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ABSTRACT

In order to investigate the individual and combined 
effects of aluminum and titanium on weld metal 
microstructures, experimental welds were made on 12.7 mm (0.5 
in.) thick A516 G70 pressure vessel steel plates using E70S-3 
filler wire and a low oxygen commercial flux.

Three passes were made per weld. The first pass was 
submerged arc welded, and the second and third passes were 
gas tungsten arc welded. Metallography and chemical analyses 
of the welds were performed. Inclusions were analyzed using 
carbon extraction replica and scanning electron microscopy 
(SEM).

In the aluminum or titanium addition series welds, the 
results indicated that the final weld metal microstructures 
are related to the inclusion size distribution and the amount 
of solute atoms in solid solution.

In the aluminum-titanium or titanium-aluminum (combined) 
addition welds, the deoxidation sequence is important in 
residual solute content and microstructural refinement. The 
amount of titanium-bearing or aluminum-bearing inclusions are 
an important factor to determine the acicular ferrite 
content. Excessive aluminum and/or titanium (in solution) 
increase the weld metal hardenability which results in
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increased bainite content.
In summary, the deoxidation sequence plays an important 

role in the formation of specific types of non-metallic 
inclusions and in the determination of solid solution 
elements content, which are fundamental in microstructural 
refinement.
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I. INTRODUCTION

In order to satisfy many critical engineering 
applications , high strength, high toughness steel weld 
metals have been widely investigated in recent years to 
determine the factors that control weld metal microstructure.

During the austenite-to-ferrite decomposition, the first 
transformation product is grain boundary ferrite which forms 
along prior austenite grain boundaries. Following, 
Widmanstatten sideplate ferrite nucleates and grows from 
grain boundary ferrite as long needle-like laths that 
protrude into the austenite grains. As the temperature 
continues to drop, fine acicular ferrite laths begin to 
nucleate intragranularly. Finally, the remaining austenite 
transforms to a variety of micro-constituents which include 
bainite, martensite, etc. The relative proportions of these 
products are strongly influenced by the nonmetallic 
inclusions in the weld metal.

Several models have been proposed to explain the effects 
of nonmetallic inclusions in the weld metal on the formation 
of acicular ferrite. However, the influence of deoxidizers 
on inclusion formation and inclusion size distribution is 
still not fully understood. The deoxidizers are added into



T-3928 2

the weld pool in the form of an electrode or fluxes.
All the deoxidizers present in the weld pool compete 

with each other for the oxygen atoms, and the individual and 
combined effects of these elements in weld pool deoxidation 
are not clearly distinguished. This research focuses on the 
weld pool deoxidation sequence to better understand the 
relationship between weld metal microstructures and 
nonmetallic inclusions.
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II. LITERATURE REVIEW

II.1. Solidification Structure In Low Carbon Steel Welds
Fusion welding is one of the most important joining 

techniques used in manufacturing. During arc welding, an 
electrical arc is used as the heat source to form a molten 
pool of metal. As the heat source moves forward, 
solidification will occur in the molten weld pool.

Easterling [1] has mentioned that in most of the low 
carbon, low alloy steels, the primary solidification product 
is in the form of parallel arrays of dendrites or cells.

Savage and Aronson [3] showed that solidification begins 
by "epitaxial growth" on the base metal grains along the 
fusion line. Grains generated in the weld metal have the 
same size and crystallographic orientation as the immediately 
contiguous parent plate grains across the fusion boundary 
[3,4]. The close composition between weld metal and parent 
plate results generally in a very small wetting angle [5]. 
This effectively decreases the energy barrier to nucleation 
and almost no undercooling is required to initiate 
solidification, Figure 1. For cubic crystal materials, the 
<100> directions are the preferred easy-growth directions for 
dendrites growth. As the heat source moves forward, the new
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AG

AG

WELDING

Figure 1. The different free energy during forces for 
casting and welding solidification. Epitaxial 
growth in welding processes reduce the nucleation 
energy barrier to zero.
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and old dendrites must adjust themselves toward the maximum 
thermal gradient which is always normal to the fusion 
boundary [6].

As the weld metal temperature reaches the peritectic 
temperature, austenite starts to form. The reaction is :

Liquid Iron + Delta Ferrite ----> Austenite.  (1)

Using a double etching techniques (saturated picric acid 
solution and 2 volume percent Nital), it is easy to observe 
that the 6-ferrite grains are rotated with respect to the 
austenite grains. This proves that the 5-ferrite grains and 
the austenite grains may not have occurred at the same time
[5]. Due to the high temperature, the austenite grains grow 
until their boundaries impinge or are pinned by inclusions or 
precipitates. In submerged arc welding (high heat input), 
austenite grain growth in the heat affected zone is 
substantial.

II.2. Solid State Phase Transformation Structures
When the solidified carbon-manganese steel weld metal 

cools down , austenite decomposition will occur. Table 1 
[12] is a summary of the various names used by different
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research groups for the classification of weld metal 
microstructures. In this research the following nomenclature 
is used :

(1). Grain boundary ferrite (GBF).
(2). Polygonal ferrite (PF).
(3). Widmanstatten sideplate ferrite (SP).
(4). Acicular ferrite (AF).
(5). Bainite (B).
(6). Microconstituents (MAC).

11.2.1. Grain Boundary Ferrite (GBF)
During the austenite-to-ferrite transformation, the 

highest temperature transformation product is GBF which 
nucleates along prior austenite grain boundaries. Elongated 
ferrite along the austenite grain boundary is also known as 
ferrite veins, Figure 2(a). Ferrite veining is considered 
detrimental to weld metal toughness because it can provide 
a continuous crack path through the weld metal [7,8].

11.2.2. Polygonal Ferrite (PF)
Many authors [9,10,11] consider grain boundary ferrite 

and polygonal ferrite as primary ferrite, because it is not
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Figure 2. Optical micrographs showing the different 
microstructures found in C-Mn steel weld metal, 
a.GBF b.PF c.SP d.AF e.B
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easy to distinguish those two constituents, Figure 2(b). 
Granular Polygonal ferrite can form intragranularly when the 
cooling rate is very slow or the alloy content is low [12].

II.2.3. Widmanstatten Sideplate Ferrite (SP)
Widmanstatten sideplate ferrite forms at a lower 

temperature than grain boundary ferrite and polygonal 
ferrite. Sideplate ferrite nucleates at GBF and grows as 
long needle-like laths that protrude into the austenite 
grains, as shown in Figure 2(c). The SP growth rate is 
controlled by the carbon diffusion away from the tips of the 
needles [13,14]. Between the growing needles and the parent 
austenite, Kurdjumov-Sachs orientation relationship is 
observed [15].

K-S orientation relationship :

(U0)boe // (Hi)fco , [iii]boc // [Oii]foo

Commonly the aspect ratio of the Widmanstatten sideplate 
ferrite needles are approximately 10:1, but laths with aspect 
ratios as large as 20:1 have been found [15].
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11.2.4. Acicular Ferrite (AF)
As the transformation temperature continues to drop, AF 

laths nucleates intragranularly on non-metallic inclusions. 
Sometimes several ferrite laths share a nucleation site and 
grow outward forming a star shaped group. Most of acicular 
ferrite is 1 to 2 jum thick with aspect ratio varying from 3:1 
to 10:1 and shown in Figure 2(d) [12]. The fine ferrite
grains, high angle boundaries, and the interlocking nature of 
the laths explain the high toughness and high strength 
properties of acicular ferrite.

11.2.5. Bainite (B) And Microconstituents (MAC)
During austenite decomposition, the higher temperature 

transformation products continue to eject carbon and alloying 
elements into the untransformed austenite. This may delay 
further transformation of austenite. The enrichment of carbon 
may also lead to a variety of low transformation temperature 
products which include bainite, martensite, and pearlite, 
depending upon cooling rate and alloy components. Bainite 
generally forms packets associated with grain boundaries and 
the inclination between laths is small, as shown in Figure 
2(e). Additionally, the dislocation density of bainite is
high. The aspect ratio of bainite laths can be as high as
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Widmanstatten sideplate ferrite [12]. Depending on the 
cooling rate and carbon rejection, retained austenite can 
also be found in a low carbon low alloy steel weld metal.

II.3. Weld Pool Deoxidation Practice
In steel making, elements with higher affinity for 

oxygen than iron are added to the molten bath for the 
purpose of deoxidation. The most common deoxidants used in 
steel making are aluminum, manganese, silicon, titanium, 
calcium, zirconium, and elements in the rare earth group. In 
arc welding, these elements can enter the weld pool from the 
base metal,electrode filler wire, or fluxes. In ladle 
refining of steels the deoxidation reactions occur at near 
isothermal and equilibrium conditions, different from that 
found in most welding conditions. The non-isothermal, non­
equilibrium natures of arc welding make it very difficult to 
identify clearly the deoxidation sequence in the weld pool 
and the effect on weld metal microstructure.

In the submerged arc welding process, oxygen comes 
mainly from the flux which may contain easily reduced oxides 
such as iron oxide, manganese oxide, silica, etc [17]. Due 
to the high temperature in the weld pool these oxides quickly 
dissociate. At 1600°C, the solubility of oxygen in pure
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molten iron is approximately 1600 ppm [18]. During 
solidification, the weld pool oxygen concentration 
established at high temperatures will readjust as a result of 
decreasing oxygen solubility and the combination of oxygen 
with deoxidizers that exist in the weld metal. Kluken and 
Grong [19] divided the weld pool into two reaction zones. 
One is the "hot" reaction zone, the weld pool right beneath 
the arc root, where the deoxidation products are continually 
separated by highly turbulent flows which sweep those 
products out of the weld pool. The other is the "cold" 
reaction zone where most of the precipitated products are 
entrapped in the weld metal as finely dispersed particles.

II.3.1. Richardson's Diagram
The free energies of formation of some common oxides are 

plotted as a function of temperature in Figure 3. Each line 
represents an element reacting with oxygen to form an oxide. 
The sequence of those curves is dependent on the affinity 
with oxygen of each deoxidant. Oxides described by the lower 
lines are more stable than the ones represented by the higher 
lines. Figure 3 is very useful in evaluating the relative 
reducing or oxidizing tendencies of metals. For example, 
aluminum will reduce FeO to iron at all temperatures and
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Figure 3. Richardson diagram [81] showing the stability of 
some major oxides commonly found in welding 
flux systems, (after Liu [5])
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this can be considered by the free energy change of 
formation of A1203 and FeO.

At 1500 °C,

4/3 Al(s) + 02(g) --> 2/3 A1203(s) AG° = -176 k c a l  (2)

2 Fe(s) + 02(g) --> 2 FeO(s) AG° = -72 kcal -----(3)

combining equations [(2) - (3)] ,

4/3 Al(s) + 2 FeO(s) —  > 2/3 Al203(s) + 2 Fe(s) — (4)
AG° = -104 kcal

the AG° of reaction described by equation (4) is negative 
indicating that the reaction is thermodynamically feasible 
and spontaneous.

In Figure 3, the order of decreasing stability of oxides 
are A1203, TiO, Ti02, Si02, MnO and FeO. However, arc welding 
does not occur isothermally, nor in equilibrium conditions, 
the sequence of deoxidation reactions that occur in the weld 
pool may be very complicated .
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11. 3. 2. Deoxidation Reaction Products
In the welding process, the amount of oxygen in the weld 

metal is decreased by the addition of deoxidizers and the 
level of residual oxygen in liquid iron is strongly dependent 
on the amount and kind of deoxidants added, as illustrated in 
Figure 4 [20], which is a plot of equilibrium oxygen
concentrations in liquid iron as a function of deoxidant 
contents at 1600 °C [20]. If only one deoxidant is used in 
the welding system, the deoxidation sequence and products are 
much easier to understand and predict. In reality, however, 
the four major deoxidants used in steel welding are manganese 
(Mn) , silicon (Si), aluminum (Al), and titanium (Ti). As 
result, inclusions containing these deoxidizers are formed 
and the amount of alloying elements and deoxidizers strongly 
affects the final inclusions composition, size, and shape. As 
iron has the lowest affinity for oxygen, it will only react 
with oxygen after all deoxidizers are consumed. The degree of 
deoxidation of the weld metal can therefore be revealed by 
the level of FeO residual in the weldments.

Manganese (Mnl
In normal deoxidation condition by only Mn addition, the 

final deoxidation product will be rich in MnO with a small
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Figure 4. The equilibrium plot of the concentrations of 
oxygen is liquid iron as a function of deoxidant 
contents at 1600 °C [20].
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amount of FeO [72]. The deoxidation reaction in the weld 
pool is shown by following equation.

Mn(1) + FeO(1) --> MnO(s) + Fe(1) -— (5)

The inclusion type and shape are strongly dependent on the 
ratio of MnO/FeO. With high manganese level (high MnO/FeO 
ratio), inclusions have the tendency to have irregular 
morphology. But in low manganese level (low MnO/FeO ratio), 
the morphology of inclusions are always spherical.

Silicon (Si)
If only silicon is used as the deoxidizer in the welding 

system, the final deoxidation product in the weldments is the
solid silica [18] and the deoxidation reaction can be written
as following equation.

Si(|) + 2FeO^ --> Si02(s) + 2 Fe^ (6)

Aluminum (Al)
In the particular case of deoxidation by only aluminum, 

the final products can be a compound of A1203 and FeO. Only 
in relatively high aluminum content welds is pure Al203(s)
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formed. The deoxidation reactions in the weld pool can be 
written as the following two equations.

(1). In high aluminum content welds,

2 Al^ + 3 FeO^ “~> Al203̂  + 3 Fe^ (7)

(2). In lower aluminum content welds.

2 Al(1) + 4 FeO(1) --> Al203*Fe0(s) + 3 Fe(|)---(8)

Titanium (Ti)
Using titanium as the only deoxidant, the deoxidation

products are more complicated than the ones previously
described. Increasing the weld metal titanium content, the 
content of titanium in the inclusions are also increased, the 
final form of inclusions may be Ti02 or TiO.

However, in real arc welding processes, more than one 
deoxidant is added to the weld pool and the deoxidation
sequence is complicated and most of the inclusions occur in
a combined form, with more than one oxide compound.
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II.3.3. Chemical Composition Of Inclusions
It has been known for a long time that weld metal 

inclusions are inhomogeneous. Generally speaking, the cores 
of the inclusions consist mainly of a mixture of oxides with 
aluminum, manganese and silicon [2,84], unless very low 
amounts of aluminum or substantial amounts of titanium are 
present. Due to the complicated chemical nature of weld 
metal inclusions, several ternary diagrams were used to 
explain the deoxidation sequences in the weld pool [19,21,22- 
26]. These diagrams can be divided into two major groups. The 
Mn0-Si02-Al203 system [19,22,24,26] and the MnO-(Si02+Ti02) - 
A1203 system [21,25].

Considering bulk inclusion compositions with only minor 
titanium content in the inclusions, the Mn0-Si02-Al203 diagram 
can be used to describe the chemical nature of the inclusions 
and is shown in Figures 5 to 7. In Figure 5, the Mn0-Si02- 
A1203 ternary system shows the stoichiometric composition of 
the different phases which have been reported [24]. Figure 
6 shows the measured inclusion compositions in deoxidized 
submerged arc steel weld metals by Kluken and Grong [19]. 
The mean inclusion composition of their welds are located 
around the line where the [%Si02] : [%MnO] ratio
approximately equal to 0.94. Figure 7 represents the mean
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Si02
Tridymite

CristobaliteQuartz

Mn-Cordierite 2Mn0«2Al?0,#5Si0.

Mn-Anorthite Mn0«Al503*2Si0,

Spessartite
3Mn0«Al,0,#3Si0.

Mullite 3Al203*2Si0.

Manganosite Galaxite Corundum
MnO Mn0«Al203 Al203

Figure 5. The stoichiometric composition of the different 
phases in the Mn0-Si02-Al203 system.
(after Keissling and Lange [24])
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Si02

MnO

Figure 6. Measured average composition of inclusions in 
Si-Mn-Al-Ti deoxidized submerged arc welds, 
(after Kluken and Grong [19])
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Si02

L2

MnO

Figure 7. Summary of the analytical results regarding 
occurrence and plotting in the Mn0-Si02-Al203 
ternary system.
(after keissling and Lange [24])
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compositions obtained from many different inclusions 
collected by Keissling and Lange. [24] The inclusion 
compositions seem to fall in the region limited by the two 
lines/L1 and L2, where the [%Si02] : [%MnO] ratios are 0.6 and
I.2. Both Figures 6 and 7 shown the similar phenomena that 
the majority of the inclusions have their compositions lie 
close to the line joining Corundum (A1203) to Rhodonite 
(Mn0*Si02) with an approximately constant [%Si02] : [%MnO]
ratio at varied A1203 contents.

Saggese et al. [21] designed their experiments using 
filler wires with and without titanium and plotted the 
average compositions of the inclusions on the Mn0-(Si02 + 
Ti02)-Al203 ternary diagram shown in Figure 8. Again, the 
majority of the inclusions show constant Si02 to MnO ratio, 
despite different aluminum and titanium addition.

II.4. Inclusion Effects On Weld Metal Phase Transformations 
It is generally accepted that high toughness and high

strength are associated with large volume fraction of 
acicular ferrite (AF) in the low carbon low alloy steel weld 
metal microstructure [27-29]. As such, to be able to control 
the mechanical properties of these welds, it is necessary to 
understand the transformation mechanism of acicular ferrite.
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Si02 + Ti02

• •

MnO

MnO

Figure 8. Measured average compositions of inclusions in 
submerged arc steel weld metals.
(a), filler wire with high Si content, no Ti.
(b). filler wire with low Si content, with Ti. 
(after Saggese et al. [21])
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The formation of AF is closely related to the oxygen 
content of the weld metal [30-37] and the type, volume 
fraction, and size distribution of the inclusions [36- 
38].Several models have been proposed to explain the effects 
of inclusions on the formation of AF. These include

(1). Austenite grain boundary pinning model.
(2). Inclusion type model.
(3). Inclusion size distribution model.
(4). Lattice disregistry model.
(5). Differential thermal strain model.

II.4.1. Austenite Grain Boundary Pinning Effect
Inclusions located at the austenite grain boundaries can 

affect the austenite-to-ferrite transformation. In high 
oxygen content welds (i.e., high inclusion volume fraction), 
the finer inclusions will pin the austenite grain boundaries 
to limit grain growth and serve as nucleation sites for 
higher temperature transformation products. Cochrane and 
Kirkwood [37], Harrison and Farrar [39], and Ferrante and 
Farrar [40] also offered similar explanations in their 
investigations. Ferrante and Farrar [40] determined that 
austenite grain size larger than 45 jL/m have the tendency to
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produce the acicular ferrite. More recent studies reported 
larger austenite grain sizes, at the order of 100 jam, to 
promote acicular ferrite formation [5,86].

Inclusion size is an important factor that affects the 
austenite grain boundary pinning effect. Large particles are 
less effective in pinning than small particles. Liu [5] and 
Fleck [47] offered similar observations in their 
investigations. Zener derived a relationship between 
inclusion volume fraction (Vv), prior austenite grain size 
(D), and "effective" particle diameter (Zener diameter - <j> ) 
to estimate the inclusion size that is capable of pinning the 
austenite grain boundary.

0 = 3/2 x D x Vv  (9)

Only those particles smaller than the Zener diameter will pin 
the austenite grain boundary. Large particles are generally 
located within the austenite grains and often serve as 
nucleation sites for intragranular ferrite formation.

Harrison and Farrar [39] verified the relationship 
between oxygen content (inclusion content) and the austenite 
grain size using laser remelting of the weld metal. They 
showed that reducing the oxygen content (inclusion content)
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in welds increased the austenite grain size which suggested 
that non-metallic inclusions may have significant effect on 
grain boundary pinning.

II.4.2. Inclusion Type Effect
Weld metal inclusions are chemically inhomogeneous and 

may contain oxides of aluminum, manganese and silicon. 
Pargeter [42] observed that some microstructural constituents 
are associated with specific type of inclusions. For 
example, acicular ferrite is often found related to aluminum- 
bearing inclusions. Several authors [21,42,43] have
observed a correlation between moderately high A1203 ( > 50% 
A1203 ) content inclusions and high proportions of acicular 
ferrite. Others [21] reported that when little titanium is 
present in the inclusions the amount of AF decreases as the 
amount of Al203 in the inclusions decreases, indicating the 
importance of aluminum. Above a certain amount of titanium 
in the inclusions ( > 2.5% TiO ) the proportion of AF was 
independent of inclusion A1203 content and large proportions 
of AF were always present. Terashima and Hart [44] obtained 
similar results. Both Cochrane and Keville [45] and Barritte 
and Edmonds [46] reported that AF content decreased when the 
inclusion composition changed from alumina-rich to manganese
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alumina silicates. Grain boundary ferrite and Widmanstatten 
sideplate ferrite are always associated with inclusions that 
contain manganese and silicon, with or without sulfur. In 
submerged arc welds, inclusions covered by sulphide shells 
are observed to inhibit acicular ferrite nucleation [19,41]. 
Recently, Mn0*Al203 (galaxite) is widely accepted to be 
effective nucleation site for acicular ferrite formation 
[22]. Mills et al. [53] are also reported the same results 
in their investigation.

II.4.3. Inclusion Size distribution Effect
The inclusion size distribution is an important factor 

to determine the austenite grain size. A population with a 
large fraction of smaller particles can pin the grain 
boundary more effectively than a population with many large 
inclusions. Some authors [5,32] reported smaller austenite 
grain size with smaller mean inclusion diameters. Cochrane 
and Kirkwood [37] indicated that a certain size distribution 
of inclusions is required to obtain large volume fraction of 
AF. Terashima and Hart [44] suggested that inclusions with 
mean diameter smaller than 0.56 ^m were too small to nucleate 
AF and that those with mean diameter larger than 0.81 ^m were 
too large to nucleate AF.
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II. 4.4. Lattice Disregistry Effect
In heterogeneous nucleation, the interfacial free energy 

between the inclusion and the nuclei is the major energy 
barrier for nucleation [13,14]. The interfacial free energy 
is mainly due to the difference in lattice parameters between 
the inclusion and the new nucleated phase. Turnbull and 
Vonnegut [48] developed an equation to express the lattice 
disregistry effect and proposed that the smaller the mismatch 
the greater the tendency of nucleation.

6 = Aa0 / a0  (10)

6 : the lattice mismatch 
Aa0 : the difference lattice parameter between the

inclusion and the nucleated phase for a low index 
plane.

a0 : the lattice parameter for the nucleated phase.

Bramfitt [48] modified the Turnbull and Vonnegut equation by 
considering the mismatch over several planes.

It was noted that constituents with a low lattice 
disregistry with nucleated ferrite, for example, TiO, TiN 
[30,49-53], galaxite (Mn0,Al203) [51,53-55], have been reported
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to be effective nucleation agents for AF formation during the 
austenite-to-ferrite transformation. Some crystallographic 
data of several potential nucleating agents are listed in 
Table 2 [50,54].

II.4.5. Differential Thermal Contraction Effect
Due to the different thermal contraction coefficients of 

the inclusion and the austenite matrix, the strain energy 
involved in the phase transformation is expected to affect 
the thermodynamic driving force of nucleation. It has been 
found that the thermal contraction coefficient of austenite 
is much higher than that of the oxide inclusions [18,55]. On 
cooling, the austenite matrix is strained and may accelerate 
the austenite to ferrite transformation reaction.

Laszlo [55] and Easterling [1] studied the stresses 
caused by differential thermal contraction and determined 
these stresses using the equation below :

°  ~  ^  *  £ ( a matrix ^ in c lu s io n ) *  ^   ̂ H )

a :the stress generated in austenite matrix due to 
contraction.
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Table 2. Crystallographic data for the effective 
nucleating agents. [50 , 54]

Compound Crystal
Structure

Lattice Parameter
(A)

Relation of Planes 
between Nucleating 
Agents and a  —  Fe

Planar
Disregistry

(%)ao bo Co
TiN Cubic

(NaCl)
4.235 - - " (100)n//(100)«

roiow/ronia
3.8

T i20 Hexagonal 2.959 — 4.845 (0001)n//(lll)a
rooiw/rnoia

29.3

TiO Cubic
fNaCn

4.177 — - - (100)n//(100)a
roiow/ronia

3.0

T i0 2 Tetragonal
(Sn02)

4.594 — 2.958 (001)n//(110 )a
roiow/moia

8.8

B2O3 Hexagonal 4336 - - 8.340 (0001)n//(lll)a
rooiw/rnoi«

5.8

BN Hexagonal 2350 — 4.200 (0001)n//(lll)a
rooiw/rnoia

37.8

A I2O3 Hexagonal
fCnCh)

4.759 — 12.991 (0001)n//(lll)a
ri211n//ril01a

16.0

MnO.Al2Q3 Spinel 8.250 — - - ( 100) n / /  ( 110)or

roiow/roiik
1.8

Note :
n :substrate
a :nucleating phase a - Fe
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T :a proportionally factor that is a function of the elastic 
modules of the inclusion and austenite matrix, and 
inclusion geometry.

^m atrix :thermal expansion coefficient of the austenite 
matrix.

inclusion 1 thermal expansion coefficient of the inclusion.
AT :the temperature change during coding.

The thermal expansion coefficients of some inclusions 
commonly found in steels are listed in Figure 9 [5]. Based on 
the strain energy concept, the most favorable inclusion to 
act as substrate for ferrite nucleation is 
(MnO)2(A1203)2(Si02)5, because it has the largest difference in 
thermal expansion coefficient from austenite. However, using 
a gleeble thermomechanical simulator, Dallam [85] found no 
significant effect of thermal contraction.

II.5. Microalloying Elements Effects On Weld Metal 
Microstructures 
It is well known that adequate alloy elements added to 

the weld pool decrease the amount of grain boundary ferrite. 
Evans [82] reported that manganese can reduce the prior 
austenite grain size and increase the amount of AF in the 
welds. The increase of AF is mainly due to the decreasing
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Figure 9. Thermal expansion coefficients of some commonly 
found inclusions in steels, (after Liu [5])
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amount of GBF. Manganese not only delays the grain boundary 
ferrite transformation, it also depresses the bainitic 
transformation temperature, promoting the fine-grained 
acicular ferrite formation. Evans also indicated that there 
is an specific amount of manganese which will produce optimal 
toughness (approximately 1.4 wt. pet. Mn) . This is shown in 
Figure 10. Cochrane et al. [69] also reported similar 
optimum manganese range (1.2-1.6 wt. pet.) to form desirable 
microstructures. Below this value, sideplate microstructures 
are generally formed.

However, a corresponding increase in acicular ferrite 
content [56,57] can also occur if effective intragranular 
nucleation sites are available within the grains. This 
research has the main objective of investigating the 
individual and combined effects of aluminum and titanium 
additions on weld pool deoxidation. Thus, only the effects 
of aluminum and titanium on inclusion formation will be 
discussed in the following.

II.5.1. Effects Of Aluminum
To investigate the beneficial influence which aluminum 

may have, Cole and Colvin [64] used a submerged arc flux that 
contained approximately 50% A1203 and obtained welds with fine
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Figure 10. Effect of manganese on Charpy-V toughness tests 
at different temperatures, (after Evans [82])
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acicular ferrite microstructure. They explained that aluminum 
nitride precipitates acted as effective nucleation sites for 
AF nucleation. Other investigators [21,42,43,65] reported 
that welds with inclusions with relatively high Al203 content 
showed high volume fraction of AF. However, several authors 
have observed detrimental effects of aluminum in submerged 
arc welds made with basic fluxes. Terashima and Hart [66] 
showed that increasing the aluminum content decreased the 
amount of titanium bearing precipitates, and the proportion 
of AF decreasing. Yoshino and Stout [67] reported that their 
microstructural coarsening was due to excesses aluminum in 
solid solution. Brownlee [68] showed that welds with 
aluminum content larger than 0.04 wt. pet. had deteriorated 
toughness (as a result of reduced amount of AF), Figure 11. 
Thus, deoxidation with aluminum should be carefully 
controlled to avoid the detrimental effects.

II.5.2. Effects Of Titanium
The addition of titanium to the weld metal has the 

effects of weld metal microstructure refinement and toughness 
improvement [44,60-63]. Many authors [44,50,60,61,63] 
suggested that the increase in toughness was due to the 
increase in titanium bearing nucleation sites, effective for
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Figure 11. The effect of Ti changes depending upon the 
amount of Al concentration exist in the welds. 
(after Brownlee [68])
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intragranular acicular ferrite nucleation. Ito and Nakanishi 
[28] not only showed that titanium raised the temperature for 
the maximum transformation rate but also found that titanium 
increased the transformation start temperature. These 
are most important observations, which indicate that titanium 
contributes more effective nucleation sites for ferrite 
nucleation. Grong and Matlock [16] reported that there is a 
minimum amount of titanium (> 0.0045 wt. pet.) above which 
the beneficial effect of titanium becomes apparent, Figure
12. Tsuboi and Terashima [60] indicated that there is an 
optimum range of titanium which will produce maximum 
toughness in welds, and that range is dependent upon the 
exact chemical composition in the weld metal.
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Figure 12. Plot showing the influence of weld metal Ti 
content on the volume percentage of acicular 
ferrite in the Mn-Si-Ti microalloyed steel 
submerged arc welds.
(after Grong and Matlock [16])
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III. EXPERIMENTAL PROCEDURE

III.l. Experimental Design Procedure
Review of the available literature shows that in most of 

the experiments related to weld pool chemistry investigation, 
the deoxidizers are added altogether in the form of an 
electrode or welding fluxes. As such, all the deoxidants 
present in the weld pool compete with each other for the 
oxygen atoms, and the individual and combined effect of these 
elements in weld pool deoxidation can not be clearly 
distinguished. In this research, controlled amounts of 
aluminum and titanium are introduced into the different 
passes of the carbon - manganese steel weldments to 
investigate the individual and combined effects of aluminum 
and titanium.

The base plate chosen for this research was an ASTM A516 
G70 pressure vessel steel. A 3.2 mm (1/8 inch) diameter 
E70S-3 electrode and a high MgO-CaF2, low Si02 commercial flux 
were used in the experiments. The compositions are given in 
Table 3.

A two-part experiment concerning the weld pool 
deoxidation sequence was designed. The first part examined 
the titanium - aluminum addition sequence and the second
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Table 3. Chemical compositions of the bass metal, the 
electrode filler wire and the 0P121TT flux in this 
research.

base metal C N 0 S Mn
L6 G70 PVQ1/2" 0.2566 0.0056 0.0019 0.0125 1.200 0.008

Si
0.174

Cr
0.023

W
0.004

Mo
0.002

Co
0.001

As
0.001

Sn
0.002

Ti
0.001

Cu
0.019

Ta
0.038

Al
0.028

filler wire 
E70S-3

C
0.124

Mn
1.152

Si
0.560

P
0.021

Cu
0.070

Al
0.010

flux 
OP12ITT

Si02
10.7 17.3

MgO
31.7

CaO
6.6

MnO
1.1

Ti02
0.86

CaF2
24.1

Na20
0.78

Fe203
1.9

C
0.35

Notes :
(1).The concentration of all elements and compounds 

are given in weight percent.
(2).Base metal plate dimension is 12.7 mm (0.5 inch 

thickness) x 102 mm (4 inch width) x 203 mm
(8 inch length).

(3).Filler wire diameter = 3.2 mm (1/8 inch).
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part, the aluminum - titanium addition sequence. In the case 
of the titanium - aluminum addition sequence welds, the first 
pass of each weld was made by submerged arc welding (SAW) to 
contain eight different levels of titanium, from 0.007 to 
0.355 weight percent. These welds were prepared using 3.2 mm 
(1/8 inch) diameter E70-S3 electrode with different additions 
of pure titanium strips in a single-v-grooved joint, Figure 
13, and covered with OP121TT flux. The nominal heat input 
for the first pass welding was approximately 3.0 KJ/mm. The 
detailed welding parameters were shown in Table 4.

After the first passes were made, v-grooves were cut 
from the center of the beads. Different amounts of pure 
aluminum in the form of thin strips were positioned in these 
grooves for the second passes. Gas tungsten arc (GTA) welds 
with eight levels of aluminum additions, from 0.009 to 0.228 
weight percent were made with argon shielding. The nominal 
heat input for the second pass welding was approximately 2.9 
KJ/mm. GTA welding was chosen to ensure that the variations 
in oxygen and nitrogen content observed at the second passes 
were caused mainly by aluminum addition since the 
concentration of other elements was maintained constant 
for all welds. Due to the nonuniform bead shape of some of 
the second passes , a third pass is applied in the transverse
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102mm

Figure 13. Joint geometry of the single-v-grooved welds for 
first and second pass.
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direction of all welds to homogenize the weld metal. The 
welding parameters were listed in Table 4 and the schematic 
drawing of the welding sequence was shown in Figure 14.

Similarly, the second part of the experiment examined the 
aluminum - titanium addition sequence welds. The procedures 
were the same as the first part with the exception of the 
sequence of deoxidizers addition (aluminum in the first pass 
and titanium in the second pass). The experimental matrix is 
listed in Table 5.

111.2. Analyses Of The Experimental Welds
For reasons explained in the previous section, only the 

first and third passes of the welds were studied.
All specimens were examined using a Neophot 21 light 

metallograph. Two volume percent nital solution was used to 
reveal the microstructure.. The two positions from each weld 
where micrographs were taken are illustrated in Figure 15.

Standard quantitative metallographic techniques were used 
to evaluate the volume fractions of the various 
microstructures. The three groups of microstructures 
considered were :(1) Grain boundary ferrite (GBF) and 
intragranular polygonal ferrite (PF) ; (2)Intragranular
acicular ferrite (AF) ; and (3) Bainite (B), Widmanstatten
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Figure 14. Schematic drawing of the welding sequence.
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Table 5. Experimental Matrix.

Sample Titanium(Ti) addition Aluminum(Al) addition
(mg/mm) (mg/mm)

tl 0.22 —
t2 0.44 —
t3 0.88 —
Tl 1.00 —

T2 2.00 —

T3 3.00 —
T4 4.00 —

T5 5.00 —
tlal 0.22 0.13
tla2 0.22 0.26
tla3 0.22 0.52
t2al 0.44 0.13
t2a2 0.44 0.26
t2a3 0.44 0.52
t3al 0.88 0.13
t3a2 0.88 0.26
t3a3 0.88 0.52
T1A1 1.00 0.72
T1A2 1.00 1.44
T2A1 2.00 0.72
T2A2 2.00 1.44
T3A1 3.00 0.72
T3A2 3.00 1.44
T4A1 4.00 0.72
T4A2 4.00 1.44
T5A1 5.00 0.72
T5A2 5.00 1.44
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Table 5. Experimental Matrix (continued).

Sample Aluminum(Al) addition Titanium(Ti) addition
(mg/mm) (mg/mm)

al 0.13 —

a2 0.26 —

a3 0.52 —

Al 0.72 —

A2 1.44 —

A3 2.16 —

A4 2.88 —

A5 3.60 —

altl 0.13 0.22
alt2 0.13 0.44
alt3 0.13 0.88
a2tl 0.26 0.22
a2t2 0.26 0.44
a2t3 0.26 0.88
a3tl 0.52 0.22
a3t2 0.52 0.44
a3t3 0.52 0.88

Notes :
T (t) series :only titanium added in the first pass.
A (a) series :only aluminum added in the first pass.
TA (ta) series :titanium added in the first pass and

followed with aluminum addition in the 
second pass.

AT (at) series :aluminum added in the first pass and
followed with titanium addition in the 
second pass.



T-3928 49

5 mm

transverse

11.5m m

2mm

Figure 15. Schematic diagram showing the positions where 
micrographs were taken for quantitative 
metallographly.
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sideplate ferrite (SP) and the microconstituents (MAC).
All welds were analyzed using an ARL Quantometer 34000 

SAS/DPS Emission Spectrometer. The carbon and sulfur content 
of the weld metals were analyzed using a LECO CS-244 Carbon- 
Sulfur Determinator, while oxygen and nitrogen content were 
analyzed using a LECO TC-136 Nitrogen-Oxygen Determinator. 
The chemical composition of each specimen is given in the 
appendix.

Carbon extraction replicas were used to determine the 
size and chemical composition of the inclusions. The carbon 
coatings were deposited on the welds in a Denton Vacuum 
Evaporator. Since an adequate thickness carbon film is 
required, the following procedure was carried out to obtain 
useful carbon replicas :

(1). Divide the replicated specimen surface into few small 
regions (about 2 mm x 2 mm).

(2). Immerse the specimen into a ten volume percent nital 
solution until bubbling occurs, which means the 
replica film is ready to float.

(3). Transfer the specimen to a ninety volume percent 
methanol aqueous solution, for floating the small 
curved replica films.
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(4). Use small nylon grids to "fish" the replicas and 
transfer them to a solution mixed of methanol (10 
vol. pet.) and water (90 vol. pet.). The curved 
replica film will expand and flatten in this solution.

(5). Use nylon grids to transfer the flattened replica 
films, onto a filter paper and dry.

For the determination of the chemical composition and 
size distribution of the inclusions, a JEOL JXA-840 Scanning 
Microanalyzer with Tracor Northern EDS unit was used. The 
standard quantitative (SQ) analysis program was used to 
analyze the composition of inclusions. Eight elements were 
requested in the calculation, which were aluminum, silicon, 
sulfur, titanium, vanadium, manganese, iron, and copper.
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IV. RESULTS AND DISCUSSION 

IV.1. INDIVIDUAL EFFECTS

IV.1.1 Relationship Between Weld Metal Chemical 
Composition And Microstructures 

As explained in the previous section, two sets of 
results will be presented :from the first and third passes of 
all the weldments. To correlate weld metal microstructures 
to chemical composition, the carbon equivalent (CE) equation 
was first considered. There are currently many different 
forms of CE equations [72-75], but only the CE equation 
originally devised by Dearden and O'Neill, and adopted by IIW 
in 1967 was chosen in this research.

%Mn %Cu + %Ni %Cr + %Mo + %V
CE = %C + -----+ ---------- + --------------------   (12)

6 15 5

This formula is applicable to plain carbon and carbon- 
manganese steels.

It is well established that CE can strongly affect the 
weld metal microstructures, but the purpose in this research 
is to determine the aluminum and titanium effects. Therefore
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welds with similar CE values were chosen for evaluation. In 
the first pass weldments, all the CE values were 
approximately 0.30 wt. pet. and thus the individual effects 
of titanium or aluminum additions on microstructures could be 
determined.

Different microstructures were obtained at different 
levels of titanium or aluminum addition. Figure 16 shows the 
variation of weld metal microstructures with only titanium 
addition. There is a critical titanium concentration 
approximately 0.05 wt. pet. of titanium above which bainite 
(B) structure increased at the expense of intragranular 
acicular ferrite (AF) and grain boundary ferrite (GBF). It 
is possible that excess titanium, in the form of solid 
solution, promotes the formation of bainite. Below 0.05 wt. 
pet. of titanium, both AF and GBF increased at the expense of 
bainite with titanium addition.

The variation of weld metal microstructures with only 
aluminum addition is shown in Figure 17. Below approximately 
0.05 wt. pet. of aluminum, AF and bainite increase with 
decreasing GBF. Above this point, GBF and bainite increase 
at the expense of AF. This result agrees with the data 
reported by Brownlee [68]. Figures 18 and 19 are light 
micrographs with different levels of titanium and aluminum
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Figure 16. Summary plot of the variation in the weld metal 
microstructures as a function of the weld metal 
titanium concentration.
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Figure 17. Summary plot of the variation in the weld metal 
microstructures as a function of the weld metal 
aluminum concentration.
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(a)
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(c)

Figure 19. Weld metal microstructure showing mixture 
of GBF, PF, SP, AF and B for different level 
of aluminum addition, (a) al specimen (b) A2 
specimen (c) A4 specimen.
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addition.

IV.1.2 Relationship Between Prior Austenite Grain Size 
And Weld Metal Microstructures

Another factor to be considered in weld metal phase 
transformation is the prior austenite grain size. For a 
similar heat input (and cooling rate), the different alloying 
elements and their levels of additions showed different 
effects on prior austenite grain size. The measured values 
of the prior austenite grain sizes are listed in Table 6. 
Figures 20 and 21 show the variation of prior austenite grain 
size as a function of titanium and aluminum addition. In 
Figure 20, prior austenite grain size decreased with 
increasing titanium content. This seems to indicate that 
titanium addition controls the austenite grain size by 
inclusions formation. Figure 21, however, shows that prior 
austenite grain size does not seem to be altered by aluminum 
addition. Apparently, titanium has a much better pinning 
effect to restrict austenite grain growth than aluminum.

Figures 22 and 23 show the effect of prior austenite 
grain size on the final weld metal microstructures with 
titanium and aluminum addition. In Figure 22, the amount of 
bainite decreased, substituted by acicular ferrite, and the
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Table 6. The measured values of the prior austenite 
grain size of the

Prior Austenite 
Grain Size (um)

tl 126
t2 90
t3 117
Tl 121
T2 79
T3 79
T4 59
T5 38

investigated weldments.

Prior Austenite 
Grain Size(nm)

al 125
a2 119
a3 132
Al 128
A2 137
A3 130
A4 125
A5 93
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Figure 20. The effect of titanium addition to the prior 
austenite grain size.
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Figure 21. The effect of aluminum addition to the prior 
austenite grain size.
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Figure 22. The effect of prior austenite grain size to 
the weld metal microstructures with only 
titanium addition.
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prior austenite grain size increased. Austenite grain size 
did not seem to affect significantly the volume fraction of 
GBF. After austenite grain size reached approximately 90 jjm, 
the weld metal microstructures were no longer altered by 
austenite grain size changes.

The final weld metal microstructures do not seem to have 
clear correlation with austenite grain size in the aluminum 
addition series, Figure 23.

IV.1.3 Relationship Between Inclusions And Weld Metal 
Microstructures 

Many authors [22,35,36,39,42,53,76-79] emphasize that 
nonmetallic inclusions have strong effects on the final weld 
metal microstructures because inclusions can affect both the 
thermodynamic and kinetic aspects of the weld metal 
transformations. Inclusion size distribution, number density 
(Nv), volume fraction (Vv), and mean particle size (da) are 
all important factors that affect phase transformations in 
the weld metal.

IV.1.3.1. Influence Of Inclusion Size Distribution On 
Weld Metal Transformation 

Two inclusion size distributions were chosen to
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Figure 23. The effect of prior austenite grain size to 
the weld metal microstructures with only 
aluminum addition.
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illustrate the effect of inclusions and are shown in Figures
24 and 25.

Comparing Figures 24 and 25, it is clear that the 
aluminum addition series welds exhibited inclusion population 
with larger particles, for example, those of diameter larger 
than 0.8 j/m. Figures 24(a) and 25(a) do not show smaller 
particles (diameter < 0.2 jjm) and corresponded to welds with 
higher volume fraction of AF. Barbaro et al. [2] and Jang et 
al. [87] suggested that inclusions of diameter greater than 
o.45 jim (within the range of 0.4 to 0.6 jim) are more 
efficient in AF formation. Cochrane et al. [69] also reported 
similar observation in their investigation. Figures 24 and
25 seem to indicate that not only the inclusion size but also 
the size distribution are important factors to affect the 
final weld metal microstructures.

IV.1.3.2 Influence Of Weld Metal Composition On 
The Inclusion Oxide Types

With different levels of titanium or aluminum addition, 
the form of oxide compounds in the inclusions and their ratio 
were quite different and are shown in Table 7. In C-Mn-Si 
steels weld metals, the inclusion contain Si02, MnO, etc. As 
aluminum is added, the composition of the inclusions also



T-3928 66

(a)

>»oc0)3O’a>

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 

Inclusion Diameter (pm)

(b)

50

40

>*o
O’4>

30

20

10

t 2

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 

Inclusion Diameter (pm)

Figure 24. Simple size distribution of the inclusions 
extracted from (a) t3 specimen (b) t2 specimen 
with only titanium addition.
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Figure 25. Simple size distribution of the inclusions 
extracted from (a) A2 specimen (b) A3 specimen 
with only aluminum addition.
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Table 7. Summary of inclusions form in the 
investigation specimens.

tl
t2
t3
Tl
T2
T3
T4
T5

Notes

inclusion form (titanium addition) 
MnO) 1 (Si02)1 (A1203)1 (Ti0/Ti02)1 
Ti0/Ti02)3 (A1203)2 (MnO) 1 (Si02)1 
Ti0/Ti02)7 (A1203)4 (MnO)2 
Ti0/Ti02)5 (A1203)2 
Ti0/Ti02)7 (A1203)1 
Ti0/Ti02) • (♦)
Ti0/Ti02) • (♦)
Ti0/Ti02) • (♦) 
inclusion form (aluminum addition)

al (Si02)1 (A1203) 1 (MnO) 1
a2 (A1203)2 (Si02), (MnO) 1
a3 (A1203) 1 (Si02), (MnO) 1
Al (A1203) • (*)
A2 (A1203) • (*)
A3 (a i2o3) • (*)
A4 (A1203) • (*)
A5 (A1203) • (*)

( ) :major component.
( ♦ ) :contain very small amount of A1203
( * ) :contain very small amount of MnO.
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changed with increasing A1203. Cochrane et al. [69] observed 
similar behavior in their investigation.

Increasing the weld metal titanium concentration, 
titanium content in the inclusions is also observed to 
increase, being TiO /Ti02 the predominant phase in the 
inclusions. Liu and Olson [5,80] and Bhatti et al. [54] also 
have observed the similar result in their investigations. 
Due to the techniques used in this work, it was impossible to 
distinguish between TiO and Ti02.

Figures 26 and 27 show the variation of oxide type in 
inclusions as a function of weld metal aluminum and titanium 
content changed. It was considered in these two Figures the 
results of characterization of aluminum, titanium, silicon, 
and manganese in the inclusions. Only simple oxides such as 
A1203, Ti0/Ti02, Si02 and MnO are assumed as deoxidation
products. Figure 26 shows that the A1203 is the major
component in inclusions with aluminum additions. Figure 27 
shows that the Ti0/Ti02 will be the main component with only 
titanium additions with some A1203. No matter how high the 
weld metal aluminum content in the weld pool, there is always 
a certain amount of MnO in the inclusions.

If only the mean composition is considered, inclusions 
extracted form the aluminum addition series welds can be
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Figure 26. Effects of aluminum content on the oxide 
composition.
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Figure 27. Effects of titanium content on the oxide 
composition.
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represented on the Al203-Mn0-Si02 or Al203-Mn0-Si02+(Ti0/Ti02) 
ternary diagram. In Figure 28 and 29, the majority of 
inclusion compositions are located between the lines joining 
the Rhodonite (Mn0*Si02) to Corundum (A1203) and Tephroite 
(2Mn0*Si02) to Corundum (A1203) . This result agreed with 
Kluken and Grong [19], Saggese et al. [21], and Keissling
and Lange [24]. In the titanium addition series welds, the 
inclusion compositions are plotted on both (Ti0/Ti02)-A1203- 
MnO and (Ti0/Ti02)+Si02-Al203-Mn0 ternary diagrams, Figure 30 
and 31.

IV.1.3.3. Relationship Between Mean Particle Size (da)
And Volume Fraction (Vv) To The Weld Metal Oxygen 
Content

Figure 32 shows that with increasing weld metal oxygen 
content, the inclusion volume fraction (Vv) increased for 
both titanium and aluminum addition welds. Devillers et al. 
[41] also reported similar results. In Figure 33, the mean 
particle size is also observed to increase as the weld metal 
oxygen content increases to approximately 0.5 ym for both 
titanium and aluminum addition welds. Cochrane et al. [69] 
and Ferrante and Farrar [40] also showed the same results. 
Liu and Olson [38] reported, however, a different trend that
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Si02

MnO

Figure 28. Measured average compositions of inclusions 
in aluminum addition submerged arc welds and 
plotting in the Al203-Mn0-Si02 ternary system.
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Si02+ Ti0/Ti02

MnO

Figure 29. Measured average compositions of inclusions 
in aluminum addition submerged arc welds and 
plotting in the Al203-Mn0-Si02+(Ti0/Ti02) 
ternary system.
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Ti0/Ti02

MnO

Figure 30. Measured average compositions of inclusions 
in titanium addition submerged arc welds and 
plotting in the (Ti0/Ti02)-Al203-Mn0 ternary 
system.
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Si02+ Ti0/Ti02

MnO

Figure 31. Measured average compositions of inclusions 
in titanium addition submerged arc welds and 
plotting in the (Ti0/Ti02)+Si02-Al203-Mn0 
ternary system.
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Figure 32. The variation of inclusion volume fraction (Vv) 
as a function of oxygen content in the weld 
metal.
(a). Aluminum addition series.
(b). Titanium addition series.



T-3928 78

E3

0)**0)
E<0
Q
co
CO3oc

( a ) I 
2

0.45 -

0.30u.020 0.025 0.030 0.035 0.040 0.045 0.050
Weld Metal Oxygen Content (wt.%)

( b )

E3
k.<D<D
E<05
co<03oc
cCO0)2 0.30 u.020 0.022 0.024 0.026 0.028 0.030

Weld Metal Oxygen Content (wt.%)
Figure 33. The variation of mean particle diameter (da)

as a function of oxygen content in the weld
metal.
(a). Aluminum addition series.
(b). Titanium addition series.
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inclusion size decreased with weld metal oxygen content. 
These authors attributed the difference to the layer range of 
particle sizes examined, including inclusions smaller than 
0.2 um .

IV.1.3.4. Relationship Between Weld Metal Inclusion And 
Weld Metal Oxygen Content

In Figure 34 , the oxygen content in the weld metal 
quickly increases with aluminum addition, then reaching a 
maximum at approximately 0.05 wt. percent. After that the 
curve levels off, it might be that the free oxygen in the 
weld pool was consumed and additional aluminum will go into 
the weld pool and become solid solution atoms. At the same 
time, aluminum-rich oxide inclusions coalesce and float, 
decreasing the oxygen content. Figure 35 shows that the 
inclusion size remained constant after 0.05 wt. pet. of weld 
metal aluminum content. This also indicates that the 
proposed mechanism is correct. Figure 36 shows that weld 
metal oxygen content did not significantly increase with 
titanium addition, meaning that titanium fixed oxygen to form 
small oxides and trapped in weld pool.

In Figure 37(b), the aluminum in inclusions rapidly 
increased with weld pool aluminum content. However, at
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Figure 34. The variation of weld metal oxygen content as 
a function of weld metal aluminum content.
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Figure 35. Mean particle diameter as a function 
of weld metal aluminum content.
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Figure 36. The variation of weld metal oxygen content as 
a function of weld metal titanium content.
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Figure 37. (a). The relationship between weld metal
aluminum content and nominal aluminum 
addition.

(b). The relationship between inclusion aluminum 
content and weld metal aluminum content.
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higher aluminum content, the aluminum content in inclusions 
became almost constant. If more aluminum is added, the 
excess aluminum would enter the weld pool to become solid 
solution atoms, detrimental to the weld metal properties. In 
Figure 38(b), the titanium content in inclusion increased 
with increasing weld pool titanium. This seems to indicate 
that titanium inclusions do not coalesce, nor float. They 
remain in the weld pool, reason why the titanium content in 
inclusions increases with weld metal titanium content.
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Figure 38. (a). The relationship between weld metal
titanium content and nominal titanium 
addition.

(b). The relationship between inclusion titanium 
content and weld metal titanium content.
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IV.2. Combined Effects

In the previous section, the individual effects of 
titanium and aluminum additions are explained. In this 
section, the combined effects of these two elements will be 
discussed. Due to the large number of welds made in both 
aluminum-titanium (A-T) sequence and titanium-aluminum (T-A) 
sequence ,a typical set was chosen from each group to 
illustrate the behavior of these welds.

IV.2.1. Weld Metal Composition Effect In A-T Welds
The A-T sequence welds showed that titanium further 

decreased the residual oxygen content from the first pass 
(aluminum addition) ,Figure 39. Figure 40 shows that maximum 
acicular ferrite was observed at approximately 0.04 wt. pet. 
of titanium. Above this point, acicular ferrite is replaced 
by bainite. Below this point, AF increases at the expense of 
GBF.

To explain the observed microstructures change as a 
function of weld metal oxygen and titanium content the 
following approach is proposed.

It is assumed that in the discussion with enough oxygen 
in the system, all aluminum atoms in the weld metal will
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Figure 39. The variation of the oxygen content as a
function of the weld metal titanium content
in A-T group welds.
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Figure 40. The variation of the weld microstructures as a
function of the weld metal titanium content in
A-T group welds.
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form A1203. Since A1203 is a very stable oxide, it will not be 
reduced by the titanium addition during the second pass. It 
is also assumed that all titanium atoms in the weld metal are 
in the form of TiO. Finally, MnO and Si02 are reduced to 
manganese and silicon by titanium addition.
As described previously, the first pass (with aluminum 
addition) has the following composition.

al weld :[A1] = 0.009 wt. pet. (90 ppm)
[Ti] = 0.002 wt. pet. (20 ppm)
[0] = 258 ppm
[N] = 5 4  ppm

Since approximately 80 ppm of oxygen are required to 
combine with the 90 ppm of aluminum and 7 ppm of oxygen are 
needed to combine with 20 ppm of titanium, only 171 ppm of 
oxygen remained to combine with other elements. Therefore, 
MnO, Si02 are formed. The presence of manganese oxide and 
silica was confirmed by the inclusion analysis shown in a 
previous section.

During the second pass welding, the oxygen content 
dropped from 258 to 191 ppm. The loss is due to inclusions 
coalescence and flotation, and convective flow in the weld
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pool. This is verified by the reduction of aluminum after 
the titanium addition.
The composition of the altl weld is :

[Al] = 0.004 wt. pet. (40 ppm)
[Ti] = 0.010 wt. pet. (100 ppm)
[0] =191 ppm

Based on stoichiometric calculation , 36 ppm of oxygen 
are needed to combine with 40 ppm of aluminum. If all 
titanium (100 ppm) are in the form of titanium oxide, then 33 
ppm of oxygen will be needed, which means that not enough 
titanium is available to react with all the 155 ppm oxygen in 
this weld. Thus, MnO and Si02 are also formed. This subject 
is also confirmed by inclusion analysis.
The composition of alt2 weld is :

[Al] = 0.004 wt. pet. (40 ppm)
[Ti] = 0.043 wt. pet. (430 ppm)
[0] =179 ppm

Following the procedure used in the altl weld , it was 
determined that 143 ppm of oxygen was necessary to combine
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with 430 ppm of titanium. Mass balance showed that no oxygen 
is available for other elements. Since there is a small 
amount of MnO and Si02/ some titanium atoms might have 
remained in the form of solid solution. However, the 
increase in acicular ferrite in the weld is attributed to the 
large amount of TiO inclusions in the weld.
For the composition of alt3 weld is :

[Al] = 0.004 wt. pet. (40 ppm)
[Ti] = 0.083 wt. pet. (830 ppm)
[O] = 146 ppm

Following a similar calculation, 36 ppm of oxygen is 
needed to combine with 40 ppm of aluminum to form A1203. 
Assuming that all the other oxygen atoms available had 
reacted with titanium to form TiO, then the 110 ppm of oxygen 
would have consumed 330 ppm of titanium, which means that at 
least 500 ppm of titanium remained in the weld metal in 
different forms.

During solidification, only a small part of the titanium 
atoms will form nitride or carbide (as isolated particles or 
on the surface of already existing inclusions). Taking into 
account the solubility product of TiN and TiC in austenite
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[83] and that the nucleation and growth of TiN and TiC are 
controlled by titanium diffusion [84], only part of the
titanium atoms will form TiN and TiC on the outer layer of
existing inclusions (oxide particles) [19,84]. The remaining 
titanium atoms will be dispersed in the weld metal as solid
solution atoms and hardenability agent. The above model is
supported by experimental evidences of Kluken and Grong [19]. 
They investigated the differences between total and acid 
soluble contents of aluminum and titanium. Despite the high 
affinity of titanium for carbon and nitrogen, a significant 
amount of titanium atoms remain in solution, determined as 
acid soluble titanium. Their results shown in Table 8 [19], 
agreed with the observations made by Es-Souni and Beaven
[84].

From the calculation above, it is easy to explain the 
variation of microstructures in Figure 40. Below the optimum 
content (0.04 wt. pet.), TiO increased with the titanium 
addition. The volume fraction of AF increased with the 
nonmetallic inclusion TiO increasing. Above the optimum 
value, excess titanium atoms enter the weld pool and behave 
as hardenability agent promoting bainite formation. In all 
A-T group welds, higher titanium addition also led to higher 
volume fraction of bainite, sometimes as high as 100 percent.
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Table 8. Chemical composition of selected experimental welds showing the 
total and acid soluble contents of aluminum and titanium in low 
carbon low alloy steel weld metal [19]. (in weight percent)

[C] [°] [N] [Al] (total) [ A l  ] (soluble) [ T i ] (total) [ T i  ] (soluble)

0.09 0.037 0.005 0.020 0.002 0.025 0.018
0.09 0.039 0.005 0.037 0.004 0.022 0.018
0.09 0.040 0.006 0.044 0.006 0.058 0.046
0.10 0.031 0.005 0.062 0.013 0.032 0.029
0.09 0.031 0.006 0.053 0.008 0.053 0.052
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IV.2.2. Weld Metal Composition Effect In T-A Welds
In the section above , the combined effects of aluminum- 

titanium (A-T) additions are explained. In this section, the 
effects of titanium-aluminum(T-A) additions will be 
discussed.

The T-A welds showed that aluminum increased the second 
pass weld metal oxygen content to a maximum point followed by 
a slight drop, Figure 41. From Figure 42, it can be seen 
that above 0.024 wt. pet. of aluminum addition, AF is 
replaced by bainite. Below 0.024 wt. pet. of aluminum, AF 
increases at the expense of bainite. GBF does not seem to be 
altered by aluminum addition.

To explain the observed microstructural change as a 
function of weld metal oxygen and aluminum content the 
following assumptions were made.

(1). All aluminum atoms in the weld metal will form A1203, 
if there is enough oxygen atoms available.

(2). A1203 is a stable oxide and will not be reduced 
during the welding process.

(3). Titanium atoms in the weld metal are in the form of 
TiO, if there is enough oxygen atoms available.
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Figure 41. The variation of the oxygen content as a
function of the weld metal aluminum content
in T-A group welds.
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(4). TiO, MnO and Si02 are reduced to titanium, manganese 
and silicon with the aluminum addition.

The first pass (with titanium addition) has the
following composition :

t3 weld :[A1] = 0.009 wt. pet. (90 ppm)
[Ti] = 0.036 wt. pet. (360 ppm)
[0] = 283 ppm
[N ] = 49 ppm

Since approximately 80 ppm of oxygen are required to 
combine with the 90 ppm of aluminum to form oxide, only 203 
ppm of oxygen remained to combine with titanium,
manganese, silicon, etc. Stoichiometric calculation showed 
that only 120 ppm of oxygen are needed to combine with 
titanium to form TiO. Therefore, MnO, Si02 are formed, which 
is confirmed by the inclusion analysis.

During the second pass welding, the oxygen content
dropped from 283 to 93 ppm. The loss may be due to 
inclusion loss by coalescence and flotation, and convective 
flow in the weld pool. 4

After adding aluminum in the second pass, the following
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composition is determined in weld t3al.

t3al weld :[Al] = 0.005 wt. pet. (50 ppm)
[Ti] = 0.013 wt. pet. (130 ppm)
[O] = 9 3  ppm

Aluminum was observed to decrease indicating that indeed 
inclusions were lost by flotation or convective flow in the 
weld pool.

Assuming that all 50 ppm of aluminum are in the form of 
oxide, then 44 ppm of oxygen are needed to combine with 
aluminum. If all titanium are in the form of titanium oxide, 
then 43 ppm of oxygen will be needed. Mass balance showed 
that there is only 6 ppm of oxygen remaining which means that
only very little amount of oxygen is in the form of MnO and
Si02. This is also confirmed by inclusion analysis.
The weld t3a2 has the following composition :

[Al] = 0.024 wt. pet. (240 ppm)
[Ti] = 0.022 wt. pet. (220 ppm)
[O] = 188 ppm

Assuming that all oxygen available have reacted with
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aluminum to form Al203. The 188 ppm of oxygen will combine 
with 212 ppm of aluminum, which means that in weld metal do 
not have enough oxygen to react with all aluminum. 
Therefore, some aluminum atoms and most of titanium, 
manganese and silicon atoms will go into the weld pool as 
solid solution atoms and become hardenability agents. This 
explains the increase of acicular ferrite in the weld metal. 
Weld t3a3 has the following composition :

[Al] = 0.033 wt. pet. (330 ppm)
[Ti] = 0.019 wt. pet. (190 ppm)
[O] = 178 pm

Following similar procedure, the 178 ppm of oxygen 
combined with 200 ppm of aluminum to form A1203, which
means that at least 130 ppm of aluminum and most of titanium,
manganese and silicon atoms went into the weld pool becoming 
solid solution atoms. This promoted bainite formation.

Based on the calculation shown, the optimum aluminum 
concentration and AF volume fraction can be explained as the 
result of the increase in inclusion volume fraction, Figure 
43. Above this point, excess aluminum, titanium, manganese 
and silicon in solution will promote bainite formation at the
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expense of AF. Additionally, the decrease in inclusion 
density confirm the coalescence & floatation of aluminum 
oxide particles [19]. Generally speaking, in the T-A sequence 
welds, the microstructure is always a mixture of bainite, 
acicular ferrite and grain boundary ferrite.

From Figures 44 to 47 show the eight micrographs with 
same aluminum and titanium addition to the weld pool but the 
different deoxidation sequence.



T-3928 102

(a)

(b)

Figure 44. Optical micrographs
(a).T1A1 vs (b).A1T1
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(a)

(b)

Figure 45. Optical micrographs
(a).T2A1 vs (b).A1T2
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Figure 46. Optical micrographs
(a).T2A2 vs (b).A2T2
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Figure 47. Optical micrographs
(a).T3A3 vs (b).A3T3
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V. CONCLUSIONS

The results of this investigation on aluminum and 
titanium deoxidation sequence can be summarized in the 
following.

I. Individual Effect :

(1). Increasing weld metal titanium content up to 
approximately 0.05 wt. pet. increased the amount of acicular 
ferrite and grain boundary ferrite at the expense of bainite. 
At high titanium content, both acicular ferrite and grain 
boundary ferrite which were substituted by bainite.

(2). Increasing weld metal aluminum content up to 
approximately 0.05 wt. pet. increased the amount of acicular 
ferrite and bainite at the expense of grain boundary ferrite. 
High aluminum content resulted in less acicular ferrite 
(replaced by bainite).

(3). Titanium-bearing inclusions have better austenite 
grain boundary pinning effect than aluminum-bearing 
inclusions.

(4) . Weld metal with higher amount of acicular ferrite are 
found to be related to coarser prior austenite grains and/or
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with larger number of 0.45 jum nonmetallic inclusions.
(5). In the aluminum addition series welds, all the bulk 

inclusion compositions are located around the line where the 
[ %Si02+%Ti0/Ti02 ] : [ %MnO ] ratio is approximately equal
to 1.25.

II. Combined Effect :

(1). Deoxidation sequence is important in weld pool 
deoxidation and microstructural refinement. Excessive 
aluminum and/or titanium (in solution) increase the weld 
metal hardenability which results in increasing bainite.

(2) . In A-T group welds, the higher titanium additions led 
to higher volume fraction of bainite.

(3). In T-A group welds, no matter how high the aluminum 
addition, the weld metal microstructure always show a mixture 
of bainite, grain boundary ferrite and acicular ferrite.

(4). The concept of welding systems using multiple wires 
(in tandem) that contain different deoxidizers can be used to 
better control and refine the weld metal microstructure.
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r» lO 10 rH VO in COCNrHo rH o o o o•H o rHCO ĵ4o o in r—^ o O o o o o o oEh o o o o CNCNCO co > o o o o o o o oi_j . • » . * . • . i—a . . . . . ♦ . . £o o o o o o o o o o o o o o o o ou
CO rH a\ f- rH 00 rH ,__ o 00 00 00 in rtf4co 003in CN CO 0 rHo o o o o o ou «-ii-HrHrHrHrHrH rH s o o o o o o o o *LU • • * » * • . . fa— 1 . • • . • • * . **o o o O o O o o o o o o o o o o

W
0)rHCNCOrHCNCO in <p■P-p ■p Eh Eh Eh Eh o
s

All
 

ot
he
r 

co
nc
en
tr
at
io
ns
 

ex
pr
es
se
d 

in 
we
ig
ht
 

pe
rc

en
t



Ap
pe
nd
ix
 

I. 
: 
Ch
em
ic
al
 

co
mp
os
it
io
ns
 

of 
the

 
wel

d 
me
ta
ls
 

(c
on

ti
nu

ed
).

T-3928

«1—“I ro cn «H ro ©OQ rH «H
'— 1

ro ro ro ro CNro CNi— i CNCNCNCNCNCNCN
U O O O O O O O
u • • • • • • •
'— 1 o o o o o © ©

ro ro CNCNCNCNCN•H O O o o o © ©
2 • * • . . • •
1—4 O o o o o © ©

rH ro rH rH 00©pi 0000pi pi l> pi3 o O o o o © ©CJ • • • • • • •
'— ' o o o O o © ©

o i-H rH CN<n rH i-Hi— « rH rH iH rH © rH rH
cn o o o o o © oi_ i • • • . • « •o o o o o © ©

ro CNCNCNrH rH ©i— i rH rH rH iH rH rH i-H
cu o o o o o © ©
I— I • • • . . . .o o o o o © ©
r—, ro VO o\ <n CD CN•H ro ro tH o rt CNcn rH »H rH rH rH rH
i__i . • . . . . •o o O o o © o
,— , o in 00ro cn COc pi pi VO VO VO wo ms • . • . • * .1“—1 © o o o o © ©

in r- 00 cn CN iniH o o CNo o ro ©
< o o o o o © ©1— 1 • • • . . . .o o o o © © o
___ c- pi pi 00cn CNto•H o o o o o rH rH
E-t © o o o o © Oi—_i • . . . . . 0o o o o o o ©

in rH ro CNCNoni— i i-H CN«H CNro ©U rH rH rH rH rH rH rH
i— i • • • * • • .o o o o © o ©

iH CNro rH CNro rHfO <0<0 fO (C <0 fOrH rH «H CNCNCNCO■p ■P -P ■P ■P -P

© « © p" in iniH 2 io in in V0 r->

co co «CN CN r— i o CO p" © CN
© © O in cn CD cn ©• • i— i rH rH rH rH CN© ©

CN CO ,__ CN CN rH CN CN
© © u O © © © O• . N o © o O o© © i— i • . • .

© O © © o

CO CO ,__ CN o CN rH oVO pi (TJ CO© o Eh © © © O o. • • » • . «
o © © © © © o

*H rH CO CO rH CO CN
rH rH n o © © © ©o O 2 © © O © ©. * UJ • . • . •
o © © © © o ©

rH «H ___ pi 10 P- r̂ pirH rH c o © © © o© o cn © © © o ©. . i_ i . • • . .
o o © © o © ©

CN in VO 10 in VO inP- (0 o © o o o
rH rH < © o © © o. . i— i • • • • 0

© O © o © o ©
___ r" r* i0 CO 00pi VO 0 o © o © ©• . u o © © o ©© o 1— t . • • . •

© o © o ©
o* ro 10 in CO inCN co I— I © o © © ©© O £ o © o o ©. . I— I . . * . .
© o o © © © o

CN cn CO CN 10 inCN rH 1— 1 CN rH CN CN CO© © > © © O © ©• • I— I • • * • .
O o © © © o ©

CO CN CO CO CO I-" inCN 0 © © © © oiH rH 2 © o © o o. • • • . • •
© © o © © © ©
os to 
tO fO co cn •P 4->

123

CO CN in CO
in in in in

CO CO CO COpi cn CO pirH rH rH

CN rH CN CNO © © ©© © © © •. • * • £© © © O 0404
in in CD in cCO CO CO CO •H
© o © ©• • . • c© © © © <D

>•H
CN CN CN CN O'© © © ©O © © O c:. • . . o© © © © •H+J(0VO 10 pi 10 u© © © o ■p© © © © e. » * • Q)o © © © oc

0wo in 10 in o© o © ©o © O o c. . • • CD© © o o O'0upi pi pi 00 ■p© © © o •Ho © © © 2. . . •
o © © o T3ctcpi CO pi VO© © o o© © © o c• . . . 0© o © © O'>1
in in CN CO oCN CN CN CN© © © ©. • . . c© © © o o0opi in pi pi OQ© © © o© © © © *• • . . • •
© © © o COCD■PO2

All
 

ot
he
r 

co
nc
en
tr
at
io
ns
 

ex
pr
es
se
d 

in 
we
ig
ht
 

pe
rc

en
t



Ap
pe
nd
ix
 

I. 
: 
Ch
em
ic
al
 
Co
mp
os
it
io
ns
 

of 
the

 
Wel

d 
Me
ta
ls
 

(c
on

ti
nu

ed
).

T-3928 124

« ro in VO nr © o o o *
CD i—trH rH 2i— i

in VO VO cn 00 00 cn ««—i CN CN CN CN CN CN CN CN I— IM o O o o o O o o OU . • • . . • • • i— io o o o o o o o
,_, ro ro ro ro ro ro ro ro ,__
•H O O o O O o O O u2 . 9 . . • . • . SJo o o o o o o o 1— 1

in cn nr in CN 00 r* rH tr—i o rH ro cn o o rH rH <0a rH rH rH o rH rH rH rH Ehu • • . • • • . . i— io o o o O o o o
o cn rH o 00 o 00 00 ,__,<— i rH o rH rH o rH o o £3C/3 o o o o o O o o 2i— i • 9 . . • • . . i__io O o o o o o o
ro m ro rH ro CN ro ro r—i■ i rH rH rH rH rH rH rH rH £Ok O O o o o o o o C/3I—. . . • • . . . ♦ i— io o o o o o o o
r» nr in VO ro in ro ,— ,

•H r" CN cn o in VO nr O COW iH CN rH CN CN ro ro in <
i— i • . . . • • . 9 l—lo o O o o o o O
,_, 00 00 00 VO r- 00 VO co ,_,
C 00 00 00 cn 00 cn 00 00 o£ . . . . • • . 9 oL—' o o o o o o o o I— I

j L m ro VO cn 00 CN 00
rH O rH CN ro in <H rH CN I— 1< o o o O o iH rH CN 5 5
i— i . • . . • • . . i— io o o o o o o o
r— , CN ro ro ro ro in in r-*
•H o o O O O o o o r—iEh o o O O O o o o >
L_J • • • . . • • • i— io o o o o o o o

CN CN r- VO 00 o 00 o i— r
r —i ro ro o in ro in ro CN 0U rH rH rH rH rH rH rH rH £
i— i » • • • . • • • I— .O o o o o o o o

rH CN ro rH CN ro nr in
<0 <0 UJ < < < < <

nT rH CN ina\00 nrCNinininininininin

00 vo CN in00 r*cn r-inNTo vo rH CN CN voCN CN ro ro ro ro

rH CN CN rH o CN O oO © o o o O O oO o o o o o O o .
. 9 • • . • . . so © o o o o o o aai
VOo o in r*nrin cro nr*1*nr**• nrnr •H
O o o o o o o o

• . . 9 . • • . co o o O o o o o 0>*H
CN ro ro CN o ro o o tno O o O o O o oo © o o o O o o c. . . . . . 9 9 oo o o o o o o o •H

(000 00 cn r-o 00 rH rH uo o o o rH o o rH +Jo o o o o o o o c. • . . . . . • 0o o o o o o o o ucor" 00 00 nro vo rH o uo o o o o o o oo o o o o o o o £. • . . . . . • 0o o o o o o o o cnoum VO innr VO nr nr +Jo o o o o o o o •Ho o o o o o o o 2. • . • . . . •o o o o o o o o 73£cdinC-*VO r**invo CN voo o o o o rH rH rHo o o o o o O o £. • 9 . . . . . 0o o o o o o o o cn>i
CN ro ro CN rH CN rH rH oo o o O o o O oo o o o o o O o• . . • . . . . £o o o o o o o o Ou000o cn 00voo voE-" 03o rH o o o rH o oo o o o o O o o *. . • • • . 9 • 99o o o o o o o o w0■POs

All
 
ot
he
r 

co
nc
en
tr
at
io
ns
 

ex
pr
es
se
d 

in 
we
ig
ht
 

pe
rc

en
t.



Ap
pe
nd
ix
 

I. 
: 
Ch
em
ic
al
 
Co
mp
os
it
io
ns
 

of 
the

 
Wel

d 
Me
ta
ls
 

(c
on

ti
nu

ed
).

T-3928

«
vo 00 in cn CN rH C O rH rH «

QQ iH iH rH rH S ’
l— 1

ro ro ro ro ro CN CN *
i— i CN CN CN CN CN CN CN CN CN I— I
U o O © o © © © © © O
U • • . • * • • • • i__i
i__< o o © © © © O O O

ro CN ro ro CN ro CN CN CN ,__,
•H O o © © © © O © © P
2 • . * • • » * • • N
'— 1 o o © © © © © O O » i

o CTV r" p* ro C O vo r* o* i— i
r— l o p* C O C O C O C O vo p* to
3 rH o © o © © © © © E-t
U • • • • • • . . . i__i

o o © o © o © © ©

o cn © iH © iH © rH cn ,__,
i— i rH o rH rH iH iH rH rH © .Qcn o © © O © o © O © 2• • # • . • . • • i__i

o o © o © o o o ©

CN CN rH ro rH rH CN rH rH
«H rH rH rH rH rH iH rH O C

0 * o o © © o © © O © cnl_l . . » . . . . • . ■ ■
o o o o © © © o ©

vo vo rH ro vo VO vo C O vo ,__,
•H ro ro CN vo ro ro CO ro CO Wcn rH *-H rH iH rH rH rH rH rH <. • . . • . • . • i__i

O o © o o © © © ©

,__, CN CN r- cn r- P- CN vo CN ,__,c p» P> vo p» vo vo vo vo vo O
2 • « • * • . • . • u

o o © o o © © o o

r— o cn C O C O cn rH rH
rH o o © o © o o rH rH i— i
< o © © o © © © o O &• • • . . • • • • i__i

o o © © © © © o ©

r1̂ o ro ro iH rH C O iH
•H t—4 'sf C O rH ro C O rH CN r— i
E-* o o o © © o © © iH >U J • . . • . ♦ . • . t__i

o o © o © o © © o

CTi 00 cn vo ro in in to !"■" i
1— 1 ro rH «H CN rH CN CN co CN o
u rH rH iH iH rH rH iH rH iH sl__l • • • • . . • . • k_J

o © © o o © © o ©
rH CN ro rH CN ro rH CN CO
■P ■P ■P ■P ■P •P ■P +J +J
i-1 rH iH CN CN CN ro CO CO
to to to to <0 to (0 to to

125

CO r- vo CO rH p>*vo COvo CO vo o
rH

p- vo vo vo in

rH tn vo VO in vo COcn COCO iH cn CO r*
rH iH rH rH rH CN rH CN rH

CN rH CN CN CN CN CN rH CN© © © o © © O © O© © O © © © © o o •. • . • • • . . • SO © o © O O o © © 04a
in P- iH CO rH iH in cCO CO ro CO CO ro CO •H© o © O © o © © o. • . . . • • . » c© o © © © O o o © 0>

•HCN CN CN CO CN CN to CN roO © © o © O © © ©o © O © o © © © O c
• • • • • • . . • 0o © o © © © o © o ■H■ptc
CO vo vo p» vo P- r- f" vo u
© © © © © © © O © ■po © © o o © © © o c

• . • . . • . . . 0o o © © © © © o © u
c0r- vo vo in VO vo in vo uo © © © © o © © ©o o © © o o © o © c. • • . • • • . • 0© o © © © © © © © 0uvo P-* p- r» vo CO r- CO ■p© © o © © © © © © •H© © © o O © o o © 2

. • * • . • • • •© © © © © © © © © T3 Ctoin in p* in p- r-> vo vo© o © © © o © © © u
o © © © © © o o © c• . . • . • . • • 0o © o o © o © © o cn

>i
Xr- CO rH CO CN © rp to o

rH rH CN rH CN CN CN CN ro© © © © © © © © © u
• . . • • • • • • 0o o © o O o O © o 0u0vo P" cn VO p- P*> VO p* CQ© o © o o © o © ©© O o o © © o © © *
• • • • • • • • « •  •

© © o o © © © © © co0■po2

All
 

ot
he
r 

co
nc
en
tr
at
io
ns
 

ex
pr
es
se
d 

in 
we
ig
ht
 

pe
rc

en
t



Ap
pe
nd
ix
 

I.:
 
Ch
em
ic
al
 
Co
mp
os
it
io
ns
 

of 
the

 
Wel

d 
Me
ta
ls
 

(c
on

ti
nu

ed
).

T-3928 126

« o *1* O O O o CN O « iH in 00 vo in rH fH rH
OQ 55 vo 00 p* 00 p' cn CO cn

i— j
r— i CN CN CO CO VO vo r- P* «
u CN CN CN CN CN CN CN CN i— i co 00 o fH cn in rH rH
u o O o © O o o O o vo o cn in p* CN CNuu . • . • • • • • UJ CN CN CN CN CN iH CN CN

o o o o o o o o

CN CN CN CN CO CO CO CN i— i o o o o o © O O
•H o o o o o o © o p o o o o o o © ©
2 . . * * . . • • OQ o o o o o © © © •U— J o o o o o o o o i— i . » . . # • • • £o o o o o © o o a

Cu

00 in rH CN VO cn co r— , o CN cn p» p' CN rH CO e
in vo in VO P~ vo vo vo (0 co CO CO co in in VO co •H

3 o o o o o o o o Eh o o o o o © o o
a • . • • • • • • . • • • . . • • C

o o o o o o o o o o o o o © © © a)
>

o CN rH CN CN CN iH o r— i o o o o co CO CO o
•H
cnr—o rH rH iH rH rH rH *H rH jq o o o o o © o o

cn o o o o O o o o z o o o o o © o © eUJ • • . • . » . . UJ • • • . . • . » 0o o o o o o o o o o o o o © o © •H
■pca

p" 00 cn cn rH rH CO cn r— n in VO p- C" rH rH CN p" ur— i © o © o rH «H rH o c o o o o rH rH rH © ■u
Ol o o © o O O o o 03 o o o o O o © © cUJ . • • • . • • • i__i • . . • . • • . a)o o o o © o o o o o o o o © © o or*UJ

o
i— i rH cn o rH o cn i— i o o o o o © © © u•H co vo o CN rr vo VO 03 o o o o o o © o
cn rH «H rH CN CN CN CN CN < o o o o o o o © £UJ . « . • . • • . UJ • . • . . • . . 03© o o o o o o O o o o o o o © © cn

0
,__ cn o cn vo CO *d* in cn ___ in m p** vo VO vo vo p

p
c vo vo in vo p» 00 r** o o o o o o © O © •H
2 . . . • • . * . * u o o o o o © © © zUJ o o o o o o o o l— J . . • • • . • •o o o o o © © © •ac

(0
I— I 00 VO «H r- co in ■'T cn vo vo co r- p» cn CN in
rH CN CN CO CO CN cn CO cn 1— 1 o o CO o in © rH © u
< fH iH rH «—irH o iH o o o co o o © © o cUJ . . . . . . . . b__l • . • . . . • . 0)o O O o o o o o o o o o o © o © cn

I*Xr— i CN in CN vo cn n* p* o vo in fH in © CN rH CO o-H r* 00 VO VO r-* 'Si* cn I— I CN CN co CN CN CN iH iH
E-* O o o «H rH rH fH rH > o O o o © O o ©UJ • » • # * • • . l_J . . . . . . « • co o o o o o o o o o o o © o o © 0p

*3* VO cn co CO in o I— I co CO co 'Si* rt*in CN 0a
r—i rt*CO CN CO CN CO 0 o o o o o © © OU rH rH fH rH iH rH rH rH X o o o o © © © © *UJ • • • • • . • • W—1 • • . • • . . » »*o O o o o © o o o o o o o © © © rn

fH rH CN rH CN rH CN iH
Ui
a)

< < < < < < < < -p
iH CN CN CO CO in 0fr*Eh Eh Eh Eh Eh Eh Eh z

All
 

ot
he
r 

co
nc
en
tr
at
io
ns
 

ex
pr
es
se
d 

in 
we
ig
ht
 

pe
rc

en
t


