .1 ) can be written in abstract form as follows :

Z (X) = max C X 
Subject to:

AX < b
X e F (6.3)

the Lagrangian of problem (6.3) is?

_ _ _ _ ")L (u) = Max (CX - u (AX - b) ) ,

X e r .  (6.4)

6.1.1 Relationships Between The Original Problem and the 
Lagrangian

There are a number of important relationships between 
the original production scheduling problem and its 
lagrangian. The following theorems will show these.

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL of MÎMES 
GOLDEN, COLORADO 80401
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Theorem 6.1. For any u > 0, if the optimal solution for 
the lagrangian problem (6.4) is feasible to the original 
problem (6.3), then this optimal solution to the 
lagrangian will always be greater than or equal to the 
optimal solution of the original problem, 
i.e., L(u) > Z(X).

Proof. Since the solution for the lagrangian problem is 
also feasible for problem (6.3), the
condition (AX < b) holds. Hence (AX - b) < 0.
Since u > 0, the product u (AX - b) < 0. Therefore, 
this gives

Max C X < Max (C X - u (AX - b))
and

Z(X) < L(ïï)

6.1.2 Optimality Conditions
In theorem 6.1 we proved that for any set of non

negative multipliers, the solution to the lagrangian which 
is feasible for the original problem gives an upper bound on 
the solution to the original problem. A natural question to 
ask is: "When is a zero-one solution X obtained from the
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lagrangian optimal for the original production scheduling 
problem?"

Theorem 6.2. For a given u * > 0 if a vector X* satisfies 
the three conditions

(i) X* is optimal in lagrangian L (u)
(ii) AX* < b 6 ^ 6

( iii ) u* (AX* -(J?) = 0

then X* is an optimal solution to the original production 
scheduling problem (6.3) .

Proof. The solution X* is clearly feasible in problem (6.3) 
since X* e r and AX* < b by condition (ii). By condition 
(i)

L(u*,X) = Max CX* - ÏÏ* (AX* - b)

but by condition (iii), u(AX*-b) = 0, therefore L(ü*,X) =
Z(X*) and this completes the proof.
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6.2 THEORETICAL BASIS FOR THE SOLUTION ALGORITHM
In this section, the theoretical basis for the solution 

algorithm for the production scheduling problem will be 
given. First, the dual problem will be discussed; based on 
this a solution strategy will be defined and lastly the 
subgradient optimization algorithm will be presented.

6.2.1 Strategy for the Solution Algorithm
Theorems 6.1 and 6.2 give an important insight about 

the original problem (6.3) and its lagrangian (6.4). These 
two theorems tell us that the solution obtained by the 
lagrangian for any u > O will be the upper bound of
discounted profits for the original problem. When a 
vector u* > 0 is found such that a solution of the
lagrangian satisfies the conditions of theorem 6 . 2  then one 
obtains the smallest upper bound to the original production 
scheduling problem. Hence, the optimal solution to the 
production scheduling problem is the smallest value to be 
obtained by the lagrangian.

Hence, for different u > 0 values we will solve 
different problems of the following types:

L(u,X) = MAX CX - ui (AX - b) (6 .6 )

X e r
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The optimum solution to the original problem (6.3) will 
be the solution obtained from problem (6 .6 ) that gives the 
minimum value of L(u^) and for which the optimality 
conditions hold (theorem 6.2). In other words, the desired 
solution can be found by solving the following dual problem.

L* = Min L(u,X) (6 .6 )
s.t. __

u > 0

Corrolary 6.3. If (X*, u* ) satisfies the optimality
conditions of theorem 6.2 for problem (6.3) , then u* is
optimal in the dual problem.

Proof: We have L(û*,X) = CX* - u* (AX* - b) = CX* = Z(X* )
by theorem 6.2. Since Z ( X ) < L (u, X) for all u > 0, and
all feasible X then by theorem (6.1) L* < L(ïï, X) for 
all > 0 .

Thus the critical problem in solving the production 
scheduling problem becomes finding an optimum 
vector u* where u* > O such that L(u*,X) is minimum.

Hence an ideal strategy for this purpose would be to 
design an iterative algorithm such that at each iteration a

_i jç -f. 2.vector u is obtained such that the solution to dual
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L(u^+^,X^) < L(u^,X^). This can be demonstrated by the 
following:

uk L(uk , Xk )

u1 L<u1# X1)

uk L(uk , Xk )
uk + 1  L(uk + 1  , Xk+1)

u* Optimum

Unfortunately there is no algorithm in existence which will 
converge to the optimum in a non-increasing sequence such as 
the one above.

6.2.2 Determination of Lagrange Multipliers (ïï)
There are a number of ways to attack problem (6 .6 ). 

These can be categorized as (1) the subgradient method (2) 
various versions of the Simplex Method implemented using 
column generation techniques (3) multiplier adjustment 
methods.

A few of the methods in category (2) and (3) are 
already applied to the production scheduling problem.
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Johnson's (1968) application of the decomposition
principle is one way to come up with multipliers and falls 
into category (2). Application of the dual simplex
algorithm by Benham (1978) was another attempt to determine 
the multipliers. This also falls into category (2). The 
incremental adjustments of one or two multipliers as applied 
to production scheduling problem by Davis and Williams 
(1973) can be considered as type (3).

During the last ten years, a number of articles in the
operations research literature have reported on the
successful application of Held and Karp's subgradient
optimization technique for adjusting multipliers in solving 
problems similar to problem (6 .6 ) (Held and Karp 1971; Held, 
Wolfe, and Shapiro 1974; Geofrian 1974; Fisher and Shapiro 
1974 ; Fisher, Northup and Shapiro 1975; Etcheberry 1977 ; 

Shapiro 1979 ? and Fisher 1981). The computational
experience of this algorithm with large-scale problems 
reported in the literature indicates the superior 
performance of this approach over other linear and non
linear methods. (Fisher, Northup and Shapiro 1975,
Etcheberry 1977, Fisher 1981).
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6.2.3 Subgradient Optimization
The subgradient optimization algorithm starts with a 

vector of multipliers u°. It then computes a direction and
a step size to get a new vector of multipliers U*. This
process is repeated, obtaining a sequence of vectors {û } 
that converges to a vector ïï* that minimizes L(ïï,X).

An m-vector S is called a subgradient 
of L(u,X) at u* if it satisfies (see Figure 16)

L (ïï*, X* ) + (ïï - ïï*) . S < L (ïï, X) for all ïï

It can be shown that the half space {u/(u - u*) S > 0}
contains all solutions to dual with lower values of L. In
other words, any subgradient appears to point in the

 *direction of descent of L at u .
It is shown in theorem 6.1 that

Z(X*) + ïï (AX* - b) < L(ïï,X) for all u

and by 6 . 2

L(ïï*,X*) - Z(X*) - ïï* (AX* - b) = 0

Adding these relations yields
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L(u*,X*) + (u - u*) (AX* - b) < L(u,X) for all u

Comparing this relationship with the definition of a 
subgradient, it is apparent that a readily available 
subgradient is S = (AX - b).

Given an initial value u° a sequence {u^} is generated 
by the rule

uk + 1  = uk + tk (AXk - b)

where x is an optimal solution to L(u^fX^) and t% is a 
positive scalar step size.

The hyperplane through u having (AX^ - b) as its normal 
determines a closed half space containing all points u* such 
that L(u,X) - L(u*,X)) < 0 and at each iteration, ü moves 
into the half-space along the normal = (AX^ - b). In
particular, this half-space includes any point where L(.) 
assumes its maximum value, and a sufficiently small step 
produces a point closer than ïï to any such maximum point. 
In Held and Karp (1971), the limit on the appropriate step 
size is given as:

ak (L(Ü*,X*) - L(ük ,Xk )

tk II sk ||2
where || || denotes an Euclidean norm and 0 < ak < 2.
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The theoretical development and the convergence
properties of this algorithm are given in Held and Karp
(1971), Held, Wolfe and Crowder (1974) and in their
references. The fundamental theoretical result is that 

, , k
L( u # X ) -- > L* if ti. — —> 0 and Z t .  > 00 •

K i = 0 1

Although it can be shown that is closer to u* in the 
norm ||u* - u|| at each iteration, the values of L(u^,X^) do 
not form a non-increasing sequence. The sequence L(u^,X^) 
is guaranteed to converge to L(u*,X*) only asymtotically. 
However, in practice, the problems solved by this method
have proved to converge in a very few iterations to

I, _____ __
values L(u ,X ) that are close to L(u* ,X* ) (Fisher and 
Shapiro 1974, Etcheberry 1977). The computational results 
obtained in this dissertation also supports this assertion.

6.3 CONDITION OF NON-CONVERGENCE
Although the convergence of this algorithm is achieved 

in many cases, there is still a possibility that this 
algorithm may not converge to the optimum solution of the 
problem for a given set of constraint requirements. This 
non convergence can take place when there is no vector 
consisting of the lagrange multipliers which will give a 
solution feasible to the constraint of the problem.
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When it is not possible to find a set of linear
multipliers to satisfy the original primal problem's 
feasibility conditions, then it is said that the condition 
of gaps exists for the problem being solved (Everett 1963, 
Bazaara 1979).

The mathematical explanation for the existing gaps is 
that the feasible region of the dual space is not convex and 
as a result by using linear multipliers one can only
determine the solutions which lie on the convex hull of the 
feasible region. This is graphically shown on Figure 17.
In Figure 17, if the right hand side requirements of the
problem being solved is b*, then the optimal solution is 
said to exist in the gap region and cannot be found by 
adjustments of the multipliers. The only solutions which 
can possibly be found by the modification of the multipliers 
are the ones corresponding to the right hand sides b^ and b̂  
which lie on the convex hull shown in Figure 17.

Although there might be a case where the exact solution 
cannot be found, it is proven by Everett (1963) that the 
solutions which can be found by the lagrange multiplier 
approach will still be optimum for the set of right hand 
sides which the existing solution satisfies. The following 
theorem proves this:
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Theorem 6 .4 (Everett)
Given the following two conditions are true:

— k1 . u , k = 1 , n are non-negative multipliers

2. X* e r maximizes the function Z(X) - (AX - b)u^
over all X e r

then:

3. X* maximizes Z(X) over all those X e r such
that AX c AX*

Proof : For the solution X* of lagrangian to be optimum to
the original problem it must satisfy the optimality 
condition of theorem 6.2. Since replacing the right hand
side of the relaxed constraint (AX* < b) with b = AX* will
satisfy the conditions (ii) and (iii) and since X* is the 
optimum solution to, ( i) X* is optimum to the original 
problem for the case where b is replaced by b ~ AX*.

In the case of the example of Figure 17, theorem 6.4 
says that if one can accept the solution with the right side 
equal to bj for example, instead of b*, the solution 
obtained from the lagrange multiplier approach will be
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optimum for this case. Certainly for the mine production 
scheduling problem the constraints are not considered to be 
very rigid, and requirements of blending and capacities do 
not have to be satisfied exactly. The production scheduling 
problem will in many situations tolerate the conditions of 
gaps if they exist. When the results coming from the
lagrange multiplier approach do not exactly satisfy the 
constraint requirement, it is also possible to measure the 
difference from the true optimum. The following theorem due 
to Everett determines the deviations of the solution from 
the true optimum under the condition of gaps.

Theorem 6.5 (Everet)
If X* comes within e of minimizing the dual, (problem 

6 .6 ) for all X e T

Z (X*) < L(ïï,X) - e

then X* is an e-optimal solution to the original problem 
with e = -u (AX - b)

Proof : From theorem 6.2 Z (X*) - L(u*,X*); otherwise from
theorem 6.1 Z(X) <L(u,X), let's say L(u,X) is e amount 
bigger than Z(X) then
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Z(X) = L(u,X) - e

but L(u,X) = Z(X) - ÏÏ (AX - b)« Substituting
equation into the above equation

Z(X) = Z(X) - û (AX - b) - e

which gives e = u (AX - b) completing the proof.

this
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CHAPTER 7 
SOLUTION ALGORITHM FOR T-PERIOD 

SEQUENCING PROBLEM

7.1 INTRODUCTION
In this chapter an algorithm for the lagrangian 

subproblems of Chapter 6 will be given. This algorithm is 
based on linear programming and network concepts. Johnson's 
earlier work (1968) on the solution algorithm for the single 
time period problem and subsequent discussions provided the 
necessary intuition for the development of this algorithm.

7.1.1 The Ultimate Pit Limit Problem
The algorithm developed to solve the multi time period 

sequencing problem involves solving T (where T is a number 
of scheduling periods) ultimate pit limit problems with a 
modified block values. As such, in order to understand the 
development of the algorithm, a brief review of the ultimate 
pit limit problem, its network structure and available 
solution methods will be given in this section.

The formulation of the ultimate pit limit problem 
involves maximization of block values subject to sequencing 
constraints :
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Max CX
Subject to

EX < 0
IX < 1 Vn

> 0

Where Xn indicates the fraction of the block n to be

coefficients of sequencing constraints (see Chapters 3 and 
4) and I is the identity matrix. Problem (7.1) has a 
network structure because of the structure of the E 
matrix. As discussed in Chapter 4, the E matrix consists of 
0, -1 and 4-1 values and the matrix is unimodular. As a
result, the solution satisfying the set of these linear 
equations will be either 0 or 1. Hence any solution 
obtained by solving problem (7.1) will necessarily be an 
integer. This network structure becomes more apparent if 
one takes the dual of 7.1 (Johnson 1968). The dual problem 
is:

mined. C = vector of block values, E represents the

Minimize P = I P
n

subject to;
n

UE + IP > C Vn (7.2)
U, P > 0
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In order to see the network structure of the above problem, 
consider the cross sectional three block open pit model 
given in Figure 18. Figure 18(a) gives the block number and 
figure 18(b) gives the block values. The primal problem 
(7.1) for this example can be written as;

Max Z = - 2X2 + 2X3
Subject to:

- X-l + X2 < 0 i V 5 ,
-  x2 + x3 < 0 j

'-------  (7.1-a)
X j < 1

x2 < 1
x3 < 1

X1 > 0, X2 > 0, X3 > 0 

The dual of the problem is

Min P = P3 + P2 + P3

Subject To;
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-U21 + P 1 
U21 “ U32 + P2

u32

> 1
> - 2 (7.1-b)

+ P3 > 2

The network representation of this problem is given in 
Figure 19.

It can be seen from the network shown in Figure 19, 
that the dual variables U^j represent the flows in arcs 
connecting block i to its restricting block j in order to 
satisfy the sequencing constraints of the ultimate pit limit 
problem. Furthermore, the flow is induced into the network 
if cn > 0 and distributed around the network by arcs 
represented by the dual variables U^j and taken out of the 
network either by cn < 0 or Pn arcs. The dual constraints 
as shown in problems (7.2) and (7.1-b) may be interpreted as 

conservation of flow relations, i.e., they maintain the
condition that flow in equals flow out around each node. 
The objective of the dual problem (7.2) is to send the 
minimum amount of flow through the Pn arcs of the network of 
Figure 19 such that the flow requirements of each node are 
satisfied.

Since one needs to send the maximum amount of flow 
possible through the negative gain arcs (cn < 0 ) in order to
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send the minimum amount of flow through the Pn arcs, Johnson 
(1968) reformulated this as a maximum flow problem and 
proposed an efficient algorithm to solve the original 
ultimate pit limit problem (7.1). This algorithm is based 
on a labeling algorithm developed by Ford and Fulkerson 
(1963) and is known as the max flow ultimate pit limit 
algorithm (see Johnson 1968).

Another algorithm used to solve ultimate pit limit 
problems was developed by Lerchs and Grossmann (196 5) and is 
known as the 3-dimensional graph theoritic tree algorithm. 
The equivalency between this algorithm and Johnson's maxflow 
algorithm was established by Barnes (1982). Therefore any 
of these algorithms can be used to solve the subproblems of 
the sequencing problem if they are equivalent to the 
ultimate pit limit problem discussed above.

7.2 PRIMAL AND DUAL OF THE LAGRANGIAN SUBPROBLEM
The lagrangian subproblems of the production scheduling 

problem for a given u vector as discussed in Chapter 6 will 
be of the following form.

Max Z = c^ + c^ + cT XT
Subject to



T-3073 141

EX1 < 0

EX1 + EX2 < 0 7.3
EX1 + EX2 + ... EXT < 0

IX1 + IX2 + ... ÏXT < 1

Xn > 0 Vn, t

Because of the special structure, it appears that the 
above problem is easier to solve than the original 
scheduling problem which includes the capacity and blending 
constraints. Yet the subproblem (7.3) is still a rather 
large problem with variables and constraints in the hundreds 
of thousands, and is not easily solved in a straight forward 
manner.

Because it is known how to solve a problem of the form:

Max CX 
s. t.:

EX < 0 
IX < 1 
X > 0

which is the ultimate pit limit problem, it appears useful 
to employ a substitution of variables in order to trans
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form problem 7.1 into the form closer to this type of 
structure.

______----------- —  €>t

' r r 7  jLet Wt = Z XK 1 
k=l

and substitute Wfc for the variables of problem (7.3). (This 
substitution was suggested by Johnson 1968). The problem
7.3 then becomes:

Max Z = (ĉ  - c^) + (c^ - ĉ ) + ĉ W*-
Subject to:/7C

E WJ

 ̂ I W1 - I w2

v\

< 0

< 0

E w fc < 0

< 0 "

w 3 < 0
I wt " 1 ' — w fc < 0
r"s I wt < 1

> 0

7.4
c

The structure of the E matrix was shown in Chapter 3 
(p. 61). It has the characteristics of the transpose of the 
node-arc incidence matrix of a network or graph with at most 
two non-zero elements per row and they are either - 1  or
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+1. This network structure should become more apparent in
the dual problem.

The dual of problem 7.4 is:

N
MIN D = I Pn

Subject to: (7.5)
EU1 + IV1 2 > (c^-c2) (a)

EU2 - IV1 2  + IV2 3 > (c2 -c3) (b)
+EUT~* - Ivj<T-l) + IV(T-1)T > (C3 - CT"1) (c)

+ EUT - Iv(T-DT + lVnT + P > CT (d)

ut' vitn' pn » 0

7.3 NETWORK REPRESENTATION OF THE DUAL
A close examination of the dual problem (7.4) shows 

that this problem is a network. Each constraint represents 
flow into and out of a node.

The arcs corresponding to the dual variables U**, V1 ̂ 
are incident into a node (n, t) if the coefficient of and 
V1  ̂ in the E and I matrix respectively are -1, and incident

out from the node (n, t) if the coefficient of and Vn  ̂
in the E and I matrix respectively are +1.

As mentioned before, for the case of the ultimate pit 
limit problem, the E matrix in the dual problem represents
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the coefficients of the sequencing constraints. Thus the 
dual variables Ufc again represents the flows in arcs 
connecting a given block i to the overlying restricting 
blocks n. The dual variables Vntr represent flow in
arcs connecting a given block in time period t to the same 
block in time period t + 1 .

The arcs corresponding to Pn are incident out of the 
node (n, T) where T indicates the last time period.

The set of constraints in problem 7.5 thus represent 
flow into and out of each node or block (Figure 20).

As seen from^Figure ^O^the right hand sides (cfc -
ct+^), and cT of problem 7.3 correspond to either flow into 
a node of time period t if (c^ - ct+*) > 0 (positive gain) 
or flow out of a node of time period t if (c^ - c^+ )̂ < 0 

(negative gain). cT represents the flow in or out of the 
nodes of only the last time period depending on the sign of 
cT.

7.3.1 Numerical Example of a Dual Network
To clarify the relations discussed so far, consider a 

system of three blocks, as shown in Figure 21. Block values
for three consecutive time periods are given in figure 2 2 .

The primal formulation of this problem is
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Max Z = 1X1 1 - 2X1 2 + [l̂ 31 - 2XX 2 + 3X2 2 + IX 2 _ 3X
2Xo + 5X-

Subject to
X j1 f  x2 

X2

-Xl1 f x 2

Xn

X 1 - X 2

-r X-

- X-

-  x,

X1 2 + X2 2

- x22 + x32
xl2 + x2 2 + xl3 - x23

'2 A3 - x22 + x32 X2 3 “ X33

< 0 

< 0 

< 0 

< 0 

< 0 

< 0

(7.3-a)

Xi + Xi + Xl
+ X- + X-

< 1 

< 1

+ x- + x + X- < 1

XnL > 0 Vn, & t

Transforming the problem by substituting

«n1 =
t
Z
k=l

xk

II
1—1c Xn1

*n2 = Xn1 + xn2

II
CO&

Xn1 +  xn2 + Xn

y  I e K  V)<s<r£ „ .3
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results in?

Max Z = 3W-L1  - 5 W 2 1  - jà̂ 1  + IWj^ 2  + 5W2 2  - 4W3 2  - 3̂ ^ - 
2Wo3  + 5Wo3

1   T»7 2

(7.4a)

Subject to:
-Wj1 + W21 < 0

- W2 1 + W3 1 < 0

- Wj2 + w22 < 0
- w22 + w32 < 0

- Wj3 + w2 3 < 0

- w2 3 + W3 3  < 0

< 0
W21 - w22 < 0

W3 1  - W3 2  < 0
Wj2 - w13 < 0

w22 - w23 < 0
w32 - W3 3  ^< 0

Wj3 < 1

w23 < 1
W3 3  < 1

Wnt > 0 V n and t
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In order to state the dual of this problem (7.4-a) let\Uj_ti 
be the dual variable corresponding to the first six| 
constraints, Vn^'t+  ̂ be the dual variable corresponding to 
constraints 6 through 1 2  and Pn be the dual variables 
corresponding to last three constraints of problem (7.4). 
Then the dual of problem (7.4) is:

Min D = Pj + P2 + P3 (7.5a)
Subject to:

-U2 1 1 +V112 > 3

U211-U321 +v2 1 2 » " 5

u321 "lV 312 s 1
2 _x7 12 iTT 23—Vi 4-Vî-3 > 1

^ 5
2 1 ^  V1 T V 1

~  -V21 2 +V22 3

U3 2 2 -V312- +V32 3 > -4
U2-1̂  -Vj23 ■' +PX > -3

U2 1 3-U3 2 3 -V-l23-- ^ 2  >■ - 2
3

Unjt, Vt't+1, Pn > 0 V all dual variables
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7.3.2 Network Representation of the Example Problem
The network representation of this dual problem (7.5) 

is shown in Figure 23. This network not only shows the 
nature of the sequencing problem but also plays an important 
role in the development of the solution algorithm for the T- 
period sequencing problem (7.3).

The nodes of the network in figure 23 corresponds to 
constraint equations of the dual problem (7.5). (Each node
of the network may be thought of as a given block n in time
period t.) The flows in the arcs of the network correspond 
to the dual variables of problem (7.5):

= Dual variable representing the flow in the
arcs between block i and block j in time
period t. (An arc between block i and j will
be present only if block j must be mined to 
mine block i).

Vn t , t + 1  = Dual variable representing the flow on arcs
between time period (t) and time period (t+1 ) 
block n.

Pn = Dual variable representing the arcs between
all the nodes of the last time period and the 
termination node X.
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It can be seen from the network of Figure 23 that the flows 
will be induced into the network if (C^ - Cnt+*) > 0 or CnT 
> 0 and will be taken out of the network if (Cnt - Cnt+*) < 
0, or CnT < 0 and through the Pn arcs. All the other arcs 
serve to distribute the flows through the network.

The objective of the dual problem (7.5) is to send the 
minimum amount of flow through the Pn arcs of the network in 
such a way that the requirements of (Cnt - Cnt+1) or CnT are 
satisfied at each node.

It can be seen from the network in Figure 23 that the 
only way to send the minimum amount of flow through the Pn 
arcs of the network 6 is to take as much flow as possible 
out through the negatives gain arcs. Looking at the dual 
problem from the maximum flow perspective provides an 
effective strategy for the solution algorithm (Johnson

«/7.4 THE EQUIVALENT FORMULATION OF THE DUAL PROBLEM (7.3)
The maximum— Êlow^equivalent of this dual problem (7.3) 

can be established with a slight modification to the network 
of Figure 23. By connecting all the nodes with positive 
gains to a source node and all the nodes with negative gains 
to a sink node as shown in Figure 24, it can be intuitively 
seen that it is possible to minimize the flow going through
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the Pn arcs by sending as much flow as possible through the 
negative gain arcs of different nodes. Hence, the dual
problem (7.5) can be formulated as a Maximum Flow problem. 
Let

The flow going from source node to node n of 
time period t with cnt - cnt+* > 0 or cnT > 0 . 
(See Figure 25).

The flow going from a node m of time period t
with cnt - cnt+  ̂ < 0 or cnT < 0 to the sink
node. (See Figure 25).

The set representing the nodes with positive
gains (cnt - cn t + 1  > 0 , or cnT > 0 ) i.e. the 
nodes connected to sources node in Figure 24.

The set representing the nodes with negative
gains (cnt - cn t + 1  < 0 , or cnT < 0 ).

Then the max flow formulation of the problem can be written 
as:
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Problem (7.9):

1 %Max I I (7.9)
t=l meN^

Subject to:

the constraint set for the nodes in time period 1

fsr»1 " “in1 + “nj1 + vn12 = 0 
fmx1 - “im1 + “mj1 + V 2 = 0

sn n ^n

mx l-o

the constraint set for nodes in the time periods between the 
first and the final time period (T) (t = 2...T-l)
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V x *  < - ' V  - cm t + 1 >

V n e , (t = 2 ... T-l)
V m e N~, (t = 2 ... T-l)

the constraint set for the last time period (T)

■fsnT - uinT + unjT ' vnT~1,T + Pn = 0 Vn E 4

+ £mxt ' uimT + unjT ” + Pm = 0 Vm e N~

rp T  +
sn < <cn > V n e Nt

fmxT <-(cnT) V m e NT

£snt' £mx^' uint' “nj*"' vnt't+1' Pm > 0 Vn' t.

7.4.1 The Dual of the Maximum Flow Problem (7.9) ̂
The equivalence of the max flow problem to problem

(7.4) can be seen by taking the dual of this max flow 
problem. Let:

ant = The dual variable corresponding to the conserva
tion of flow equations 7.9 (a) and (b) for time 
period t.
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gsnt = The dual variable corresponding to the flow
upper bound constraint equations 7.9(c), in time

+period t for the positive nodes ne .

hmxt = The dual variable corresponding to the flow 
upper bound constraint equations 7.9(d) in time 
period t for the negative gain nodes m e .

Then the dual of this problem (7.9) is

" 1" : g»»‘ 1  h-

subject to:

+ a-t > 0 (a)

-  ajt > 0 (b)

“ akt _ 1 > 0 (c)
> 0 (d

V > 0 (e)

equation (a) through (e) are for all k and t
-a^ + gg,,* > 0  Vt, n e N+ (£)

amt + hmx1 > 1 Vt, m e n; (g)
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akt is unrestricted 

9sn^, hn,tt ? 0

The equivalent of this dual problem to the original 
primal transformed problem (7.4) can be shown by a 
substitution of variables.

Let:

9snt = 1 " V  
fynx = wm

substituting these in the objective function of problem
(7.10)

........  .. „ ... -mt+1)Wmtt neNt t meNt

rearranging the terms

Min Z Z+ (cnt-cnt+1) - Z Z+ (cnt"cnt+:L̂ wnt)t neNt t neN^

_  t+l\ w t
t meN, mt

minimizing the above function is equivalent to
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Max r I + (Cnt-cnt+1 )wnt + I I _ (Cmt_c/+l)w/ 
t neNt t meNt

and this is exactly the same as the objective function of 
problem (7.4).

What remains - is to show that the optimal solution to 
the max flow problem is also feasible to the constraint sets 
of problem (7.4).

At the optimality for the max flow problem (7.9) if for 
some nodes n e N+ the following is true

f s /  < <cnt-cnt+1) and fgn* > 0

then for all nodes meN- in the cone of node n

= - ( c Z - c / 4-1) and fmxt > 0

from the complimentary slackness conditions (see Dantzig 
1963), if f > 0, then

-&n^ + 9sn" = 0 => anfc = (7.11)

and again by the complimentary slackness condition if fmxt >
0 then
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V  + hmxt _ ! = o (7.12)

this gives

am t 1 ^mx

substituting gsnfc = 1 - Wnt, hmxt = Wmt: into equations
(7.11) and (7.12)

an  ̂= 1 - Wnt ne N+

amt = 1 - wmt m e N-

substituting the values of ant = 1 - Wnt into all 
constraints but the last two of dual problem (7.10) one 
obtains:

v + < 0

Wk6 - Wjt < 0

V -1 - V < 0

v - w kt+1 < 0

WkT < 1

Since the problem being solved has network structure 
with all columns or rows containing at most two non-zero
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elements and they are (db 1 ) then the matrix is unimodular 
and when the right hand sides are also integer then the 
values of the variables in the optimal solution are also 
integer. If the right hand sides are either 0 or 1 then the 
values of the variables in the optimal solution are also 0 

or 1, (See Jensen and Barnes 1980). Hence:

ant = 0 or 1 Vn and t 
gSnt = O' or 1 Vt, n e n £
hmxt = 0 or 1 Vt, m e Nt

since these conditions guaranty that

Wkt > 0  V k, t Q.E.D.

therefore, the optimal solution to the max flow problem will 
also satisfy the feasibility conditions of problem (7.4).
As a result, solving the max flow problem is equivalent to
solving the transformed problem (7.4)

7.5 THE DECOMPOSITION OF THE DUAL PROBLEM (7.3)
It has been shown that solving the maximum flow problem 

(7.9) is equivalent to solving the transformed problem
(7.4). Hence, problem (7.9) can be solved by an efficient
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algorithm such as the labeling algorithm developed by Ford 
and Fulkerson (1963). The solution to the original problem
(7.4) can be recognized from the complimentary slackness 
conditions as follows;

Case 1: If in the final solution some of the positive gain
arcs have slacks:

Ifsn1 ' cnt " cnt+1] > 0

then by the complimentary slackness conditions corresponding 
dual variable gsnt = 0 , and this requires Wnt = 1 .

Case 2: If in the final solution some of the negative gain
arcs have slacks:

tfmxt + (cV - cmt + 1 ) 1  > 0

then again by the complimentary slackness conditions hmxt = 
0 and this requires Wmt = 1 .

Although the maximum flow problem (7.9) can be solved 
by the labeling algorithm and the solution to the original 
problem can be identified as shown above from the 
complimentary slackness conditions, the maximum flow
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problem (7.9) is still a considerably large problem. By 
studying the dual problem (7.5) and its network 
representation as shown through the example problem in 
Figure 23, it is possible to decompose the dual problem
(7.5) further into smaller subnetworks each consisting of 
nodes for a given time period.

It can be seen from the network in Figure 23, that the 
nodes in a given time period are connected by u^arcs which 
enforce the sequencing requirements in space. These arcs 
have no interactions with other time periods. The only 
connection between the time periods are through the vnt,t+  ̂
arcs which enforce the sequencing requirements in time. 
(See Figure 23.)

Therefore, the network structure of the dual problem 
indicates that the dual problem (7.5) is made up of T 
subproblems; each subproblem corresponds to a time period. 
In a given subproblem, the flow is induced into the network 
by way of positive gain arcs (cnt - cnt'l‘*) > 0 and taken out 
of the network by way of a negative gain arc (cnfc - cnt+1) < 
0. The v^t,t+l arcs carry the excess flow into the next 
period.

When the dual problem (7.5) is solved, optimality of 
the dual problem (7.5) requires that at each time period as 
much flow as possible should be taken out through the

MTHUB LOTS LÏBBAW 
COLORADO SCHOOL of
GOLDEN, COLORADO
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negative gain arcs, (cnt - cnt+ )̂ < 0 , and only the excess 
flow should be passed onto the next time period. Since it 
is never necessary and never improves the dual problem 
objective to send flow across the time lines, one needs to 
send out as much flow as possible in the same period through 
the negative gain arcs. If this is not the case in a given 
solution the flows going through the Pn arcs would not be 
minimum and this will contradict the optimality 
assumption.

Therefore it is possible to solve the dual problem
(7.3) by decomposing it into smaller max flow problems each 
corresponding to a given time period.

By solving the dual problem (7.3) this way, the only 
interaction needed between the maxflow problems of 
individual time periods will be in passing the net flows 
(remainder) across the time line. ̂

The logical way to .pass the excessi f  low from the 
preceding period nodes into the next time period node is to 
taking the node potential of individual nodes, which are 
labeled in the preceding max flow solutions to the node 
potential of the corresponding nodes in the succeeding time 
period, and then solving the succeeding time period max flow 
problem.
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7.5.1 Decomposed Method of Solution
The proposed method of solution for the dual problem is 

to solve the max flow problem by considering the time 
period 1 nodes first. This method involves solving the 
following problem:

subject to:

fsn1 - “in1 + “nj1 = 0 

^mx ~ uim + “mj = ®

Vn, n e
Vm, m e

sn
■mx

< (“n1 " cn2) 
<-(cn1 - cn2>

Vn, n E 
Vm, m e

^sn ' ^mx ' uin ' uni^  ̂ ® V n, m

By solving the above problem one will be able to 
determine those nodes which have the potential to be mined 
in time period 1 (n e si).

The nodes which are identified to be in the solution 
set (n e s1) will also be the nodes with the excess flow 
potential. In actuality, the overall total value of the
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optimum pit for the time period 1 max flow problem will be 
the total excess flows which will need to be passed on to 
the next time period.

The logical way to pass this excess flow from the 
preceding period nodes into the next time period nodes is to 
take the node potential of individual nodes n e and to add 
them to the node potential of the corresponding nodes in the 
succeeding time period.

This process of addition when carried out on a node to 
node basis for all the nodes which are candidates to be in 
the solution (ne s^) is identical to solving the max flow 
problem (7.7) by the max flow labeling routine. This is 
mainly because, around each node, uij^ arcs serve only to 
distribute the induced flows within the time period, and the 
effects of u^jt arcs in passing the excess flows from one 
period to the next cancel out in the addition process.

Once addition of the node potentials for nodes 
identified in thé solution set in time period 1 to those in 
time period two is completed then for the time period 2 max 
flow problem one solves
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subject to:

-fin- uin+ u^j= 0 Vn, n e N 2

fmx- uin+ unj= 0 Vm, m e

for those nodes n. n e s^

f2sn < C1 - C n %
Vn, n £ N+

£mx < - (cl ~ cn> Vn, n e N-

and for the rest of the nodes.

£:n < (Cn " Cn> Vn, n £ N +
f2mx < - <Cn - Cn> Vn, n £ N-

f 2 ^ 2
sn' mx, "in' unj > 0 Vn, m

and if this process is continued all the way through the 
last time period, one will solve the original dual problem
(7.3) from which the solution to the original problem 7.2 
can easily be identified.
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7.6 STEPS OF THE ALGORITHM
The proposed method for solving the original multi 

period sequencing problem (7.3) is to transformed it into 
problem (7.4) and transform this into problem (7.5) and 
solve problem (7.5) by an iterative process; at each 
iteration solving a max flow problem which is equivalent to 
solving a single time period utimate pit limit problem.

At a given iteration, the steps of the algorithm are as 
follows:

Step 1: Solve the max flow problem of type (7.8) with only
nodes neNt, when is the set of nodes included in time
period t. Use the modified node potentials (if t=l use the 
original node potentials cn* - cn^), to identify those 
blocks which can be labeled (i.e. possibly mined) in time 
period t. Let kes^ be the set of those blocks.

t+ 1Step 2: Modify the node potentials of nodes keN such
that kest by adding their current node potential values in 
time period t to the node potentials of their corresponding 
nodes in the next time period t+1. If t-T skip this step 
and go to step 3. If t<T, set t = t+1 and go to step 1.
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Step 3 : Terminate with the optimal solution. Mine those
t t+1 T blocks es ns ..s in time period t.

At each iteration the algorithm solves an ultimate pit 
limit problem of type (7.10). This problem can either be 
solved by Johnson's Max Flow Ultimate Pit Limit algorithm 
(1968) or by Lerchs-Grossmann 3-dimensional Graph Theoretic 
Tree algorithm (Lerchs and Grossmann 1965). The algorithm 
is so simple between the iterations, that the only 
requirement is the modification of the node potentials for 
those blocks which are identified in the solution set of 
previous time period problems.

7.6.1 Numerical Example of the Algorithm
As an example to demonstrate the algorithm, consider 

the 2-dimensional block diagram in Figure 26. The values 
assigned to each block with respect to the three time 
periods of the scheduling duration are given in Figure 27.

The transformation of the original problem (7.3) into 
the form of problem (7.4) requires the calculation of ( -  
Cn^) and (Cn  ̂ - Cn^). The modified block values shown in 
Figure 27. Note the (Cn* - Cn )̂ values are assigned to time 
period 1, the (Cn - Cn ) values are assigned to time period 
2, and time period 3 values remain as they were (see the 
objective function of the transformed problem (7.3)).
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Iteration 1:

Step 1: Solve the max flow problem, i.e., find the ultimate
pit limit for the transformed block values corresponding to 
time period 1 as given in Figure 27(a). The set of blocks 
which are in the optimal pit limit are;

s1 = {1, 2, 3, 4, 5, 6 , 7, 8 , 9}

and this is shown in Figure 28.

Step 2: Now add the transformed block values (node
potentials) of those blocks which are in the optimal pit of 
first time period (nes^) to their corresponding block v a l u e s  

in time period 2 (to the values of Figure 27 (b) ) and keep 
the rest of the blocks values in figure 27(b) as they a r e . 

The resulting block values are shown in Figure 29. Set t=2 
and go to iteration 2 .

Iteration 2:

Step 1: Solve the ultimate pit limit problem corresponding
to time period 2 with the modified block values as shown in
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Figure 28. The set of blocks which are in the optimal pit 
(see Figure 30) are:

S2 = (1, 2, 3, 4, 5, 6 , 7, 8 , 9, 10, 11, 12, 13}

Step 2: For those blocks identified to be in the optimal
solution of the time period 2 as shown in Figure 30, add 
their current block values as shown in Figure 30 to the 
corresponding block values in time period 3 (that is, the 
corresponding values of Figure 27(c)). Keep the rest of the 
Figure 27(c) values as they are. The resulting block values 
are shown in Figure 31. Set t=3 and go to iteration 3.

Iteration 3:

Step 1: Solve the ultimate pit limit problem with the block
values as given in Figure 31. The set of blocks which are 
in the optimal pit (see Figure 32) are:

S3 = (1, 2, 3, 4, 5, fi, 7, 8 , 9, 10, 11, 12, 13, 14, 15}

Step 2: Since t - T ~ 3 go to step 3.



T-3073 178

Figure 30
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Step 3: Mine those blocks = s^A s^A s^ in period 1:

M1 = {1, 2, 3, 4, 5, 6 , 7, 8 , 9,}

Mine those blocks = S^A S** in time period 2 s

M2 = {10, 11, 12, 13}

Mine those blocks:

M3 = S3 n (S1 US2) = {14, 15}

Figure 33 gives the periods in which each block is to be 
mined.
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Figure 33
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CHAPTER 8

THE APPLICATION OF THE PROPOSED METHOD

8 .1 INTRODUCTION
The open pit mine production scheduling problem as 

defined and formulated in this thesis is difficult to solve 
by the direct application of standard algorithms. The 
primary reason for this difficulty being the immense size of 
the problem. Therefore, the problem is decomposed into a 
smaller and more structured problem by relaxing difficult 
side constraints consisting of the blending and capacity 
requirements of the mining system. The procedure of 
relieving side constraints by the lagrangian relaxation 
techniques is discussed in Chapters 5 and 6 . The relaxed 
lagrangian problem is then solved by further decomposing it 
into a series of equivalent single time period ultimate pit 
limit problems. This procedure was discussed as Chapter 7.

The overall strategy used in solving the production 
scheduling problem is therefore an iterative approach. At a 
given iteration one determines values for a set of 
multipliers assigned to the side constraints. The 
determination of multipliers in a given iteration are based
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on how much the constraints are violated in the previous 
iteration. Based on this new set of multipliers, the 
coefficients of the objective function to the lagrangian are 
modified and the multi time period sequencing problem is 
solved. The constraint violations are checked again to 
determine a new set of multipliers. This process is 
continued until convergence to the optimum solution is 
achieved. (In the case where gaps exist, the algorithm 
stops with an optimum solution to the modified constraint 
requirement). An overall flow chart of the algorithm is 
shown in Figure 34.

8.2 THE COMPUTER PROGRAMS FOR THE MULTI TIME PERIOD
SCHEDULING
In order to apply the algorithm developed, one computer 

program was written in FORTRAN 77 and executed on a Digital 
Equipment Corporation VAX 11-750 model computer using the 
VMS operating system. This program is included in Appendix 
A. One of the subprograms performs multiplier adjustments 
based on the subgradient optimization algorithm of Held and 
Karp (1972). Another of the subprograms reads the initial 
multipliers estimates block grades, determines the block 
values, adjusts the objective function according to the 
multipliers, and performs the steps of the multi time period
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sequencing algorithm. An important feature of this program 
is that it includes the Lerchs and Grossmann (1965) three- 
dimensional tree algorithm to solve the single time period 
ultimate pit limit problem.

The scheduling programs were written in a form 
conducive to direct reading of the code. The system was 
designed in a modular form, and a large number of comments
were included to explain the purpose of the particular
segment.

While the code in this scheduling system was written in 
a user oriented fashion, it was also written for a specific 
case on a specific computer. As a result these programs can 
not be directly generalized nor immediately applied to 
different circumstances without going through
modification. Modifications are needed in the areas of 
dimension statements and their subsequent usage in the Do 
loop statements. The program is currently dimensioned such 
that the total number of blocks in the model must not exceed
5400 and the scheduling periods for any given time is
limited to 10. The input-output routines also need to be 
modified to fit the specific conditions.
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8.3 PHYSICAL EXAMPLE

8.3.1 The Model
To demonstrate and test the algorithms developed in 

this investigation, a small high grade copper deposit was 
selected.

The block model to which the computer programs were 
applied contained^54W^^)locks each measuring 1 0 0  ft in 
length and width and 45 ft in height. The geologic block 
model showing block grades (% Cu) in benches 1 through 6 of 
this deposit is given in Appendix B.

The level maps of the economic block model showing 
original and discounted block values (in dollars) for 
different time periods are given in Appendix C. The 
economic assumptions made in the development of this 
economic block model were :

Price of Copper 
Mining Costs 
Milling Costs 
Smelting and Marketing 
G & A
Discount Rate

$ .70 per lb.
$ .85 per ton of material
$2 . 2 0 per ton of ore
$ .25 per lb of Cu
$ .15 per ton of ore
12.5%
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The ultimate pit limit contour obtained by using Lerchs and 
Grossmann's 3-D algorithm based on a 45 degree slope 
constraint is given in Appendix D. The total mineral 
reserve as indicated by the ultimate pit contour has a value 
of $57,663,750* (profit before tax). This reserve includes 
8,416,666 cubic yards (505 blocks) of waste and 2,362,500 
tons (63 blocks) of ore with an average grade of 3.7% Cu 
(see Table 4).

Table 4. Level by Level Statistics of Reserves in the 
Ultimate Pit Limit Contour

Number of Ave. Number of
Level Ore Blks Grade Waste Blks

1 1 6 . 1 196
2 9 2.9 133
3 1 0 3.8 95
4 13 4.3 55
5 16 3.5 25
6 ^ 4  ( 5 0

Total 63\
y
3.7 505

(153,770$ given by the program is calculated by assuming 
each block weighs a ton. Since in a typical copper opera
tion the tonnage factor is around 12.5, and as a result a 
block on average will contain 37,500 tons of material, the 
real value of the ultimate pit is 57,663,750.)
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8.3.2 SCHEDULING EXAMPLES
As a first example of the production scheduling 

methodology developed in this thesis, the deposit described 
in the previous section will be scheduled to be mined over 
the time horizon of three years. The restrictions on the 
mining system are only on ore mining capacity. 
Specifically, the constraints are:

1. Mine 19 ore blocks in period 1
2. Mine 21 ore blocks in period 2
3. Mine 23 ore blocks in period 3
4. Satisfy the precedence and slope constraints as 

described in section 3.

The problem is now to schedule the operation such that the 
above restrictions are not violated and, at the same time, 
the total discounted profits before tax are maximized.

The optimum schedule obtained after nine iterations by 
using discounted block values is given in Figures 35 through 
40. The numbers in these figures indicate the period in 
which each block is scheduled to be mined.

The summary statistics given in Figure 36 and Table 5 
show that the net present value of this schedule is
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Figure 35. Summary Statistics and Level 1 of the 
Optimum Schedule for Example 1.
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Figure 36. Level 2 of the Optimum Schedule for
Example 1.
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Figure 37.. Level 3 of the Optimum Schedule for
Example 1.



T-3073 194

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0/ s0_ so 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0, 2 2s 3 3 3 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 zf 2 2 2 r V3 3 3 3 3 r vO 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I(3 V 2 2 2 2 3 3 3 3 3 lo 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2 3 3 3 3 3 y '0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 <2 2 2 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ,2 'U2/ 3 3/4 0 0 0 0 0 0 0 0 0
0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 T 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 38. Level 4 of the Optimum Schedule for
Example 1.
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Figure 39. Level 5 of the Optimum Schedule for
Example 1.
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Figure 40. Level 6 of the Optimum Schedule for

Example 1.
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$52,270,875. Notice that this value is less than the total 
profits of $57,663,750 obtained for the ultimate pit. 
Imposing ore tonnage constraints on the system together with 
discounting reduced the total cash flows by $5,930,625.

The average grade of the ore mined in each period 
starts at 3.7% Cu in the first year, goes up to 4.4% Cu in 
the second year and decreases to 3.0% Cu in year 3. This 
schedule indicates that mining commences in a high grade 
area and progresses toward the low grade area. The required 
stripping to be done in each period shows a pattern of 
gradual increase. According to the schedule, very little 
stripping is required in time period 1 ; the amount of 
stripping is more then doubled in period 2 ? and most of the 
stripping is done in period 3 (see Table 5).

In order to illustrate to a greater extent the effects 
and costs of the system constraints on cash flows, a second 
example was generated by imposing further restriction on the 
example model. For this example, an additional restriction 
on mill feed grade was imposed together with the ore mining 
capacity constraints of the previous example; specifically:

1. Mine 19 ore blocks averaging 3.7% Cu in period 1.
2. Mine 21 ore blocks averaging 3.7% Cu in period 2.
3. Mine 23 ore blocks averaging 3.7% Cu in period 3.
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As indicated in the discussion of the ultimate pit reserves, 
the average grade of the total reserve within the ultimate 
pit contour was 3.7% Cu. Hence, the second restriction on 
each period is to force the operation to mine as close to
this average grade as possible.

The optimum solution to the above mining system is 
depicted in Figures 41 - 46. The numbers on different
levels again indicate the time periods in which the block 
will be mined.

From the summary statistics given in Figure 41 and 
Table 6 , total discounted profits from this schedule is 
$51,733,125, and all the constraints for different time 
periods are satisfied except the average grade requirement 
in period 2. Average grade of the schedule for this period 
is 3.6% as compared to required 3.7%. The most likely 
reason for this lower grade is a lack of availability of the 
blocks in the deposit to give the average grade of 3.7%.

The total discounted value of the schedule for this 
case is less than the total discounted cash flow obtained
for the previous example. That is, because of the
additional restrictions on the mill feed grade, the total 
discounted profits are further reduced $537,750* As can be 
seen, this last reduction is caused by blending some of the 
low grade material with high grade in period 2. By
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Figure 41. Summary Statistics and Level of the Optimum
Schedule for Example 2.
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Figure 42. Level 2 of the Optimum Schedule for
Example 2.
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Figure 43. Level 3 of the Optimum Schedule for
Example 2.



T-3073 203

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
(I 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 0 
0 0

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0
0 0 0 0 0 0

0 0
0 0
0 0 
0 0 
0 0 
0 0 
0 0

0 0 
0 0

0 0 "0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Û 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure 44. Level 4 of the Optimum Schedule for
Example 2.
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Figure 45. Level 5 of the Optimum Schedule for
Example 2.
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Figure 46. Level 6 of the Optimum Schedule for
Example 2.
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the average grade requirement, high grading of the deposit 
is prevented. Although the reduction of revenues by mill 
feed grade requirements is not significant in this example, 
the results interestingly reinforce the common economic 
notion that high grading gives higher discounted profits 
than a schedule which blends high with low grades.

These example studies can be expanded to include other 
conditions to determine effects and costs of different 
constraints on the system. Clearly, with the proposed 
methods, many different mining scenarios can be evaluated.
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS
Sound mine planning should contribute greatly to 

converting a deposit into an economically profitable mining 
operation. If the corporate objective is the attainment of 
maximum net present value, scientific decision making tools 
similar to those proposed in this dissertation need to be 
substituted for present mine planning practices.

A number of significant contributions are made in this 
dissertation. These are:

1. A clear, concise and structured definition and 
formalization of open pit production scheduling 
problems are given.

2. The most important stumbling block in solving the 
production scheduling problem by mathematical 
optimization tools has been the multi-period 
sequencing problem. In this investigation this 
problem is solved and a very efficient algorithm is 
presented.
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3. One of the significant developments in open pit 
planning in the 1970's was the concept of 
parametrization. The concept of parametrization is 
formalized in terms of the lagrangian theory of 
mathematics and, as a result, is enriched into a 
broader, and more useful form.

4. A new interpretation of cutoff grades is developed 
which gives a framework for understanding the 
dynamic nature of cutoff grades.

In addition, numerous benefits will be gained from the 
application of the proposed method. These can be summarized 
as:

1. Application of the model and the optimum mine
production scheduling algorithm presented in the 
previous chapters will not only provide an open pit 
mine plan which maximizes the return on investment, 
it will also yield other benefits in providing 
answers to many "what if" questions. Having a model 
similar to one developed here, and the necessary 
computer programs, the sensitivity of mine economics 
to various mining and plant capabilities can be 
carried out rapidly by varying right hand side
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requirements. This process of analysis ; when 
combined with optimum production schedules, can be 
of great interest to management in evaluation and 
optimization of the complete mining system.

2. The mining industry is known for its fluctuating 
market conditions. By utilizing the model developed 
here, it is possible to perform sensitivity analysis 
with respect to various economic factors such as 
metal prices and costs.

3. The procedure presented in this study may also
affect the traditional cutoff grade concept used in 
production scheduling. The production scheduling 
obtained as a result of the model will not require a
cutoff grade decide what is ore and what is waste.
This decision is automatically made by the model.

4. The other advantages of the methodology presented
here will be in efficient utilization of planning 
engineer's time. With this method, the engineer is 
freed from doing tedious year to year calculations 
by hand. He is put in a position where he can view 
the entire planning horizon through the model, and 
consider other possibilities such as the interaction 
of demands of yearly schedules on one another.
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In conclusion, this research study was undertaken with 
the objective of bringing the decision maker closer to 
making decisions which result in more profitable opera
tions. This objective can be attained only when the 
proposed method is accepted by the mining industry as an 
effective tool and applied to the scheduling of numerous 
mining properties.

9.2 RECOMMENDATIONS FOR FUTURE RESEARCH
The model and solution algorithm developed in this 

investigation made considerable progress in obtaining a 
production schedule which will maximize the net present 
value of the operation. Yet more work should be done in a 
number of areas concerning the production scheduling 
problem.

The modification of lagrange multipliers, as discussed 
in Chapter 6 , needs to be improved upon. This step of the 
overall algorithm may be improved by further investigating 
the relationship between lagrange multipliers and the cutoff 
grades. This interesting area deserves more study and can 
have powerful implications.

Another area for further research is the investigation 
into the "condition of gaps". This area is actively being 
researched in the domain of mathematics. This research
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needs to be followed closely, and later combined with the 
existing knowledge of the production scheduling problem. 
Only through the continuing interest in both operations 
research and its application to mine production scheduling 
can this problem be totally solved.
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TY RS.FORCttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 
CSSS* RS.FOR nut

*****
C»*** OPEN PIT PRODUCTION SCHEDULING PROGRAM *****
Ct*** *****
c m *  *****
c m *  WRITTEN BY: KADRI DAGDELEN *****
c m *  DATE : JUNE 1985 *****
c m *  VERSION : 3 *****
c m *  *****
c m *  THIS IS THE DRIVER ROUTINE FOR THE OPEN PIT PRODUCTION *****
c m *  SCHEDULING ALGORITHM DEVELOPED IN Ph»D DISSERTATION OF *****
C**** KADRI DAGDELEN* (SEE DAGDELEN, K*,1985, 'OPTIMUM MULTI *****
C * m  PERIOD OPEN PIT PRODUCTION SCHEDULING', Ph*D DISSERTATION *****
C * m  COLORADO SCHOOL OF MINES, GOLDEN, COLO, 80401,), *****
c m *  *****
c m *  INPUT FILES: (SEE READ SUBROUTINE) *****
c m *  *****
c m *  OUTPUT FILES: (SEE PRINTS SUBROUTINE) *****
c m *  *** * i
c m *  SUBROUTINES: *****
c m *  THIS DRIVER CALLS THREE IMPORTANT SUBROUTINES.THEY ARE *****
c m *  *****
c m *  1) SUBROUT I NE READ *****
C**** 2)SUBROUTINE HELD *****
C**** 3)SUBROUTINE PRINTS *****
c m *  *****
c m *  SUBROUTINE READ READS IN THE NECESSARY INPUT DATA, *****
C***.* CALCULATES ORIGINAL BLOCK VALUES AND DETERMINES THE *****
C**** INITIAL SCHEDULE, *****
C * m  SUBROUTINE HELD PERFORMS THE NECESSARY STEPS AT A GIVEN *****
C * m  ITERATION OF THE SCHEDULING ALGORITHM, *****
C**** SUBROUTINE PRINTS PRINTS OUT THE SCHEDULING RESULTS *****
c m *  m * * .
C * m  DESCRIPTION OF VARIABLES: *****
c m * LM : (1x9) VECTOR OF LAGRANGE MULTIPLIERS *****
c m *  RHSi (1x9) VECTOR OF CURRENT RIGHT HAND SIDES *****
c m *  B : (1x9) VECTOR OF DESIRED RIGHT HAND SIDES *****
c m *  NR : NUMBER OF CONSTRAINTS *****
************************************************************************ 

REAL*4 LM(9),RHS(9),B(9)
COMMON /INIT/B,NR

C INITILIZE
NR=6
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C INITILIZE THE LAMDA AND PHI MATRICES
CALL READ(LM,RHS)

C PERFORM THE STEPS OF THE ALGORITHM
DO 1=1,15

CALL HELD(LM,RHS)
ENDO

C PRINT THE RESULTS AFTER DESIRED NUMBER OF ITERATIONS
CALL PRINTS
STOP
END
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ttttt tun
c m *  SUBROUTINE READ *****
c m *  *****
C**** THIS SUBROUTINE PERFORMS THE INITIL STEPS OF THE OVERALL *****
C***» PROGRAM» THIS ROUTINE READS IN THE INPUT DATA, DETERMINES *****
C**** THE ORIGINAL BLOCK VALUES AND CALLS THE SCHEDULING *****
C**** SUBROUTINE TO DETERMINE THE STARTING SCHEDULE» *****
c m *  *****
cm *  INPUT FILES « *****
c m *  THE (30x30) ARRAY of ESTIMATED BLOCK GRADES ARE INPUT TO *****
C**** THE PROGRAM FROM A FILE NAMED ,F0R030»DAT*» THE FORMAT OF *****
C*»** THIS FILE IS4» F0RMAT(30(30F4»1,/),/)» *****c m *  *****
cm* THE (1x6) ARRAY OF THE INITIAL LAGRANGE MULTIPLIER VECTOR *****
€**** IS INPUT FROM A FILE NAMED eFOR025»DAT1» THE FORMAT OF *****C**** THIS FILE IS : FORMAT(F)» *****
c m *  *****
c m *  THE (1x6) ARRAY OF THE DESIRED RIH6T HAND SIDES ARE INPUT *****
C**** FROM A FILE NAMED ,F0R026»DATe♦ THE FORMAT OF THIS FILE *****
C**t* IS : FORMAT(F)♦ *****
c m *  *****
c m *  SUBROUTINES: *****
c m *  THIS SUBROUTINE CALLS FOLLOWING SUBROUTINES: *****
c m *  *****
cm *  1 SUBROUTIN E RVALUE MW.c m *  2)SUBROUTINE DOIT *****
c m *  3) SUBROUT I NE PRINTS *****c m *  *****
C**** SUBROUTINE RVALUE CALCULATES THE ORIGINAL BLOCK VALUES ($)♦ *****
C**** SUBROUTINE DOIT FINDS THE INITIAL SCHEDULE BASED ON *****
C**** THE CALCULATED BLOCK VALUES AND STARTING MULTIPLIERS» *****
C*.*** SUBROUTINE PRINTS PRINTS OUT THIS INITIAL SCHEDULE, *****
c m *  *****
C * m  DESCRIPTION OF VAR IDLES I
C**** IC : THE COUNTER FOR THE NUMBER OF ITERATIONS *****c m *  LM(I) : LAGRANGE MULTIPLIER FOR THE I'TH CONSTRAINT *****
C**** MBT(I,J) : ON-OFF INDEX OF BLOCK J IN PERIOD I *****
c m *  0VAL(I,J) : ORIGINAL DOLLAR VALUE OF BLOCK J IN PERIOD I *****
c m *  RHS(I) : THE CURRENT RIGHT HAND SIDE OF CONSTRAINT I *****
C**** TTP Î NUMBER OF TIME PERIODS IN A SCHEDULING HORIZON *****
C**»* VAL(I,J) : ADJUSTED DOLLAR VALUE OF BLOCK J IN PERIOD I *****c m *  X(I) : EST W E D  GRADE OF BLOCK I u
c m *  WOK I t J )  : ORE- WASTE INDICATOR OF BLOCK J IN PERIOD I *****
C*»** WASTE(I,J): STRIP!ING COST OF BLOCK J IN PERIOD I *****
c m *  *****
c m m m m m * m * m m m * * m * * m * m m * m m * * * * * * * * * * * * * * * * * *
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SUBROUTINE REAB(LM,RHS)
REALS4 LM<9)»RHS(9)»B(9)
R E A U 4  X(5400)
INTEGER*2 TIP » HBT(0 i 5 » 5400),WOI(0 Î 5 » 5400)
INTEGER*4 VAL(0:5,5400),WASTE(0:5f5400)>OVAL(5,5400)
COMMON TTP,IC 
COMMON /BLK6/VAL»MBT»W0I 
COMMON /BLK8/X 
COMMON /BLK30/UASTE 
COMMON /OVAL/OVAL 
COMMON /INIT/BrNR
NR—6 
TTP=3
TYPE ft'INITIL'

C READ IN ESTIMATED BLOCK GRADES
READ<3015 ) (X(J)» 1=115400)

5 FORMAT(30<30F 4*1•/)t/)
C READ IN THE ORIGINAL MULTIPLIERS

READ<25t10)(LM<I)r1=1rNR)
10 FORMAT((F))
C READ IN THE DESIRED RIGHT HAND SIDES

READ(26t20)<B(I)tI=ltNR)
20 FORMAT((F))
C CALCULATE THE ORIGINAL BLOCK VALUES

CALL PVALUE
C CALL SCHEDULER

CALL DOIT(LMtRHS)
C WRITE OUT ORIGINAL PIT LIMITS

CALL PRINTS
RETURN
END
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Ctttt tttti
C m *  SUBROUTINE RVALUE *****c**** *****
C O T *  THIS SUBROUTINE DETERMINES THE BLOCK VALUES ACCORDING TO ***** .
C O T *  SOME ASSUMED COSTS AND PRICES, *****
C O T *  THE FOLLOWING ECONOMIC ASSUMPTIONS ARE MADE IN CALCULATING *****C O T *  BLOCK VALUES : *****
C O T *  PRICE i «70 S/Lb. OF CU. *****
C O T *  MINING COST Î .85 S/TON OF MATERIAL. *****
C O T *  MILLING COST : 2.20 S/TON OF ORE. *****
C O T *  SMELTING & MARK. Î .25 S/LB OF CU. *****
C O T *  ADMINISTRATIVE Î .15 S/TON OF ORE, *****
C O T *  RECOVERY ♦ 100 % *****
C O T *  *****
C O T *  INPUT files: NONE *****
C O T *  *****
C O T *  SUBROUTINES: NONE *****
C O T *  *****
C O T *  DESCRIPTION OF VARIABLES: (SEE SUBROUTINE READ) *****
C***********************************************************************

SUBROUTINE RVALUE 
LOGICAL*! READI
INTEGER*2 TTP,MBT(0:5,5400),W0I(0:5,5400)
INTEGER*4 VAL(0:5,5400),WASTE(0:5,5400),0VAL(5,5400)
REAL*4 X(5400)
COMMON TTP,IC
COMMON /BLK6/VAL,MBT,W0I
COMMON /BLK8/X
COMMON /BLK30/WASTE
COMMON /OVAL/OVAL
READI=,TRUE,

C INITIALIZE TIME THE BLOCKS WILL BE MINED TO 0
I
!

DO J=0,TTP
DO 1=1,5400

MBT(v),I )=0 
U0I(J,I)=1

ENDDO
ENDDO

DO K=l,6
DO 1=1,30



o 
o 

o 
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DO J=1»30 ZN= ( K-l ) *900+ ( I -1 ) *30+J ^ Z  /  X  
VAL(0tN)=X(N)*20*(70-25)-65-220-15 
IF <X < N ).L E ♦0)OAL(0 » N )=-65-220-15 IF<K«EQ*1)WASTE<0»N>=-65 ~  
IF(K.E0.2>WASTE(0»N)=-70 
IF<K*EQ»3)WASTE(0>N)=-75 IF<K*EQ»4)WASTE(0>N)=-80 
IF(K»EQ*5)WASTE(0jN)=-85 
IF(K»EQ»6)WASTE<0»N)=-?0 

ENDDO 
ENDDO

ENDDO
!
C DETERMINE UNMODIFIED BLOCK VALUES WITH RESPECT TO TIME PER,

DO J=1,TTP
DO 1=1,5400

IF(J*LE*1 >THEN
VAL(J,I>=VAL(J-1,1 )
WASTE(JrI>=WASTE(J-i ? 1 ;

ELSE
VAL(J ,I > =VAL(J-1,1 )/1 ♦ 125 
WASTE( J , I >=WASTE( J--1 r I > /1

END IF
ENDDO

ENDDO
DO KK=1,TTP 

DO 1=1,5400
IF (VA L (K K ,I ).L E ♦WASTE(K K ,I))THEN 

VA L (K K ,I )=WASTE(K K ,I >
END IF

OVAL(KK,I)=VAL(KK,I)ENDDO
ENDDO

C WRITE THE VALUES OUT
DO J=1,3
WRITE(32,20)((OVAL(J,I)),1=1,5400)
ENDDO

0 FORMAT(30(IX,3014,/),/)
DO J=1,3
WRITE(31,20) (VAL( v.t, I ), 1=1,5400)
ENDDO
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RETURN
END
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c m t t m t s m m m m m m m m m m m s t m m m m m m m m * *  
ztttt ttti*c m *  SUBROUTINE HELD *****C**** *****C * m  THIS SUBROUTINE PERFORMS THE NECESSARY STEPS IN A GIVEN *****C**** ITERATION OF THE ALGORITHM* IN A GIVEN ITERATION, THE *****C**** CONSTRAINT VIOLATIONS OF THE SCHEDULE OBTAINED IN THE *****C * m  PREVIOUS ITERATION IS DETERMINED FIRST* BASED ON DEGREE OF *****C**** THE VIOLATIONS A NEW SET OF MULTIPLIERS ARE CALCULATED TO *****C * m  GET AN IMPROVED SCHEDULE* AT THE FINAL STEP A NEW SCHEDULE *****C**** IS DETERMINED BY USING THE MULTIPLIERS FOUND, *****C**** THE MULTIPLIER ADJUSTMENTS ARE BASED ON THE SUBGRADIENT *****C»*** OPTIMIZATION METHOD SUGGESTED BY HELD AND KARP, FOR THE *****C**** DETAILS OF THIS METHOD SEE i *****C**** 1) HELD, M, AND KARP, R,M,, 1970, "THE TRAVELING *****C**** SALESMAN PROBLEM AND MINIMUM SPANNING TREES1, *****C**** OPERATIONS RESEARCH, VOL, 18, pp. 1138-1162, *****C**** 1970. *****c m *  2) HELD, M., AND KARP, R.M., 1971, 'THE TRAVELING *****C**** SALESMAN PROBLEM AND MINIMUM SPANNING TREESÎ *****
C**** PART II', MATHEMATICAL PROGRAMING,VOL.1, *****
C**** PP. 6-25, 1971 *****
C**** 3) HELD. M.» WOLFE, P., AND CROWDER, H.D.,1974 *****
C * m  'VALIDATION OF SUBGRADIENT OPTIMIZATION ', *****
C**** MATHEMATICAL PROGRAMING, VOL, 6, PP,62-88. *****
C**** 4) MURTY, KATTA, 1979, LINEAR AND COMBINATORIAL *****
C**** PROGRAMING, JOHN WILEY AND SONS, NEWYORK,1979. *****
c m *  *****
cm *  INPUT FILES: NONE *****
c m *  *****
c m *  su broutines: *****
c m *  THIS ROUTINE CALLS THE 'DOIT' SUBROUTINE TO OBTAIN *****
C * m  A SCHEDULE FOR A GIVEN SET OF MULTIPLIERS, *****
c m *  *****
C**** DESCRIPTION OF VARIABLES: *****
c m *  MULT(I) : ARRAY CONTAINING THE CURRENT MULTIPLIER VECTOR *****
cm* STEP i SIZE OF THE STEP TAKING IN THE IMPROVING DIR. *****
c m *  TVI : SUM OF THE SQUARES OF THE VIOLATIONS, *****
c m *  VIOL(I) : ARRAY CONTAINING VIOLATIONS IN EACH CONSTRAINT *****
c m *  OF TIME PERIODS. *****
cm* VIOL(l) : VIOLATION OF CONSTRAINT ONE IN TIME PERIOD ONE, *****C**** VI0L(2> : VIOLATION OF CONSTRAINT TWO IN TIME PERIOD ONE, *****
c m *  VI0L(3) : VIOLATION OF CONSTRAINT THREE IN PERIOD ONE ETC, *****
c m *  *****
c***********************************************************************

SUBROUTINE HELD(LM,RHS)
REAL*4 LM(9),RHS(9),B(9),VI0L(9),MULT(9),VI0L0(9)



T-3073 238

COMMON /INIT/BfNR 
IW=0

TYPE *, 'HELD'
C DETERMINE VIOLATION VECTORTVI=0*DO 1=1,NR

VIOL(I )=RHS(I )- B (I )
VI0L0(1)=V10L(I)
TVI=TVI+VIOL(I)#2

ENDDO
C STORE TOTAL VIOLATIONS

TVIO=TVI
C USE HELD'S MEDHOD TO DETERMINE A STEP
C XM0BJ=NPVT-500*

ROW=2
C STEP=ROW*(PVAL-XMOBJ)/TVI

STEP=4*
TYPE *fSTEP

C DETERMINE THE NEW SET OF MULTIPLIERS
DO 1=1,NR

MULT(I>=LM(I)iSTEP*VIOL(I )
ENDDO
TYPE *,MULT

C INITILIZE LOWER AND UPPER VALUES OF THE STEP
STEPL=0
STEPU=STEP

C GENERATE A NEW SOLUTION
10 CALL DOIT(MULTiRHS)
C DETERMINE VIOLATIONS OF THE NEW SOLUTION

TV 1=0 
DO 1=1,NR

VIOL(I>=RHS(I)~B(I)
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T V I = T V I + V I 0 L m * * 2
ENDDO

C IF THE NEW SOLUTION IS BETTER THAN THE OLD ONE RETURN
IF((TVI-150*) *LT♦TVIQ)00 TO 20 

C IF THE NEW SOLUTION IS WORSE, THEN ADJUST THE STEP
IF(TVI♦GT♦TVIO)THEN 

IW=1
STEPU=STEP
STEP=(STEPL+STEP)/?

ELSEIF(IW»EQ* D T H E N  
STEPL+STEP
STEP=(STEPL+STEPU)/2«0

ELSE
STEPL+STEP
STEP+STEPL+STEP

END IF
C CALCULATE A NEW SET OF MULTIPLIERS

DO 1=1,NR
MULT(I)+LM <I )+STEP*VI0L0(I )

ENDDO
TYPE *,MULT 
GOTO 10

20 DO 1=1,NR
LM( I. )=MULT ( I )ENDDO

RETURN
END
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c m *  *****C**** SUBROUTINE DOIT *****
c m *  *****
c m *  THIS SUBROUTINE IS A DRIVER ROUTINE FOR THE SCHEDULING ALG, *****C**** THIS ROUITINE SUMS THE MULTIPLIERS CORRESPONDING TO EACH *****C**** BLOCK, ADJUSTS THE BLOCK VALUES AND CALLS THE MULTI PERIOD *****C**** SCHEDULING SUBROUTINE* *****
c m *  *****
c m *  INPUT FILES: NONE *****c m *  *****
c m *  SUBROUTINES: *****
c m *  THIS ROUTINE CALLS THE FOLLOWING SUBROUTINE: *****
c m *  1)SUBROUTINE ADJUST *****
c m *  2)SUBROUTINE MULTSH *****C**** SUBROUTINE ADJUST ADJUSTS THE VALUES OF THE BLOCKS BY *****C**** SUBSTRACTING THE PENALTIES DETERMINED BY MULTIPLIERS *****
C m *  FROM THE ORIGINAL BLOCK VALUES» *****C»*** SUBROUTINE MULTSH DETERMINES THE OPTIMUM SCHEDULE BY *****
cm *  USING THE MULTI PERIOD SCHEDULING DEVELOPED IN DAGDELEN'S *****C**** Ph.D DISSERTATION» *****
c m *  *****
C**** DESCRIPTION OF VARIABLES: *****
c m *  AVGR(I) : ARRAY CONTAINS AVERAGE GRADE OF THE ORE MINED *****
CS*** IN PERIOD I *****
c m *  LM(I) : LAGRANGE MULTIPLIER CORRESPONDING TO *****
C**** CONTSRAINT I *****
c m *  RHS(I) : RIHGT HAND SIDE OF CONSTRAINT I IN THE CURRENT *****
C**** SCHEDULE» *****
C**** SUM(I) i ARRAY CONTAINING THE VALUE OF TOTAL NUMBER OF *****cm* WASTE BLOCKS MINED IN PERIOD I *****
c m *  SUMO(I) : ARRAY CONTAINING THE VALUE OF TOTAL NUMBER OF *****cm* ORE BLOCKS MINED IN PERIOD I *****
c m *  TLM(I,J>: TOTAL PENALTIES ASSOCIATED TO BLOCK J IN PERIOD *****cm* i *****C**** TTP : NUMBER OF TIME PERIODS *****
c m *  *****
c m m m m m m * m m * * * * * m m m * * * m * * * m * * m * * * * * m * * * * * * *SUBROUTINE DOIT(LM»RHS)INTEGER*2 TTPI NTEGER*2 WO I ( 0 15,5400 ), MBT ( 0 4» 5,5400 )INTEGER*4 VAL < 0 i 5,5400),WASTE < 0 Î 5,5400 >INTEGER*4 SUM(20),SUM0(20),NPV(20)

REAL*4 X(5400),TGR(20),AVGR(20) REAL*4 TLM(0*5»5400),LM<9)>RHS(9)
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COMMON TTP»IC
COMMON /BLK6/VAL,MBT,W0I
COMMON /BLK7/SUM,SUMO » NPV» TOR» AVGR
COMMON /BLK8/X
COMMON /BLK29/TLM
COMMON /BLK30/WASTE

C INITILIZE THE TOTAL MULTIPLIERS
DO J=i»3 
DO 1=1,TTP 

TLM(J,I)=0,0 
ENDDO 
ENDDO

C DETERMINE TOTAL PENALTY PER TIME PERIOD
DO 1=1,5400
TLM<l, I)=LM(mLM( 2)*X(I)

C IF(TLM(1)*LT*0)TLM(1)=0*0
TLM(2,I)=LM(3)+LM(4)*X(I)
TLM(3,I)=LM(5)1LM(6)*X(])
ENDDO

C CALL SUBROUTINE TO ADJUST THE BLOCK VALUES
CALL ADJUST

C
C CALL SUBROUTINE TO DO MULTI TIME PERIOD PRODUCTION
C SCHEDULING

CALL MULTSH
C SEND BACK THE NEW RIGHT HAND SIDES

RHS(1)=SUM0(1)
RHS(2)=AVGR(1)
RHS(3>=SUM0(2)
RHS<4)=AVGR(2>
RHS(5)=SUM0<3)
RHS(6)=AVGR<3)

C END OF SUBROUTINE DOIT
RETURN 
END



T-3073 242

c m *  SUBROUTINE ADJUST *****c m *  *****
C * m  THIS SUBROTINE ADJUSTS THE ORIGINAL BLOCK VALUES BY *****
C**** SUBSTRACTING TOTAL MULTIPLIER VALUES, THIS SUBROUTINE ALSO *****
C * m  DETERMINES IF A BLOCK TO BE MINED AS ORE OR AS WASTE BY *****
c m *  CALLING SUBROUTINE COMPARE, *****
c m *  *****
c m *  INPUT FILES: NONE *****
c m *  *****
c m *  SUBROUTINES: *****
c m *  *****
C**** THIS PROGRAM CALLS SUBROUTINE #COMPARE' TO DETERMINE WASTE *****
c m *  ORE INDICATOR, *****
c m *  *****
cm* DESCRIPTION OF VARIABLES: (SEE READ SUBROUTINE) *****
c m *  *****
c m m m m m m m m m m m m m m m m m m m m m * * * * * * * *

SUBROUTINE ADJUST 
INTEGER*2 TTPINTEGER*] WOI(0:5,5400),MBT(0:5,5400)
INTEGER*4 V A L (0Î5,5400),WASTE(0:5,5400)
INTEGER*4 0VAL(5,5400)
REAL*4 TLM(0t5,5400)
REAL*4 X(5400)

I
COMMON TTP,IC
C0MM0N/BLK6/VAL,MBT,WOI
C0MM0N/BLK8/X
C0MM0N/BLK29/TLM
C0MM0N/BLK30/WASTE
COMMON/OVAL/OVAL

C MODIFY THE BLOCK VALUES

DO J=1,TTP
DO 1=1,5400

IF(X(I),GT,0)THEN 
IF(J.EQ,1 ,AND,I,GT,2700)TLH(J,I)=5000, 
IF(J,EQ,2,AND,I*GT,4500)TLM(],I)=5000, 
V A L U ,  I )=0VAL ( J, I )-TLM( J, I )

ENDIF
ENDDO

ENDDO



o 
o 
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C COMPARE THE ORE VS WASTE VALUE AND CHOOSE THE
C HIGHEST

CALL COMPAREi
!

DO J=l,3
WRITE(33,20)((VAL(J,I)),!=!,5400) 
ENDDO

C20 FORMAT<30<1X>30I4>/)»/)
RETURN
END
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C*S** SUBROUTINE COMPARE *****
C**** *****c m *  THIS SUBROUTINE COMPARES THE ORE VALUES TO STRIPPING COSTS *****C*»** IN DETERMINING WHICH BLOCK TO BE MINED AS ORE AND WHICH ONES *****Ct*** AS WASTE *****c m *  *****
c m *  INPUT FILES: NONE *****c m *  *****c m *  DESCRIPTION OF VARIABLES: (SEE SUBROUTINE READ) *****c m *  *****c * m * m m m m * m * m m m * m * * m * * * m m m m m * * * * * * * * * * * * *  SUBROUTINE COMPARE INTEGER*^ TTPINTEGER*4 VAL < 0 i 5 » 5400)» WASTE(0:5,5400)INTEGER*] WO I <0J5,5400),MBT(0:5,5400)COMMON TTP,ICCOMMON /BLK6/VAL,MBT,W0ICOMMON /BLK30/UASTE|
jC SET WASTE ORE INDICATOR TO BE 1 FOR THE WASTE BLOCKS

DO KK=0,TTP
DO 1=1,5400I F< VA L (K K ,I >.L E .WASTE(K K ,I ))THEN V AL(K K ,I)=UASTE(K K ,I )

ELSE
WCI(KK,I)=0ENDIF

ENDDOENDDO 
C DO J=1,3
C WRITE(31,20)(VAL(J,I),1=1,5400)C ENDDOC20 FORMAT(30(IX,3014,/)/)i RETURNEND
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c m *  GIVEN THE BLOCK VALUES IN EACH TIME PERIOD THIS SUBROUTINE *****
C * m  DETERMINES WHICH BLOCKS SHOULD BE MINED IN A GIVEN PERIOD. *****
Ct*** THE MULTI PERIOD SCHEDULING IS BASED ON THE ALGORITHM GIVEN *****
C * m  BY KADRI DAGDELEN. (SEE DA6DELENt K., 1985, ' OPTIMUM MULTI *****
C**** PERIOD OPEN PIT SCHEDULING ", Ph.D DISSERTATION, COLORADO *****
C**** SCHOOL OF MINES. *****
c m *  *****
c m *  INPUT FILES: NONE *****
c m *  *****
cm* SUBROUTINES: *****
c m *  FOLLOWING SUBROUTINES ARE CALLED TO DO VARIOUS STEPS OF THE ***** 
c m *  MULTI PERIOD SEQUENCING ALGORITHM: *****
C * m  1) SUBROUTINE 0PCP1 *****
c m *  2) SUBROUTINE 0PCP2 *****
c m *  3) SUBROUTINE 0PCP3 *****
c m *  4) SUBROUTINE TIMING *****
C**** 5) SUBROUTINE SUMMARY *****c m *  *****
c m * m * * m m m * * m m * m m m m * m m m * * * * * m * * * * * m * m * *

c m *
c m * SUBROTINE MULTSH *****

*****

SUBROUTINE MULTSH

C
C

DO ULTIMATE PIT LIMIT ANALYSIS WITH TIME PERIOD 1 OPORTUNITY 
COSTS.

CALL 0PCP1

C
C

DO ULTIMATE PIT LIMIT ANALYSIS WITH TIME PERIOD 2 OPORTUNITY 
COSTS.

CALL 0PCP2

Cc
c

DO ULTIMATE PIT LIMIT ANALYSIS WITH TIME PERIOD 3 OPORTUNITY
COSTS. (SINCE THIS IS THE LAST TIME PERIOD DO THIS STEP WITH 
TIME PERIOD 3 COSTS)

CALL 0PCP3I



DETERMINE WHAT BLOCKS WILL BE MINED IN A GIVEN PERIOD OPTIMALY 

CALL TIMING

DETERMINE TONS OF ORE, TONS WASTE, AND THE AVERAGE GRADE 
MINED IN A GIVEN TIME PERIOD

CALL SUMMARY

END THE SUBROUTINE

RETURN
END
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I
C*********************************************************************
cttn *****
c m *  SUBROUTINE 0PCP1 *****
c m *  *****
C**** THIS SUBROUTINE SOLVES ULTIMATE OPEN PIT LIMIT PROBLEM *****
C * m  BY USING THE OPPORTUNITY COSTS BETWEEN PERIOD 1 *****
Ct*** AND PERIOD 2» *****
c m *  *****
cm *  INPUT FILES: NONE *****
cm *  *****
cm* SUBROUTINES: PIT *****
c m *  *****
c m *  DESCRIPTION OF VARIABLES: *****
c m *  OCl(I) : ARRAY CONTAINING OPPORTUNITY VALUE OF BLOCK I *****
C**** IN TIME PERIOD ONE. *****
c m *  0C2(I) : ARRAY CONTAINING OPPORTUNITY VALUE OF BLOCK I *****
C**** IN TIME PERIOD 2. *****
c m *  0C3(I) : ARRAY CONTAINING OPPORTUNITY VALUE OF BLOCK I *****
C**** IN TIME PERIOD 3. *****c m *  *****c***********************************************************************

SUBROUTINE 0PCP1I
INTEGER*2 MBT(0Î5 15400)tWOI(0i5 »5400),MBT1(5400)
INTEGER*4 VAL(0i5»5400)
INTEGER*4 0C1(5400)»0C2(5400)»0C3(5400)
COMMON /BLK6/VAL,MBT,W0I 
COMMON /BLK10/QC1r0C2>0C3

C CALCULATE THE OPPORTUNITY COST OF MINING A BLOCK IN TIME
C PERIOD 1 INSTEAD OF IN TIME PERIOD 2,i
i

DO 1=1>5400
0C1(I)=VAL<1,I)-VAL(2>I)

ENDDO

C CALL THE ULTIMATE PIT LIMIT SUBROUTINE

CALL PIT(0C1»MBT1)



o
o
o
o
o
o
o
o
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DO 1=1,5400 
MBT(1,I)=MBT1(I)
ENDDO
NLEV=6
LEV=0
LBN1=1
LBN2=900
DO WHILE (LEV.LT.NLEV)

WRITE(47,50)(MBT(1,I),I=LBN1,LBN2>
F0RMAT(1X,30(/1X,30(/+- - ' ) , ,/lX,'I

+ 1X,30(, +----- ' ) , ' + ' / / / )LEV=LEV+1
LBN1=LEV*900+1
LBN2=LBN14899

END DO

C END THE SUBROUTINE

RETURN
END

30(11,' I
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C**********************************************************************
C*$** ttttt
C m *  SUBROUTINE 0PCP2 *****c m *  *****
cm* THIS SUBROUTINE SOLVES ULTIMATE OPEN PIT LIMIT PROBLEM *****
C**** BY USING THE OPPORTUNITY COSTS DETERMINED FOR PERIOD 2 *****
c m *  *****
c m *  INPUT FILESi NONE *****
c m *  *****
c m *  SUBROUTINES: SUBROUTINE PIT *****
c m *  *****
C * m  DESCRIPTION OF VARIABLES: *****
c m *  *****
c m m * * m m m m m m m * m m m m m m * * m * * * m m * * * * * * * * *

SUBROUTINE 0PCP2
j

INTEGER*2 MB T (0 Î 5 » 5400)» WOI(0 Î 5 » 5400),MBT2(5400)
INTEGER*4 VAL(0:5,5400)
INTEGER*4 0C 1 (5400),002(5400),003(5400)
COMMON /BLK6/VAL,MBT,U0I 
COMMON /BLK10/0C1,0C2,0C3

C CALCULATE THE OPPORTUNITY COST OF MINING A BLOCK IN TIME
C PERIOD 1 INSTEAD OF IN TIME PERIOD 2*
!
i

DO 1=1,5400
IF (MBT(1,I ).E G ♦1)THEN

QC2(3 >=VAL(2,I)-VAL(3,I)+CiCl(l)
ELSE

0C2(I)=VAL(2,I)-VAL(3,I)
ENDIF

ENDDO!
i
C CALL THE ULTIMATE PIT LIMIT SUBROUTINE
j
i

CALL PIT(0C2»MBT2)
!

DO 1=1,5400 
MBT(2,I)=MBT2(I)
ENDDO
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C NLEV=6
C LEV=0
C LBN1=1
C LBN2=900
C DO WHILE (LEV.LT»NLEV)
C WRITE(47,50)(MBT(2,I),I=LBN1» LBN2)
C50 FORMAT(IX»3 0 (/IX»30(y+— ')»' + ',/IX,'I y,30(11,z I
C + 1X,30(/+— *),'*'///)
C LEV-LEV+1
C LBN1=LEV*900+1
C LBN2=LBNl+899
C END DO
I
C END THE SUBROUTINE
!
!

RETURN
END

!



T-3073 251

i

c m *  *****
cm *  SUBROUTINE OPCF'3 *****
c m *  *****
c m *  THIS SUBROUTINE SOLVES ULTIMATE OPEN PIT LIMIT PROBLEM *****
C**** BY USING THE OPPORTUNITY COSTS OF PERIOD 3 *****
c m *  *****
cm* INPUT FILES: NONE *****
c m *  *****
cm *  SUBROUTINES: SUBROUTINE PIT *****
c m *  *****
cm* DESCRIPTION OF VARIABLES: *****
c m *  OCl(I) : ARRAY CONTAINING OPPORTUNITY VALUE OF BLOCK I *****
C**** IN TIME PERIOD ONE. *****
C**** 0C2(I) i ARRAY CONTAINING OPPORTUNITY VALUE OF BLOCK I *****
C»*** IN TIME PERIOD 2. *****
c m *  0C3(I) : ARRAY CONTAINING OPPORTUNITY VALUE OF BLOCK I *****
C**** IN TIME PERIOD 3. *****
c m *  *****
c***********************************************************************

SUBROUTINE 0PCP3I
i

INTEGER*2 MBT(0:5,5400),WOI(0:5,5400),MBT3(5400)
INTEGER*4 VAL(0:5,5400)
INTEGER*4 0C1<5400),0C2(5400>,0C3<5400)
COMMON /BLK6/VAL,MBT,W0I 
COMMON /BLK10/0C1,0C2,0C3

j
!
C CALCULATE THE OPPORTUNITY COST OF MINING A BLOCK IN TIME
C PERIOD 1 INSTEAD OF IN TIME PERIOD 2*

DO 1=1,5400
IF (MBT (2,1) .EQ.DTHEN

0C3(I )=VAL(3,1)+0C2(I)
ELSE

0C3(I)=VAL(3»I)
ENDIF

ENDDO
j
!
C CALL THE ULTIMATE PIT LIMIT SUBROUTINE
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CALL PIT(0C3?HBT3)
DO 1=1,5400 
HDT(3,I)=MBT3(I) ENDDO

C NLEV=6
C LEV=0
C LBN1=1
C LBN2=900
C DO WHILE (LEV^LT.NLEV)
C WRITE(47,50)(MBT(3,1),I=LBN1»LBN2)
C50 FORMAT(1X,30(/1X,30('+ '),'+',/IX,'I S 30(11,# I
C + 1X,30('+— •)*'*'///)
C LEV=LEV+1
C LBN1=LEV*900+1
C LBN2=LBNl+899
C END DOI
i
C END THE SUBROUTINEI
I

RETURN
ENDi
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c m *  *****
c m *  SUBROUTINE TIMING *****
c m *  *****
c m *  THIS SUBROUTINE DETERMINE THE TIMING OF THE BLOCKS ACCORDING *****
C**** TO THE RULE GIVING IN CHAPTER 7 OF THE KADRI DAGDELEN'S *****
C**** DISSERTATION. *****
c m *  *****
c***********************************************************************
I
î

SUBROUTINE TIMING|
!

INTEGER*^ VAL(0!5,5400)
INTEGER*2 MBT<0i5,5400),W0I(0:5,5400)

!

COMMON /BLK6/VAL,MBT,W0I

C DETERMINE WHEN EACH BLOCK TO BE MINED BASED ON THE
C PREVIOUS OPPORTUNITY COST SOLUTIONS

DO 1=1,5400
IF (MBT (3,1) .EQ.DTHEN

MBT(0,1)=3 
W0I(0,I)=W0I(3,I)

ENDIF
IF(MBT(2,1).EQ.1 )THEN

3F(MBT(3,I).EQ.1)THEN
MBT(0,I)=2wci:o»i)=woi(2,i)

ENDIF
ENDIF
IF<MBT(l,I).EG.l .AND. MBT(2,I )*E0.1)THEN 

IF(MBT(3,I).EQ.1)THEN 
MBT (0,1) = 1. 
W0I(0,I)=U0I(1,I)ENDIF

ENDIF
ENDDO
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!
C END OF THE SUBROUTINEi
I

RETURN
END
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c**$* % % % % %

CtSS* SUBROUTINE SUMMARY *****
c m *  *****
c m *  THIS SUBROUTINE SUMMARIZES THE OVERALL PRODUCTION TONNAGES *****
C * m  AND GRADES MINED IN EACH TIME PERIOD* *****
c m *  *****
c m *  SUBROUTINES: *****
c m *  1) SUBROUTINE INISTA *****
c m *  2) SUBROUTINE STAT *****
c m *  3) SUBROUTINE AVGRD *****
c m *  *****
C**** DEFINITION OF VARIABLES: *****
c m *  AVGR(I ) : ARRAY CONTAINING AVERAGE GRADE OF THE MATERIAL *****
C**»* MINED IN PERIOD I *****
c m *  NPV(I) : THE PRESENT WORTH OF THE ADJUSTED VALUES OF THE *****
C**** BLOCKS MINED IN PERIOD I *****
C**** NPVA : THE UNADJUSTED NET PRESENT VALUE OF BLOCKS *****
C**** MINED IN PERIOD I (NPV OF THE ORIGINAL VALUES) *****
C**»* TGR(I) : TOTAL METAL CONTENT OF ORE MINED IN PERIOD I *****
c m *  *****
c m m m m * * m m m m m m m m m m * m m m m * * * * * * * * * * * * * *

SUBROUTINE SUMMARY
INTEGER*2 MBT(0i5 »5400),W0I(0:5,5400)
INTEGER*? KK»TTP 
INTEGER*4 VAL(0:5,5400)
INTE6ER*4 SUM(20),SUMO(20),NPV(20),NPVA(20)
REAL*4 TGR(20),AVGR(20)

!
COMMON TTP,IC
COMMON /BLK6/VAL,MET,WO I 
COMMON /BLK7/SUM,SUMO,NPV,TGR,AVGR 
COMMON /BLK9/NPVT 
COMMON /BLK15/NPVA

j
!
C INITIALIZE THE SUMMARY VARIABLESI
j

CALL INISTA!
j
C DO THE BOOKKEEPING
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DO 1=1,5400
IF(MBT(0,I)♦EO♦1)THEN

KK=1
CALL STAT(KK,I) 

ELSEIF(MBT <0,1)♦EQ,2)fHEN 
KK=2
CALL STAT(KK,I) 

ELSEIF(MBT(0,I)»EQ»3)THEN
KK=3
CALL STAT(KK,I)

ENDIF
ENDDO!

I
C CALL AVERAGE GRADE SUBROUTINE

CALL AVGRD

NPVT=0 
DO 1=1,3
NPVT=NPVT+NPVA(I)ENDDO

C WRITE(6,9)(NPVA(I),1=1,3)
C9 FORMAT(14XrNPV OF THE ORIGINAL PROB.i',3<I8,2X)>

WRITE(6,10)NPVT 
10 FORMAT(//,14X,'NPVT OF THE S C H E D U L E X , 18/,

1 4X,T26,'TOTAL TONS',6X,'ORE TONS',
1 6X,'AVERA GRADE')!

DO 1=1,TTP
WRITE(6,20)I ,SUM(I ),SUMO(I ),AVGR(I )

20 FORMAT(14X,'PERIOD',Il,T28,I4»12X,I4,14X,F5*1)
ENDDO

j
C END OF THE SUBROUTINE SUMARYi

RETURN
END
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C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c m *  tnt*
C * m  SUBROUTINE INISTA *****
c m *  * * * * *
C**** THIS SUBROUTINE INITIALIZES VARIABLES USED IN SUMMARY *****
C *m  SUBROUTINE* *****
c m *  * * * * *
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE INISTA
INTEGER*4 SUM < 20 > f SUMO < 20)* NPV < 20)» NPVA < 20)
REAL*4 TGR(20),AVGR(20)

I
COMMON /BLK7/SUM,SUMO>NPV,TGR,AVGR 
COMMON /BLK15/NPVA5

I
C INITIALIZE
!
j

DO 1 = 1 r 20
SUM<I)=0.
SUM0(I)=0*
NPV(I)=0.
NPVA(I)=0,
TGR(I)=0*
AVGR(I)=0.

ENDDO!
i
C END OF THE SUBROUTINE 'INISTA'

RETURN
END
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cm* m**
c m *  SUBROUTINE STAT *****
c m *  * * * * *
c m *  THIS SUBROUTINE DETERMINES THE ORE AND WASTE STATISTICS *****
C**** OF DIFFERENT TIME PERIODS* *****
c m *  * * * * *
C**** DEFINITION OF THE VARIABLES: (SEE SUBROUTINE SUMMARY) *****
c m *  * * * * *
c m m m m m m m m m m m m m m m m m m m m m * * * * * * * *

SUBROUTINE STAT(KK»I )i
INTEGER*2 MBT(0:5,5400),WO I (015,5400)
INTEGER*2 KK 
INTEGER*4 VAL(0Î5,5400)
INTEGER*4 SUM(20),SUMO(20),N P V (20),NPVA(20)
REAL*4 X (5400),TGR(20),AVGR(20)!
COMMON /BLK6/VAL,MBT,U0I 
COMMON /BLK7/ SUM,SUMO,NPV,TGR,AVGR 
COMMON /BLK8/X 
COMMON /BLK15/NPVA

C DO THE BOOKKEEPING

IF(W0I(KK,I) «EQiDTHEN 
SUM(KK)=SUM(KK)+1
ENDIF
IF(W0I(KK,I)♦NE»1)THEN

SUMO(K K > =SUM0(K K )+1 
TGR(KK)=T GR(KK)+X(I)

ENDIF
NPV(KK)=NPV(KK)+VAL(KK,I>
IF(KK*EQ»1)THEM
NPVA(K K )«NPVA(KK > 4VAL < 0 » I )
ELSEIF(KK*EQ*2)THEN
NPVA ( KK ) «NPVA ( KK ) 4VAL. < 0,1 ) /1.125
ELSEIF(KK*EQf3)THEN
NPVA(KK)=NPVA(KK)4VAL(0,I)/(1♦125**2)
ENDIF
IF(W01(KK,I)♦EQ*0)W01(0,I)=0
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I
C END OF THE SUBROUTINE 'STAT(KK)'I
}

RETURN
END

!i
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C********************************************************************
C**** tttti
CUU  SUBROUTINE AVGRD MM*
Ztttt *****
C * m  THIS SUBROUTINE DETERMINES THE AVERAGE GRADES OF THE ORE *****
C**** MINED IN EACH TIME PERIOD, *****
c m *  *****
c m *  DESCRIPTION OF THE VARIABLES: (SEE SUBROUTINE SUMMARY) *****c m *  *****
c m m m m m m m m m m m m m m m m m m m m * * * * * * * * * * *

SUBROUTINE AVGRD
!

INTE6ER*2 TTP
I NTEGE RS SUM(20),SUMO(20),NPV(20),NPVT 
REAL*4 TGR(20)rAVGR(20);
COMMON TTP,IC
COMMON /BLK7/SUM,SUMO,NPV,T GR,AVGR 
COMMON /BLK9/NPVT

NPVT=0

DO 1=1,TTPIF(SUMO(I ),GT,0)THEN
AVGR(I )=TGR(I )/SUMO(I )

ELSE
AVGR(I)=0

END IF
NPVT=NPVT+NPVU;'ENDDO

C END OF THE SUBROUTINE 'AVGR'

RETURN
END

j
i
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c * w  *****
CSSS* SUBROUTINE PRINTS *****
CSSS* * * * * *
CSSS* THIS SUBROUTINE PRINTS THE DETERMINED SCHEDULE CORRESPONDING ***** 
CSSS* TO A GIVEN MULTIPLIERS* *****
CSSS* * * * * *
CSSS* OUTPUT FILESÎ *****
CSSS* THE SUMMARY STATISTICS OF THE SCHEDULE IS WRITTEN INTO A ***** 
CSt*S DISK FILE NAMED 'F0R041.DAT'» *****
CSSS* * * * * *
CSS** THE BENCH BY BENCH PRINTOUT OF THE SCHEDULE IS WRITTEN INTO ***** 
C**S* THE DISK FILE NAMED 'F0R043,DAT', *****
C*S** * * * * *
CS*** THE BENCH BY BENCH ORE WASTE INDICATORS OF THE BLOKCS ARE ***** 
CSSS* INTO THE DISK FILE NAMED 'F0R044.DAT', *****
CS*** *****
C***********************************************************************

SUBROUTINE PRINTS!
INTEGER*? TTP
INTEGERS? MBT(0:5,5400),W0I(0:5,5400)
INTEGERS? IBLKlflBLK?
INTEGERS4 VAL(OÎ5»5400)
INTEGERS4 SUM(?0),SUMO(20),NPV(?0),NPVT,NPVA(20)
REALS4 T G R (20),AVGR(20)I
COMMON TTPtIC 
C0MM0N/BLK6/VAL,MBT,WOI 
C0MM0N/BLK7/SUM,SUMO,N P V ,TGR,AVGR 
C0MM0N/BLK9/NPVT 
C0MM0N/BLK15/NPVA

C WRITE THE NECESSARY STATISTICS

WRITE(42,9)(NPVA(I),I=1,3)
9 FORMAT(14X,#NPV OF THE ORIGINAL PROD*:',3(18,2X)) 

WRITE(41»10)NPVT
10 FORMAT(//» 14X,7NPVT OF THE SCHEDULE4»y, 18/,

1 4X,T26,'TOTAL TONS',6X,'ORE TONS',
1 6 X , 'AVERA GRADE')|

DO 1=1,TTP
WRITE(41,20)I,SUM(I),SUM0(I),AVGR(I)

20 FORMAT(14X,'PERIOD',11,T28,I4,l?X,I4,14X,Ff♦1)
ENDDO
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I
I
CCC K=70
C NLEV=6
C LEV=0
C LBN1=1
C LBN2=900
C DO WHILE (LEV.LT.NLEV)
C WRITE(K»50)(MBT(0»I)»I=LBN1»LBN2)
C50 FORMAT(1Xf30(/1X»30('+— ')»'-P »/lX»'I 'rZOill,' I
C + 1X,30C+— ' ) » ' + '///)
050 F0RMAT<30<30<13)»/))
C K=K+1
C LEV=LEV+1
C LBN1=LEV*900+1
C LBN2=LBNH899
C END DOI

WRITE<43»60XMBT(0»I)»I=1»5400)
60 FORMAT <30(1X>30<13)»/)»//)

WRITE<44»60)<WOI<0»I)» 1=1 »5400)
i
C THE END OF THE SUBROUTINE 'PRINTS'j
i

RETURN
END
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SUBROUTINE PIT
CSS**
CSSSS 
CSSS*
CSSS* THIS IS THE MAIN SUBROUTINE TO DETERMINE ULTIMATE PIT LIMITS 
CSSSS OF AN OPEN PIT MINE IN 3-D BY USING LERCH/S AND GROSSMAN'S 
CSSSS TREE(GRAPH THEORY) ALGORITHM. THE DETAIL DISCUSSION OF THE 
CSSSS ALGORITHM IS GIVEN BY THE FOLLOWING REFERENCE:
CSSSS
CSSSS LERCHS, H. AND GROSSMANN, I.F.» 1965» "OPTIMUM DESIGN OF
CSSS* OPEN PIT MINES", C.M.I. BULLETIN, VOL. 58, No. 633,
CSSSS JAN. 1965, PP. 47-54.
CSSSS
CSSSS THIS SUBROUTINE IS ALSO WRITTEN BY USING STRUCTURED NETWORK 
CSSSS FLOW CONCEPTS DESCRIBED BY MURTY (SEE MURTY, K.» 1979,
CSSSS LINEAR AND COMBINATORIAL PROGRAMING, JOHN WILEY AND SONS, 
CSSS* NEW YORK, 1979 PAGES 371-375) AND ALSO BY JENSEN AND BARNES 
CSSS* (SEE JENSEN, P.A., BARENS, J.W., 1980, NETWORK FLOW 
CSSS* PROGRAMING, JOHN WILEY % SONS, NEW YORK, 1980)
CSSSS
CSSSS SUBROUTINES:
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
csss*
csss*
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS
CSSSS

1) "SUBROUTINE TEMPLT" TO DETERMINE TEMPLATE TO TAKE
VARYING PIT SLOPE CONSTRAINTS INTO ACCOUNT.

2) "SUBROUTINE INIT" TO INITIALIZE THE ORIGINAL TREE INDEX
VARIABLES.

3) "SUBROUTINE STEP1" TO START THE STEPS OF THE ALGORITHM 
DESCRIPTION OF THE VARIABLES:

C V (I)
INX

IS

H
NTX
P(I)
S(I)
V(I>
VA(I>
WS(I)
WSKI)

YB< I )

CUMULATIVE VALUE OF THE NODE I
INDICATOR OF STRONG NODES AT FIRST PASS OF THE 
3-D ALGORITHM.
FLAG TO STOP ITERATIONS IF NO NEW NODES ARE 
INCLUDED IN THE ULTIMATE PIT IN THE PREVIOUS 
ITERATION OF THE 3-D ALGORITHM.
ARRAY CONTAINING SLOPE TEMPLATE
NUMBER OF ITERATIONS OF 3-D ALGORITHM
PREDECESSOR INDEX OF NODE I
SUCCESSOR INDEX OF NODE I
THE BLOCK VALUE OF NODE I
THE BLOCK VALUES PASSED TO THIS SUBROUTINE
STRONG WEAK INDICATOR OF BLOCK I
WEAK OR STRONG INDICATOR INDEX OF NODE I
IF THE INDICATOR IS 1 THE NODE IS
STRONG AND THE THE BLOCK IS INCLUDED IN THE SET
BLOCKS WHICH CAN ECONOMICALLY BE MINED.
YOUNGER BROTHER INDEX OF NODE I

*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****.-
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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SUBROUTINE PIT(VA,WS)

INTEGER*2 WS I (5400)»WS<5400)»INX(5400),15(50) 
I N T E G E R S  S(-l15400),P(-l15400),YB(-115400) 
INTEGER*4 C O (5400)
INTEGERS4 V(5400),VA(5400)i
REAL*4 H(-616,-616)!
COMMON /BLK1/ V,CV,WSI 
COMMON /BLK2/S,P,YB COMMON /BLK3/H 
COMMON /BLK12/INX 
COMMON /BLK14/IS

C! WRITE(6,2)
C!2 FORMAT(IX,/»'PIT',/)
C! WRITE(6,2)(V<I),1=1,1800)
C!2 FORMAT(30(3014,/)»/)
C V(1271)=5
C V(2323)=20
C V(2327>=1000

DO 1=1,5400 
V(I)=VA(I)
ENDDO

C WRITE(48,10)(V(I),1=1,5400)
CIO FORMAT(30(3014,/)»/)!
! DEFINE FIT LIMIT BOUNDARY TEMPLT♦
!

CALL TEMPLT

! INITIALIZE THE TREE INDEX VARIABLES
!

CALL INIT
!
! DO LEARCH AND GROSSMAN ALGORITHM LEVEL BY LEVEL!

NLEV=6
!I

DO 1=1,50 
IS(I)=0 

ENDDO
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DO NTX=1»50
IF(NTX.EQ*1)601012 
IF(IS(NTX-1)»NE*1)G0T014 

12 TYPE *,NTX
DO K=2,NLEV 
CALL STEPKKfNTX)
ENDDO

14 ENDDO
DO 1=1r5400 
US(I)=USI(I)
ENDDO

! PRINT THE LEVEL MAPS WITH INDICATORS OF THE MINED BLOCK
CALL OUTLINE(NLEVtWSI)
CALL PRINT (NLEVfWSI)

C! WRITE <6»2)<WSI(I )» 1=1 » 1800)
C!2 FORMAT((3011) )I

RETURN
END
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ctsts *****
C**** SUBROUTINE TEMPLATE *****
C**** THIS SUBROUTINE GENERATES THE TEMPLATE TO TAKE UN ISOTROPIC *****
C**** SLOPE CONSTRAINTS INTO ACCOUNT « *****
c m *  *****
c * m * m * * * * * * t m m m m m m * * * m m m m * m * * m m * * * * * * * * * * *

SUBROUTINE TEMPLT 
REAL*4 H(-6:6,-6:6)

!
COMMON ZBLK3/Hi

! DETERMINE THE ALLOWABLE HEIGHT A BLOCK (WHICH IS LOCATED (I,J)
! DISTANCE AWAY FROM THE APEX BLOCK) CAN HAVE IN ORDER TO BE IN THE CO
! OF THE APEX BLOCK

C! WRITE(6,2)
C ! 2 FORMAT(IX»/»7 TEMPLT',/)

DO I=-6»6»1
DO J=-6»6»l

H(I»J)=(I**24J**2)**.5
ENDDO

ENDDO
RETURN
END
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0**********************$******************************#*####*##** 
CSSS* * * * * *
CSSSS SUBROUTINE INIT *****
CSSSS THIS SUBROUTINE INITIALIZES ALL THE INDECES OF THE NODES *****
C S *** OF THE INITIAL TREE WITH RESPECT TO DUMMY ROOT *****
CSSSS * * * * *
C *S S S **S S S S S S S *** **S ** ****** * *S S S S *S S *S S *S *S S S *S ***S ****** * * * * * * * * * * * * *S  

SUBROUTINE INIT
INTEGER** V(5400)rCV(5400)
INTEGERS2 WSI(5400),INX(5400),WSII(5400)
INTEGERS2 S(-l15400),P(-l15400),YB(-1:5400)

!
COMMON /BLK1/V,CV,USI 
COMMON /BLK2/S,P,YB 
COMMON /BLK12/INX,USIII

! INITIALIZE ALL THE INDEXES FOR THE ORIGINAL TREE

C! WRITE(6,2)
C ! 2 FORMAT(IX,/,#INIT',/)

DO 1=1,5400;
CV(I)=V(I)

!

IF(V(I)*GT.O)THEN 
W S I <I)=1 
WSII(I)=1

ELSE
WSI(I)=0
USII(I)=0

ENDIFi
P(I)=0

!
S(I)=-1

!

YB(I)=-1
INX(I)=0

ENDDOj
RETURN
END
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ctttt unt
cm *  SUBROUTINE STEP1 *****
cm* THIS SUBROUTINE SEARCHES FOR A STRONG NODE ON A GIVEN LEVEL *****
C**** CALLS ANOTHER SUBROUTINE TO CONNECT THIS STRONG NODE TO AN *****
C**** OVERLYING WEAK NODE *****
c m *  *****
C**** DESCRIPTION OF VARIABLES: *****
c m *  LNUH : LEVEL NUMBER BEING CONSIDERED *****
c m *  NTX Î ITERATION NUMBER INDICATOR OF THE TREE ALGORITHM *****
c m *  *****
cm********************************************************************

SUBROUTINE STEP1(LNUM,NTX)j
INTEGER*2 WSI(5400>,INX(5400),IS(50),WSII(5400)
INTEGER*^ BN
INTEGER*4 V (5400),CV(5400)i
COMMON /BLKl/VfCV»WSI 
COMMON /BLK12/INX,USII 
COMMON /BLK14/ISi

! ON A GIVEN LEVEL LNUM START SEARCHING FOR A STRONG BLOCK

C! WRITE<6>2)
C ! 2 FORMAT(IX»/> 'STEP1'»/)

C! WRITE(6,*)LNUM
DO IX=1»30

DO IY=1»30
BN = (LNUM-1)*900+(IX-1)*30+IY 

IF(WSI(BN)»E0»1 )THEN 
IF (WSI I (BN) «EGLDTHEN

CCCC
C WRITE(6»10)BN,LNUM,IX»IY
CIO FORMAT ( 'POSI ♦ BLOCK :',I10,' LEVEL X  ,11»' X C00RXI2,' Y CÜüK'î ,12)

IF(NTX»EQ*1)THEN
INX(BN)=1
CALL TUPD(BN,LNUM,IX,IY,NTX)

ELSEIF(INX(BN> fEO»1)THEN
CALL TUPD(BN,LNUM,IX,IY,NTX)

ENDIF
ENDIF

ENDIF
ENDDO

ENDDO
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I
RETURN
END
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C***********************************************************************
Ctttt
Ctttt
ctttt
ctttt
ctttt
ctttt
ctttt
ctttt
ctttt
ctttt
ctttt
ctttt
c m *
c m *c m *
cm *
cm*
cm*
cm*
cm*
c m *
cm*
cm*
cm*
cm*
c m *cm*
c m *
cm*
cm*
cm*
cm*

SUBROUTINE TUPD
THIS SUBROUTINE CONNECTS PREVIOUSLY IDENTIFIED POSITIVE 
BLOCK BN TO THE OVERLYING WEAK NODE*
SUBROUTINES Î
THE FOLLOWING 5 SUBROUTINES ARE CALLED IN THIS ROUTINE.

1) SUBROUTINE CONE
2) SUBROUTINE ROOT
3) SUBROUTINE ADD
4) SUBROUTINE CUMVAL
5) SUBROUTINE NORM

SUBROUTINE CONE DEFINES THE BLOCKS WITHIN THE CONE OF A 
STRONG BLOCK BN AND AS A RESULTS IDENTIFIES A WEAK BRANCH 
SUBROUTINE ROOT DETERMINES THE ROOT NODE OF A STRONG BRANCH 
SUBROUTINE ADD ADDS AN ARC FROM STRONG NODE THE WEAK NODE 
SUBROUTINE CUMVAL CALCULATES THE CUMULATIVE VALUES OF THE 
NODES ON THE PATH FROM ROOT NODE OF THE STRONG TREE TO THE 
DUMMY ROOT SO THAT NORMALIZATION STEP OF THE LERCHS AND 
GROSSMANN'S ALGORITHM CAN BE CARRIED OUT BY THE NEXT ROUTINE 
SUBROUTINE NORM DOES THE NORMALIZATION
DEFINITION OF THE VARIABLES:

BN : STRONG NODEIX i ROW NUMBER OF THE BLOCK BN
IY Î COLUMN NUMBER OF BLOCK BN
LNUM i LEVEL NUMBER ON WHICH THIS CONNECTING STRONG

IS FOUND.
NTX Î CURRENT ITERATION NUMBER OF THE ALGORITHM

*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****
*****

cm********************************************************************
SUBROUTINE TUPD(BN,LNUM,IX,IY,NTX)i
INTEGER*2 S<-V.5400),P<-1!5400),YB(-1:5400) 
INTEGER*2 WS I (5400)
INTEGER*2 BN
INTEGER*2 CL0S(5400)rIS(50)
INTEGER*4 V (5400),CV(5400)
C0MM0N/BLK1/V,CV.WSI
C0MM0N/BLK2/S,P,YB
COMMON/BLK4/CLOS
C0MM0N/BLK14/IS
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C! WRITE(6,2)
C!2 F0RMAT(1X,/,'TUPB',/)

DETERMINE THE BLOCKS WHICH FALL INTO THE CONE OF THE STRONG NODE 
PREVIOUSLY IDENTIFIED

IF(P<BN>.EQ.O)THEN
IF(S(BN),NE»-1)THEN

RETURN
ENDIF

ENDIF

CALL CONE(LNUM,IX,IY,MINI,MAXI,MINJ,MAXJ)
C! WRITE(6,5)(CLOS(I),1=1,900)
C!5 FORMAT(30(3012,/),/)i
! SEARCH FOR THE OVERLYING WEAK NODES AND CONNECT THE STRONG NODE TO
! WEAK NODES UNTIL IT CAN NO LONGER SUPPORT THE WEIGHTS OP THE WEAK NO.I

DO K=2,LNUM
DO I=MINI,MAXI

DO >MINJ,MAXJ
N=(LNUM-K)*900+(I-1)*30TJ 
IF(N,GT,5400)WRITE(6,*)N 
IF(N.LT*0)WRITE(6,».)N 
IF(WSI(N)♦E0*0)THEN

IF(CL0S(N)*EQ»1)THEN
TS(K'T>:) = ̂

CCCC
C WRITE(6,7)BN,N
C7 FORMAT(IX,'STRONG NODE^',110,4X,'OVERLAYING WEAK NODE*',14)

CALL ROOT(BN,N,hNU,-  
CALL ADD(BN,N,MNOD) 
CALL CUMVAL(MNOD) 
CALL NORM(MNOD)

ENDIF
ENDIF
IF(WSI(BN).NE.1)GOTO 10

ENDDO
ENDDO

ENDDOi
I
10 RETURN

END
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c m *  *****
c m *  SUBROUTINE ROOT *****
c m *  *****
c m *  THIS SUBROUTINE DETERMINES THE ROOT NODE OF A STRONG BRANCH *****
c m *  *****
C * m  DESCRIPTION OF VARIABLES! *****
C**** BN ! STRONG NODE *****
C**** N ! CURRENT CONNECTING WEAK NODE TO BN *****
C**** MNOD ! ROOT NODE OF THE STRONG BRANCH *****
c m *  *****
cm********************************************************************

SUBROUTINE ROOT <BN»N»MN0D>
INTEGER*2 S(-l:5400),P(-l:5400),YB(-l:5400),IPATH(-i;5400) 
INTEGER*2 BNI
COMMON /BLK2/S»P»YB 
COMMON /BLK5/IPATH

j
C! WRITE(6,2)
C!2 FORMAT(IX »/ »"ROOT't/)

K-BN
IPATH(BN)=NI

DO WHILE(P(K)«NE^O)
IPATH(P(K))=K
K=P(K)

END DO
MN0D=K

CCCC
C WRITE(6il0)MN0D
CIO FORMAT<IXr*** ROOT NODE OF THE STRONG TREE*** M 4 >
!

RETURN
END
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C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
CSSS* * * * * *
CSSSS SUBROUTINE ADD *****
CSSSS * * * * *
CSSSS THIS SUBROUTINE CONNECTS STRONG NODE BN OF A STRONG BRANCH *****
CSSS* TO OVERLAYING NODE N OF A WEAK BRANCH « *****
CSSS* * * * * *
C S *** DESCRIPTION OF VARIABLES* *****
CSSS* BN t CURRENT STRONG NODE *****
CSSS* N i OVERLAYING WEAK NODE *****
C ***S  MNOD » ROOT NODE OF THE STRONG BRANCH *****
C S *** * * * * *
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE ADD(BN,N,MNOD)
INTEGERS2 S(-1:5400),P(-1:5400)» YB(-1Î 5400)iIPATH <-115400) 
INTEGERS2 BN,A,B,C

j
COMMON /BLK2/S,P,YB 
COMMON /BLK5/IPATH

CCCC
C WRITE(6>2)
C2 FORMAT(I X A D D ' )

P(0)=0
S(0)=-1
YB(0)=-1
P(-1>=0

K=MNOD
DO WHILE (K«NE.BN)A=P(K )

B=S(K)
C=YB(K)

MODIFY THE INDECES OF ROOT NODE: OF THE STRONG BRANCH
IF<K*EQ»MNOD)THEN

IF(S(K)*EQ.IPATH(K))THEN 
IF(YB(B)♦NE»-1)THEN 

S(K)=YB(B)
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ELSE
S(K)=-1

ENDIF
P(K)=IPATH(K)
ELSE
KX=S(K)

DOWHILE(YB(KX)*NE»IPATH(K))
KX=YB(KX)

ENDDO
YB(KX)=YB<IPATH(K))
S(K)=B
P(K)=IPATH(K)

ENDIF
ENDIFj
IF (K .N E .MNOD)THEN

IF(S(K)♦EQ*IPATH(K))THEN 
S(K)=A
YB(S(K))=YB(B)
P(K)=IPATH(K)

ELSE
KK=S(K)

DO WHILE(Y B (K K )♦N E .IPATH(K )) 
KK=YB(KK)ENDDO

YB(KK)=YB(IPATH(K))
S(K)=A
P(K)=IPATH(K)
YB(S(K))=B

ENDIF
ENDIF

C! URITE(6»*)IPATH(K>

K=P(K)
ENDDO

A=P(BN>
B=S(BN)C=YB(BN)
F'(BN)=N
S(BN)=A
IF(S(BN).EQ.O>S(BN)=-l
YB(BN)=S(N)



n 
n
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S(N)=BN
YB(S(BN))=B

CCCC
yRITE(6>*)P(BH> ïS(BH)>YB(BN) 
yRITE(6iS)P(N)fS(N)rYB(N) 
RETURN 
END
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ctttt *****
C t m  SUBROUTINE CUMVAL *****
Ct*** *****
C**** THIS SUBROUTINE DETERMINES THE CUMULATIVE VALUES OF THOSE *****
C**** NODES WHICH ARE ON THE PATH FROM ROOT NODE OF STRONG TREE *****
C**** TO THE DUMMY ROOT* *****
c m *  *****
C**** DESCRIPTION OF VARIABLES4* *****C * m  MNOD: ROOT NODE OF STRONG BRANCH *****
c m *  *****
C***********************************************************************

SUBROUTINE CUMVAL(MNOD)
INTEGER*2 WS I (5400)
INTEGER*2 S(-1:5400),P(-1:5400),YB(-1:5400)
INTEGER*4 V(5400),CV(5400)

!
COMMON /BLK1/V,CV,WSI 
C0MM0N/BLK2/S » P tYB;

CCCC
C WRITE<6»2)
C2 FORMAT(IX f'CUMVAL')
!

P(0)=0
S(0)=-1
YB(0)=-1
P(-1)=0
S(-l)=-l
YB(-1)=-1

K=MN0D
DO WHILE(K*NE.O)

IF(S(K)*NE*-1)THEN
KK=S(K)
CV(K)=V(K)+CV(S(K))
DO WHILE(YB(KK)*NE*-1)

C V (K )=CV(K )+CV(Y B (K K )) 
KK=YB(KK)

ENDDO
ELSE

CV(K)=V(K)
ENDIF
K=P(K)
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ENDDO
j

RETURN
END

i
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C S *** * * * * *
C*SS* SUBROUTINE NORM *****
C *» **  * * * * *
cm* THIS SUBROUTINE PERFORMS THE NORMALIZATION STEP OF LERCHS *****
CSSS* AND GROSSMANN' ALGORITHM* *****
c m *  *****
C m *  SUBROUTINES! *****
c m *  THE FOLLOWING SUBROUTINE ARE CALLED IN ORDER TO NORMALIZE *****
C » ***  THE CURRENT TREE* *****
C**** 1) SUBROUTINE HEDGE *****
C S *** 2) SUBROUTINE PEDGE *****
Ct*** 3) SUBROUTINE REDGE *****
c m *  *****
c m *  DESCRIPTION OF VARIABLES! *****
C*S** MNOD ! ROOT NODE OF THE STRONG BRANCH *****
c m *  *****
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE NORM(MNOD)
INTEGER*: WS I (5400)fA
INTEGER*: S (-1 !5400)»P (-1!5400)iYB(-l!5400)
INTEGER*4 V(5400>,CV(5400)I
COMMON /BLK1/V,CV,WSI 
COMMON /BLK2/S,P,YBI

CCCC
C WRITE(6,2)
C2 FORMAT(I X r N O R M ' )!

P(0)=0
S(0)=-1
YB(0)=-1
P(-1)=0
s ( - l ) = - l
YB(-1)=-1

I
!

K=MN0DI
10 IF(P(K)*NE*0)THEN
!

IF(K*GT*P(K))THEN
A=P(K)
CALL HEDGE(K)
K=A
GOTO 10
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ELSE
A=P(K)
CALL PEDGE(K) 
K=A
GOTO 10

ENDIF
ELSE

CALL REDGE(K)
ENDIF

RETURN
END
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c m *  *****
C**** SUBROUTINE HEDGE *****
C**** *****
c m *  THIS SUBROUTINE NORMALIZES A CURRENT TREE WHEN A STRONG *****
C**** M-EDGE IS FOUND ON THE PATH FROM ROOT NODE OF THE STRONG *****
C**** BRANCH TO THE DUMMY ROOT. THIS IS DONE BY DELETING THE *****
C**»* ORIGINATING NODE OF THE M-EDGE AND THEN CONNECTING THIS NODE *****
C**** TO THE DUMMY ROOT. *****
c m *  *****
C**** DESCRIPTION OF VARIABLES: *****
c m *  Kl Î ORIGINATING NODE OF THE M-EDGE *****
c m *  *****
c m m m m m m m m m m m m m m m m m m m m * * * * * * * * * * *

SUBROUTINE MEDGE(Kl)

INTEGER*2 WSI(5400)
INTEGER*] S(-1:5400),P(-1:5400),YB(-1:5400)
INTEGER*] A,A1,A2 
INTEGER*4 V(5400),CV(5400)I
COMMON /BLK1/V,CV,WSI 
COMMON /BLK2/ S,P,YB

j
CCCC
C WRITE(6,2)
C2 FORMAT(IX,y HEDGE7 >j

P(0)=0
S(0)=-1 
YB(0)=-1 
P(-1)~0 
S(-n=-l 
YB(-1)=-1

IF(CV(K1).LE.0)THEN
K2=P(K1)
DO WHILE(K?.GT.0)

CV(K2)=CV(K2)-CV(K1)
K2=P(K2)

ENDDO 
A=P(K1)
IF(S(A).NE.K1)THEN

KK1=S(A)

COLORADO SCHOOL of #%%%& 
GOLDEN, COLORADO 604ÛÏ
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ENDIFj
10 RETURN 

END

DO WHILE(YD(KK1>♦NE*K1) 
KK1=YB(KK1)

ENDDO
YB(KK1)=YD(K1)
IF<YB<KK1).LE»0)YB<KK1)«-1

ELSE
S(A)=YB<K1)
IF(S(A)»LE»0'S(A)s “ j

ENDIF
P(K1)=0
YB(K1)=-1
WSI(K1)=0
IVAL=WSI(K1>
CALL RESET(K1»IVAL>
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j
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *c**$* ***#.
ttttt SUBROUTINE PEDGE UtU
ctm tnti
Ctttt THIS SUBROUTINE NORMALIZES A CURRENT TREE WHEN A STRONG ttttt
Ctttt P-EDGE IS FOUND ON THE PATH FROM ROOT NODE OF THE STRONG tttttCtttt BRANCH TO THE DUMMY ROOT. THIS IS DONE BY DELETING THE ttttt
Ctttt ENDING NODE OF THE P-EDGE AND THEN CONNECTING THIS NODE ttttt
Ctttt TO THE DUMMY ROOT. ttttt
Ctttt t t t t t
Ctttt DESCRIPTION OF VARIABLES: ttttt
Ctttt K1 J ENDING NODE OF THE P-EDGE tttttCtttt t t t t t
Cttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt

SUBROUTINE PEDGE(Kl)
INTEGERt2 USI(5400)
INTEGERtZ S(-l *.5400) »P(-i:5400)*YB(-l 15400)
INTEGERtZ A,A1,A2,AA 
INTEGERt4 V(5400),CV(5400)i
COMMON /BLK1/VjC V tWSI 
COMMON /BLK2/S,P,YB

j

CCCC
C WRITE(6,2)
CZ FORMAT(I X r  P E D G E MI

P(0)=0
S(0)=-1
YB(0)--:-l
P(-1)=0
S ( - l ) = - l
YB(-1)=-l

}

!
IF(CV(K1).GT.0)THEN

KZ=P(K1)
DO WHILE(KZ.NE.O)

CV(K2)=CV(K2)-CV(K1)K2=P(K2)
ENDDO

j
A=P(K1)
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CCCCc

CCCC
C

CCCCcc
C

TYPE*,K1,S(K1),YB(K1),A,S(A),YB(A)
IF(A,LE,0)THEN
TYPE ' ERROR IN PEDGE'
RETURN
ENDIF
IF<S<A).NE.K1)THEN

KK1=S(A>
IF(KK1*LE*0)THEN
TYPE tf' KK1 IN PEDGE IS WRONG'RETURN
ENDIF
DO WHILE(YB(KK1)*NE,K1)

KK1=YB(KK1)
TYPE*,'CHECKING THE YB'tKKl
IF(KK1*LE»0)THEN
TYPE CAN NOT FIND Kl'
RETURN
ENDIF

ENDDO
YB(KK1)=YB(K1>
TYPE*»/YB(K1) IS YB(KKl)'»YB(KK1) 
IF(YB(KKl)♦LEtO)YB(KKl)=-l
S(A)=YB(K1)
IF(S(A),LE*0)S(A)=-1

ELSE

ENDIF
TYPE*»S(A)
S(A)=YB(K1)
IF(S(A)*EQ.O)S(A)=-l
P(Ki)=0
YB(K1)=-1WSI(Kl)=1
IVAL-WSKK1 )
CALL RESET(K1,IVAL)

ENDIF
RETURN
END
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ctttt tun
c m *  SUBROUTINE REBGE *****
c m *  *****C**S* THIS SUBROUTINE UPDATES THE INDECES OF A TREE AFTER A *****
C * m  NORMALIZATION STEP BY CALLING RESET SUBROUTINE♦ *****c m *  *****C * m  DESCRIPTION OF VARIABLES : *****c m *  K1 : ROOT NODE OF A NORMALIZED TREE *****c m *  *****
c m m m m m m m m m m m m m m m m m t m m m m m m *SUBROUTINE REDGE(Kl)

INTEGER*^ W S K 5 4 0 0 )INTEGER*2 S (-1Î 5400)» P( -1 Î 5400)» Y B (-1Î 5400)INTEGER*] ArAl»A2 INTEGER*4 V(5400)»CV(5400)
j COMMON /BLK1/V»CV>WSI COMMON /BLK]/S,P,YBICCCCC WRITE(6,])C2 FORMAT(IX»# REDGE')

IF(CV(K1).GT*0)THEN W S K K 1  )=!
ELSE USI(K1)=0END! F

C! URITE(6»*)K1,CV(K1)»USI(K1)
! IVAL=USI(K1)CALL RESET(K1»IVAL)
!

RETURN
END
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j

Ctttt *****
C«*** SUBROUTINE RESET *****
cm* *****
cm* THIS SUBROUTINE UPDATES WEAK STRONG INDECES OF A NORMALIZED *****
C*m TREE BASED ON THE VALUE OF THE ROOT NODE, *****
cm* *****
Cm* DESCRIPTION OF VARIABLES : *****
cm* NODE : ROOT NODE OF THE NEWLY CREATED TREE *****
C**** IVAL Î STRONG WEAK INDICATOR OF THIS ROOT NODE *****
cm* *****
cm m m m m m m m m m m m m m m m m m m m m ********

SUBROUTINE RESET(NODE»IVAL)
I N T E G E R S  W S K 5 4 0 0 )
INTEGER*^ S <-1i5400),P <-1Î5400),YB(-1:5400)
INTEGER*4 V (5400),CV(5400)

!
COMMON /BLK1/V,CV,WSI 
COMMON /BLK2/SfPrYB

j
CCCC
C WRITE(6»2)
C2 FORMAT(IX»yRESET')

IC0UNT=0
IC0UN=0
P<0)=0S(0)=-1
YB(0)r - 1
S(-l)=“ !P(-1)=0 
YB(~1 )“-l

CCCC
C WRITE-(6»*)NODE, S(NODE) »IVAL»V(NODL) »CV(N0DE)

IF(S(NOr!E),EO,-l)THEN 
USI<NODE)=IVALGOTO 30

ENDIF 
K=s < N o n n  10 IF(K,LE,0)G0 TO 30
WSI(K)=IVAL 
IC0UN=IC0UN+1 
IF(IC0UN.GT,100000)THEN 
TYPE *»' THIS IS IT V  

WRITE(6,*)K,WSI(K),CV(K)
ENDIF
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CCCC
C WRITE(6,*)K,WSI(K),CV(K)

IF(S(K)♦HE♦-1)THEN 
K=S(K) 

ELSEIF(YB(K).NE.-1)THEN 
K=YB(K)

ELSE
20 K=P(K)

ICOUNT= ICOUNT+1 
IF < ICOUNT ♦ C M  0000 ) THEN 
TYPE *,' THIS IS IT 2' 

WRITE(6,$)N0DE,K,P(K),S(K),YB(K)
ENDIFIF(K«LE«0)60 TO 30 
IF(K*EQ*NODE)GOTO 30 
IF(YB(K).E0.-1)G0T0 20 
K=YB(K)

ENDIF 
GOTO 10I

30 RETURN
END

i
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c t t m s m s t s s m t s t t s m t m m m t t s s m t m s m t t t m m m s m m m .
ctttt ttm
c m * SUBROUTINE CONE *****
c m * *****
c m * THIS SUBROUTINE DETERMINES THOSE BLOCKS WHICH FALL INTO THE *****
c m * CONE OF A STRONG NODE, *****
c m * *****
c m * DESCRIPTION OF VARIABLES I *****
c m * IX î X COORDINATE OF STRONG NODE *****
c m * IY » Y COORDINATE OF STRONG NODE *****
c m * MINI I STARTING X COORDINATE AT THE TOP LEVEL *****
c m * MINJ : STARTING Y COORDINATE AT THE TOP LEVEL *****
c m * MAXI Î ENDING X COORDINATE AT THE TOP LEVEL *****
c m * MAXJ i ENDING Y COORDINATE AT THE TOP LEVEL *****
c m * LNUM i Z COORDINATE OF THE STRONG NODE *****
c m * *****
c*************************************************************

SUBROUTINE C0NE(LNUM,IX,IY,MINI,MAXI,MINJ,MAXJ)
I N T E G E R S  CLOS(5400),BELTI,BELTJ 
REALS4 H(-6:6,-6:6),HEIGHT

j
COMMON /BLK3/H 
C0MM0N/BLK4/CL0S

C! WRITE(6,2)
C!2 FORMAT <IX,/,'CONE',/)

INITILIZE ALL THE BLOCKS AS NOT IN THE CONE
DO 1=1,5400

CL0S(I)=0
ENDDO

! CALL THE NECESSARY SUBROUTINE TO DEFINE THF QUETER LIMITS OF X AND Y
! COORDINATES OF THE CONE AT THE TOP LEVEL,

CALL TOPLMTCLNUM,IX,IY,MINI,MAXI,MINJ,MAXJ)
C! WRITE(6,10>LNUM,IX,IY,MINI,MAXI,M1NJ,MAXJ
C ! 10 FORMAT(IX,313,415)
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DETERMINE WHICH BLOCKS FALL INTO THE CONE OF A STRONG NODE♦
DO K=1,LNUM-1

DO I=MINI,MAXI
DO J=MINJ,MAXJ

HEIGHT=LNUM-K

ENDDO
ENDDO

ENDDO

DELTI=IX-I
DELTJ=IY-J
IF<HEI6HT.GE.H(DELTI»DELTJ))THEN

N=(K-l)*900F(I-l)*30fj
CLOS(N)=l

ENDIF

RETURN
END
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cttt* tttM
ctttt SUBROUTINE TOPLMT *****
ctttt *****
c**** THIS SUBROUTINE DETERMINES OUTER LIMITS OF THE CONE AT UPPER *****
ztttt MOST LEVEL. IN TERMS OF I AND J COORDINATE INDECES, *****
c**** *****
C * m  DESCRIPTION OF VARIABLES : *****
ctttt IX : X COORDINATE OF STRONG NODE *****
ctttt IY J Y COORDINATE OF STRONG NODE *****
c***$ MINI J STARTING X COORDINATE AT THE TOP LEVEL *****
ctttt MINJ : STARTING Y COORDINATE AT THE TOP LEVEL *****
c**** MAXI J ENDING X COORDINATE AT THE TOP LEVEL *****
ctttt MAXJ i ENDING Y COORDINATE AT THE TOP LEVEL *****
c**$* LNUM î Z COORDINATE OF THE STRONG NODE *****
ctttt *****
C ** ** *# * * * * * # * * * * * * * # * * * * * * # # * * * * * * * # * # * * # * * * # * * * * # # # # * * * #

SUBROUTINE TOPLMT(LNUM,IX,IY,MINI,MAXI,MINJ,MAXJ)
INTEGERS DELTI,DELTJ 
REAL*4 H(-6:6,-6:6),HEIGHT

!
C!
C!2

C0MM0N/BLK3/H

WRITE(6,2)
FORMAT(IX,/, 'TOF'LMT7,/)

MINI=30
MINJ=30
MAXI=0
MAXJ=0
HEIGHT=LNUM~1

! DETERMINE THE OUTER LIMITS OF X,Y COORDINATES AT THE TOP LEVEL
C! WRITE(6,4)((H(I,J),J=-6,6),I=-6,6)
C!4 FORMAT(13(13F4*!,/),/)
C! WRITE(6,*)HEIGHT,IX,IY

DO 1=1,30
DO J=1» 30

DELTI=IX-I
IF(DELTI.LT«-6 ♦OR, DELTI,GT,6)G0T0 20 
DELTJ=IY-J
IF(DELTJ.LT,-6 ,0R, DELTJ,GT.6)G0T0 1C IF(HEIGHT♦G E ♦H(DELTI,BELTJ))THEN
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IF(I.GT,MAXI)THEN
HAXI=I

ENDIF
IF<I.LT*MINI)THEN

MINI=I
ENDIF
IF ( J ♦ GT ♦ MAXJ ) THF.N 

MAXJ=J
ENDIF
IF(J»LT♦HINJ)THEN MINJ=,J
ENDIF

ENDIF
10 ENDDO
20 ENDDOI

RETURN
END
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cssss ****;.
C m *  SUBROUTINE PRINT *****C**** *****
C**«* THIS SUBROUTINE PRINTS THE LEVEL MAPS SHOWING WHICH BLOCKS *****
C**«* ARE ECONOMICALLY MINED IN THE ULTIMATE PIT LIMIT. *****
c m *  *****C m *  DESCRIPTION OF VARIABLES : *****
C**** NLEV X NUMBER OF LEVELS TO BE PRINTED *****
c m *  B i d )  : MINED OR NOT MINED INDEX OF BLOCK I *****
c m *  *****
cm********************************************************************

SUBROUTINE PRINT(NLEV»BI)
INTEGER*] B K 5 4 0 0 )

5
j
C! WRITE(6»2)
C!2 F0RMAT(IXf/f'PRINT't/)
C LEV=0
C LBN1=1
C LBN2=900
C DO WHILE (LEV.LT.NLEV)
C WRITE(10»10)(BI(I)tI=LBN1»LBN2)
CIO FORMAT(IX»3 0 (/IX»30('+— /IX,'I ',30(11,' I ')
C + 1X,30(/+- - '),'+'///)
C LEV=LEV+1
C LBN1=LEV*900+1
C LBN2=LBNl+899
C END DOi
C WRITE(47,20)(BI(I ),1=1,5400)
C20 FORMAT(30(3014,/),/)i

RETURN
END
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c * m  n m
C m * SUBROUTINE OUTLINE *** * *
c m *  *****
C*»** THIS SUBROUTINE PRINTS OUT THE TOPO FILE OF THE ULTIMATE *** * *
C * m  PIT FOUND* *** * *
c m *  * * * * *
C**** DESCRIPTION OF VARIABLES X * ** **
c m *  NLEV i NUMBER OF LEVELS TO BE PRINTED * * * * *
c m *  WSI(I) : MINED OR NOT MINED INDEX OF BLOCK I * ****
c m *  * ** * *
c m m m m m m m m m m m m m m m m m m m m m * * * * * * * *

SUBROUTINE OUTLINE(NLEV»USD 
INTEGER*2 USI(5400)»I0UTL<900)

WRITE(6,2)
2 FORMAT( IX»/» ' OUTLINES/)

DO 1=1,30
DO J=l»30

L=0
DO K=1»NLEV

N=(K -l)*9004(1-1)*30+J 
IF<WSKN).EG.1)THEN

IF(N*LT*900)THEN
L=1

ELSEIF(N.LE.1800)THEN
L=2

ELSEIF(N.L E *2700)THEN 
L=3

ELSEIF(N«LE»3600)THEN
L=4

ELSEIF(N*L E *4500)THEN 
L=5

ELSEIF(N*LE*5400)THEN
L=6

ENDIF
ENDIF

ENDDO
I0UTL((I-1)*304J)= L

ENDDO
ENDDO

C URITEdO, 10) (I0UTKI) ,1=1,900)
CIO FORMAT( IX,30(/lX,30( '+—  ' ) » '' + ' ,/lX, ' I S 30(11,z I
C 4 1 X , 3 0 C 4 — '),' + '///)

RETURN
END
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APPENDIX B

The Block Grades in % Cu
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APPENDIX C

Discounted dollar values of the block on different 
levels. First six pages show the values for time period 1 ; 
pages 7 through 12 are for time period 2; remaining are for
time period 3.
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APPENDIX D

The level maps showing those blocks which are in the 
ultimate pit contour. Those blocks which are in the 
ultimate pit limits are indicated by
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