
T-4215

A Heuristic-Based Algorithm

for Solving Multiple Supply

Vehicle Routing Problems

by

Tom Wilger faCHE IN POCKET

ProQuest Number: 10783814

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10783814

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

T-4215

A thesis submitted to the Faculty and the Board of Trustees of the

Colorado School of Mines in partial fulfillment of the requirements for the degree

of Master of Science (Mathematics and Computer Science).

Golden, Colorado

Date rf*

A "—
Signed: *<& H M

Thomas J. wilger

Approved:
Dr. Ruth A. Maurer
Thesis Advisor

Golden, Colorado

Date 4 \q \? 2 - .

Dr. Ardel J. Boes
Professor and Head
Department of Mathematics and
Computer Science

ii

T-4215

Abstract

One class of integer programming problems is the vehicle routing

problem. Traditionally, optimal solutions to vehicle routing problems have been

generated using various integer programming codes and techniques.

Unfortunately, due to the high computational complexity of the algorithms, these

methods fail to yield solutions for large problems in a reasonable amount of time.

In light of this dilemma, many industrial applications use heuristic algorithms to

generate near optimal solutions, usually in linear or polynomial time. This thesis

presents such an approach. Further, the methods presented here will be utilized

to solve a specific type of vehicle routing problem in which delivery of the largest

possible quantity of resources takes priority over meeting customer demand.

The algorithm produced will be efficient with respect to time complexity, so that

for even large problems, perhaps up to 50 demand points, it may be

implemented on a PC based system.

iii

T-4215

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF FIGURES... v

LIST OF TABLES... vi

ACKNOWLEDGMENTS...vii

Introduction... 1

Traveling Salesman.. 3

Routing Algorithm... 8

Methods Considered.. 14

Integer Programming Single Supply Point Network...15

Application... 26

Implementation... 29

Topics for Further Research...36

iv

T-4215

LIST OF FIGURES

Hair Tonic Salesman Network.. 6

Single Supply Point Network... 8

Single Supply Point Search Tree... 12

Branch and Bound Flowchart.. 18

Branch and Bound Tree...20

ROVER Single Supply Point Network.. 21

ROVER Assignment of Seed Points.. 23

Test Problem 1 - Multiple Supply Point Network..31

Test Problem 1 - Routing Diagram...................................... 34

Vehicle Routing Program - Main Flowchart.. 43

Vehicle Routing Program - Full Truck Routing Flowchart...................................45

Vehicle Routing Program - Route Trucks Flowchart..46

Test Problem 2 - Vehicle Routing Diagram.. 49

Thompson Pipe Example - Vehicle Routing Diagram...52

v

T-4215

LIST OF TABLES

Single Supply Distance Saved Table...10

Single Supply Truck Routing Schedule...11

ROVER Inter-Customer Distances..22

ROVER Insertion Costs... 23

Test Problem 1 - Customer Locations... 32

Test Problem 1 - Supply Point Locations..32

Test Problem 1 - Distance Saved Table from Supply Pt. 1 33

Test Problem 1 - Distance Saved Table from Supply Pt. 2 33

Test Problem 1 - Vehicle Routing Schedule..34

Test Problem 2 - Customer Locations... 48

Test Problem 2 - Supply Point Locations..48

Test Problem 2 - Distance Saved Table from Supply Pt. 148

Test Problem 2 - Vehicle Routing Schedule..49

Thompson Pipe Example - Customer Locations.. 50

Thompson Pipe Example - Distance Saved Table...51

Thompson Pipe Example - Vehicle Routing Schedule.......................................51

vi

T-4215

Acknowledgments

I would like to thank all those who helped me in the research, and writing

of this thesis. I would like to especially thank my advisor, Dr. Ruth Maurer for

her time and dedication to this project, and Dr. Woolsey for his support in the

entire degree process. I would also like to thank my friend Julia Long who helps

keep me focused on my work, and my wife Jennifer, who supported me in this

endeavor. I extend my thanks to the guild for their support, and Golden

Software for their help with generating tables and figures.

vii

T-4215 1

Introduction

In nearly every manufacturing situation, the manufacturer is faced with the

problem of how to best distribute its goods to customers while minimizing

transportation costs. Although many manufacturers pass on shipping costs to

low volume customers, producers must still keep costs down in order to remain

competitive in the marketplace. With goods such as gravel or sand, where the

cost of distribution far outweighs the actual production cost, optimization of

shipping routes can mean the difference between a sand or gravel crusher

receiving a bid or losing it to a competitor.

Fortunately, many of these routing problems are relatively small,

especially when they involve the transport of raw materials. In such applications,

goods must be transported from a single supply point to only a few demand

points--and, in some cases, to only one demand point. These simple cases do

not require a routing algorithm, the implementation of which would be considered

"overkill" in many such situations. However, with even as few as five demand

points, routing trucks from a single supply point becomes increasingly difficult.

Consider a situation in which six customers, randomly spaced, require an

equal amount of a given product. Suppose the producer of this product has 2

trucks, each with the capacity to meet the demands of 3 customers. There are

=■20 possible ways to assign the 2 trucks to the 6 customers. For each of

these 20 ways to assign the 2 trucks, there are 3! = 6 ways to route each truck to

T-4215 2

its 3 customers. Thus in all, there are (3!) = 120 possible ways to route the 2

trucks so as to satisfy the customers' demands. By increasing the number of

customers in our example to 10, and assuming the same number of supply

ri ô
trucks, the solution space grows to (5!) = 30240 possibilities. Route

optimization algorithms were designed for problems as large as and larger than

these.

This thesis presents a heuristic-based vehicle routing algorithm which

may be used to solve the type of problem described above. This algorithm will

be compared to other algorithms designed to solve similar problems. Examples,

both theoretical and actual, will be presented to help validate the algorithm's

solution.

T-4215 3

Traveling Salesman

The vehicle routing problem discussed above is closely related to a

similar problem, the traveling salesman problem, which has been studied

extensively by both computer scientists and mathematicians. The problem

statement is as follows:

"A salesman, starting from a city, intends to visit each of (n-1) other
cities once and only once and return to the start. The problem is to
determine the order in which he should visit the cities to minimize
the total distance traveled, assuming that the direct distances
between all city pairs are known."1

To date, a deterministic algorithm has not been established that can solve this

problem in polynomial time.2 A polynomial time algorithm is an algorithm in

which the amount of computation required to solve a problem of size N is directly

proportional to some polynomial function of N.3 However, this problem has been

solved in polynomial time by using a non-deterministic algorithm. The

combination of this non-deterministic solution and the lack of a deterministic

polynomial time algorithm causes the traveling salesman problem to be

classified as NP - Complete.4

Even though the amount of computation required for large problems of

this type makes complete solution difficult, there exist many algorithms which

provide good approximations to the optimal solution. One such method which

can be used to approximate the optimal solution to NP-complete problems,

particularly the traveling salesman problem, is simulated annealing. The process

T-4215 4

of annealing has been around in the physical world for some time. Webster's

defines annealing as "to heat and then cool (as steel or glass), usually for

softening and making less brittle." In the purifying of physical substances, steel

or glass may be heated to a high temperature and then slowly cooled so as to

separate, or anneal, the unwanted substances from the product.5 In optimization

theory the annealing process is similar. The search for an optimal solution is

guided by a control parameter, comparable to temperature in the physical

process. This parameter starts out large, and is gradually lowered. The purpose

of varying the parameter in this way is to avoid being caught in local minim of

the solution space. Howell describes this algorithm as applied to NP-Complete

problems as follows.

Initialize
The system configuration.
The cost of the system configuration.
The current control parameter, temperature.

Repeat:
Randomly alter the current system configuration, obtaining a
(potentially) new configuration.
Evaluate the new cost of this "candidate" system configuration.
If new cost < old cost then

accept the candidate system configuration as the current
configuration.

else {new cost > old cos*}
begin
Select a random number (between 0 and 1).
If the random number is less than a temperature-dependent

(new cost -old cost)

quantity (r < e temPerature) then
accept the new configuration as the current
configuration.

else

T-4215 5

keep the old configuration as the current
configuration.

end
Lower temperature.

Until undetermined number of iterations.6

As illustrated above, this algorithm has no stopping criterion. A stopping

criterion may be specified by the user, perhaps by causing the program to exit

when it has found a solution which exceeds, by a certain percentage, some

specified lower bound. To provide a better understanding of this algorithm,

consider the following problem. A "Miracle Grow" hair tonic salesman wishes to

sell his product in the following five cities: A, B, C, D, and E. Since profit equals

revenue minus cost,7 and this hair tonic salesman has a passionate love for

money, he desires to find the least cost tour starting at his home town which

includes all five cities and then returns to his home town, (see figure 1)

Unfortuanately, since this salesman is a fraud (his hair tonic is only a mixture of

alcohol and water), he cannot visit any city more than once for fear of being

attacked by an angry mob of dissatisfied, bald customers.

T-4215 6

Figure 1

Hair Tonic Salesman Network

For this example, the inital configuration of the problem will be set to: S -

A - B - C - D - E - S. This particular tour yields a cost of 28. Further, the inital

control parameter temperature will be set to 5. Following the algorithm above, a

possible new configuration is randomly generated, say S - B - A - C - D - E - S .

The new cost for this candidate configuration is 34. Since new cost > old cost a

random number between 0 and 1 is generated, say r= 0.29. The temperature
34-28

dependent quantity q = e 5 = 0.301 is greater than r. The new configuration

S - B - A - C - D - E - S with a cost of 34 is thus accepted as the current

configuration with a cost of 34. Had q been less than or equal to r, the old

configuration would have remained as the current configuration. The variable

temperature is now lowered arbitrarily to say 4 and the process repeats.

When Howell tested this algorithm on a tour of 64 cities randomly spaced

on a 100 X 100 grid, the algorithm, whose initial solution yielded a cost of

4115.79, produced a solution with a cost of 558.10 after only 40,000 iterations.

T-4215 7

To determine whether the simulated annealing algorithm could find an "obvious"

global minimum, the cities to be toured were arranged equally spaced in a circle.

The algorithm started with a randomly generated solution, and, after 30,000

iterations, found the global optimal solution .8

T-4215 8

Routing Algorithm

The algorithm devised to solve the particular class of routing problems

presented to the author is based on a vehicle routing algorithm presented by

Clarke and Wright in the July - August 1964 issue of Operations Research. As

introduced by Clarke and Wright, the algorithm was intended to provide solutions

to routing problems involving both multiple demand points and multiple trucks

dispatched from a single supply point.

As an illustration of the single supply, multiple demand point algorithm

offered by Clark and Wright, consider the following supply - demand network.

3

Figure 2

Single Supply Point Network

T-4215 9

The lettered circles represent demand points, the solid circle represents

the supply point, and the bold numbers depict the number of product units

desired by each given demand point. Further, assume that the supply point has

2 trucks available, each with a capacity of 15 product units.

First, all distances between pairs of points, whether two demand points or

a demand and a supply point, must be determined. For a problem with n

customers and 1 supply point, this information can be stored in an (n+1) • (n+1)

matrix with the distance from point i to j being the ijitL entry in the matrix, whether

this algorithm is being implemented by hand or through a computer. One

advantage of this method is that it does not require the distance from point i to j

be the same as the distance from j to i. This allows the algorithm to take into

account such variations as unequal travel time between two points due to uphill

or downhill sections of the route. Also note that when using this method,

distances may be replaced with cost, or travel time without any modification to

the algorithm.

The next step in the algorithm is to build a table which depicts the

potential distance saved in the overall routing schedule if two points p and k

were combined in a truck's route, as opposed to requiring a return to the supply

point between customers p and k. Consider the network example in Figure 2.

Table entry A,B is generated as follows: The distance from the supply point to

customer A is 6, thus the total distance traveled by a vehicle from the supply

point to customer A and back is 12. Likewise, since the distance from the supply

point to customer B is 7, the round trip distance from the supply point to

customer B and back is 14. Given that the distance from A to B is 4, the

T-4215 10

distance saved by combining customers A and B into one route is:

(2(6)+ 2 (7))-(6 + 7+ 4) = 9. Repeating this process for all pairs of customers

results in the following distance saved table.

Table 1

Single Supply Distance
Saved Table

A B C D E
A - 9 2 2 3
B 9 - 4 2 2
C 2 4 - 5 1
D 2 2 5 - 1
E 3 2 1 1 -

At this point, routings may be established. First, the scheduler must find

the largest entry in the distance saved table. In this example, the largest

number, 9, corresponds with the entry A,B. Next, the scheduler must determine

whether the first truck has a large enough capacity to supply points A and B.

Since Truck 1 has an initial capacity of 15, the route A - B is assigned to Truck 1.

If Truck 1 did not have enough available capacity to supply both point A and

point B, the algorithm would have chosen another pair of points, or sent Truck 1

to either point A or point B alone. Truck 1's available capacity is now reduced by

the amount it must deliver to customers A and B. Therefore, the available

capacity of Truck 1 is 15 - (8+3) = 4. The algorithm again searches the distance

saved table for the largest entry which corresponds to a route adjacent to either

T-4215 11

endpoint of the truck’s current route, and which does not exceed the truck's

current resources. Since Truck 1 has an available capacity of only. 4 product

units, the algorithm will select the table entry corresponding to customer points E

and A. With the addition of this new customer to Truck 1's route, the truck's

available capacity decreases by 4. Thus the final routing for Truck 1 is S - E - A

- B - S, finishing with an available capacity of 0.

The algorithm continues with the above method until all trucks are routed

or all customers satisfied.9 In this example, when the algorithm terminates the

following routing schedule is established:

Table 2

Single Supply
Truck Routing Schedule

Truck# Route Total Distance Total Load
1 S - E - A - B - S 28 15
2 S - C - D - S 15 12

This method of routing trucks works quite well when limited to problems

which employ only one supply point from which trucks are being dispatched.

However, this limitation reduces the algorithm's application to many real world

problems. In the fuel industry, for example, tanker trucks often carry fuel to

customers all over the country with trucks originating from many different

locations where fuel has been stored. Therefore, a method is needed which will

route trucks originating from multiple points of supply in different geographic

locations.

T-4215 12

Before determining whether Clarke and Wright's approach could be

modified to address such complications, it was necessary to discover how the

original algorithm actually worked. During this process, the truck routing problem

was conceptualized as a series of tree search problems, having as the goal of

each search the maximum distance saved by combining various customers into

a truck's route. Consider the routing problem in Figure 2. This problem could be

solved by finding the path which gives a feasible routing schedule with the

largest sum of distance saved arcs.

Figure 3

Single Supply Point
Search Tree

As can be seen, this tree is not complete. In order to be complete in this

instance, the tree should have another three levels. This completion would

require that the bottom level have 3,125 nodes, detail too difficult to show here.

However, the use of Clarke and Wright's algorithm here would be analogous to

T-4215 13

finding the greatest distance saved for the entire route based on the first two

levels of the tree. In most cases, the algorithm will cluster a truck's route as

tightly as possible by "looking" ahead in the route one customer at a time.

The method used to modify the above algorithm to account for multiple

supply points needs to only begin correctly by choosing a supply point relatively

close to a customer, and then to let the algorithm add additional customers to

that particular route. Unfortunately, this method increases the amount of data

storage required, as it requires a distance saved table for each supply point.

Thus, if the example in Figure 2 were modified to contain two supply points, two

distance saved tables would have to be created, one for each supply point.

T-4215 14

Methods Considered

Many methods have been published to solve both theoretical and real

world vehicle routing problems. In fact, this type of problem interests not only

the operations research community, but the mathematics community as well.

These published methods vary in the degree to which they produce optimal

solutions, and thus require different amounts of computational resources. For

the purposes of this thesis, as basis of comparison, worst case, and sometimes

average case time complexity of each algorithm represented in O - (read "big

O") notation will be considered. Although in some instances worst case

complexity may be a bit misleading, it is easier to calculate than average case

time complexity and seems to work fairly well. For the remainder of this work,

then, 0(g(n)) shall be defined as follows:

Definition: A function f(n) is said to be 0(g(n)) if and only if there
exists a natural number N and a real number C, such that for all n >
N, Cg(n) >f(n).10

In short, the reason for using the above notation when discussing

algorithm time complexity is to provide a means of classifying algorithms into

groups. This grouping attempts to give an intuitive understanding of how an

algorithm performs apart from such biases as problem size or computer clock

speed. 0(g{n)), as defined above, also provides an upper bound on the time

complexity function f(n) of a given algorithm. Thus, using such notation it is

T-4215 15

meaningful to say that an algorithm having a time complexity of 5n = 0(n), is

better than an algorithm producing the same result whose time complexity is

2n2 = 0(n2). Without such a tool, the above statement would be incorrect unless

a specific range of n were specified.

One of the more straightforward approaches to solving this class of

problems employs the methods of integer programming. Consider the following

simple customer/supplier network.

5
Figure 4

Integer Programming
Single Supply Point Network

As in the first example, the open circles represent customers, with the

bold numbers next to them indicating the number of units desired by that

customer. The solid circle represents the supply point and the numbers by each

arc show the distance (or perhaps cost incurred) to travel from one node to the

other. If 2 trucks are used, each with a capacity of 8 units, the problem could be

formulated in the following integer program:

T-4215 16

Assumption:
1) Paths may only be traveled once per truck.

Variables:
Rtik = 1 if truck t travels from point i to point k,

0 otherwise.
S„ = amount supplied by truck t to point i.

Objective Function:

Minimize! Z = 7R1SA + 5R1SB + 5R1SC + QR^ +10R1AC + 9R1BC +

^^2SA ^̂ 2SB ^̂ 2SC ®̂ 2AB ̂̂ ^2AC ^̂ 2BC

7RlAS ^ ^ 1BS 5Rics ®RlBA ̂0R1CA + ̂ Ricb
7R2AS 5R2BS + 5R2CS ■+■ ̂ R2BA ̂̂ 2̂CA R̂2CB

Constraints:

Continuous Route - Ensure that a continuous route is maintained.

R isa + R iba + R ica ~ R ias — R iab ~ R iac - ^

R isb + R iab + Rice — R ibs ” R iba “ R ibc - 0

Rise + Riac + Rfflc ” Rics "" Rica " Ricb - 0

R2SA + R2BA + R2CA “ R2AS “ R2AB ” R2AC - 0

R2SB R2AB R2CB ~ R2BS — R2BA — R2BC — ^
R2SC + R2AC R2BC “ R2CS “ R2CA “ R2CB - 0

Truck Capacity - Ensure that trucks' capacity is not exceeded.
S-ia + S® + S1C < 8
S2A + S2B + S2C < 8

T-4215 17

Customer Demand - Ensure that customer demand is met.
§ia + S2A > 4

S-B ■*" ̂ 2B ^ ^
Sic + Sgc £ 5

Turn on Route - If Sy is on at any level, then some RjXj must be on.

S-iA ~ ®^1SA “ ®^1BA ” ®^1CA - 0

^ 1B “ ®^1SB “ ®^1AB “ ®^1CB - 0
§1C — ®RlSC ~ ®^1AC _ ®^1BC ~ ®

^2A “ ®^2SA ” ®^2BA “ ®^2CA “ 0

S2B — ®^2SB _ ®^2AB ®^2CB “ ®
SgQ — 8R2SC _ ®^2AC ” ®^2BC “ 0

As seen above, the integer program formulation is quite large, even for a

problem of relatively small size. Further, this type of formulation increases

exponentially as the number of customers increases, and requires an enormous

amount of computation to solve. However, the advantage of using this method is

that, once solved, it will produce an optimal routing schedule.

Many different integer programming algorithms could be used to solve the

above problem. One of the more common approaches is the Branch and Bound

algorithm. This algorithm is similar to an implicit enumeration of all feasible

solutions, but in many cases it may eliminate certain branches of the search tree

by using the cost of the current solution as an upper bound for the cost of other

routes being evaluated. Suppose that a routing which yields a cost or distance

of x has been found. Continuation along a path whose cost was greater than x

T-4215 18

would then prove useless. This part of the search tree could be then pruned,

thereby avoiding the enumeration of certain routes.11 Since there is no

guarantee that this algorithm will find feasible integer solutions early enough in

the process significantly prune the search tree, the worst case time complexity of

the branch and bound algorithm is indeed a worst case, namely 0 (2"), where n

is the number of variables in the problem formulation. However, since there is

usually a significant amount of pruning to be done, the average case time

complexity is somewhat better. The basic methodology of the branch and bound

algorithm can be represented by a flow chart, (see Figure 5)

Solve noninteger version of problem.
Call this Problem B.

Is solution
to B

Intege

Yes
Solution to B is the optimal
integer solution.

Arbitrarily select from solution to B a variable Xa which has a fractional
value y. Construct two new problems (nodes as descendants of B by
adding for each descendant one of the constraints:

Xa >the smallest integer greater than y
Xa < the largest integer less than y

Solve the continuous version of each of these problems descending from B.

From all problems (nodes without descendants, select B as the problem with
best solution.

Figure 5

Branch and Bound
Flowchart

T-4215 19

To better understand this algorithm, it is best to consider a smaller example than

the routing problem stated above.

Objective Function:

Minimize: Z = X1 + 3X2

Constraints:

X1 < 4
X2<;5
2X1+ 4X2 £ 18
X1§X2 = 0,1,2,...

Initially, the top node of the search tree represents the original problem in

its non-integer form. As shown in Figure 6, the solution to this problem

generated by the simplex algorithm is not an integer. Since this is a

maximization problem, the solution to the integer problem is bounded above by

Z1 = 82.7. This problem will be referred to as problem B. A variable is now

selected, say X1f and the problem is partitioned into two parts; one problem with

the added constraint X, <1, and the other with the added constraint X1>2.

Using the Simplex algorithm, these two descendants of B are now solved and

their solutions noted. The value of the objective function of the right child of

node 1 is Z3 = 80, the objective function for the left node, node 2, Z2 = 81.5.

Thus according to the flowchart, B is set to equal the problem with the best

solution, here, node 2. Another variable, X2, is selected, and problem B is

T-4215 20

partitioned into two sub problems. The problem represented by node 4 has the

additional constraint X2 < 6 , and node 5 is constrained by X2 > 7. The problems

represented by nodes 4 and 5 give equally good solutions, 2 = 80. The solution

to node 4, however, is all integer. Thus B is set equal to the problem

represented in node 4 and the algorithm terminates. The final solution is thus

Z = 80, Xn = 1, and X2= 6.12 Note that solution 3 gives an equally good Z

value; however, in the event of a tie, this algorithm will select the last solution

encountered in the search.

Original \ S“ 45
problem) £ - 1 ;45

Z1 = 82.7

lX ^ 1

"(2)

Solution:

X2 =6.15
Z2 =81.5

Solution:
X, = 2

\?̂ 2- 2) ^2 - 4
Z3 = 80

(3)

Solution:
!i< A X, = 1

X2< 6y x 2 =6
Z4 = 80

w Optimum

Solution:
% < A X! =0.5

7y X2 = 7
l J S 2 s = 80
(5) 5

Figure 6

Branch and Bound Tree

T-4215 21

Another heuristic algorithm employed to solve this class of problems,

along with a generalized assignment problem, was developed and implemented

by the University of Pennsylvania and the Information Systems Department of

Du Pont in a vehicle routing package called ROVER.13 ROVER approaches

routing problems by dividing them into three sub-problems, and solving each

sub-problem by using heuristic and integer programming techniques. The

following example (see Figure 7) was presented to illustrate these methods. In

the example there are 6 customers and 2 trucks, each truck with a capacity of 30

cubic feet.

Figure 7

ROVER
Single Supply Point Network

T-4215 22

Table 3

ROVER
Inter-Customer Distances

Terminal Demand

As before, Figure 7 represents a collection of demand nodes (open

circles) serviced by a single supply node. For purposes of simplicity, all

distances are shown in Table 3 rather than on the network. Further, it is

assumed that the network is a fully connected graph, thus it is possible to travel

from any node to all other nodes directly. The algorithm begins by establishing a

set of seed points, or "centers of attraction" for each truck. In ROVER, these

seed points can either be set manually or be determined by a set of heuristic

rules. In the above example, the authors selected the two seed points using a

simple polar sweep procedure.(see Figure 8) Since the total customer demand is

52, and is supplied by two trucks, the average load per truck is 26 cubic feet.

Utilizing each customer's demand, the sweep procedure sweeps out 26 units of

demand starting with customer 1 and moving toward customer 6. The seed

point is then centered between the two rays at a distance equal to the distance

from the supply point to the furthest customer in that distance cone.

Figure 8

ROVER
Assignment of Seed Points

Next, ROVER calculates the additional distance (or cost) incurred by

adding a given customer into the route from the supply point to a seed point and

back, (see Table 4)

Table 4

ROVER Insertion Costs

1 2 3 4 5 6
Seed Loop 1 3 3 6 71 19 32
Seed Loop 2 22 32 13 6 0 13

The algorithm then assigns customers to the two trucks' routes. Here, an

integer program formulation which takes the form of a generalized assignment

T-4215 24

problem minimizes total insertion costs, subject to the vehicles' capacity

constraints and customers' demands.

Given:
dlk = cost of inserting customer i into loop k.

a, = demand for customer i.

bk = capacity of truck k.

Variables:
ylk = 1 if customer i is assigned to loop k, 0 otherwise.

Objective Function:

Min:Z = t t d u<ylk
k=1 1=1

Constraints:
Each customer assigned to one route

K

Z Y ik= 1. i= 1 n,
k=1

Capacity of truck not exceeded

n

Xa,y,k£bk, k = 1 K,
i=1

The above example was solved by assigning Customers 1, 2, and 3 to

Truck 1 and Customers 4, 5, and 6 to Truck 2. As its final step, this method

determines the order in which each truck should visit its customers. ROVER

determines this order by employing a heuristic based algorithm developed by Lin

and Kernighan.14 This "Traveling Salesman" algorithm starts with a randomly

T-4215 25

generated feasible solution (a feasible solution being one in which all customers

in the truck's route are visited). It then finds, one at a time, a set of. substitute

arcs, which, if exchanged with a proper subset of the arcs from the previous

solution, would decrease the total distance traveled. This process is repeated

until no more exchanges can be made to improve the solution. Lin and

Kernighan report that the average time complexity for the algorithm is a little

worse than 0(n2). Further, for relatively small problems (less than 42 cities), the

probability of achieving an optimal solution on the first trial is very close to 1; this

probability decreases slowly to about 0.2 to 0.3 for 100-city problems.15 If we

use this algorithm for our example problem, the routings for Trucks 1 and 2 are

found to be S -1 - 2 - 3 - S, and S - 5 - 4 - 6 - S, respectively.

One noteworthy property of Lin and Kernighan's method is that the

solution of the integer program which assigns customers to routes can be found

using linear programming techniques. This feature is due to the structure of the

problem which has a set of equality constraints all equaling 1. This property is

justified similarly to the related transportation problem. Since linear

programming techniques can be used to solve the generalized assignment

problem and since the other parts of this method utilize heuristic based

algorithms, it is assured that a routing solution, even for large problems, can be

obtained in a relatively short time. However, since heuristic based algorithms

are used both to determine seed points and to solve the traveling salesman

problems, the solution generated is not guaranteed to be optimal.

T-4215 26

Application

A vehicle routing system which incorporated a heuristic approach for

solving multiple supply and demand point routing problems was developed for a

local pipe manufacturing company. Thompson Pipe and Steel, Denver,

Colorado, manufactures welded steel pipe for various applications. Thompson

also builds steel propane tanks--essentially sections of pipe with ends welded to

them--for commercial and residential use. The Company is currently

manufacturing these tanks at their Kentucky facility, with plans to expand the

manufacturing process to their Denver location. They currently have orders for

tanks from propane distributors located throughout the United States, and, in

fact, are not able to keep up with the demand for this product at their current

production rate.

In order to help minimize shipping costs, the Company sought a method

of generating a cost effective distribution plan. This method, given customer

demand, geographic location, and information pertaining to each manufacturing

location's available inventory, would generate a vehicle routing schedule. In

order for such a system to be utilized at its maximum potential, it would need to

be relatively easy to use, accept input from a variety of sources, and generate a

good solution quickly. It was determined that in this instance, ease of use meant

that persons with little computer training beyond the selection of items from a

menu would be able to operate this program and generate route schedules.

Further, to keep data entry costs down, the program should be able to read its

T-4215 27

input data from existing computer programs, such as a customer order

database. Without such a feature, both employees and management may be

less enthusiastic about this program's usefulness. In order to ensure that

solutions would be generated in a short amount of time, a heuristic based

approach to solving the routing problem was developed. One drawback to the

heuristic method is that the system would use approximations, and thus could

not guarantee optimal solutions.

Since routing problems have concerned industry for some time, computer

software has previously been developed to solve the majority of them.

Unfortunately, Thompson Pipe's particular situation made it difficult for them to

utilize such packages. Due to the nature and current market for their product, a

customized system was needed. One such problem arose due to Thompson

Pipe's current production limitations-currently, the Company has orders for more

propane tanks than they can produce in their existing facility. Thus in creating a

routing schedule the Company is more interested in minimizing shipping costs

and depleting their tank supplies than minimizing shipping costs while meeting

customers' demands. This preference requires a modification of the problem

formulation that is not normally encountered. Another complication in Thompson

Pipe's situation is that they manufacture more than one size of propane tank.

These different tank sizes must be accounted for when determining available

truck space. As a partial solution to problem, the requirement was set up that a

customer may only be supplied by one truck. Thus the Company may not split a

customer's order between two or more trucks, unless that customer can use

each truck's entire capacity. If this constraint had not been placed on the

T-4215 28

solution space, a cost effective routing would have to be determined, but the

Company would also be faced with the problem of loading the trucks with

different size tanks so as to minimize total wasted space on the fleet of trucks.

This problem, which is sometimes referred to as the "knapsack problem," is of

the same class as the traveling salesman problem and thus could be very

computationally expensive to solve.

T-4215 29

Implementation

As was mentioned in Chapter 2, the multiple supply vehicle routing

algorithm developed for this specific application is based on a simpler, single

supply point version established by Clarke and Wright. To provide a means of

comparison between this algorithm and others used to solve similar problems, a

flowchart of the algorithm (see Appendix A) and time complexity analysis are

provided. As shown in the flowchart, the main body of the program is broken

into three parts: the generation of distance saved tables, the routing of supply

trucks to customers utilizing one or more complete loads, and establishing routes

to supply customers utiliizng only partial loads.

For the purposes of analyzing this algorithm, the following variables are

defined:

Variables

n, the number of customers to be considered in the schedule,
k, the total number of supply vehicles from all supply points,
s, the number of supply points to be considered.

In generating the distance saved tables, one table must be created for

each supply point, thus s tables are created. As shown in the flow chart, each

individual operation is accomplished in 0(1) time. However, since each table

has n2 elements and there are s tables, this section of the algorithm is executed

T-4215 30

in 0(sn2) time. The next step in the algorithm determines which customers are

able to utilize one or more entire loads of product. For each of the n customers,

all k supply vehicles must be searched to see if there exists one vehicle whose

capacity is less than or equal to a given customer's demand. To perform this

operation in a worst case scenario for all customers requires computation

proportional to O(kn). The final step in the program routes the remaining

vehicles to customers who can only use a partial load. In a worst case situation,

this last section has the highest time complexity of all parts of the program. As

seen in the flowchart, determining the initial route for a vehicle requires

0(kn2)X\me. However, if the program was presented with a situation whereby

only two customers could be served by every vehicle, this process would have to

be repeated 1/2(n) times, thus yielding a time complexity for this section of

0(kn3). Because this is the highest order time complexity of any part of the

algorithm, by definition of O, it is thus the time complexity of the entire algorithm.

Although this time complexity cannot match that of a linear time algorithm, it is

better than some of the alternatives presented above which search for the

optimal solution. In fact, even with problems of relatively large size (50 or more

customers), the program completes execution in a reasonable amount of time.

Such a problem, with 50 customers, and two supply points was tested on a 25

MHz 80386 PC. The total run time to generate a solution was just over 35

seconds.

Since the solution of large problems of this type is extremely time

consuming, another method is needed to establish that the heuristic algorithm

produces at least a reasonable solution. This thesis uses a graphical

T-4215 31

representation of the customers and supply points, along with arcs which

represent the routes generated by the algorithm. Consider the following

example (see figure 9).

©
©

Figure 9

Test Problem 1
Multiple Supply Point Network

As before, the solid circles represent supply points and the hollow circles depict

customers. Again, the arcs between the points are omitted for reasons of clarity

and it is assumed that this is a fully connected graph. In order to represent this

network in the program, coordinates must first be assigned to each point. For

this example, customer and supply points will be represented in a 20X20 grid.

The above problem would then be depicted in the program in the following

manner.

T-4215 32

Table 5

Test Problem 1
Customer Locations

Customer X - Coord. Y - Coord. Demand
1 6 10 2
2 10 16 7
3 15 15 8
4 6 4 8
5 11 19 2
6 0 12 1
7 3 7 9
8 1 10 5
9 14 9 2
10 11 19 6

Table 6

Test Problem 1
Supply Point Locations

Supply Pt. X - Coord. Y - Coord. Truck # Capacity
1 1 11 1 15
1 1 11 2 13
2 14 10 3 19
2 14 10 4 15

Once this information is inputed, the program calculates distances between each

pair of points and builids a distance saved table for each supply point, (see

Tables 7 and 8)

T-4215 33

Table 7

Test Problem 1
Distance Saved Table

From Supply Pt. 1

Cust. 1 2 3 4 5 6 7 8 9 10
1 8 .18 9 .36 7 .70 7.61 0 .19 5.33 1.10 10.19 7.61
2 8 .18 19.76 6 .25 19.94 0 .94 3 .37 0.48 15.39 19.94
3 9 .39 19.76 8 .95 21.71 0 .68 4.61 0.69 21 .63 21.71
4 7.70 6 .25 8 .95 5.60 0 .02 8.83 1.79 12.32 5.60
5 7.61 19.94 21.71 5.60 1.18 2.86 0.35 15.52 25.61
6 0 .19 0 .94 0 .68 0 .02 1.18 0 .06 0.18 0 .25 1.18
7 5.33 3 .37 4.61 8.83 2 .86 0.06 1.87 6 .44 2 .86
8 1.10 0 .48 0 .69 1.79 0 .35 0 .18 1.87 1.11 0 .35
9 10.19 15.39 21.63 12.32 15.52 0 .25 6.44 1.11 15.52
10 7.61 19.94 21.71 5 .60 25.61 1.18 2 .86 0 .35 15.52

Table 8

Test Problem 1
Distance Saved Table

From Supply Pt. 2

Cust. 1 2 3 4 5 6 7 8 9 10
1 8.00 2 .80 12.00 7 .19 15.82 15.16 16.00 0 .94 7 .19
2 8 .00 7.21 4 .56 13.54 10.58 7.21 9 .39 0 .15 13.54
3 2.80 7.21 0 .89 8 .93 3 .94 2 .08 3.23 0 .02 8 .93
4 12.00 4 .56 0 .89 3 .68 14.14 17.16 15.19 1.57 3 .68
5 7 .19 13.54 8 .93 3 .68 10.59 6.47 9 .03 0 .05 18.97
6 15.82 10.58 3 .94 14.14 10.59 19.71 24.91 0 .82 10.59
7 15.16 7.21 2 .08 17 .16 6 .47 19.71 20.80 1.22 6 .47
8 16.00 9 .39 3 .23 15.19 9 .06 24.91 20.80 0 .96 9 .03
9 0 .94 0 .15 0 .02 1.57 0 .05 0.82 1.22 0.96 0 .05
10 7 .19 13.54 8 .93 3 .6 8 18.97 10.59 6 .47 9.03 0 .05

T-4215 34

Finally, utilizing the algorithm whose flowchart is given in Appendix A, the

program establishs the following routing schedule.

Table 9

Test Problem 1
Vehicle Routing Schedule

T ru c k # Route Total Distance Total Load
1 S1 - 7 - 8 - 6 - S1 11.73 12
2 S1 - 4 -1 - S1 19.70 10
3 S 2 - 9 - 3 - 5 - 1 0 - 2 - S 2 23.11 19
4 Not Assigned

20

18

16

14

12 .S2

10

8

6
4

2

0

0 2 4 6 8 10 12 14 16 18 20

Figure 10

Test Problem 1
Routing Diagram

T-4215 35

As a further basis for comparison, two more examples were tested and

are presented in Appendix B. The first example consists of 10 customers and 1

supply point with 3 vehicles. The second, an actual problem supplied by

Thompson Pipe and Steel, has 8 customers and 1 supply point with 6 delivery

vehicles. The second example differs from the first in that customer and supply

point locations had to be entered in longitude and latitude coordinates. These

coordinates required an additional function be added to the program to calculate

distances between two points on the surface of a sphere. For the solutions

generated, it should be noted that although the supply of propane tanks has not

been exhausted, the demands of all customers may not have been met. This

circumstance is due to the restriction that a customer may only be served by one

vehicle. Further, the output produced by the program does not specify which

customers will have their demands entirely met, and which customers will not.

This feature allows the user to decide who will get "preferential treatment" and

who will have to wait until the next shipment.

T-4215 36

Topics for Further Research

There are many possibilities for further work in modifying the algorithm

used for this specific application and in developing vehicle routing strategies in

general. In the algorithm created by the author, for example, perhaps a more

insightful method for determining which customers should be served by each

supply point could be established. This methodology may consider the

production of different types of propane tanks at different supply points and the

possibility of using other supply points as transshipment points. Another

possible way of improving the solutions generated by this algorithm would be to

"look ahead" more than two levels in the search tree (see Figure 3). By "looking

ahead" instead of searching for the greatest distance that would be saved by

combining two customers into a truck's route, the algorithm might be changed so

as to find the greatest distance saved by combining three customers into a

truck's route. This modification may be hindered by the amount of storage

required to hold the three dimensional distance saved tables. Further, by adding

this extra dimension, the time complexity of the algorithm would increase due to

the extra computation required to search the larger matrices. If taken to its

extreme, the idea of "looking ahead" additional levels can show that the

algorithm would evaluate all possible solutions, and thus would be equivalent to

an exhaustive search algorithm.

Other research which should be considered is whether vehicle routing

problems can be proven to belong to the class of NP-complete problems.

T-4215 37

Perhaps this research could be accomplished using the concepts of polynomial

reducibility. If it could be shown that any instance of a known NP-complete

problem may be transformed into an instance of a vehicle routing problem, it

would then follow that the class of vehicle routing problems is NP-complete.16 If

it could be determined that vehicle routing problems are of this class, then an

algorithm designed to solve any NP-complete problem could be used to solve a

vehicle routing problem. To do so would only require finding the correct

transformation between the vehicle routing problem and the original NP-

complete problem for which the algorithm was devised, applying the

transformation to the vehicle routing problem and then generating a solution.

T-4215 38

REFERENCES CITED

1 Phillips, Don T and Alberto Garcia-Diaz. 1990. Fundamentals of Network
Analysis. Prospect Heights: Waveland Press, Inc.: 97.

2 Sedgewick, Robert. 1988. Algorithms. Reading: Addison-Wesley Publishing
Company: 635.

3 Sedgewick, 635.

4 Sedgewick, 635.

5 Howell, Russell, W., Simulated Annealing on NP-Complete Problems.
Proceedings, ACMS, 1989. 104.

3 Howell, 104,105.

7 Woolsey, R.E.D. Interview with author. Golden Colorado, 27, December
1989.

8 Howell. 123.

9 Clarke, G and J. W. Wright. 1964. Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points. Operations Research Vol. 12, (July -
August): 568 - 580.

10 Sedgewick, 635.

11 Sedgewick, 627.

12 Plane, Donald and Claude McMillian Jr. Discrete Optimization. Englewood
Cliffs: Prentice-Hall, Inc.: 74-79.

13 Fisher, Marshall and Arnold Greenfield, R. Jaikumar, and Joseph T. Lester.
1982. A Computerized Vehicle Routing Application. Interfaces. Vol. 12
Number 4: 42-52.

T-4215 39

14 Fisher, Marshall and Arnold Greenfield, R. Jaikumar, and Joseph T. Lester.
51.

15 Lin, S. and B. Kerighan. 1972. An Effective Heuristic Algorithm for the
Traveling Salesman Problem. Operations Research. Vol. 12: 498-516.

16 Sedgewick. 636.

T-4215 40

SELECTED BIBLIOGRAPHY

Bazaraa, Mokhtar, S., and John J. Jarvis. 1977. Linear Programming and
Network Flows. New York: Wiley and Sons.

Luenberger, David, G. 1984. Linear and Nonlinear Programming. Reading:
Addison-Wesley Publishing Co.

Phillips, Don T. and Alberto Garcia-Diaz. 1981. Fundamentals of Network
Analysis. Prospect Heights: Waveland Press.

Woolsey, R. E. D. 1990. Class Notes - Mathematics Course MA522A -
Operations Research, Colorado School of Mines, Golden, CO.

Wu, Nesa and Richard Coppins. 1981. Linear Programming and Extensions.
New York: McGraw-Hill.

T-4215 41

Appendix A

T-4215 42

Determine Tye of Input ^ ---------

Coordinates /
/ \

N Distances

Read from file: supply
and demand points

Read in customer
distance table

Generate distance table
between customers

Read in customer demands
and truck capacities

Read in customer,
supplier distance table

Generate distance tables
between customers and
suppliers

| Generate distance saved 1
1 | tables I (-----------------

 N k ____________
I Route trucks to customers who

2 | can use one or more complete loads

 N k __________
Route trucks to customers who
cannot use entire loads

 N k _______
Print out routing schedule |

Figure A-1

Vehicle Routing Program
Main Flowchart

T-4215 43

Vehicle Routing Program
Distance Saved Tables Flowchart

T-4215 44

Initialize Variables:
Supply point = 0
Customer x - 0
Customer y = 0

0 (1)

0 (1)Oshal <— 2 (distance from Customer x to Supply)

Osha2 < -- 2 (distance from Customer y to Supply) 0 (1)

Betw <— distance from Customer x to Customer y 0 (1)

Distance Saved <— Osha2 / 2 + Oshal / 2 + Betw 0 (1)

Customer x yes
0 (1)Write -1 to table entry x,y

Customer

no

Write Betw to table entry x,y

0 (1)

Customer x Customer yyes
x = 0 0 (1)Number of

Customers
Number of
Customers yes

- ^ 14.
Done

no no
Increment x Increment y 0 (1)

Figure A-2

T-4215 45

Initialize Variables:
Customer x - 0

Find closest truck to Customer x
whose capacity is < - to Customer x's
desire

/Customer x
satisfied? or
v No Trucks

^Available j

yesyes
Checked all
customers?

no
no

Increment x

Done

0 (1)

0(k)

0 (1)

0 (1)

Figure A-3

Vehicle Routing Program
Full Truck Routing Flowchart

T-4215 46

Route closest available truck
to closest pair of unsatisfied
customers.

Truck capacity - truck capacity • min(customers' desire, truck capacity)

Search distance saved table for
largest entry cooresponding to
an unsatisfied customer who is
adjacent to either end of the
current truck's given route.

Add customer to route

 1̂4___________________________________
Truck capacity - truck capacity - min(customer desire, truck capacity)

no
Truck empty'

yes

All trucks empty?
or

s. All customers >
Nsatisfied?/^

yesno
Done

Figure A-4

0(kr?)

0 (1)

0(r£)

0 (1)

0 (1)

0 (1)

0 (1)

Vehicle Routing Program
Route Trucks Flowchart

T-4215 47

Appendix B

T-4215 48

Table B-1

Test Problem 2
Customer Locations

Custom er X - Coord. Y - Coord. Dem and
1 6 10 2
2 10 16 7
3 15 15 8
4 6 4 8
5 11 19 2
6 0 12 1
7 3 7 9
8 1 10 5
9 14 9 2
10 11 19 6

Table B-2

Test Problem 2
Supply Point Locations

S u d d Iv Pt. X - Coord. Y - Coord. T ru c k # Capacity
1 1 11 1 15
1 1 11 2 13
1 1 11 3 14

Table B-3

Test Problem 2
Distance Saved Table

From Supply Pt. 1

Cust. 1 2 3 4 5 6 7 8 9 10
1 8 .18 9 .36 7 .70 7.61 0.19 5.33 1.10 10.19 7.61
2 8 .18 19.76 6 .25 19.94 0.94 3 .37 0.48 15.39 19.94
3 9 .39 19.76 8 .9 5 21.71 0.68 4.61 0.69 21.63 21.71
4 7 .70 6 .25 8 .95 5.60 0 .02 8.83 1.79 12.32 5.60
5 7.61 19.94 21.71 5 .60 1.18 2 .86 0 .35 15.52 25.61
6 0 .19 0 .94 0 .68 0 .02 1.18 0.06 0 .18 0 .25 1.18
7 5.33 3 .37 4.61 8 .83 2 .86 0 0 6 1.87 6 .44 2 .86
8 1.10 0 .48 0 .69 1.79 0 .35 0.18 1.87 1.11 0 .35
9 10.19 15.39 21 .63 12 .32 15.52 0.25 6 .44 1.11 15.52

10 7.61 19 .94 21.1 5 .60 25.61 1.18 2 .86 0 .35 15.52

T-4215 49

Table B-4

Test Probelm 2
Vehicle Routing Schedule

T ru c k # Route Total Distance Total Load
1 S1 - 7 - 8 - 6 - S1 11.73 15
2 S1 - 3 - 9 - 4 -1 - S1 41 .17 13
3 S1 - 3 - 1 0 - 5 - S 1 33 .03 14

20

18

16

14

12

10

8

6

4

2

0

0 2 4 6 8 10 12 14 16 18 20

Figure B-1

Test Problem 2
Vehicle Routing Diagram

T-4215 50

Table B-5

Thompson Pipe Example
Customer Locations

Custom er # Location Lonoitude Latitude Dem and
1 Fulton. KY 88.8 36 .5 14
2 Princeton. KY 87.8 37 .2 5
3 Laurel. IN 85 .25 39 .5 15
4 Princeton, KY 87.8 37 .2 11
5 Salem . KY 88.3 37 .4 1
6 Bia Rapids. M l 85 .5 43 .7 14
7 Tifton, G A 8 3 .5 31 .4 14
8 Salem . KY 88.3 37.4 1

Table B-6

Thompson Pipe Example
Supply Point Locations

Supply Pt. # Location Lonoitude. Latitude T ru c k # Capacity
1 Princeton. KY 87 .8 37 .2 1 15
1 Princeton, KY 87 .8 37 .2 2 15
1 Princeton. KY 87 .8 37.2 3 15
1 Princeton, KY 8 7 .8 37 .2 4 15
1 Princeton, KY 87 .8 37 .2 5 15
1 Princeton, KY 8 7 .8 37 .2 6 15

T-4215 51

Table B-7

Thompson Pipe Example
Distance Saved Table

Cust. 1 2 3 4 5 6 7 8
1 0.00 0 .57 0.00 31.40 9 .96 67.89 31.40
2 0 .00 0 .00 0.00 0.00 0.00 0.00 0.00
3 0 .57 0 .00 0 .00 18.74 334 .45 97 .37 18.47
4 0.00 0.00 0 .00 0.00 0.00 0.00 0.00
5 31 .40 0.00 18.74 0 .00 31 .64 3.46 53.40
6 9 .96 0 .00 33 4 .45 0.00 31 .64 67 .76 53.40
7 67 .89 0 .00 97 .37 0.00 3 .46 67 .76 3 .46
8 31 .40 0 .00 18.74 0.00 53.40 31 .64 3 .46

Table B-8

Thompson Pipe Example
Vehcile Routing Schedule

T ru c k # Route Total Distance Total Load
1 S - 3 - S 365 .7 15
2 S - 4 - 2 - S 0.00 15
3 S - 6 - 8 - 5 - S 829 .44 15
4 S - 7 - 1 - S 875 .6 15
5 Not Assigned
6 Not Assigned

Figure B-2

Thompson Pipe Example
Vehicle Routing Diagram

