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Abstract

One class of integer programming problems is the vehicle routing 

problem. Traditionally, optimal solutions to vehicle routing problems have been 

generated using various integer programming codes and techniques. 

Unfortunately, due to the high computational complexity of the algorithms, these 

methods fail to yield solutions for large problems in a reasonable amount of time. 

In light of this dilemma, many industrial applications use heuristic algorithms to 

generate near optimal solutions, usually in linear or polynomial time. This thesis 

presents such an approach. Further, the methods presented here will be utilized 

to solve a specific type of vehicle routing problem in which delivery of the largest 

possible quantity of resources takes priority over meeting customer demand. 

The algorithm produced will be efficient with respect to time complexity, so that 

for even large problems, perhaps up to 50 demand points, it may be 

implemented on a PC based system.
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Introduction

In nearly every manufacturing situation, the manufacturer is faced with the 

problem of how to best distribute its goods to customers while minimizing 

transportation costs. Although many manufacturers pass on shipping costs to 

low volume customers, producers must still keep costs down in order to remain 

competitive in the marketplace. With goods such as gravel or sand, where the 

cost of distribution far outweighs the actual production cost, optimization of 

shipping routes can mean the difference between a sand or gravel crusher 

receiving a bid or losing it to a competitor.

Fortunately, many of these routing problems are relatively small, 

especially when they involve the transport of raw materials. In such applications, 

goods must be transported from a single supply point to only a few demand 

points--and, in some cases, to only one demand point. These simple cases do 

not require a routing algorithm, the implementation of which would be considered 

"overkill" in many such situations. However, with even as few as five demand 

points, routing trucks from a single supply point becomes increasingly difficult.

Consider a situation in which six customers, randomly spaced, require an 

equal amount of a given product. Suppose the producer of this product has 2 

trucks, each with the capacity to meet the demands of 3 customers. There are

=■20 possible ways to assign the 2 trucks to the 6 customers. For each of 

these 20 ways to assign the 2 trucks, there are 3! = 6 ways to route each truck to
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its 3 customers. Thus in all, there are (3!) = 120 possible ways to route the 2

trucks so as to satisfy the customers' demands. By increasing the number of 

customers in our example to 10, and assuming the same number of supply

ri ô
trucks, the solution space grows to (5!) = 30240 possibilities. Route

optimization algorithms were designed for problems as large as and larger than 

these.

This thesis presents a heuristic-based vehicle routing algorithm which 

may be used to solve the type of problem described above. This algorithm will 

be compared to other algorithms designed to solve similar problems. Examples, 

both theoretical and actual, will be presented to help validate the algorithm's 

solution.
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Traveling Salesman

The vehicle routing problem discussed above is closely related to a 

similar problem, the traveling salesman problem, which has been studied 

extensively by both computer scientists and mathematicians. The problem 

statement is as follows:

"A salesman, starting from a city, intends to visit each of (n-1) other 
cities once and only once and return to the start. The problem is to 
determine the order in which he should visit the cities to minimize 
the total distance traveled, assuming that the direct distances 
between all city pairs are known."1

To date, a deterministic algorithm has not been established that can solve this

problem in polynomial time.2 A polynomial time algorithm is an algorithm in

which the amount of computation required to solve a problem of size N is directly

proportional to some polynomial function of N.3 However, this problem has been

solved in polynomial time by using a non-deterministic algorithm. The

combination of this non-deterministic solution and the lack of a deterministic

polynomial time algorithm causes the traveling salesman problem to be

classified as NP - Complete.4

Even though the amount of computation required for large problems of

this type makes complete solution difficult, there exist many algorithms which

provide good approximations to the optimal solution. One such method which

can be used to approximate the optimal solution to NP-complete problems,

particularly the traveling salesman problem, is simulated annealing. The process
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of annealing has been around in the physical world for some time. Webster's 

defines annealing as "to heat and then cool (as steel or glass), usually for 

softening and making less brittle." In the purifying of physical substances, steel 

or glass may be heated to a high temperature and then slowly cooled so as to 

separate, or anneal, the unwanted substances from the product.5 In optimization 

theory the annealing process is similar. The search for an optimal solution is 

guided by a control parameter, comparable to temperature in the physical 

process. This parameter starts out large, and is gradually lowered. The purpose 

of varying the parameter in this way is to avoid being caught in local minim of 

the solution space. Howell describes this algorithm as applied to NP-Complete 

problems as follows.

Initialize
The system configuration.
The cost of the system configuration.
The current control parameter, temperature.

Repeat:
Randomly alter the current system configuration, obtaining a
(potentially) new configuration.
Evaluate the new cost of this "candidate" system configuration.
If new cost < old cost then

accept the candidate system configuration as the current 
configuration.

else {new cost > old cos*} 
begin
Select a random number (between 0 and 1).
If the random number is less than a temperature-dependent

(new cost -old cost )

quantity (r < e temPerature ) then
accept the new configuration as the current 
configuration.

else
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keep the old configuration as the current 
configuration.

end
Lower temperature.

Until undetermined number of iterations.6

As illustrated above, this algorithm has no stopping criterion. A stopping 

criterion may be specified by the user, perhaps by causing the program to exit 

when it has found a solution which exceeds, by a certain percentage, some 

specified lower bound. To provide a better understanding of this algorithm, 

consider the following problem. A "Miracle Grow" hair tonic salesman wishes to 

sell his product in the following five cities: A, B, C, D, and E. Since profit equals 

revenue minus cost,7 and this hair tonic salesman has a passionate love for 

money, he desires to find the least cost tour starting at his home town which 

includes all five cities and then returns to his home town, (see figure 1) 

Unfortuanately, since this salesman is a fraud (his hair tonic is only a mixture of 

alcohol and water), he cannot visit any city more than once for fear of being 

attacked by an angry mob of dissatisfied, bald customers.
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Figure 1 

Hair Tonic Salesman Network

For this example, the inital configuration of the problem will be set to: S - 

A - B - C - D - E - S. This particular tour yields a cost of 28. Further, the inital 

control parameter temperature will be set to 5. Following the algorithm above, a 

possible new configuration is randomly generated, say S - B - A - C - D - E - S .  

The new cost for this candidate configuration is 34. Since new cost > old cost a 

random number between 0 and 1 is generated, say r= 0.29. The temperature
34-28

dependent quantity q = e 5 = 0.301 is greater than r. The new configuration 

S - B - A - C - D - E - S  with a cost of 34 is thus accepted as the current 

configuration with a cost of 34. Had q been less than or equal to r, the old 

configuration would have remained as the current configuration. The variable 

temperature is now lowered arbitrarily to say 4 and the process repeats.

When Howell tested this algorithm on a tour of 64 cities randomly spaced 

on a 100 X 100 grid, the algorithm, whose initial solution yielded a cost of 

4115.79, produced a solution with a cost of 558.10 after only 40,000 iterations.
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To determine whether the simulated annealing algorithm could find an "obvious" 

global minimum, the cities to be toured were arranged equally spaced in a circle. 

The algorithm started with a randomly generated solution, and, after 30,000 

iterations, found the global optimal solution .8
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Routing Algorithm

The algorithm devised to solve the particular class of routing problems 

presented to the author is based on a vehicle routing algorithm presented by 

Clarke and Wright in the July - August 1964 issue of Operations Research. As 

introduced by Clarke and Wright, the algorithm was intended to provide solutions 

to routing problems involving both multiple demand points and multiple trucks 

dispatched from a single supply point.

As an illustration of the single supply, multiple demand point algorithm 

offered by Clark and Wright, consider the following supply - demand network.

3

Figure 2 

Single Supply Point Network
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The lettered circles represent demand points, the solid circle represents 

the supply point, and the bold numbers depict the number of product units 

desired by each given demand point. Further, assume that the supply point has 

2 trucks available, each with a capacity of 15 product units.

First, all distances between pairs of points, whether two demand points or 

a demand and a supply point, must be determined. For a problem with n 

customers and 1 supply point, this information can be stored in an (n+1) • (n+1) 

matrix with the distance from point i to j being the ijitL entry in the matrix, whether 

this algorithm is being implemented by hand or through a computer. One 

advantage of this method is that it does not require the distance from point i to j 

be the same as the distance from j to i. This allows the algorithm to take into 

account such variations as unequal travel time between two points due to uphill 

or downhill sections of the route. Also note that when using this method, 

distances may be replaced with cost, or travel time without any modification to 

the algorithm.

The next step in the algorithm is to build a table which depicts the 

potential distance saved in the overall routing schedule if two points p and k 

were combined in a truck's route, as opposed to requiring a return to the supply 

point between customers p and k. Consider the network example in Figure 2. 

Table entry A,B is generated as follows: The distance from the supply point to 

customer A is 6, thus the total distance traveled by a vehicle from the supply 

point to customer A and back is 12. Likewise, since the distance from the supply 

point to customer B is 7, the round trip distance from the supply point to 

customer B and back is 14. Given that the distance from A to B is 4, the
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distance saved by combining customers A and B into one route is: 

(2(6)+ 2 (7 ))-(6 + 7+ 4) = 9. Repeating this process for all pairs of customers

results in the following distance saved table.

Table 1

Single Supply Distance 
Saved Table

A B C D E
A - 9 2 2 3
B 9 - 4 2 2
C 2 4 - 5 1
D 2 2 5 - 1
E 3 2 1 1 -

At this point, routings may be established. First, the scheduler must find 

the largest entry in the distance saved table. In this example, the largest 

number, 9, corresponds with the entry A,B. Next, the scheduler must determine 

whether the first truck has a large enough capacity to supply points A and B. 

Since Truck 1 has an initial capacity of 15, the route A - B is assigned to Truck 1. 

If Truck 1 did not have enough available capacity to supply both point A and 

point B, the algorithm would have chosen another pair of points, or sent Truck 1 

to either point A or point B alone. Truck 1's available capacity is now reduced by 

the amount it must deliver to customers A and B. Therefore, the available 

capacity of Truck 1 is 15 - (8+3) = 4. The algorithm again searches the distance 

saved table for the largest entry which corresponds to a route adjacent to either
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endpoint of the truck’s current route, and which does not exceed the truck's 

current resources. Since Truck 1 has an available capacity of only. 4 product 

units, the algorithm will select the table entry corresponding to customer points E 

and A. With the addition of this new customer to Truck 1's route, the truck's 

available capacity decreases by 4. Thus the final routing for Truck 1 is S - E - A 

- B - S, finishing with an available capacity of 0.

The algorithm continues with the above method until all trucks are routed 

or all customers satisfied.9 In this example, when the algorithm terminates the 

following routing schedule is established:

Table 2

Single Supply 
Truck Routing Schedule

Truck# Route Total Distance Total Load
1 S - E - A - B - S 28 15
2 S - C - D - S 15 12

This method of routing trucks works quite well when limited to problems 

which employ only one supply point from which trucks are being dispatched. 

However, this limitation reduces the algorithm's application to many real world 

problems. In the fuel industry, for example, tanker trucks often carry fuel to 

customers all over the country with trucks originating from many different 

locations where fuel has been stored. Therefore, a method is needed which will 

route trucks originating from multiple points of supply in different geographic 

locations.



T-4215 12

Before determining whether Clarke and Wright's approach could be 

modified to address such complications, it was necessary to discover how the 

original algorithm actually worked. During this process, the truck routing problem 

was conceptualized as a series of tree search problems, having as the goal of 

each search the maximum distance saved by combining various customers into 

a truck's route. Consider the routing problem in Figure 2. This problem could be 

solved by finding the path which gives a feasible routing schedule with the 

largest sum of distance saved arcs.

Figure 3

Single Supply Point 
Search Tree

As can be seen, this tree is not complete. In order to be complete in this 

instance, the tree should have another three levels. This completion would 

require that the bottom level have 3,125 nodes, detail too difficult to show here. 

However, the use of Clarke and Wright's algorithm here would be analogous to
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finding the greatest distance saved for the entire route based on the first two 

levels of the tree. In most cases, the algorithm will cluster a truck's route as 

tightly as possible by "looking" ahead in the route one customer at a time.

The method used to modify the above algorithm to account for multiple 

supply points needs to only begin correctly by choosing a supply point relatively 

close to a customer, and then to let the algorithm add additional customers to 

that particular route. Unfortunately, this method increases the amount of data 

storage required, as it requires a distance saved table for each supply point. 

Thus, if the example in Figure 2 were modified to contain two supply points, two 

distance saved tables would have to be created, one for each supply point.
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Methods Considered

Many methods have been published to solve both theoretical and real 

world vehicle routing problems. In fact, this type of problem interests not only 

the operations research community, but the mathematics community as well. 

These published methods vary in the degree to which they produce optimal 

solutions, and thus require different amounts of computational resources. For 

the purposes of this thesis, as basis of comparison, worst case, and sometimes 

average case time complexity of each algorithm represented in O - (read "big 

O") notation will be considered. Although in some instances worst case 

complexity may be a bit misleading, it is easier to calculate than average case 

time complexity and seems to work fairly well. For the remainder of this work, 

then, 0(g(n)) shall be defined as follows:

Definition: A function f(n) is said to be 0(g(n)) if and only if there 
exists a natural number N and a real number C, such that for all n >
N, Cg(n) >f(n).10

In short, the reason for using the above notation when discussing 

algorithm time complexity is to provide a means of classifying algorithms into 

groups. This grouping attempts to give an intuitive understanding of how an 

algorithm performs apart from such biases as problem size or computer clock 

speed. 0(g{n)), as defined above, also provides an upper bound on the time 

complexity function f(n) of a given algorithm. Thus, using such notation it is
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meaningful to say that an algorithm having a time complexity of 5n = 0(n), is 

better than an algorithm producing the same result whose time complexity is 

2n2 = 0(n2). Without such a tool, the above statement would be incorrect unless

a specific range of n were specified.

One of the more straightforward approaches to solving this class of 

problems employs the methods of integer programming. Consider the following 

simple customer/supplier network.

5
Figure 4

Integer Programming 
Single Supply Point Network

As in the first example, the open circles represent customers, with the 

bold numbers next to them indicating the number of units desired by that 

customer. The solid circle represents the supply point and the numbers by each 

arc show the distance (or perhaps cost incurred) to travel from one node to the 

other. If 2 trucks are used, each with a capacity of 8 units, the problem could be 

formulated in the following integer program:
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Assumption:
1) Paths may only be traveled once per truck.

Variables:
Rtik = 1 if truck t travels from point i to point k,

0 otherwise.
S„ = amount supplied by truck t to point i.

Objective Function:

Minimize! Z = 7R1SA + 5R1SB + 5R1SC + QR^ +10R1AC + 9R1BC +

^^2SA ^̂ 2SB ^̂ 2SC ®̂ 2AB  ̂̂ ^2AC ^̂ 2BC

7RlAS ^ ^ 1BS 5Rics ®RlBA  ̂0R1CA + ̂ Ricb 
7R2AS 5R2BS + 5R2CS ■+■ ̂ R2BA  ̂̂ 2̂CA R̂2CB

Constraints:

Continuous Route - Ensure that a continuous route is maintained. 

R isa +  R iba +  R ica ~  R ias — R iab ~  R iac -  ^

R isb +  R iab +  Rice — R ibs ”  R iba “  R ibc -  0 

Rise + Riac + Rfflc ”  Rics "" Rica "  Ricb -  0

R2SA + R2BA + R2CA “  R2AS “  R2AB ”  R2AC -  0 

R2SB R2AB R2CB ~ R2BS — R2BA — R2BC — ^
R2SC +  R2AC R2BC “  R2CS “  R2CA “  R2CB -  0

Truck Capacity - Ensure that trucks' capacity is not exceeded.
S-ia + S® + S1C < 8 
S2A + S2B + S2C < 8
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Customer Demand - Ensure that customer demand is met.
§ia + S2A > 4 

S-B ■*" ̂ 2B ^ ^
Sic + Sgc £ 5

Turn on Route - If Sy is on at any level, then some RjXj must be on.

S-iA ~ ®^1SA “  ®^1BA ”  ®^1CA -  0 

^ 1B “  ®^1SB “  ®^1AB “  ®^1CB -  0 
§1C — ®RlSC ~ ®^1AC _ ®^1BC ~ ®

^2A “  ®^2SA ”  ®^2BA “  ®^2CA “  0 

S2B — ®^2SB _ ®^2AB ®^2CB “  ®
SgQ — 8R2SC _ ®^2AC ”  ®^2BC “  0

As seen above, the integer program formulation is quite large, even for a 

problem of relatively small size. Further, this type of formulation increases 

exponentially as the number of customers increases, and requires an enormous 

amount of computation to solve. However, the advantage of using this method is 

that, once solved, it will produce an optimal routing schedule.

Many different integer programming algorithms could be used to solve the 

above problem. One of the more common approaches is the Branch and Bound 

algorithm. This algorithm is similar to an implicit enumeration of all feasible 

solutions, but in many cases it may eliminate certain branches of the search tree 

by using the cost of the current solution as an upper bound for the cost of other 

routes being evaluated. Suppose that a routing which yields a cost or distance 

of x has been found. Continuation along a path whose cost was greater than x
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would then prove useless. This part of the search tree could be then pruned, 

thereby avoiding the enumeration of certain routes.11 Since there is no 

guarantee that this algorithm will find feasible integer solutions early enough in 

the process significantly prune the search tree, the worst case time complexity of 

the branch and bound algorithm is indeed a worst case, namely 0 (2"), where n

is the number of variables in the problem formulation. However, since there is 

usually a significant amount of pruning to be done, the average case time 

complexity is somewhat better. The basic methodology of the branch and bound 

algorithm can be represented by a flow chart, (see Figure 5)

Solve noninteger version of problem. 
Call this Problem B.

Is solution 
to B 

Intege

Yes
Solution to B is the optimal 
integer solution.

Arbitrarily select from solution to B a variable Xa which has a fractional 
value y. Construct two new problems (nodes as descendants of B by 
adding for each descendant one of the constraints:

Xa >the smallest integer greater than y 
Xa <  the largest integer less than y 

Solve the continuous version of each of these problems descending from B.

From all problems (nodes without descendants, select B as the problem with 
best solution.

Figure 5

Branch and Bound 
Flowchart
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To better understand this algorithm, it is best to consider a smaller example than 

the routing problem stated above.

Objective Function:

Minimize: Z = X1 + 3X2

Constraints:

X1 < 4 
X2<;5
2X1+ 4X2 £ 18 
X1§X2 = 0,1,2,...

Initially, the top node of the search tree represents the original problem in 

its non-integer form. As shown in Figure 6, the solution to this problem 

generated by the simplex algorithm is not an integer. Since this is a 

maximization problem, the solution to the integer problem is bounded above by 

Z1 = 82.7. This problem will be referred to as problem B. A variable is now 

selected, say X1f and the problem is partitioned into two parts; one problem with 

the added constraint X, <1, and the other with the added constraint X1>2. 

Using the Simplex algorithm, these two descendants of B are now solved and 

their solutions noted. The value of the objective function of the right child of 

node 1 is Z3 = 80, the objective function for the left node, node 2, Z2 = 81.5.

Thus according to the flowchart, B is set to equal the problem with the best 

solution, here, node 2. Another variable, X2, is selected, and problem B is
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partitioned into two sub problems. The problem represented by node 4 has the 

additional constraint X2 < 6 , and node 5 is constrained by X2 > 7. The problems

represented by nodes 4 and 5 give equally good solutions, 2 = 80. The solution 

to node 4, however, is all integer. Thus B is set equal to the problem 

represented in node 4 and the algorithm terminates. The final solution is thus 

Z = 80, Xn = 1, and X2= 6.12 Note that solution 3 gives an equally good Z 

value; however, in the event of a tie, this algorithm will select the last solution 

encountered in the search.

Original \  S“ 45 
problem) £ - 1 ;45

Z1 = 82.7

lX ^  1 

"(2)

Solution:

X2 =6.15 
Z2 =81.5

Solution: 
X, = 2 

\?̂ 2- 2 ) ^2 -  4 
Z3 = 80

(3)

Solution: 
!i< A  X, = 1

X2< 6y x 2 =6
Z4 = 80

w Optimum

Solution: 
% <  A  X! =0.5 

7y  X2 = 7
l J S  2 s = 80
(5) 5

Figure 6

Branch and Bound Tree
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Another heuristic algorithm employed to solve this class of problems, 

along with a generalized assignment problem, was developed and implemented 

by the University of Pennsylvania and the Information Systems Department of 

Du Pont in a vehicle routing package called ROVER.13 ROVER approaches 

routing problems by dividing them into three sub-problems, and solving each 

sub-problem by using heuristic and integer programming techniques. The 

following example (see Figure 7) was presented to illustrate these methods. In 

the example there are 6 customers and 2 trucks, each truck with a capacity of 30 

cubic feet.

Figure 7

ROVER 
Single Supply Point Network
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Table 3

ROVER 
Inter-Customer Distances

Terminal Demand

As before, Figure 7 represents a collection of demand nodes (open 

circles) serviced by a single supply node. For purposes of simplicity, all 

distances are shown in Table 3 rather than on the network. Further, it is 

assumed that the network is a fully connected graph, thus it is possible to travel 

from any node to all other nodes directly. The algorithm begins by establishing a 

set of seed points, or "centers of attraction" for each truck. In ROVER, these 

seed points can either be set manually or be determined by a set of heuristic 

rules. In the above example, the authors selected the two seed points using a 

simple polar sweep procedure.(see Figure 8) Since the total customer demand is 

52, and is supplied by two trucks, the average load per truck is 26 cubic feet. 

Utilizing each customer's demand, the sweep procedure sweeps out 26 units of 

demand starting with customer 1 and moving toward customer 6. The seed 

point is then centered between the two rays at a distance equal to the distance 

from the supply point to the furthest customer in that distance cone.



Figure 8

ROVER 
Assignment of Seed Points

Next, ROVER calculates the additional distance (or cost) incurred by 

adding a given customer into the route from the supply point to a seed point and 

back, (see Table 4)

Table 4 

ROVER Insertion Costs

1 2 3 4 5 6
Seed Loop 1 3 3 6 71 19 32
Seed Loop 2 22 32 13 6 0 13

The algorithm then assigns customers to the two trucks' routes. Here, an 

integer program formulation which takes the form of a generalized assignment



T-4215 24

problem minimizes total insertion costs, subject to the vehicles' capacity 

constraints and customers' demands.

Given:
dlk = cost of inserting customer i into loop k.

a, = demand for customer i.

bk = capacity of truck k.

Variables:
ylk = 1 if customer i is assigned to loop k, 0 otherwise.

Objective Function:

Min:Z = t t d u<ylk
k=1 1=1

Constraints:
Each customer assigned to one route

K

Z Y ik= 1. i= 1 n,
k=1

Capacity of truck not exceeded

n

Xa,y,k£bk, k = 1 K,
i=1

The above example was solved by assigning Customers 1, 2, and 3 to 

Truck 1 and Customers 4, 5, and 6 to Truck 2. As its final step, this method 

determines the order in which each truck should visit its customers. ROVER 

determines this order by employing a heuristic based algorithm developed by Lin 

and Kernighan.14 This "Traveling Salesman" algorithm starts with a randomly
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generated feasible solution (a feasible solution being one in which all customers 

in the truck's route are visited). It then finds, one at a time, a set of. substitute 

arcs, which, if exchanged with a proper subset of the arcs from the previous 

solution, would decrease the total distance traveled. This process is repeated 

until no more exchanges can be made to improve the solution. Lin and 

Kernighan report that the average time complexity for the algorithm is a little 

worse than 0(n2). Further, for relatively small problems (less than 42 cities), the 

probability of achieving an optimal solution on the first trial is very close to 1; this 

probability decreases slowly to about 0.2 to 0.3 for 100-city problems.15 If we 

use this algorithm for our example problem, the routings for Trucks 1 and 2 are 

found to be S -1 - 2 - 3 - S, and S - 5 - 4 - 6 - S, respectively.

One noteworthy property of Lin and Kernighan's method is that the 

solution of the integer program which assigns customers to routes can be found 

using linear programming techniques. This feature is due to the structure of the 

problem which has a set of equality constraints all equaling 1. This property is 

justified similarly to the related transportation problem. Since linear 

programming techniques can be used to solve the generalized assignment 

problem and since the other parts of this method utilize heuristic based 

algorithms, it is assured that a routing solution, even for large problems, can be 

obtained in a relatively short time. However, since heuristic based algorithms 

are used both to determine seed points and to solve the traveling salesman 

problems, the solution generated is not guaranteed to be optimal.
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Application

A vehicle routing system which incorporated a heuristic approach for 

solving multiple supply and demand point routing problems was developed for a 

local pipe manufacturing company. Thompson Pipe and Steel, Denver, 

Colorado, manufactures welded steel pipe for various applications. Thompson 

also builds steel propane tanks--essentially sections of pipe with ends welded to 

them--for commercial and residential use. The Company is currently 

manufacturing these tanks at their Kentucky facility, with plans to expand the 

manufacturing process to their Denver location. They currently have orders for 

tanks from propane distributors located throughout the United States, and, in 

fact, are not able to keep up with the demand for this product at their current 

production rate.

In order to help minimize shipping costs, the Company sought a method 

of generating a cost effective distribution plan. This method, given customer 

demand, geographic location, and information pertaining to each manufacturing 

location's available inventory, would generate a vehicle routing schedule. In 

order for such a system to be utilized at its maximum potential, it would need to 

be relatively easy to use, accept input from a variety of sources, and generate a 

good solution quickly. It was determined that in this instance, ease of use meant 

that persons with little computer training beyond the selection of items from a 

menu would be able to operate this program and generate route schedules. 

Further, to keep data entry costs down, the program should be able to read its
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input data from existing computer programs, such as a customer order 

database. Without such a feature, both employees and management may be 

less enthusiastic about this program's usefulness. In order to ensure that 

solutions would be generated in a short amount of time, a heuristic based 

approach to solving the routing problem was developed. One drawback to the 

heuristic method is that the system would use approximations, and thus could 

not guarantee optimal solutions.

Since routing problems have concerned industry for some time, computer 

software has previously been developed to solve the majority of them. 

Unfortunately, Thompson Pipe's particular situation made it difficult for them to 

utilize such packages. Due to the nature and current market for their product, a 

customized system was needed. One such problem arose due to Thompson 

Pipe's current production limitations-currently, the Company has orders for more 

propane tanks than they can produce in their existing facility. Thus in creating a 

routing schedule the Company is more interested in minimizing shipping costs 

and depleting their tank supplies than minimizing shipping costs while meeting 

customers' demands. This preference requires a modification of the problem 

formulation that is not normally encountered. Another complication in Thompson 

Pipe's situation is that they manufacture more than one size of propane tank. 

These different tank sizes must be accounted for when determining available 

truck space. As a partial solution to problem, the requirement was set up that a 

customer may only be supplied by one truck. Thus the Company may not split a 

customer's order between two or more trucks, unless that customer can use 

each truck's entire capacity. If this constraint had not been placed on the
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solution space, a cost effective routing would have to be determined, but the 

Company would also be faced with the problem of loading the trucks with 

different size tanks so as to minimize total wasted space on the fleet of trucks. 

This problem, which is sometimes referred to as the "knapsack problem," is of 

the same class as the traveling salesman problem and thus could be very 

computationally expensive to solve.
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Implementation

As was mentioned in Chapter 2, the multiple supply vehicle routing 

algorithm developed for this specific application is based on a simpler, single 

supply point version established by Clarke and Wright. To provide a means of 

comparison between this algorithm and others used to solve similar problems, a 

flowchart of the algorithm (see Appendix A) and time complexity analysis are 

provided. As shown in the flowchart, the main body of the program is broken 

into three parts: the generation of distance saved tables, the routing of supply 

trucks to customers utilizing one or more complete loads, and establishing routes 

to supply customers utiliizng only partial loads.

For the purposes of analyzing this algorithm, the following variables are 

defined:

Variables

n, the number of customers to be considered in the schedule, 
k, the total number of supply vehicles from all supply points, 
s, the number of supply points to be considered.

In generating the distance saved tables, one table must be created for 

each supply point, thus s tables are created. As shown in the flow chart, each 

individual operation is accomplished in 0(1) time. However, since each table

has n2 elements and there are s tables, this section of the algorithm is executed
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in 0(sn2) time. The next step in the algorithm determines which customers are 

able to utilize one or more entire loads of product. For each of the n customers, 

all k supply vehicles must be searched to see if there exists one vehicle whose 

capacity is less than or equal to a given customer's demand. To perform this 

operation in a worst case scenario for all customers requires computation 

proportional to O(kn). The final step in the program routes the remaining

vehicles to customers who can only use a partial load. In a worst case situation, 

this last section has the highest time complexity of all parts of the program. As 

seen in the flowchart, determining the initial route for a vehicle requires 

0(kn2)X\me. However, if the program was presented with a situation whereby 

only two customers could be served by every vehicle, this process would have to 

be repeated 1/2(n) times, thus yielding a time complexity for this section of 

0(kn3). Because this is the highest order time complexity of any part of the 

algorithm, by definition of O, it is thus the time complexity of the entire algorithm. 

Although this time complexity cannot match that of a linear time algorithm, it is 

better than some of the alternatives presented above which search for the 

optimal solution. In fact, even with problems of relatively large size (50 or more 

customers), the program completes execution in a reasonable amount of time. 

Such a problem, with 50 customers, and two supply points was tested on a 25 

MHz 80386 PC. The total run time to generate a solution was just over 35 

seconds.

Since the solution of large problems of this type is extremely time 

consuming, another method is needed to establish that the heuristic algorithm 

produces at least a reasonable solution. This thesis uses a graphical
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representation of the customers and supply points, along with arcs which 

represent the routes generated by the algorithm. Consider the following 

example (see figure 9).

©
©

Figure 9

Test Problem 1 
Multiple Supply Point Network

As before, the solid circles represent supply points and the hollow circles depict 

customers. Again, the arcs between the points are omitted for reasons of clarity 

and it is assumed that this is a fully connected graph. In order to represent this 

network in the program, coordinates must first be assigned to each point. For 

this example, customer and supply points will be represented in a 20X20 grid. 

The above problem would then be depicted in the program in the following 

manner.
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Table 5

Test Problem 1 
Customer Locations

Customer X - Coord. Y - Coord. Demand
1 6 10 2
2 10 16 7
3 15 15 8
4 6 4 8
5 11 19 2
6 0 12 1
7 3 7 9
8 1 10 5
9 14 9 2
10 11 19 6

Table 6

Test Problem 1 
Supply Point Locations

Supply Pt. X - Coord. Y - Coord. Truck # Capacity
1 1 11 1 15
1 1 11 2 13
2 14 10 3 19
2 14 10 4 15

Once this information is inputed, the program calculates distances between each 

pair of points and builids a distance saved table for each supply point, (see 

Tables 7 and 8)
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Table 7

Test Problem 1 
Distance Saved Table 

From Supply Pt. 1

Cust. 1 2 3 4 5 6 7 8 9 10
1 8 .18 9 .36 7 .70 7.61 0 .19 5.33 1.10 10.19 7.61
2 8 .18 19.76 6 .25 19.94 0 .94 3 .37 0.48 15.39 19.94
3 9 .39 19.76 8 .95 21.71 0 .68 4.61 0.69 21 .63 21.71
4 7.70 6 .25 8 .95 5.60 0 .02 8.83 1.79 12.32 5.60
5 7.61 19.94 21.71 5.60 1.18 2.86 0.35 15.52 25.61
6 0 .19 0 .94 0 .68 0 .02 1.18 0 .06 0.18 0 .25 1.18
7 5.33 3 .37 4.61 8.83 2 .86 0.06 1.87 6 .44 2 .86
8 1.10 0 .48 0 .69 1.79 0 .35 0 .18 1.87 1.11 0 .35
9 10.19 15.39 21.63 12.32 15.52 0 .25 6.44 1.11 15.52
10 7.61 19.94 21.71 5 .60 25.61 1.18 2 .86 0 .35 15.52

Table 8

Test Problem 1 
Distance Saved Table 

From Supply Pt. 2

Cust. 1 2 3 4 5 6 7 8 9 10
1 8.00 2 .80 12.00 7 .19 15.82 15.16 16.00 0 .94 7 .19
2 8 .00 7.21 4 .56 13.54 10.58 7.21 9 .39 0 .15 13.54
3 2.80 7.21 0 .89 8 .93 3 .94 2 .08 3.23 0 .02 8 .93
4 12.00 4 .56 0 .89 3 .68 14.14 17.16 15.19 1.57 3 .68
5 7 .19 13.54 8 .93 3 .68 10.59 6.47 9 .03 0 .05 18.97
6 15.82 10.58 3 .94 14.14 10.59 19.71 24.91 0 .82 10.59
7 15.16 7.21 2 .08 17 .16 6 .47 19.71 20.80 1.22 6 .47
8 16.00 9 .39 3 .23 15.19 9 .06 24.91 20.80 0 .96 9 .03
9 0 .94 0 .15 0 .02 1.57 0 .05 0.82 1.22 0.96 0 .05
10 7 .19 13.54 8 .93 3 .6 8 18.97 10.59 6 .47 9.03 0 .05
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Finally, utilizing the algorithm whose flowchart is given in Appendix A, the 

program establishs the following routing schedule.

Table 9

Test Problem 1 
Vehicle Routing Schedule

T ru c k # Route Total Distance Total Load
1 S1 - 7  - 8  - 6  - S1 11.73 12
2 S1 - 4  -1  - S1 19.70 10
3 S 2 - 9 -  3 -  5 - 1 0 - 2  - S 2 23.11 19
4 Not Assigned
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Figure 10

Test Problem 1 
Routing Diagram
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As a further basis for comparison, two more examples were tested and 

are presented in Appendix B. The first example consists of 10 customers and 1 

supply point with 3 vehicles. The second, an actual problem supplied by 

Thompson Pipe and Steel, has 8 customers and 1 supply point with 6 delivery 

vehicles. The second example differs from the first in that customer and supply 

point locations had to be entered in longitude and latitude coordinates. These 

coordinates required an additional function be added to the program to calculate 

distances between two points on the surface of a sphere. For the solutions 

generated, it should be noted that although the supply of propane tanks has not 

been exhausted, the demands of all customers may not have been met. This 

circumstance is due to the restriction that a customer may only be served by one 

vehicle. Further, the output produced by the program does not specify which 

customers will have their demands entirely met, and which customers will not. 

This feature allows the user to decide who will get "preferential treatment" and 

who will have to wait until the next shipment.
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Topics for Further Research

There are many possibilities for further work in modifying the algorithm 

used for this specific application and in developing vehicle routing strategies in 

general. In the algorithm created by the author, for example, perhaps a more 

insightful method for determining which customers should be served by each 

supply point could be established. This methodology may consider the 

production of different types of propane tanks at different supply points and the 

possibility of using other supply points as transshipment points. Another 

possible way of improving the solutions generated by this algorithm would be to 

"look ahead" more than two levels in the search tree (see Figure 3). By "looking 

ahead" instead of searching for the greatest distance that would be saved by 

combining two customers into a truck's route, the algorithm might be changed so 

as to find the greatest distance saved by combining three customers into a

truck's route. This modification may be hindered by the amount of storage

required to hold the three dimensional distance saved tables. Further, by adding 

this extra dimension, the time complexity of the algorithm would increase due to 

the extra computation required to search the larger matrices. If taken to its 

extreme, the idea of "looking ahead" additional levels can show that the 

algorithm would evaluate all possible solutions, and thus would be equivalent to 

an exhaustive search algorithm.

Other research which should be considered is whether vehicle routing

problems can be proven to belong to the class of NP-complete problems.
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Perhaps this research could be accomplished using the concepts of polynomial 

reducibility. If it could be shown that any instance of a known NP-complete 

problem may be transformed into an instance of a vehicle routing problem, it 

would then follow that the class of vehicle routing problems is NP-complete.16 If 

it could be determined that vehicle routing problems are of this class, then an 

algorithm designed to solve any NP-complete problem could be used to solve a 

vehicle routing problem. To do so would only require finding the correct 

transformation between the vehicle routing problem and the original NP- 

complete problem for which the algorithm was devised, applying the 

transformation to the vehicle routing problem and then generating a solution.
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Determine Tye of Input  ^ ---------

Coordinates /
/ \

N  Distances

Read from file: supply 
and demand points

Read in customer 
distance table

Generate distance table 
between customers

Read in customer demands 
and truck capacities

Read in customer, 
supplier distance table

Generate distance tables 
between customers and 
suppliers

| Generate distance saved 1
1 | tables I ( -----------------

 N k ____________
I Route trucks to customers who

2 | can use one or more complete loads

 N k __________
Route trucks to customers who 
cannot use entire loads

 N k _______
Print out routing schedule |

Figure A-1

Vehicle Routing Program 
Main Flowchart
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Vehicle Routing Program 
Distance Saved Tables Flowchart
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Initialize Variables: 
Supply point = 0 
Customer x -  0 
Customer y = 0

0 (1)

0 (1)Oshal <— 2 (distance from Customer x to Supply)

Osha2 < -- 2 (distance from Customer y to Supply) 0 (1)

Betw <— distance from Customer x to Customer y 0 (1)

Distance Saved <— Osha2 / 2 + Oshal /  2 + Betw 0 (1)

Customer x yes
0 (1)Write -1 to table entry x,y

Customer

no
 _________
Write Betw to table entry x,y

0 (1)

Customer x Customer yyes
x = 0 0 (1)Number of 

Customers
Number of 
Customers yes

- ^ 14.
Done

no no
Increment x Increment y 0 (1)

Figure A-2
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Initialize Variables: 
Customer x -  0

Find closest truck to Customer x 
whose capacity is < - to Customer x's 
desire

/Customer x 
satisfied? or 
v  No Trucks 

^Available j

yesyes
Checked all 
customers?

no
no

Increment x

Done

0 (1)

0(k)

0 (1)

0 (1)

Figure A-3

Vehicle Routing Program 
Full Truck Routing Flowchart
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Route closest available truck 
to closest pair of unsatisfied 
customers.

Truck capacity -  truck capacity • min(customers' desire, truck capacity)

Search distance saved table for 
largest entry cooresponding to 
an unsatisfied customer who is 
adjacent to either end of the 
current truck's given route.

Add customer to route

 1̂4___________________________________
Truck capacity -  truck capacity - min(customer desire, truck capacity)

no
Truck empty'

yes

All trucks empty? 
or

s. All customers > 
Nsatisfied?/^

yesno
Done

Figure A-4

0(kr?)

0 (1)

0(r£)

0 (1)

0 (1)

0 (1)

0 (1)

Vehicle Routing Program 
Route Trucks Flowchart
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Appendix B
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Table B-1

Test Problem 2 
Customer Locations

Custom er X  - Coord. Y  - Coord. Dem and
1 6 10 2
2 10 16 7
3 15 15 8
4 6 4 8
5 11 19 2
6 0 12 1
7 3 7 9
8 1 10 5
9 14 9 2
10 11 19 6

Table B-2

Test Problem 2 
Supply Point Locations

S u d d Iv  Pt. X  - Coord. Y  - Coord. T ru c k # Capacity
1 1 11 1 15
1 1 11 2 13
1 1 11 3 14

Table B-3

Test Problem 2 
Distance Saved Table 

From Supply Pt. 1

Cust. 1 2 3 4 5 6 7 8 9 10
1 8 .18 9 .36 7 .70 7.61 0.19 5.33 1.10 10.19 7.61
2 8 .18 19.76 6 .25 19.94 0.94 3 .37 0.48 15.39 19.94
3 9 .39 19.76 8 .9 5 21.71 0.68 4.61 0.69 21.63 21.71
4 7 .70 6 .25 8 .95 5.60 0 .02 8.83 1.79 12.32 5.60
5 7.61 19.94 21.71 5 .60 1.18 2 .86 0 .35 15.52 25.61
6 0 .19 0 .94 0 .68 0 .02 1.18 0.06 0 .18 0 .25 1.18
7 5.33 3 .37 4.61 8 .83 2 .86 0 0 6 1.87 6 .44 2 .86
8 1.10 0 .48 0 .69 1.79 0 .35 0.18 1.87 1.11 0 .35
9 10.19 15.39 21 .63 12 .32 15.52 0.25 6 .44 1.11 15.52

10 7.61 19 .94 21.1 5 .60 25.61 1.18 2 .86 0 .35 15.52
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Table B-4

Test Probelm 2 
Vehicle Routing Schedule

T ru c k # Route Total Distance Total Load
1 S1 - 7  - 8  - 6  - S1 11.73 15
2 S1 - 3  - 9  - 4  -1  - S1 41 .17 13
3 S1 - 3 - 1 0 - 5 - S 1 33 .03 14
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Figure B-1

Test Problem 2 
Vehicle Routing Diagram
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Table B-5

Thompson Pipe Example 
Customer Locations

Custom er # Location Lonoitude Latitude Dem and
1 Fulton. KY 88.8 36 .5 14
2 Princeton. KY 87.8 37 .2 5
3 Laurel. IN 85 .25 39 .5 15
4 Princeton, KY 87.8 37 .2 11
5 Salem . KY 88.3 37 .4 1
6 Bia Rapids. M l 85 .5 43 .7 14
7 Tifton, G A 8 3 .5 31 .4 14
8 Salem . KY 88.3 37.4 1

Table B-6

Thompson Pipe Example 
Supply Point Locations

Supply Pt. # Location Lonoitude. Latitude T ru c k # Capacity
1 Princeton. KY 87 .8 37 .2 1 15
1 Princeton, KY 87 .8 37 .2 2 15
1 Princeton. KY 87 .8 37.2 3 15
1 Princeton, KY 8 7 .8 37 .2 4 15
1 Princeton, KY 87 .8 37 .2 5 15
1 Princeton, KY 8 7 .8 37 .2 6 15
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Table B-7

Thompson Pipe Example 
Distance Saved Table

Cust. 1 2 3 4 5 6 7 8
1 0.00 0 .57 0.00 31.40 9 .96 67.89 31.40
2 0 .00 0 .00 0.00 0.00 0.00 0.00 0.00
3 0 .57 0 .00 0 .00 18.74 334 .45 97 .37 18.47
4 0.00 0.00 0 .00 0.00 0.00 0.00 0.00
5 31 .40 0.00 18.74 0 .00 31 .64 3.46 53.40
6 9 .96 0 .00 33 4 .45 0.00 31 .64 67 .76 53.40
7 67 .89 0 .00 97 .37 0.00 3 .46 67 .76 3 .46
8 31 .40 0 .00 18.74 0.00 53.40 31 .64 3 .46

Table B-8

Thompson Pipe Example 
Vehcile Routing Schedule

T ru c k # Route Total Distance Total Load
1 S - 3 - S 365 .7 15
2 S - 4 - 2 - S 0.00 15
3 S - 6 - 8 - 5 - S 829 .44 15
4 S - 7 - 1 - S 875 .6 15
5 Not Assigned
6 Not Assigned



Figure B-2

Thompson Pipe Example 
Vehicle Routing Diagram


