A COMPARISON OF EXISTING
ENTHALPY CORRELATIONS
FOR
PETROLEUM FRACTIONS

By
Roberta Fleckenstein
A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science.

Signed: Roberta R. Fleckenstein

Golden, Colorado
Date: 11/23, 1976

Approved: A. J. Kidnay
Thesis Advisor

V. F. Cesavage
Thesis Advisor

Golden, Colorado
Date: 3/11, 1976
ABSTRACT

A study is made of existing enthalpy correlations for petroleum fractions in the hope that these correlations can be applied to coal-derived liquids. No one correlation is assessed to be the best for petroleum fractions as the area of enthalpy prediction for naturally occurring crudes is constantly being improved.

A section containing sample calculations and the error between calculated and experimental enthalpy values is included for each correlation.

Difficulties which might be encountered in applying petroleum fraction correlations to coal-derived liquids are mentioned. Suggestions are made to provide a better comparison of existing petroleum fraction correlations and to continue the nature of this work in the future.
ACKNOWLEDGEMENTS

The author wishes to express her sincere thanks for support from the Health, Education, and Welfare Agency, the Energy Research and Development Administration, and the Colorado School of Mines Office of Research Services.

Grateful appreciation is extended to Professors Arthur J. Kidnay and Victor F. Ye savage, thesis co-advisors, who gave valuable guidance during this study. Sincere thanks is extended to the Master of Science Committee members: Professors A.J. Kidnay, V.F. Ye savage, E.D. Sloan, and A.L. Hines.
DEDICATION

I dedicate this thesis to the memory of my aunt,
Audry Karls Schroer.
TABLE OF CONTENTS

INTRODUCTION .. 1
EXISTING PETROLEUM-FRACTION CORRELATIONS 3
 1942 - D.E. Holcomb and G.R. Brown 10
 1944 - J.F. Fallon and K.M. Watson 13
 1953 - C.R. Bauer and J.F. Middleton 21
 1961 - R.L. Johnson and H.G. Grayson 23
 1974 - J.G. Jacks, J.H. Dluzniewski, S.B. Adler 25
 1974 - P.K. Huang and T.E. Daubert 29
 1975, 1976 - M.G. Kesler and B.I. Lee 32
PHYSICAL PROPERTIES OF PETROLEUM FRACTIONS 35
 K Factor .. 36
 Molecular Weight 36
 Acentric Factor 37
 Critical Properties 37
 API Data .. 40
COMPARISON OF THE PETROLEUM-FRACTION CORRELATIONS 41
APPLICATION TO COAL-DERIVED LIQUIDS 45
SUGGESTIONS .. 47
APPENDIX A - Sample Calculations 49
APPENDIX B - Correlations' Values vs. Experimental
 Results .. 63
APPENDIX C - Lenoir Data Set 82
APPENDIX D - Properties of West Virginia Synthoil 86
APPENDIX E - Kesler and Lee Method (Computer Program) . . 88
INTRODUCTION

In order to provide a comparison between the enthalpies of petroleum fractions and coal-derived liquids, studies are now being conducted to measure the enthalpies of coal-derived liquids calorimetrically. However, it is impossible to measure the enthalpy for every hydrocarbon liquid, whether it is naturally occurring or synthetic, so it is desirable to be able to predict enthalpies by a generalized correlation.

The correlation of enthalpies for coal-derived liquids has as its logical basis the correlations already in existence for petroleum fractions. It is assumed at this point that the same equations used to estimate the enthalpies and physical properties of the petroleum fractions can also be applied to coal-derived liquids. It must be remembered that the conditions under which the coal-derived liquids are formed and the hydrocarbon type distribution often differ radically from those of the petroleum fractions. This could affect the usefulness of any petroleum-fraction empirical correlation for coal-derived liquids. Also, as coal-derived liquids are undefined mixtures of hydrocarbons, it is difficult to apply a mixing rule with a pure component correlation to these liquids. Recognizing these difficulties, various petroleum-fraction enthalpy correlations are inves-
tigated as a possible foundation for a coal-derived liquid correlation. Consequently, this thesis is divided into four main sections:

1) investigation of existing enthalpy correlations for petroleum fractions,
2) estimation of physical properties,
3) comparison of the different correlations' accuracies,
4) discussion of how existing correlations might apply to coal-derived liquids.
EXISTING PETROLEUM-FRACTION CORRELATIONS

This section reviews the existing correlations in chronological order of development. Not all of the correlations which have been developed are covered, but the most significant ones are included. At the beginning of each correlation synopsis the physical properties required in the correlation are listed. The references which provide methods for estimating these physical properties can be found in the section, "Physical Properties of Petroleum Fractions."

It should be noted that most of the correlations follow the same procedure for predicting enthalpies. The first step is to determine empirical equations at the reference state pressure for the specific heats of the liquid and vapor states and the heat of vaporization as functions of temperature. By integrating the specific heat equation between the reference temperature and the temperature of the liquid, the enthalpy of the liquid phase is determined. If the petroleum fraction exists as a gas, the liquid heat capacity is integrated normal boiling point, the heat of vaporization added, and the gas phase specific heat equation integrated between the limits of the normal boiling point and the temperature of the petroleum fraction. Correction terms are then added to compensate for the effect of the
system's pressure on the enthalpy. Often the effect of pressure on a liquid that exists below 1000 psia can be neglected.

Summarizing the above steps mathematically:

\[H = H_{\text{ref}} + \int_{T_{\text{ref}}}^{T_b} C_{\text{pl}} \, dT + \int_{T_b}^{T} C_{\text{pv}} \, dT + H_{\text{pres}} + \lambda \]

where:

- \(H \) = enthalpy, Btu/lb, relative to \(T_{\text{ref}} \)
- \(C_{\text{pl}} \) = liquid heat capacity at reference pressure
- \(\lambda \) = heat of vaporization at one atmosphere, Btu/lb.
- \(C_{\text{pv}} \) = heat capacity of vapor at reference pressure
- \(H_{\text{pres}} \) = pressure correction term for deviation from the reference pressure
- \(T_{\text{ref}} \) = reference temperature
- \(T_b \) = normal boiling point temperature
- \(T \) = system temperature (if a gas, \(T \) is above \(T_b \))
Physical Properties Required:

(refer to section entitled, "Physical Properties of Petroleum Fractions" for references which define and estimate the physical properties for a petroleum fraction)

Normal boiling point, specific gravity at 60/60°F, molecular weight, critical pressure, critical temperature

Region of Correlation's Applicability:

- Liquid heat capacity
 - Temperature: 0-100°F
 - Specific gravity: 10-70°API
- Latent heat of vaporization at 1 atm
 - Temperature range of molal average boiling point: 0-675°F
 - Molecular weight: 75-300
- Watson's Characterization Factor, K: 10-12
- Vapor heat capacity at 1 atm
 - Temperature: 50-900°F
 - Specific gravity: 0.55 gas-10°API
- Isothermal enthalpy departure from ideal gas
 - Temperature: T_p between 0.8 and 1.5
 - Pressure: P_p between .1 and 6

Some of the earliest petroleum-fraction correlational work was done by Watson and Nelson of Universal Oil Products in 1933. One of their main contributions was the definition of the so-called Watson Characterization Factor, K. K provided an overall correlation parameter which was defined as:

$$K = \frac{(T_b)}{SG}^{1/3}$$

(2)
The K factor serves as an index of paraffinic nature, with high values of 12.5-plus indicating a high degree of saturation. Severely cracked stocks have K's of 10-11.

Watson and Nelson used this characterization factor to improve existing correlations which had been based on temperature and specific gravity alone. Since each previous correlation had been based on data with different K values, Watson and Nelson observed that by multiplying existing correlations by a factor involving K, differences between correlations diminished. Two generalized specific heat correlations, applicable to all stocks, were the net result:

\[
C_{pl} = (0.6811 - 0.306*SG + T(0.000315 - 0.000306*SG)) * (0.055*K + 0.35) \tag{3}
\]
\[
C_{pv} = (4.0 - SG)/6450. * (T + 670.) * (0.12*K - 0.41) \tag{4}
\]

where:

\[C_{pl}, C_{pv} = \text{specific heats of liquid and vapors respectively, at 1 atm, Btu/lb/°F}\]
\[T = \text{temperature, °F}\]

The reference state chosen was liquid at 32°F.
To compute the latent heat of vaporization at 1 atm, Watson and Nelson proposed using Kistyakowski's equation which was originally intended for pure, nonpolar compounds:

\[L = \frac{T_b}{M} \times (7.58 + 4.57/\log T_b) \]

where:

- \(L \) = latent heat of vaporization, Btu/lb
- \(T_b \) = boiling point, °R
- \(M \) = molecular weight, lb/lb-mole

The above equation was assumed to be applicable to polar and nonpolar mixtures if \(T_b \) was equal to the molal average boiling point and \(M \) was equal to the average molecular weight.

No correction for pressure from the reference state was given for the liquid phase enthalpy. However, there is considerable deviation in \(C_p \) in the critical state. The liquid phase specific heat capacity equation applies where the pressure is well below that required to prevent vaporization but may give results too low at lower pressures. A pressure correction term for enthalpy is necessary however in the vapor phase.

\[\left(\frac{dH}{dT} \right)_T = V - T \left(\frac{dV}{dT} \right)_P \]

where:

- \(H \) = enthalpy
T-1913

\[V = \text{volume} \]
\[T = \text{absolute temperature} \]
\[P = \text{absolute pressure} \]

However,

\[V = \frac{ZRT}{P} \]
\[Z = \text{compressibility factor} \]
\[R = \text{gas constant} \]

\(Z \) was fitted to the chart of Brown, Souders and Smith(20) by the following equations which are applicable to a reduced temperature of 1.5:

For low values of reduced pressure, \(P_R < 2.5 \)

\[Z = 1.0 - (0.73(T_R)^{-3} - 0.18) \times P_R \] (7)

For high values of reduced pressure, \(2.5 \leq P_R \leq 6 \)

\[Z = 2.0 - (0.24 - 0.14T_R) \times (8.0 - P_R) \] (8)

Where:

\[P_R = \text{reduced pressure} \]
\[T_R = \text{reduced temperature} \]

By differentiating the volume equation with respect to \(T \) and substituting this expression into the differential for enthalpy, equation 6, the following equations were derived:

At low \(P_R \), \(P_R < 2.5 \)

\[\Delta \frac{HM}{T} = -4.4 \times \frac{P_R}{(T_R)^3} \] (9)

At high \(P_R \), \(2.5 \leq P_R \leq 6 \)

\[\Delta \frac{HM}{T} = 0.28 \times T_R \times (P'_R - P_{R_0} - 8 \times \ln(P'_R/P_{R_0})) \] (10)
where:

\[M = \text{molecular weight} \]
\[\Delta H = \text{change in enthalpy due to change in pressure from the reference pressure to } P_r, \text{ where } P_r \text{ is in the range of the low } P_r \text{ equation} \]
\[\Delta H' = \text{change in enthalpy due to a change from } P_{ro} \text{ to } P_{r}', \text{ where } P_{ro} \text{ is the limit of the range for the low } P_r \text{ equation and } P_{r}' \text{ is any pressure above the } P_{ro} \text{ limit} \]

The graph, figure 10(1), which is a plot of these two equations has as its range of applicability, \(T_r \) from 0.8-1.5 and \(P_r \) from 0.1-6.

Included in the section, "Comparison of the Petroleum-Fraction Correlations", is a sample calculation using the methods of Watson and Nelson to predict the enthalpy of a petroleum fraction. The enthalpy of this example petroleum fraction is predicted by all of the different correlations reviewed for comparison.

It should be noted that the difference in enthalpy due to a pressure change from zero pressure to 1 atm is neglected in Watson's and Nelson's correlations, as in most of the earlier correlations.
T-1913

1942 (correction, 1944) - D.E. Holcomb and G.R. Brown (2,3)

Physical Properties Required:

Specific gravity at 60/60°F and °API, critical temperature and pressure

Region of Correlation's Applicability:

Liquid heat capacity at 1 atm
Temperature: -100-1000°F
Specific gravity: 10-70°API
K: 10-12.5

Vapor heat capacity at 1 atm
Temperature: -200-1200°F
Specific gravity: 0-70°API

Isothermal enthalpy departure from ideal gas
Temperature: T, between .75-1.00
Pressure: P, between 0-.9

Much of the work done by Holcomb and Brown was applicable to specific pure light hydrocarbons. The reference state chosen was 32°F, 0 psia, liquid. However, at zero pressure the enthalpy of a vapor mixture is obtained by summing up the products of each component and its molal enthalpy at zero pressure. At higher pressures, the vapor mixtures are not ideal, so the effect of pressure on enthalpy must be evaluated.

Charts correlating the specific heats of hydrocarbon liquids as a function of specific gravities are included in the original article. The charts are based on data measured at 32°F and the hydrocarbon's vapor pressure, however the enthalpy change from 32°F and the vapor pressure to 32°F and zero pressure can not be more than on the order of .07 Btu/lb, as calculated for pentane.
The van't Hoff equation was used to calculate the latent heat of vaporization at 32°F and zero pressure for a component in a mixture:

$$2.303 \frac{d(\log_{10} K_i)}{dT} = \frac{\Delta H_{vap;}}{RT^2}$$ (11)

where:

$$\frac{d(\log_{10} K_i)}{dT} =$$ slope of curve of $\log_{10} K_i$ vs. temperature at constant pressure

where K_i is the vaporization equilibrium constant for a component i, defined as y_i/x_i where y_i is the mole fraction in the vapor phase, x_i is the mole fraction in the liquid phase of component i

R = gas law constant

A table was presented in the 1942 article which represented the results of this equation on current data. The reference conditions were at 32°F and 0 psia. The 1944 article corrected the results based on this equation as it was found that the K's were unreliable. The 1944 charts were correlated in terms of total vapor enthalpy for pure components at zero pressure which incorporated the corrected heats of vaporization. However, this correlation is not very useful for petroleum fractions which are undefined mixtures of hydrocarbons normally.

A chart based on curve-fitting of data was presented to
calculate the specific heat of gaseous paraffins. The heat capacity charts and heat of vaporization chart were used to determine overall enthalpy charts at zero pressure for pure components.

To calculate the isothermal effect of pressure on the enthalpy of liquid, the following equation was used:

\[\Delta H = \frac{144}{778} \int_{0}^{P} (V-T(\frac{\partial V}{\partial T})_p) \, dp \] \hspace{1cm} (12)

where:
- \(\Delta H \) = change of enthalpy due to pressure
- \(V \) = volume
- \(p \) = system pressure

where pressure-volume-temperature relations for liquid paraffins can be found in the literature.

To calculate the isothermal effect of pressure on vapor enthalpy:

\[\frac{-\Delta H}{T} = R \left(\frac{\ln(f/p)}{\ln(T_r)} \right) \frac{f}{P} \] \hspace{1cm} (13)

First a chart was plotted for the \(f/p \) relation and then this was used to determine an overall change in enthalpy using pseudocritical properties of the mixture as correlating parameters.
1944 - J.F. Fallon and K.M. Watson (4)

Physical Properties Required:

API gravity, K factor, critical temperature, molecular weight

Region of Correlation's Applicability:

Liquid heat capacity at critical pressure
 Temperature: 0-1000°F
 Specific gravity: 0-90°API
Latent heat of vaporization
 Temperature range of average boiling point: 100-1000°F
 Specific gravity: -5-90°API
 Molecular weight used in preference to specific gravity: 80-400
Vapor heat capacity at 0 psia
 Temperature: 0-1400°F
 K: 10-13

The empirical specific heat equations which formed the basis of the correlations of Watson and Nelson were a result of averaging existing petroleum-fraction calorimetric data. In 1944, heat capacities for the ideal vapor state were developed from spectroscopic data and statistical calculations by Spencer and Flannagan(21). With proper frequency assignments, the correlation applied over a wide range of temperatures. Values for normal paraffins up to octane could be correlated, along with isobutane, ethylene, and acetylene. Dobratz attempted to estimate the constraints for this correlation from the structural formula of a compound. However, errors resulted at high temperatures and if the compounds to which the correlation was applied were very different in
structural type from those on which the correlation was based. In 1944, Fallon and Watson presented correlations in agreement with spectroscopic data and thermodynamically consistent with those based on the generalized relations of Watson(22).

Fallon and Watson combined the correlations of Spencer and Flannagan(21), Dobratz(23), and Watson(22) to yield a specific heat of vapor equation at 0 psia:

\[
C_p = (0.045 \times K - 0.233) + (0.44 + 0.0177 \times K)(10^{-3}T)
- 0.153(10^{-6}T^2)
\]

where:

\[K = \text{Watson's Characterization Factor}\]
\[T = \text{temperature, } ^\circ F\]

This correlation is different from the previously described method of Watson and Nelson(1) in that only the characterization factor is used to characterize the stock. No systematic variation was found from this correlation with wide variations in specific gravity and boiling point.

Specific heats of the liquid were calculated from the vapor specific heat capacity by using the generalized thermodynamic method described by Watson(22). A generalized thermodynamic method of obtaining specific heat capacities of saturated liquids from ideal gas specific heat capacities was described by Hougen and Watson(5), in 1947.

The calculations for the specific heat capacities of
liquids obtained by Watson's approach (22), were restricted to reduced temperatures less than 0.85 where pressure effects are negligible. However, at these lower temperatures, the petroleum fractions were not well represented by the liquid specific heat capacity obtained by the above method (22). This is due to the fact that the generalized thermodynamic approach is in doubt in this region. Consequently, for heavier stocks a new \(C_{pl} \) was correlated:

\[
C_{pl} = ((0.355 + 0.128 \times 10^{-2} \text{ API}) + (0.503 + 0.117 \times 10^{-2} \text{ API}) 10^{-3}T) \times (0.05K + 0.41)
\]

(15)

To calculate the latent heat of vaporization at one atm pressure, a modified form of the Clausius-Clapeyron equation was used:

\[
\lambda = \frac{ZRT^2}{P} \times \frac{d(P)}{d(T)} = \frac{ZRT^2}{P} \times \frac{d(P)}{d(T)}
\]

(16)

\(\frac{d(P)}{d(T)} \) can be found by differentiating the vapor pressure equation proposed by Gamson and Watson (24):

\[
\frac{d(P)}{d(T)} = \frac{P \times A}{T_c \times T} + \frac{40P(T - b)}{T_c} e^{-20(T - b)^2}
\]

(17)

where:

\(Z \) = compressibility factor

\(R \) = gas constant

\(T \) = temperature, °R

\(P \) = pressure
The constant \(b \) can be found in the original article by Gamson and Watson\(^{24}\). \(A \) can be evaluated by substituting the critical point and mean average boiling point into equation (17). The article by Fallon and Watson\(^{4}\) contains a graph which summarizes these results, figure 4\(^{4}\), along with \(C_{pv} \) and \(C_{pl} \) graphs, figures 2 and 3 respectively\(^{4}\). The values for heats of vaporization predicted in this way are in close agreement with the Kistyakowski equation, used by Watson and Nelson\(^{1}\), for low-boiling compounds, but is considerably higher for high-boiling compounds.

Any pressure correction necessary for the deviation of enthalpy from zero pressure is computed in the same manner as in the Watson and Nelson correlation\(^{1}\). As the charts of Fallon and Watson were prepared from pure hydrocarbon data, these charts should not be used to predict the enthalpies of mixtures except under conditions where ideal solutions are formed. Balzhiser, Samuels, and Eliassen defined an ideal solution as one that obeys the Lewis and Randall rule,\(^{25}\)

\[
\hat{f}_i = n_i f_i
\]

(18)

where: \(\hat{f}_i \) = partial fugacity of component \(i \)
$f_i = \text{fugacity of the pure component in the same phase and at the same temperature and pressure as the mixture.}$

$n_i = \text{mole fraction of component } i \text{ in mixture}$

Ideal gases are ideal solutions, however liquids often are not ideal solutions because of intermolecular interaction in the condensed phase. If the solution is ideal, there is no heat of mixing.
Physical Properties Required:

Critical pressure and temperature

Region of Correlation's Applicability:

Isothermal enthalpy departure from ideal gas
Temperature: T_p between 0.575 and 15
Pressure: P_r between .01 and 20

Fallon and Watson used generalized thermodynamic equations to estimate the heat capacity of a liquid from that of a gas. Hougen and Watson have summarized many useful thermodynamic relations which are applicable to hydrocarbons, including estimating saturated liquid heat capacities from the specific heat capacity of an ideal gas. As Hougen and Watson pointed out, data on the heat capacities of liquids, particularly at temperatures other than atmospheric are scanty and frequently unreliable. However, data is available for the heat capacities of ideal gases over wide temperature ranges.

$$
(c_{sl} - c_p^*)_T = -\frac{d\lambda}{dT} - \frac{d(H^* - H_{sg})}{dT}
$$

where:

c_{sl} = specific heat capacity of the saturated liquid
c_p^* = specific heat capacity of ideal gas
$H =$ enthalpy
$sG,^* =$ saturated gas and ideal gas, respectively
However,\[
\left(\frac{d(H^* - H_{SG})}{dT} \right)_s = \left(\frac{d(H^* - H_{SG})}{T} \frac{dp}{dT} \right)_p + \left(\frac{d(H^* - H_{SG})}{T} \frac{dp}{dT} \right)_T
\]

The enthalpy difference derivatives can be calculated from the enthalpy departure graphs of Hougen and Watson(5). \(\left(\frac{dp}{dT} \right)_s \) can be found by differentiating the vapor pressure equation. Hougen and Watson chose the Calingaert-Davis equation to represent the vapor pressure. The term \(\frac{d \Delta}{dT} \) is obtained by differentiation of the latent heat of vaporization equation:

\[
\frac{d \Delta}{dT} = -0.361 R \frac{B(T_b)^2}{(T_b - 43)^2} (1 - T_b)^{-38}
\]

where:

- \(R \) = gas constant
- \(B \) = constant of Calingaert-Davis equation
- \(T_b \) = normal boiling point, degrees Kelvin

The \(c_s \) computed in this manner is applicable at zero pressure or approximately, 1 atm. From the relation presented above, along with suitable corrections derived by Hougen and Watson(5), the heat capacity of a liquid at any condition may be predicted from this saturated liquid heat capacity.

Hougen and Watson also updated the pressure correction chart of Watson and Nelson(1) for the deviation of enthalpies from the ideal state. The chart of Hougen and Watson(5)
T-1913 represents the data calculated by Edmister (25) and York and Weber (27). York and Weber (27) found that in the temperature range above $T_r = 1$, where T_r represents the reduced temperature, the enthalpy corrections varied systematically with the critical temperature of the substance. Therefore, the chart's values of Hougen and Watson (5) should be corrected by multiplying these values by Φ:

$$\Phi = \left(\frac{T_c}{470}\right)^n$$

(22)

n is a function of reduced temperature. A table summarizing these n's is presented in the original article by Hougen and Watson (5).
Physical Properties Required:

Mean average boiling point at 1 atm, molecular weight, K factor, °API gravity

Region of Correlation's Applicability:

Liquid heat capacity
Extended gravity range to 0°API for Nelson and Watson correlation (1)
Latent heat of vaporization at 1 atm
Temperature range of mean average boiling point: 0-1000°F
Molecular weight: 70-500
Specific gravity: -10-90°API
Vapor heat capacity at 1 atm
Temperature: 0-1200°F
K factor: 10-13

Bauer and Middleton used the same specific heat equations as Watson and Nelson (1) to calculate liquid enthalpies, the same Kistyakowski equation to calculate latent heats of vaporization at atmospheric pressure, and the correlation of Fallon and Watson (4) to calculate vapor enthalpies. However, the charts of Bauer and Middleton improved the original correlational charts which were a result of the above equations (1),(4) to reflect more recent data.

The liquid specific heat equation of Watson and Nelson (1) was thoroughly checked by Gaucher (28) for a wide variety of petroleum fractions and pure hydrocarbons and was found to give very satisfactory results. The data of Hyman and Kay (29) for a -11°API crude water gas tar indicated that extrapolating the original correlation to 0°API was justified. The
The original Watson and Nulson (1) chart for latent heat of vaporization was based on a correlation for molecular weights of petroleum fractions which has since been revised. The chart of Bauer and Middleton (6) reflects this revision.

The specific heat equation of Fallon and Watson (4) for vapors gives close agreement for petroleum fractions which have a $K = 11.8$, but at characterization factors other than 11.8, large deviations occur. Bauer and Middleton empirically determined the deviation from Fallon and Watson's chart (4) which resulted from K not being equal to 11.8. Consequently, their chart for specific heats of petroleum vapors gives better results than that of Fallon and Watson for K's other than 11.8.

When using the charts of Bauer and Middleton, it should be noted that their chosen reference state was liquid, saturated, 0°F. The alignment chart for the pressure effect on enthalpy represents basically a refinement of the Hougen-Watson (5) chart, except that pseudocritical and critical properties have been eliminated as variables. However, this simplification results in increased error.
Physical Properties Required:

Specific gravity at 60/60°F, critical pressure and temperature

Region of Correlation's Applicability:

Correlated in terms of total enthalpy
Temperature: 0-1200°F
Specific gravity: 0-90°API
K* 11.8

The enthalpy charts presented by Johnson and Grayson(7) were developed from data presented by Bauer and Middleton(30) and Lydersen, Greenkorn, and Hougen(31). The enthalpy of vapor at zero absolute pressure and liquid at one atmosphere is taken directly from the Bauer-Middleton data(30) except that the basis is changed from liquid at 0°F to -200°F. The pressure correction for the enthalpy of liquid petroleum fractions below 1000 psia is negligible. However, for pressures above 1000 psia, a pressure-correction chart(7) which corrects for the deviation of liquid enthalpy from 1 atm is presented, using specific gravity as the correlating parameter. A pressure correction chart for the enthalpy of vapor was presented for a K of 11.8. An additional chart for a petroleum fraction with a compressibility factor (critical) of 0.27 is presented(7). The reduced properties of the petroleum fraction are necessary.

Enthalpy charts often do not include a visual means of representing the liquid and vapor regions, and the satu-
tion envelopes. Previous charts failed to predict enthalpy in the critical region because of the difference in critical behavior between mixtures and pure compounds. It is possible for an actual fraction to have a latent heat of vaporization where a pseudocritical correlation would indicate none. In this region, Johnson and Grayson developed saturated vapor-liquid domes which are included on the enthalpy chart(7). The domes are convenient because they present a visual picture of the given petroleum fraction's phase condition at certain operating conditions, in relation to the pseudocritical point of the material. No pressure corrections are necessary because these domes represent saturated conditions. Latent heats of vaporization can be estimated directly from the domes.
Physical Properties Required:

Depends on which correlations previously described are used to estimate ideal gas enthalpy

Region of Correlation's Applicability:

Depends on which correlations previously described are used to estimate ideal gas enthalpy

Isothermal enthalpy departure from ideal gas

Temperature: \(T \) between 8 and 4.0
Pressure: \(P \) between 0.2 and 9.0

Enthalpies can be calculated using an application of the Curl-Pitzer corresponding states correlation. A brief synopsis of the original article which was revised in 1961 by Pitzer and Brewer, is given below.

Statistical theory shows that a group of substances will conform to the principle of corresponding states only if their intermolecular potentials are identical except for distance and energy-scale factors characteristic of each substance. The principle of corresponding states was originally proposed by van der Waals and assumes that all substances would have the same equation of state when expressed in terms of the reduced variables. Quantum effects must be negligible. Simple fluids are those which conform accurately to corresponding states behavior. Molecules of large dipole moments cannot be correlated by corresponding states.

To provide a measure of a fluid's deviation from simple
fluids, an acentric factor was defined:

\[\omega = -\log_{10}(P_s/P_c) - 1.0 \]

(23)

where:

\[P_s \] vapor pressure at reduced temperature, .7 \(T_r \)
\[P_c \] critical pressure

\(\omega = 0 \) for simple fluids such as Ar, Kr and other spherical molecules. Non-spherical molecular normal fluids have low positive acentric factors. However, normal fluids do not have strong intermolecular interactions such as hydrogen bonding, acid-base association, etc.

At low pressures, the virial equation of state through the second virial coefficient would apply leading to the following equation to calculate the departure of enthalpy from the ideal gas state's enthalpy:

\[
\frac{H - H^0}{RT_c} = P_r * \left((0.1445 + 0.073 \omega) - (0.66 - 0.92 \omega) \right. \\
T_r^{-1} - (0.4155 + 1.5 \omega)T_r^{-2} \left. - (0.0484 + 0.388 \omega)T_r^{-3} - 0.0657 \omega T_r^{-8}\right)
\]

(24)

where:

\(H^0 \) = ideal gas enthalpy at 1 atm.
\(R \) = ideal gas law constant
\(T_c \) = critical temperature

Note: The correlation for the second virial coefficient is given by a modified form of the Berthelot equation(9). The ideal gas enthalpy can be calculated from the previous
correlations.

At higher pressures, where the second virial coefficient no longer applies, the following equation is used:

\[\frac{H_T^0 - H_T}{RT_c} = \left(\frac{H_T^0 - H_T}{RT_c} \right)^0 + \omega \left(\frac{H_T^0 - H_T}{RT_c} \right)^1 \] \hspace{1cm} (25)

where:

\[\frac{H_T^0 - H_T}{RT_c} \] = dimensionless isothermal enthalpy departure from ideal gas

\[\left(\frac{H_T^0 - H_T}{RT_c} \right)^0 \] = dimensionless isothermal enthalpy departure from ideal gas for a simple fluid, plotted as a function of \(T_r \) and \(P_r \)

\[\left(\frac{H_T^0 - H_T}{RT_c} \right)^1 \] = dimensionless isothermal enthalpy departure correction term for molecular acentricity, plotted as a function of \(T_r \) and \(P_r \)

Pitzer and Brewer published tables(9) for the enthalpy departure terms as a function of \(T_r \) and \(P_r \).

The above corresponding state correlation involving \(T_r, P_r \), and \(\omega \) as parameters, formed the basis of the Adler, Jacks, and Dluzniewski correlation(8). They were able to improve existing correlations to predict the needed input data for the Pitzer-Curl correlation(9), namely, molecular weight and critical properties. However, their work was
proprietary. Their findings did demonstrate the importance of the three-parameter corresponding states correlation to give isothermal pressure corrections to enthalpy.
1974 - P.K. Huang and T.E. Daubert (10)

Physical Properties Required:

Depends on which correlations previously described are used to estimate ideal gas enthalpy

Region of Correlation's Applicability:

Depends on which correlations previously described are used to estimate ideal gas enthalpy

Huang and Daubert of the Pennsylvania State University have developed a method of predicting the enthalpies of unknown mixtures of hydrocarbons. It is called the pseudocompound method because it is based on the idea that if a petroleum fraction can be described by pure compounds (called pseudocompounds) which characterize each of the hydrocarbon types present in an undefined mixture, then prediction methods for the defined mixtures can be applied directly to petroleum fractions.

After performing an ASTM distillation, the petroleum fraction is analyzed for volume percentages of the four hydrocarbon types, (n-paraffins, n-alkylcyclopentanes, n-1-olefins, and n-alkyl-benzenes). The 50% boiling point (B.P. when 50% of the petroleum fraction has boiled away) from the ASTM distillation is taken as the characteristic boiling point. Two pseudocompounds are chosen to represent each hydrocarbon type present. These two pseudocompounds chosen have boiling points which bracket the 50% boiling point. The
weight fractions of these two pseudocompounds are determined by defining a characteristic boiling point of this mixture equal to the 50% boiling point. It is assumed that weight percent and volume percent are equal.

The amount of each pseudocompound in the petroleum fraction is determined by multiplying the weight fractions of the two pseudocompounds by the corresponding hydrocarbon's composition found above. From the API 44 tabulations of ideal gas enthalpies which have resulted from the previously described correlations, a linear relationship can be derived for each hydrocarbon type at a definite temperature if the boiling point range is not too large. This relationship is expressed below:

\[H^o = aT_b + b \] \hspace{1cm} (26)

where:

- \(H^o \) = ideal gas enthalpy of a pure hydrocarbon (reference point: \(H^o \) equals 0 Btu/lb at 0°F)
- \(T_b \) = boiling point of a pure hydrocarbon in °F
- \(a, b \) = coefficients to be determined for each hydrocarbon type

\[H^o_{mix} = a \left(\sum_{i} x_{wi} T_{bi} \right) + b \] \hspace{1cm} (27)

where:

- \(T_{bi} x_{wi} \) = weight average boiling point where \(x_{wi} \) is
weight fraction of component i, n components

The Pitzer three-parameter correlation for corresponding states as outlined previously is used to correct for isothermal pressure changes. The critical properties required are defined by the pseudocritical properties of the pseudomixtures, as is the molecular weight of the mixture.
1975, 1976 - M.G. Kesler and B.I. Lee (11), (12)

Physical Properties Required:

Normal boiling point, K factor, specific gravity, critical temperature, critical pressure

Region of Correlations's Applicability:

Enthalpies presented by overall enthalpy charts (12)
Temperature: 0-1200°F
Specific gravity: 0-70°API
K factor: 10, 11, 11.8, 12.5
Isothermal enthalpy departure from ideal gas
Temperature: T_r between 0.3-4.
Pressure: P_r between 0-10

Kesler and Lee developed an analytical representation of the Pitzer three-parameter corresponding states correlation. Pitzer's original correlation was limited to reduced temperatures greater than 0.8. Lee and Kesler's correlation extended the range for reduced temperatures from 0.3-4, and reduced pressures from 0-10.

The enthalpy departure function was represented by:

$$
\frac{(H - H^0)}{RT_c} = \left(\frac{(H - H^0)}{RT_c} \right)^0 + \omega \frac{\left(\frac{(H - H^0)}{RT_c} - \left(\frac{(H - H^0)}{RT_c} \right)^0 \right)}{\omega^0} (28)
$$

where:

$$
\frac{(H - H^0)}{RT_c} = \text{dimensionless isothermal enthalpy}
$$
departure from ideal gas

$$
\frac{(H - H^0)^0}{RT_c} = \text{dimensionless isothermal enthalpy}
$$
departure from ideal gas for a simple fluid

$\omega = \text{acentric factor}$
The constant used in the Benedict, Webb, and Rubin equation of state for the simple fluid and the reference fluid, n-octane are given in the original article. (12) n-octane was chosen as the heavy reference fluid because it is the heaviest hydrocarbon for which there are accurate P-V-T and enthalpy data over a wide range of conditions. The acentric factor for the reference fluid is taken to be 0.3978.

Briefly, the method entails using the simple fluid constants (12) to determine z^0 and the reference constants to determine z^r, giving ultimately the enthalpy departure for a simple fluid from ideal gas, and for the reference fluid. Kesler and Lee presented correlations to estimate T_r, P_r and ω analytically. By analytically representing the physical properties and enthalpy departure, one can implement this method for the computer, as outlined in the appendix.
In March, 1976, Kesler and Lee presented this correlation in graphical form, basing the liquid enthalpy on Watson and Nelson's correlation and the pressure effect on enthalpies separately on the basis of the 1975 Lee-Kesler correlation.
This section lists references which can be used to estimate the physical properties of petroleum fractions and pure hydrocarbons which are required in the enthalpy correlations described in the previous section. The physical properties section is divided into two parts: correlations by individuals, and the API's compilation which often includes many of these same correlations.

The individual correlations are grouped according to physical properties, with a chronological list of references. The API's correlations are grouped by pure substances and petroleum fractions.
K Factor

1. 1933 - Watson and Nelson (1)

K factor defined in terms of molal average boiling point
where \(\text{MABP} = \sum \frac{x_i T_{bi}}{x_i} \), \(T_{bi} \) = normal boiling point of component \(i \)
\(x_i \) = mole fraction of component \(i \)

2. 1937 - Smith and Watson (13)

K factor defined in terms of cubic average boiling point
where \(\text{CABP} = \left(\sum \frac{x_i T_{bi}}{x_i} \right)^3 \), \(x_i \) = volume fraction of component \(i \)

3. 1974 - Huang and Daubert (10)

K factor defined by mean average boiling point which is
defined in terms of molal average boiling point and
cubic average boiling point where \(\text{MeABP} = \frac{\text{MABP} + \text{CABP}}{2} \)

Note: Either °F or °R may be used for MABP. °R must be
used for CABP. MABP and CABP must be in the same
units to calculate MeABP. See API Data for characterizing
boiling points for petroleum fractions (16).

Molecular Weight of Petroleum Fractions

1. 1933 - Watson and Nelson (1)

MW, molecular weight, correlated graphically as a function
of K's (10.0-12.5) and molal average boiling point
(100-650°F), and a graph for MW as a function of boiling
point (100-700°F) and specific gravity (15-70°API)
T-1913

2. 1957 - Winn(14)
 Nomogram using API gravity and mean average boiling point as correlative parameters

3. 1976 - Kesler and Lee(12)
 Equation involving specific gravity and boiling point as variables.

 Acentric Factor

1. 1961 - Pitzer and Brewer(9)
 \[\omega = -\log\left(\frac{P}{P_c}\right) - 1.000 \text{ at } T_r = 0.700 \] (33)
 Presented tables of \(\omega \) as function of \(T_r \) and \(P_r \)

2. 1958 - Edmister(15)
 Approximate equation of \(\omega \)
 \[\omega = \frac{3}{7} \times \left(\log \frac{P}{P_c} \left(\frac{T_c}{T_b} - 1\right) \right) - 1 \] (34)
 \(P_c, T_c, T_b \) are variables where \(T_b \) is the normal boiling point, \(P_c \) is in atm

3. 1976 - Kesler and Lee(12)
 Analytical equation involving Riedel's vapor pressure equation

 Critical properties

 Critical Temperatures and Reduced Temperatures

 Reduced Temperature, \(T_r = \frac{T}{T_c} \)

 If the substance is pure, then \(T_c \) is the true critical temperature. If it is a mixture, then a pseudocritical temperature, defined by Kay, is needed for a corresponding states \(T_r \).
For a defined mixture, the pseudocritical temperature, \(T_{pc} \) is:

\[
T_{pc} = \sum x_i T_{ci}
\]

A similar relation holds for \(P_{pc} \).

Therefore, if the correlations previously described are applied to a mixture and a critical property is required to compute a reduced property, the pseudocritical property is used. (13)

1. 1933 - Watson and Nelson (1)

 \(T_c \) chart presented as a function of molal average boiling point (100-700°F, 15-70°API)

2. 1937 - Smith and Watson (13)

 Graphs of critical temperature as functions of boiling point, specific gravity, (300-1000°F), (0-100°API)

3. 1976 - Kesler and Lee (12)

 Equation for \(T_c \) using specific gravity and boiling point as variables.

Critical Pressures and Reduced Pressures

1. 1933 - Watson and Nelson (1)

 Expresses critical pressure as a function of average boiling point, critical temperature and slope of the ASTM distillation curve

2. 1937 - Smith and Watson (13)

 Graph of pseudocritical pressure as a function of mean average boiling point (100-900°F) and API gravity (0-
90°API) and a graph as a function of molecular weight (10-100) and specific gravity (30-450°API)

3. 1957 - Winn(14)
Nomogram of pseudocritical pressure using API gravity and mean average boiling point to correlate

4. 1961 - Johnson and Grayson(7)
Pseudocritical pressures as correlated by K (10-13) and specific gravity (10-91°API)

5. 1976 - Kesler and Lee(12)
Equation for P_c with specific gravity and boiling point as variables.
API Data - 1970(16)

This is a handy reference book which contains correlations for pure hydrocarbons and petroleum fractions and their physical properties, namely:

PURE:
1. Acentric factor
2. Watson Characterization Factor
3. Critical compressibility factor
4. Critical properties

PETROLEUM FRACTIONS
1. Characterizing boiling points
2. Molecular weight
3. Watson Characterization Factor
4. Acentric factor
5. True critical pressures and temperatures
6. Pseudocritical temperatures and pressures
COMPARISON OF THE PETROLEUM-FRACTION
CORRELATIONS

In the appendix are included sample calculations for the enthalpy of the vapor for a California naphtha (17) with the given properties:

<table>
<thead>
<tr>
<th>ASTM distillation, D-86</th>
<th>Sp. Gr.</th>
<th>°API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. % 10 30 50 70 90</td>
<td>60/80°F</td>
<td></td>
</tr>
<tr>
<td>°F 174 184 196 210 231</td>
<td>0.7365 60.6</td>
<td></td>
</tr>
</tbody>
</table>

This petroleum fraction was selected because the molecular type analysis, in vol %, necessary for the pseudocompound method of Huang and Daubert was available.

Molecular Type Analysis, Vol %

<table>
<thead>
<tr>
<th>Paraffin</th>
<th>Naphthene</th>
<th>Olefin</th>
<th>Aromatic</th>
<th>S Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2</td>
<td>58.2</td>
<td>0.0</td>
<td>5.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The sample calculations performed for the enthalpy are suggested as examples of how to manipulate the data and carry out the calculations, rather than as a comparison of the correlations' accuracies. The correlations' accuracies are included in appendix B.

However, it is difficult on the basis of the results found in the literature for the different correlations to say any one correlation is best. This is due to the fact that not all of the enthalpy deviations calculated from the correlations from experimental data were based on the same
data set or calculated at the same conditions. The correlations which employ the 3-parameter corresponding states enthalpy departure term also must incorporate the error in the ideal gas enthalpy. This error depends on which correlation is used to estimate ideal gas enthalpy.

Some general observations concerning a comparison of the correlations can be made:

1) All of the correlations have maximum deviation in the critical region.

2) The correlations which incorporate a K deviation term correlate best for a K of 11.8.

3) An isothermal pressure correction for a change from saturated conditions, liquid, to 0 psia can be neglected.

Some suggestions:

1) A comparison of all of the correlations needs to be carried out on the same data set; for example, the Lenoir data set used for comparison purposes in the Johnson-Grayson and Huang and Daubert correlations needs to be used in all correlations. The comparison should use the same number of points and at the same conditions.

2) The comparison should be divided into three areas:
 a) Comparison of specific heat capacities for vapor and liquid.
 b) Comparison of heats of vaporization
c) Comparison of the ideal gas enthalpy calculated by the same thermodynamic path above some basic reference condition

3) After the above comparison is made, choose the correlations for specific heat capacity of vapor and liquid and heat of vaporization to calculate the ideal gas enthalpy, and then select the isothermal pressure correction to produce the least deviation from experimental data.

4) It must be remembered that the correlations used to estimate the physical properties of the petroleum fraction would affect the accuracy of any results.

The above suggestions were made to demonstrate the complexity of determining which correlation is the "best". The program outlined above would take a great deal of time, a factor which also must be taken into consideration. But it is reasonable to assume that the "best" correlation for petroleum fractions would also be the "best" for coal-derived liquids.

Based on the accuracies of the correlations given in the appendix, it would appear that a first approach to an overall enthalpy correlation would be one which employs the 3-parameter corresponding states isothermal pressure correction term for enthalpy and the specific heat capacity equations of Kesler and Lee. The computer program in appendix
E incorporates this approach to predict enthalpies.
APPLICATION TO COAL-DERIVED LIQUIDS

A comparison of the distillates of similar boiling ranges from three syncrudes on a weight-percent of distillate basis is included in the appendix D. The comparison shows that aromatics account for a considerable amount of the distillate(18). As noted by Bauer and Middleton, the existing correlations were empirically derived from paraffinic petroleum fractions, and are not as reliable for aromatics(6). This is evident from the Johnson-Grayson correlation deviation from experimental data presented in appendix B. This correlation especially had problems correlating liquid enthalpies for the aromatic naphtha, with a maximum error of 24 Btu/lb, with 19 of 54 points in excess of 10 Btu/lb.

Another point of interest is the amount of heteroatomics present in the distillates. These heteroatomics, containing sulfur, nitrogen and oxygen compounds, can increase the polarity of the syncrudes. The correlations were applicable to non-polar to slightly polar fractions as noted by McCracken and Smith(19). Therefore, applying existing correlations to syncrudes could be difficult.

The pseudocompound method of Huang and Daubert did give good results for the liquid and vapor enthalpies of an aromatic naphtha, but more comparisons are needed. This method has the advantage of taking the molecular type analysis
of the petroleum fraction into account.

This is all speculation however as no enthalpy data for coal-derived liquids exists at this time. Therefore, it is best to reserve judgment on which of the existing correlations would best represent coal-derived liquids and vapors. A factor, similar to the K factor, might have to be developed to reflect aromaticity, and existing correlations might have to be modified to account for this or new correlations derived.
SUGGESTIONS

1) After collecting reliable enthalpy data for coal-derived liquids, apply the Kesler-Lee equations outlined in appendix E to predict the enthalpies at experimental conditions.

2) If the error between calculated and experimental enthalpy values exceed 10 Btu/lb consistently, this suggests modifying the existing correlations.

3) Modifying existing correlations:
 a) As the specific heat capacity equations were empirically determined for paraffinic stocks, a characterization factor, similar to Watson's K factor, could be developed to reflect aromaticity and would modify existing specific heat capacity equations to fit enthalpy data for coal-derived liquids.
 b) Calculate the isothermal enthalpy departure from ideal gas by a 3-parameter corresponding states approach. The first two parameters, T_r and P_r, could be used in a generalized correlation. However, the deviations from experimental values observed by Curl and Pitzer(32) in using the acentric factor as the third parameter to estimate isothermal enthalpy departure for benzene at a
Pr of 2.0 and Tρ between 0.8 and 1.3 suggests that a different third parameter might have to be developed for correlating aromatics such as coal-derived liquids.
APPENDIX A

Sample calculations are carried out on the California naphtha referred to in the section, "Comparison of the Petroleum-Fraction Correlations". The vapor enthalpy at 500°F and 300 psia, based on a reference state of 75°F saturated liquid, was experimentally determined as 332.8 Btu/lb.

Any values obtained from graphs are in doubt as the graphs in the literature were often too small to read accurately.
1933 - Nelson and Watson (1)

Estimation of molal average boiling point:

Take average of ASTM distillation data:

\[
\frac{174 + 184 + 196 + 210 + 231}{5} = 199°F
\]

Correction from this average for molal average boiling point:

Need to get slope of distillation curve in order to get correction term from Fig. 1

\[
\frac{231 - 174}{80} = .7125
\]

From Fig. 1

199 - 3 = 196°F

Calculate K:

\[
K = \frac{T_b^{1/3}}{SG} = \frac{(196 + 460)^{1/3}}{.7365} = 11.8
\]

Nelson and Watson calculated the enthalpy by:

\[
H = \int_{T_{ref}}^{T_b} C_p^* dT + \Delta H^*_\text{vap} + \int_{T_b}^{T} C_p^* dT + \Delta \frac{HM}{T}
\]

where \(\Delta \frac{HM}{T} \) represents change of enthalpy from ideal gas state to system pressure (* representing 0 psia, approximately 1 atm)

Find mean specific heat of liquid

\[
T = \frac{32 + 196}{2} = 144°F
\]

\[
C_{p1} = (.6811 - .308(.7365) + 114(.00815 - .000306(.7365)) \times (.055(11.8) + .35)
\]

Enthalpy of liquid:
For vapor:

\[
\frac{196 + 500}{2} = 348^\circ F
\]

\[
C_{pv}^* = \frac{(4 - .7365)}{6450} \times (348 + 670)(.12(11.3) - .41)
\]

Enthalpy of vapor

\[
.5181668(500 - 196) = 157.5 \text{ Btu/lb}
\]

Latent heat of vaporization

\[
H_{vap}^* = \frac{196 - 460}{95} \times (7.58 + 4.571(\log(196+460))
\]

\[
H_{vap}^* = 141.3 \text{ Btu/lb}
\]

Estimate T_c:

From fig. 4(1) for a molal average boiling point of 196°F and 60.6°API

\[
T_c = 510^\circ F
\]

Estimate P_c:

The slanting lines on the Cox chart, fig. 5(1), are the vapor pressure curves of the paraffin hydrocarbons having the number of carbon atoms indicated at the tops of the lines. Line FC is the critical temperature abscissa at 510°F. AB is the average boiling point line drawn through the atmospheric average boiling point A, at 196°F and the point of convergence of the pure hydrocarbon lines. Point D is located by measuring along line AB a distance equal to .2 times
the distance of \(AC \). Point \(E \) is the ASTM 10% point, 174°F. The critical temperature and pressure are represented by point \(F \), corresponding to a \(p_c \) of 530 psia.

\[
\frac{P}{p_c} = \frac{300}{530} = 0.5660377 = P_r
\]

\[
\Delta H/M = \frac{-4.4P_r}{T_r}
\]

\[
T = \frac{500 + 460}{510 + 460} = 0.9896907
\]

Calculate enthalpy departure:

\[
\Delta H = \frac{95(\Delta H)}{960} = -4.4(0.5660377) = \frac{95(-4.4)(0.5660377)}{960} = -25.3 \text{ Btu/lb}
\]

\[
H = 85.5 + 157.5 + 141.3 - 25.3 = 359.0 \text{ Btu/lb, referenced to liquid at 32°F}
\]

Referenced to 75°F

\[
T = \frac{32 + 75}{2} = 53.5°F
\]

\[
C_p = (0.6811 - 0.308(0.7365) + 53.35(0.000815 - 0.000306 \times 0.7365))
\]

enthalpy is 20.9 Btu/lb.

\[
H = 359.0 - 20.9 = 338.1 \text{ Btu/lb.}
\]
T-1913

1942 - Holcomb and Brown(2)

Only correlational plots for mixtures were presented, referenced to 32°F liquid.

Using the same mean average temperatures as before:

\[C_{pl}^* = 0.525 \quad \text{(fig. 1(2))} \]

\[H_{vap}^* = 141.3 \text{ Btu/lb} \quad \text{(Smith and Nelson)} \]

\[C_{pv}^* = 0.505 \quad \text{(fig. 7(2))} \]

Enthalpy of liquid

\[0.525(196-32) \]

Enthalpy of vapor

\[0.505(500-196) \]

Adding:

\[H^* = 380.9 \text{ Btu/lb} \]

Subtracting pressure correction term from figure 12(2):

\[H = 380.9 - 16.2 \]

To correct for a new reference of 75°F:

\[C_{pv} = 0.48 \]

\[H = 380.9 - 16.2 - 0.48(75-32) \]

\[H = 344.1 \text{ Btu/lb} \]
Fallon suggested first vaporizing the liquid at the reference temperature, 0 psia, integrating the C_{pv} equation, and then adding pressure effects.

$$
\lambda = \lambda_a \left(\frac{1 - T_r}{1 - T_{rb}} \right)^{38} \quad \text{(neglect change from vapor pressure to 1 atm.)}
$$

where:

- λ, λ_a are the heats of vaporization at the reference temperature and the normal boiling point respectively.

- T_r, T_{rb} are the corresponding reduced temperatures.

Using Nelson and Watson's critical properties and the heat of vaporization at one atm. from fig. 4(4), 145 Btu/lb:

$$
\lambda = 145 \times \left(\frac{1 - 75 + 460}{510 + 460} \right)^{38}
$$

$$
\lambda = 164.1 \text{ Btu/lb.}
$$

Calculate average temperature for C_{pv} equation:

$$
\frac{500 + 75}{2} = 288^\circ F
$$

$$
C_{pv} = (.0450(11.8) - .233) + (.44 + .0177(11.8)) \times (10)^{-3}(288) - .153(10^{-6})(288)^2
$$

Enthalpy of vapor:

$$
H^* = 164.1 + .4721813(500-75)
$$

$$
H^* = 364.3 \text{ Btu/lb}
$$
Using correction of Nelson and Watson's for pressure effects:

\[H = 339.5 \text{ Btu/lb}. \]

If the approach used by Smith and Nelson is employed, a different enthalpy results (the approach referred to is first calculating the enthalpy of the liquid to the boiling point, then adding the heat of vaporization, and finally adding the vapor enthalpy and pressure effects):

\[
C_{pl} = ((.355 + .128 \times 10^{-2} \text{API}) + (.503 \times .117 \times 10^{-2} \text{API}) 10^{-3} t) \\
\times (.05K + .41)
\]

\[t_{av} = 114 \]

\[H^*_1 = 71.6 \text{ Btu/lb} \]

\[H_{vap} = 145 \text{ Btu/lb} \]

\[
C_{pv} = (.045(11.8) - .233) + (.44 + .0177(11.8))(10^{-3})(348) \\
- .153(10^{-6})(348)^2
\]

where 348 is \(t_{av} \)°F.

\[H^*_v = (.5052744)(500-196) = 153.6 \text{ Btu/lb} \]

Adding (using Smith and Nelson's pressure correction enthalpy term):

\[H_{32} = 145 + 153.6 + 71.6 - 25.3 = 344.9 \]

Subtracting to account for change of reference:

\[344.9 - 18.7 = 326.2 \text{ Btu/lb} \]
1947 - Hougen and Watson (5)

Since the correlation presented was only for an isothermal pressure correction to enthalpy, this correction will be applied to Fallon's result:

Using Watson and Nelson's reduced properties:

From fig. 106 (5), enthalpy departure is

\[\frac{2 \text{ g-cal}}{\text{gmole-K}} \]

\[H = 364.8 - 20.2 \]

\[H = 344.6 \text{ Btu/lb} \]

Applied to Fallon's second result:

\[H = 331.3 \text{ Btu/lb} \]
T-1913

1953 - Bauer and Middleton(6)
From Nelson and Watson, ideal liquid enthalpy 85.5
Heat of vaporization, fig. 1(6) 145.
From Fallon, and Watson 153.6
From fig. 3(6), pressure correction -30. 354.1 Btu/lh
Change of reference from 32°F to 75°F -20.9 333.2 Btu/lb.

1961 - Johnson and Grayson(7)
Estimate critical properties:
From fig. 6(7) -
\[T_c \approx 970°F \]
\[P_c \approx 470 \text{ psia} \]
Calculate reduced properties:
\[T_r \approx 0.9896907 \]
\[P_r \approx 0.6382979 \]
From fig. 3(6):
Estimate ideal enthalpy of vapor (reference at -200°F, liquid) 475.
Change of reference to 75°F -125.
From the Pitzer tables, estimate \(\left(\frac{H^\circ - H}{RT_c} \right)^0 \) and \(\left(\frac{H^\circ - H}{RT_c} \right)^1 \):

by double interpolation for \(T_r \) and \(P_r \):

\[
\left(\frac{H^\circ - H}{RT_c} \right)^0 = 0.92
\]

\[
\left(\frac{H^\circ - H}{RT_c} \right)^1 = 1.38
\]

Estimate an acentric factor:

Use Edmister's approximation(15):

\[
3/7 \times \left(\frac{\log(470/14.7)}{970} - 1 \right) = 1.0 = 0.3473
\]

\[
\left(\frac{H^\circ - H}{RT_c} \right) = \left(\frac{H^\circ - H}{RT_c} \right)^0 + \omega \left(\frac{H^\circ - H}{RT_c} \right)^1 = 1.4
\]

\[
H^\circ - H = \frac{1.4}{96} (1.936) (970) = 28.1 \text{ Btu/lb.}
\]

Apply this correction to previous correlations.
1974 - Huang and Daubert (17)
Molecular Type Analysis, Vol. %

<table>
<thead>
<tr>
<th>Paraffin</th>
<th>Naphthene</th>
<th>Olefin</th>
<th>Aromatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2</td>
<td>58.2</td>
<td>0.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

50% BP is 196°F

Select the pseudocompounds:

<table>
<thead>
<tr>
<th>Compound</th>
<th>BP</th>
<th>MW</th>
<th>Sp.Gr.</th>
<th>T°</th>
<th>P°</th>
<th>acentric factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAFFIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-hexane</td>
<td>155.7</td>
<td>86.2</td>
<td>.6640</td>
<td>453.7</td>
<td>436.9</td>
<td>0.3498</td>
</tr>
<tr>
<td>n-heptane</td>
<td>209.2</td>
<td>100.2</td>
<td>.6882</td>
<td>512.8</td>
<td>396.8</td>
<td>0.2306</td>
</tr>
<tr>
<td>NAPHTHENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methylcyclo-</td>
<td>161.3</td>
<td>84.2</td>
<td>.7536</td>
<td>299.4</td>
<td>548.9</td>
<td>0.2709</td>
</tr>
<tr>
<td>pentane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethylcyclo-</td>
<td>218.2</td>
<td>98.2</td>
<td>.7710</td>
<td>565.5</td>
<td>492.8</td>
<td>0.2125</td>
</tr>
<tr>
<td>pentane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AROMATIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzene</td>
<td>176.2</td>
<td>78.1</td>
<td>.8844</td>
<td>552.2</td>
<td>710.4</td>
<td>0.2596</td>
</tr>
<tr>
<td>methylbenzene</td>
<td>231.1</td>
<td>92.1</td>
<td>.8718</td>
<td>605.5</td>
<td>595.9</td>
<td>0.2836</td>
</tr>
</tbody>
</table>

The weight fractions of n-pentane and n-heptane in the paraffin are obtained by solving

\[155.7X + 209.2Y = 196 \]
\[X + Y = 1 \]

Thus, \(X = 0.247 \), \(Y = 0.753 \). These are also considered to be equal to the volume fractions. Then the volume fractions of n-hexane and n-heptane in the whole system will be

\[X' = (0.362)(0.247) = 0.0892 \]
$X_v2 = (0.362)(0.753) = 0.2728$

Assuming the volume fractions equal the weight fractions:

compute the pseudomixture's properties by additive mixture rules

<table>
<thead>
<tr>
<th>MW</th>
<th>T_{pc}</th>
<th>P_{pc}</th>
<th>ω_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.6</td>
<td>526.4</td>
<td>484.2</td>
<td>0.2836</td>
</tr>
</tbody>
</table>

The ideal gas enthalpy for each pseudocompound at 500°F can be obtained from API 44 tables or calculated from polynomials. Then the ideal gas enthalpy for this mixture will be:

$$H^o_{mix} = \sum X_v H^o = 310.1 \text{ Btu/lb at 500°F}$$

Since $T_R = \frac{500 + 459.6}{526.4 + 459.6} = .97$, $P_R = \frac{300}{484.2} = .62$

From the Pitzer table,

$$\left(\frac{H^o - H}{RT_c}\right)^0 = 0.85 \quad \left(\frac{H^o - H}{RT_c}\right)^1 = 0.97$$

Therefore, calculate the overall enthalpy departure:

$$\left(\frac{H^o - H}{RT_c}\right) = 0.85 + (0.2836)(0.97) = 1.13$$

$$H^o - H = \left(\frac{H^o - H}{RT_c}\right) \frac{RT_c}{M} = 1.13(1.987)\frac{(526.4 + 459.6)}{93.80}$$

$$H^o - H = 23.7 \text{ Btu/lb}$$

The enthalpy at 500°F and 300 psia is $310.1 - 23.7 = 286.4 \text{ Btu/lb}$, which is based on 0°F and 0 psia. The enthalpy at 75°F saturated liquid having the same basis is -45.3 Btu/lb. Therefore, the enthalpy at 500°F and 300°F based on 75°F
saturated liquid will be

\[286.4 - (-45.3) = 331.7 \text{ Btu/lb} \]

The experimental value is 332.8 Btu/lb.
In appendix E, sample calculations for this method are performed by means of a computer program.

The value computed by the program was 339.3 Btu/lb.
APPENDIX B

Deviations of the correlations' calculated enthalpy values from experimental values are presented.
Comparison of Correlations for Smith and Watson, Holcomb and Brown, and Hougen and Watson

1) In the original 1933 article, the only example given was a naphtha (K 11.9) at 800°F and 1014.7 psia which agreed within 5 Btu/lb of the experimental value.

2) Nothing was given in terms of reliability in the original 1942 article of Holcomb and Brown or the corrected 1944 article.

3) No reliability was presented for the enthalpy departure correction term of Hougen and Watson.
Fallon and Watson Correlation Compared to Experimental Enthalpy

1) Comparison of Calculated and Observed Specific Heats and Enthalpies in the Liquid State, Btu/lb (4)

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>°API</th>
<th>K</th>
<th>t, °F</th>
<th>Exp.</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Oil</td>
<td>34.8</td>
<td>11.86</td>
<td>766</td>
<td>457</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>859</td>
<td>532</td>
</tr>
<tr>
<td>Vapor-phase furnace charge</td>
<td>25.3</td>
<td>11.0</td>
<td>751</td>
<td>408</td>
<td>411</td>
</tr>
<tr>
<td>Refractory gas oil</td>
<td>18.4</td>
<td>10.4?</td>
<td>825</td>
<td>446</td>
<td>445</td>
</tr>
<tr>
<td>Cross furnace charge</td>
<td>28.1</td>
<td>11.24</td>
<td>748</td>
<td>420</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>483</td>
<td>478</td>
</tr>
</tbody>
</table>

2) Comparison of Calculated and Observed Enthalpies in the Vapor State, Btu/lb (4)

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>°API</th>
<th>K</th>
<th>av. BP, °F</th>
<th>t, °F</th>
<th>Exp.</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphtha</td>
<td>58</td>
<td>11.9</td>
<td>250</td>
<td>438</td>
<td>344</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>949</td>
<td>705</td>
<td>685</td>
</tr>
<tr>
<td>Cross furnace charge</td>
<td>28.1</td>
<td>11.24</td>
<td>530</td>
<td>746</td>
<td>516</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>863</td>
<td>596</td>
<td>584</td>
</tr>
</tbody>
</table>
T-1913

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>°API</th>
<th>K</th>
<th>av. BP, °F</th>
<th>t, °F</th>
<th>Exp.</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory gas oil</td>
<td>16.4</td>
<td>10.4</td>
<td>490</td>
<td>826</td>
<td>550</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>15.3</td>
<td>10.3</td>
<td>505</td>
<td>738</td>
<td>471</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1003</td>
<td>607</td>
</tr>
<tr>
<td>Vapor-phase furnace charge</td>
<td>25.3</td>
<td>11.0</td>
<td>510</td>
<td>750</td>
<td>506</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>951</td>
<td>661</td>
</tr>
<tr>
<td>Gas oil</td>
<td>34.8</td>
<td>11.86</td>
<td>570</td>
<td>749</td>
<td>522</td>
<td>516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>958</td>
<td>671</td>
</tr>
</tbody>
</table>

Comparison of ideal gas state heat capacities (12)

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th># of pts</th>
<th>Temp., °F</th>
<th>% Deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
<td>Max.</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>7</td>
<td>0-1200</td>
<td>2.5</td>
</tr>
<tr>
<td>n-Decane</td>
<td>7</td>
<td>0-1200</td>
<td>2.7</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>7</td>
<td>0-1200</td>
<td>4.5</td>
</tr>
<tr>
<td>n-Eicosane</td>
<td>7</td>
<td>0-1200</td>
<td>6.3</td>
</tr>
<tr>
<td>I-Decene</td>
<td>7</td>
<td>0-1200</td>
<td>4.5</td>
</tr>
<tr>
<td>I-Eicocene</td>
<td>7</td>
<td>0-1200</td>
<td>7.3</td>
</tr>
<tr>
<td>Benzene</td>
<td>7</td>
<td>0-1200</td>
<td>8.7</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>7</td>
<td>0-1200</td>
<td>6.5</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>7</td>
<td>0-1200</td>
<td>8.0</td>
</tr>
<tr>
<td>n-Heptylbenzene</td>
<td>7</td>
<td>0-1200</td>
<td>5.6</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>7</td>
<td>0-1200</td>
<td>5.5</td>
</tr>
<tr>
<td>Ethylcyclohexane</td>
<td>7</td>
<td>0-1200</td>
<td>5.2</td>
</tr>
<tr>
<td>n-Decylcyclohexane</td>
<td>7</td>
<td>0-1200</td>
<td>1.3</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>18</td>
<td>320-660</td>
<td>6.9</td>
</tr>
</tbody>
</table>

66
<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th># of pts</th>
<th>Temp., °F</th>
<th>% Deviations</th>
<th>Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Octane</td>
<td>10</td>
<td>400-580</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>12</td>
<td>420-640</td>
<td>5.0</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>trans-Decalin</td>
<td>7</td>
<td>480-600</td>
<td>2.4</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>Calif. naphtha</td>
<td>14</td>
<td>320-580</td>
<td>2.9</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Alaska naphtha</td>
<td>9</td>
<td>440-600</td>
<td>2.7</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Jet naphtha</td>
<td>9</td>
<td>420-580</td>
<td>5.2</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Aromatic naphtha</td>
<td>5</td>
<td>420-500</td>
<td>2.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Low-boiling naphtha</td>
<td>8</td>
<td>480-620</td>
<td>1.7</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>High-boiling</td>
<td>4</td>
<td>500-560</td>
<td>3.5</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Kerosine</td>
<td>5</td>
<td>500-580</td>
<td>4.9</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>Naphtha C</td>
<td>13</td>
<td>413-893</td>
<td>1.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Refined oil</td>
<td>19</td>
<td>560-920</td>
<td>1.0</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Gas Oil</td>
<td>8</td>
<td>675-815</td>
<td>3.3</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Ref. gas oil</td>
<td>12</td>
<td>758-978</td>
<td>11.9</td>
<td>18.1</td>
<td></td>
</tr>
</tbody>
</table>
Reliability of Bauer and Middleton(6)

LIQUIDS

Liquid enthalpies read from figure 3(6) reproduce the experimental data corrected to the same datum with an average deviation of about 3%, except within 50°F of the pseudocritical temperature. Lines of constant API gravity are terminated at the corresponding pseudo-critical temperature for fractions with ASTM distillation slopes of 1.5 and K of 11.8. Deviations for these fractions may exceed 10% within 50°F of Tc. As the K varies from 11.8 and the distillation slope increases above 2.0, the liquid enthalpies read from the curves decreases greatly in the critical region.

VAPOR ENTHALPIES AT 1 ATM.

When corrected to the same datum, the average deviation is ±10 Btu/lb. for petroleum fractions. For ten normal hydrocarbons, the average deviation is ±5 Btu/lb. Figure 3(6) does not give reliable values for isomers of normal paraffins lighter than octane. Better values for these isomers result if the API gravity of the corresponding normal paraffin is used instead of that of the isomer because the vapor specific heats of normal and isomeric paraffins are nearly the same for the same molecular weights, while their densities differ. Since data obtained from straight-run Mid-Continent type fractions predominate among the data available for developing figure 3(6), the correlation gives
T-1913

the most reliable results for that type of hydrocarbon mixture and the greatest deviation for highly aromatic fractions.

The correlation for vapor enthalpy at 1 atm applies within the deviations above for the following ranges of °API gravity:

<table>
<thead>
<tr>
<th>K</th>
<th>°API</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10-40</td>
</tr>
<tr>
<td>11</td>
<td>15-60</td>
</tr>
<tr>
<td>11.8</td>
<td>25-80</td>
</tr>
<tr>
<td>12.5</td>
<td>50-88</td>
</tr>
<tr>
<td>13</td>
<td>82-95</td>
</tr>
</tbody>
</table>
Average deviation between experimental and calculated enthalpy for Johnson-Grayson correlation (see Pitzer comparison for fractions' properties) (8)

<table>
<thead>
<tr>
<th>PETROLEUM FRACTION</th>
<th># of pts.</th>
<th>Phase</th>
<th>Average deviation, Btu/lb.</th>
<th>H(calc)-H(exptl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaskan naphtha</td>
<td>54</td>
<td>Liquid</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Vapor</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Critical</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Aromatic naphtha</td>
<td>50</td>
<td>Liquid</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>Vapor</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Critical</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Jet naphtha</td>
<td>70</td>
<td>Liquid</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Vapor</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Low-boiling naphtha</td>
<td>50</td>
<td>Liquid</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>Vapor</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>Critical</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>High-boiling naphtha</td>
<td>65</td>
<td>Liquid</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Vapor</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Critical</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>California kerosine</td>
<td>48</td>
<td>Liquid</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Vapor</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fuel oil</td>
<td>39</td>
<td>Liquid</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Vapor</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PETROLEUM FRACTION</td>
<td># of pts.</td>
<td>Phase</td>
<td>H(calc) - H(exptl)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gas oil</td>
<td>72</td>
<td>Liquid</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Vapor</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Averages</td>
<td>448</td>
<td>Liquid</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>307</td>
<td>Vapor</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>Critical</td>
<td>12.1</td>
<td></td>
</tr>
</tbody>
</table>
Results of the Johnson-Grayson Correlation for Liquid Enthalpy (17)

<table>
<thead>
<tr>
<th>PETROLEUM FRACTIONS</th>
<th># of pts</th>
<th>Max</th>
<th>Avg</th>
<th>Bias</th>
<th>RMS</th>
<th>>10 Btu/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Alaska naphtha</td>
<td>29</td>
<td>11.7</td>
<td>6.0</td>
<td>6.0</td>
<td>6.4</td>
<td>1</td>
</tr>
<tr>
<td>3. Aromatic naphtha</td>
<td>54</td>
<td>24.6</td>
<td>9.1</td>
<td>9.1</td>
<td>10.8</td>
<td>19</td>
</tr>
<tr>
<td>4. Jet naphtha</td>
<td>39</td>
<td>14.7</td>
<td>6.4</td>
<td>6.4</td>
<td>7.4</td>
<td>8</td>
</tr>
<tr>
<td>5. Low-boiling naphtha</td>
<td>30</td>
<td>20.4</td>
<td>9.4</td>
<td>9.4</td>
<td>10.2</td>
<td>11</td>
</tr>
<tr>
<td>6. High-boiling naphtha</td>
<td>58</td>
<td>19.6</td>
<td>10.6</td>
<td>10.6</td>
<td>11.3</td>
<td>28</td>
</tr>
<tr>
<td>7. Kerosene</td>
<td>90</td>
<td>7.3</td>
<td>3.4</td>
<td>3.4</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>8. Fuel oil</td>
<td>79</td>
<td>-18.0</td>
<td>2.2</td>
<td>1.6</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>9. Gas oil</td>
<td>73</td>
<td>4.4</td>
<td>1.2</td>
<td>0.4</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>551</td>
<td>24.6</td>
<td>6.0</td>
<td>5.8</td>
<td>7.7</td>
<td>107</td>
</tr>
</tbody>
</table>

Errors in Btu/lb.
Results of the Johnson-Grayson Correlation for Vapor Enthalpy(17)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. California naphtha</td>
<td>138</td>
<td>25.8</td>
<td>11.5</td>
<td>11.4</td>
<td>13.1</td>
<td>60</td>
</tr>
<tr>
<td>2. Alaska naphtha</td>
<td>21</td>
<td>11.8</td>
<td>6.3</td>
<td>6.0</td>
<td>6.6</td>
<td>1</td>
</tr>
<tr>
<td>3. Aromatic naphtha</td>
<td>6</td>
<td>7.0</td>
<td>5.5</td>
<td>5.5</td>
<td>5.6</td>
<td>0</td>
</tr>
<tr>
<td>4. Jet naphtha</td>
<td>28</td>
<td>11.7</td>
<td>8.5</td>
<td>8.5</td>
<td>8.8</td>
<td>7</td>
</tr>
<tr>
<td>5. Low-boiling naphtha</td>
<td>89</td>
<td>33.2</td>
<td>10.5</td>
<td>10.5</td>
<td>14.4</td>
<td>30</td>
</tr>
<tr>
<td>6. High-boiling naphtha</td>
<td>31</td>
<td>11.8</td>
<td>5.5</td>
<td>5.5</td>
<td>5.6</td>
<td>1</td>
</tr>
<tr>
<td>7. Kerosene</td>
<td>19</td>
<td>9.5</td>
<td>5.6</td>
<td>5.6</td>
<td>5.9</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>332</td>
<td>33.2</td>
<td>9.6</td>
<td>9.6</td>
<td>11.9</td>
<td>99</td>
</tr>
</tbody>
</table>
Comparison of Pitzer 3-Parameter Corresponding States Correlation Using Fallon and Watson Ideal Gas Enthalpy (8)

Properties of hydrocarbon fractions

<table>
<thead>
<tr>
<th>Property</th>
<th>Alaskan naphtha</th>
<th>Jet naphtha</th>
<th>Aromatic naphtha</th>
<th>Low-boiling naphtha</th>
<th>High-boiling naphtha</th>
</tr>
</thead>
<tbody>
<tr>
<td>API grav.</td>
<td>50.5</td>
<td>44.4</td>
<td>34.5</td>
<td>59.9</td>
<td>54.2</td>
</tr>
<tr>
<td>VABP, °F</td>
<td>283.0</td>
<td>321.6</td>
<td>254.8</td>
<td>266.6</td>
<td>317.6</td>
</tr>
<tr>
<td>ASTM D-86</td>
<td>0.29</td>
<td>0.46</td>
<td>1.31</td>
<td>2.40</td>
<td>0.99</td>
</tr>
</tbody>
</table>

10-90 slope

K

PETROLEUM FRACTION # of pts. Phase Average deviation, Btu/lb.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaskan naphtha</td>
<td>54</td>
<td>Liquid</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Vapor</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Critical</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic naphtha</td>
<td>50</td>
<td>Liquid</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>Vapor</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Critical</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet naphtha</td>
<td>70</td>
<td>Liquid</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Vapor</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-boiling naphtha</td>
<td>50</td>
<td>Liquid</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>Vapor</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>Critical</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-boiling naphtha</td>
<td>65</td>
<td>Liquid</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETROLEUM FRACTION</td>
<td># of pts</td>
<td>Phase</td>
<td>Average deviation, Btu/lb.*</td>
<td>H(calc)-H(exptl)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>High-boiling naphtha</td>
<td>47</td>
<td>Vapor</td>
<td>3.6</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Critical</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California kerosine</td>
<td>48</td>
<td>Liquid</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Vapor</td>
<td>3.1</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel oil</td>
<td>39</td>
<td>Liquid</td>
<td>3.2</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Vapor</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas oil</td>
<td>72</td>
<td>Liquid</td>
<td>2.6</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Vapor</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Critical</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Averages</td>
<td>448</td>
<td>Liquid</td>
<td>3.1</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>307</td>
<td>Vapor</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>Critical</td>
<td>11.2</td>
<td>11.2</td>
<td></td>
</tr>
</tbody>
</table>
Results of the Pseudocompound Correlation for Liquid Enthalpy Using Simple Composition - Huang and Daubert (17)

<table>
<thead>
<tr>
<th>PETROLEUM FRACTION</th>
<th># of pts.</th>
<th>Max.</th>
<th>Avg.</th>
<th>Bias</th>
<th>RMS</th>
<th>> 10 Btu/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. California naphtha</td>
<td>127</td>
<td>10.1</td>
<td>3.3</td>
<td>-1.1</td>
<td>3.7</td>
<td>1</td>
</tr>
<tr>
<td>2. Alaska naphtha</td>
<td>77</td>
<td>11.1</td>
<td>4.0</td>
<td>-2.7</td>
<td>4.4</td>
<td>3</td>
</tr>
<tr>
<td>3. Aromatic naphtha</td>
<td>89</td>
<td>4.4</td>
<td>2.1</td>
<td>-1.9</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>4. Jet naphtha</td>
<td>40</td>
<td>-4.5</td>
<td>1.8</td>
<td>-1.7</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>5. Low-boiling naphtha</td>
<td>73</td>
<td>-23.7</td>
<td>3.1</td>
<td>-1.5</td>
<td>4.3</td>
<td>1</td>
</tr>
<tr>
<td>6. High-boiling naphtha</td>
<td>53</td>
<td>-6.0</td>
<td>2.6</td>
<td>-2.6</td>
<td>2.9</td>
<td>0</td>
</tr>
<tr>
<td>7. Kerosene</td>
<td>85</td>
<td>-4.5</td>
<td>1.8</td>
<td>-1.7</td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>8. Fuel oil</td>
<td>64</td>
<td>5.1</td>
<td>2.1</td>
<td>1.1</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>9. Gas oil</td>
<td>25</td>
<td>3.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>633</td>
<td>-23.7</td>
<td>2.6</td>
<td>-1.3</td>
<td>3.2</td>
<td>5</td>
</tr>
</tbody>
</table>

Error = Calculated enthalpy - actual enthalpy, Btu/lb

Avg. = $\frac{\sum|\text{Error}|}{N}$

Bias = $\frac{\sum\text{Error}}{N}$

RMS = $(\frac{\sum(\text{Error})^2}{N})^{\frac{1}{2}}$

$N = \# \text{ of points}$
Results of the Pseudocompound Correlation for Vapor Enthalpy Using Simple Composition - Huang and Daubert(17)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. California naphtha</td>
<td>137</td>
<td>-12.6</td>
<td>3.1</td>
<td>-0.3</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>2. Alaska naphtha</td>
<td>21</td>
<td>-12.2</td>
<td>1.6</td>
<td>-0.7</td>
<td>3.0</td>
<td>1</td>
</tr>
<tr>
<td>3. Aromatic naphtha</td>
<td>6</td>
<td>-2.0</td>
<td>1.1</td>
<td>-0.9</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>4. Jet naphtha</td>
<td>28</td>
<td>4.2</td>
<td>2.0</td>
<td>1.4</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>5. Low-boiling naphtha</td>
<td>89</td>
<td>-12.1</td>
<td>2.7</td>
<td>-1.7</td>
<td>3.7</td>
<td>3</td>
</tr>
<tr>
<td>6. High-boiling naphtha</td>
<td>31</td>
<td>5.7</td>
<td>1.9</td>
<td>1.4</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>7. Kerosene</td>
<td>19</td>
<td>9.0</td>
<td>5.6</td>
<td>5.6</td>
<td>5.9</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>331</td>
<td>-12.6</td>
<td>2.8</td>
<td>-0.1</td>
<td>3.7</td>
<td>8</td>
</tr>
</tbody>
</table>
Deviation of Kesler and Lee Correlation for Ideal Gas State Heat Capacities (12)

1) Using equation (43) in appendix E

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th># of pts.</th>
<th>Temp., °F</th>
<th>% deviations</th>
<th>Avg.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>7</td>
<td>0-1200</td>
<td>1.3</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>n-Decane</td>
<td>7</td>
<td>0-1200</td>
<td>1.5</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>7</td>
<td>0-1200</td>
<td>3.5</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>n-Eicosane</td>
<td>7</td>
<td>0-1200</td>
<td>5.1</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>I-Decene</td>
<td>7</td>
<td>0-1200</td>
<td>3.6</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>I-Eicocene</td>
<td>7</td>
<td>0-1200</td>
<td>6.2</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>7</td>
<td>0-1200</td>
<td>1.8</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>7</td>
<td>0-1200</td>
<td>2.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>m-Xylene</td>
<td>7</td>
<td>0-1200</td>
<td>3.9</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>n-Heptylbenzene</td>
<td>7</td>
<td>0-1200</td>
<td>4.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>7</td>
<td>0-1200</td>
<td>6.5</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Ethylcyclohexane</td>
<td>7</td>
<td>0-1200</td>
<td>4.2</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>n-Decyclohexane</td>
<td>7</td>
<td>0-1200</td>
<td>1.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>18</td>
<td>320-660</td>
<td>5.1</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>n-Octane</td>
<td>10</td>
<td>400-580</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>12</td>
<td>420-640</td>
<td>3.9</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>trans-Decalin</td>
<td>7</td>
<td>480-600</td>
<td>2.2</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Calif. naphtha</td>
<td>14</td>
<td>320-580</td>
<td>1.1</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Alaska naphtha</td>
<td>9</td>
<td>440-600</td>
<td>1.9</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Jet naphtha</td>
<td>9</td>
<td>420-580</td>
<td>3.8</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>SUBSTANCE</td>
<td># of pts.</td>
<td>Temp., °F</td>
<td>% deviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Aromatic naphtha</td>
<td>5</td>
<td>420-500</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Low-boiling naphtha</td>
<td>8</td>
<td>480-620</td>
<td>1.2</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>High-boiling naphtha</td>
<td>4</td>
<td>500-560</td>
<td>3.6</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Kerosine</td>
<td>5</td>
<td>500-580</td>
<td>3.7</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Naphtha C</td>
<td>13</td>
<td>413-893</td>
<td>2.0</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Refined oil</td>
<td>19</td>
<td>560-920</td>
<td>1.4</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Gas oil</td>
<td>8</td>
<td>675-815</td>
<td>2.9</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Ref. gas oil</td>
<td>12</td>
<td>758-978</td>
<td>7.2</td>
<td>10.1</td>
<td></td>
</tr>
</tbody>
</table>

2) Using equation (42) in appendix E

Note: over a temperature range from 0-1200 °F with 200 °F interval

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>% deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>1.3</td>
</tr>
<tr>
<td>n-Octane</td>
<td>1.8</td>
</tr>
<tr>
<td>n-Decane</td>
<td>1.4</td>
</tr>
<tr>
<td>n-Tridécane</td>
<td>0.2</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>1.1</td>
</tr>
<tr>
<td>n-Eicosane</td>
<td>2.7</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>3.1</td>
</tr>
<tr>
<td>1-Octene</td>
<td>1.2</td>
</tr>
<tr>
<td>1-Decene</td>
<td>0.7</td>
</tr>
<tr>
<td>1-Tridecene</td>
<td>1.3</td>
</tr>
<tr>
<td>1-Hexadecene</td>
<td>2.4</td>
</tr>
<tr>
<td>1-Eicosene</td>
<td>3.8</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.1</td>
</tr>
<tr>
<td>SUBSTANCE</td>
<td>% deviations</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Avg.</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.1</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.8</td>
</tr>
<tr>
<td>M-Xylene</td>
<td>1.9</td>
</tr>
<tr>
<td>n-Heptylbenzene</td>
<td>0.8</td>
</tr>
<tr>
<td>n-Tetradecylbenzene</td>
<td>3.6</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>0.7</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>0.7</td>
</tr>
<tr>
<td>Ethylcyclohexane</td>
<td>2.4</td>
</tr>
<tr>
<td>1,1-Dimethylcyclohexane</td>
<td>1.4</td>
</tr>
<tr>
<td>n-Decylcyclohexane</td>
<td>2.8</td>
</tr>
<tr>
<td>n-Hexadecylcyclohexane</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Deviations of calculated enthalpies from literature data
for Kesler-Lee

<table>
<thead>
<tr>
<th>PETROLEUM FRACTION</th>
<th># of pts</th>
<th>t°F</th>
<th>p, psia</th>
<th>Avg.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calif. naphtha</td>
<td>64</td>
<td>300-600</td>
<td>0-500</td>
<td>3.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Alaska</td>
<td>56</td>
<td>420-620</td>
<td>0-400</td>
<td>1.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Jet</td>
<td>44</td>
<td>389-600</td>
<td>0-200</td>
<td>2.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Aromatic</td>
<td>37</td>
<td>324-600</td>
<td>0-300</td>
<td>2.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Low-boiling</td>
<td>47</td>
<td>368-640</td>
<td>0-400</td>
<td>0.9</td>
<td>1.9</td>
</tr>
<tr>
<td>High-boiling</td>
<td>25</td>
<td>390-600</td>
<td>0-200</td>
<td>2.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Kerosine</td>
<td>22</td>
<td>480-600</td>
<td>0-50</td>
<td>4.2</td>
<td>6.4</td>
</tr>
<tr>
<td>VAPOR TOTAL</td>
<td>295</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calif. naphtha</td>
<td>36</td>
<td>120-600</td>
<td>100-1400</td>
<td>3.4</td>
<td>7.0</td>
</tr>
<tr>
<td>Alaska</td>
<td>54</td>
<td>75-626</td>
<td>30-1400</td>
<td>2.4</td>
<td>10.2</td>
</tr>
<tr>
<td>Jet</td>
<td>32</td>
<td>75-600</td>
<td>30-1400</td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Aromatic</td>
<td>45</td>
<td>75-600</td>
<td>20-1400</td>
<td>1.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Low-boiling</td>
<td>33</td>
<td>75-600</td>
<td>30-1000</td>
<td>3.1</td>
<td>4.8</td>
</tr>
<tr>
<td>High-boiling</td>
<td>33</td>
<td>75-600</td>
<td>30-1400</td>
<td>3.2</td>
<td>5.7</td>
</tr>
<tr>
<td>Kerosine</td>
<td>24</td>
<td>75-600</td>
<td>20-1400</td>
<td>0.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>24</td>
<td>75-600</td>
<td>20-1400</td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Gas oil</td>
<td>39</td>
<td>75-600</td>
<td>40-1400</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>LIQUID TOTAL</td>
<td>320</td>
<td></td>
<td></td>
<td>1.91</td>
<td>10.2</td>
</tr>
</tbody>
</table>
APPENDIX C

The Lenoir Data Set used for the comparison for deviation of the calculated enthalpy from experimental enthalpy is presented. This Data Set was used for the pseudocompound and Johnson-Grayson correlations' deviations.(17)
The Lenoir Data Set for Enthalpies of Petroleum Fractions

Used for Pseudocompound and Johnson-Grayson Correlations

<table>
<thead>
<tr>
<th>PETROLEUM FRACTIONS</th>
<th>Range of Conditions</th>
<th># of pts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. California naphtha</td>
<td>120-600 25-1400</td>
<td>128(L), 138(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70(T)</td>
</tr>
<tr>
<td>2. Alaska naphtha</td>
<td>275-625 30-1400</td>
<td>85(L), 21(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43(T)</td>
</tr>
<tr>
<td>3. Aromatic naphtha</td>
<td>160-600 30-1400</td>
<td>89(L), 6(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24(T)</td>
</tr>
<tr>
<td>4. Jet naphtha</td>
<td>155-600 20-1400</td>
<td>46(L), 28(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32(T)</td>
</tr>
<tr>
<td>5. Low-boiling naphtha</td>
<td>270-645 30-1400</td>
<td>77(L), 89(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57(T)</td>
</tr>
<tr>
<td>6. High-boiling naphtha</td>
<td>220-645 30-1400</td>
<td>62(L), 31(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39(T)</td>
</tr>
<tr>
<td>7. Kerosene</td>
<td>300-605 30-1400</td>
<td>90(L), 19(V),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8(T)</td>
</tr>
<tr>
<td>8. Fuel oil</td>
<td>300-600 20-1400</td>
<td>79(L), 4(T)</td>
</tr>
<tr>
<td>9. Gas oil</td>
<td>75-600 40-1400</td>
<td>73(L)</td>
</tr>
</tbody>
</table>

L = Liquid
V = Vapor
T = Two-phase region
The Lenoir Data Set for Enthalpies of Petroleum Fractions Used for Pseudocompound and Johnson-Grayson Correlations

<table>
<thead>
<tr>
<th>PETROLEUM FRACTIONS</th>
<th>ASTM Distillation, D-86, °F</th>
<th>Sp. gr.</th>
<th>°API</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. California naphtha</td>
<td>174 184 196 210 231</td>
<td>0.7365</td>
<td>60.6</td>
</tr>
<tr>
<td>2. Alaska naphtha</td>
<td>272 278 282 288 295</td>
<td>0.7774</td>
<td>50.5</td>
</tr>
<tr>
<td>3. Aromatic naphtha</td>
<td>206 230 252 275 311</td>
<td>0.8520</td>
<td>34.5</td>
</tr>
<tr>
<td>4. Jet naphtha</td>
<td>304 313 321 329 341</td>
<td>0.8046</td>
<td>44.4</td>
</tr>
<tr>
<td>5. Low-boiling naphtha</td>
<td>172 226 260 311 364</td>
<td>0.7395</td>
<td>59.8</td>
</tr>
<tr>
<td>6. High-boiling naphtha</td>
<td>271 310 322 335 350</td>
<td>0.7624</td>
<td>54.2</td>
</tr>
<tr>
<td>7. Kerosene</td>
<td>350 380 404 433 469</td>
<td>0.8083</td>
<td>43.5</td>
</tr>
<tr>
<td>8. Fuel oil</td>
<td>490 526 547 569 604</td>
<td>0.8616</td>
<td>33.0</td>
</tr>
<tr>
<td>9. Gas oil</td>
<td>503 518 535 553 585</td>
<td>0.8475</td>
<td>35.3</td>
</tr>
</tbody>
</table>
The Lenoir Data Set, contd.

<table>
<thead>
<tr>
<th>K</th>
<th>M.W.</th>
<th>T_o, °F</th>
<th>P_o, psia</th>
<th>Paraffin</th>
<th>Naphthene</th>
<th>Olefin</th>
<th>Aromatic</th>
<th>S Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>11.94</td>
<td>102.4</td>
<td>536.7</td>
<td>532</td>
<td>36.2</td>
<td>58.2</td>
<td>0.0</td>
<td>5.6</td>
</tr>
<tr>
<td>2.</td>
<td>11.63</td>
<td>131</td>
<td>526.5</td>
<td>414.7</td>
<td>39.7</td>
<td>39.6</td>
<td>0.0</td>
<td>20.5</td>
</tr>
<tr>
<td>3.</td>
<td>10.5</td>
<td>126</td>
<td>626</td>
<td>709</td>
<td>0.0</td>
<td>0.0</td>
<td>16.9</td>
<td>83.1</td>
</tr>
<tr>
<td>4.</td>
<td>11.48</td>
<td>144</td>
<td>665</td>
<td>440</td>
<td>18.6</td>
<td>69.8</td>
<td>0.0</td>
<td>10.6</td>
</tr>
<tr>
<td>5.</td>
<td>12.1</td>
<td>120</td>
<td>605</td>
<td>463</td>
<td>61.9</td>
<td>30.6</td>
<td>0.0</td>
<td>7.6</td>
</tr>
<tr>
<td>6.</td>
<td>12.1</td>
<td>142.4</td>
<td>646</td>
<td>371</td>
<td>59.3</td>
<td>30.3</td>
<td>0.0</td>
<td>9.9</td>
</tr>
<tr>
<td>7.</td>
<td>11.8</td>
<td>162.3</td>
<td>739</td>
<td>361</td>
<td>30.9</td>
<td>64.3</td>
<td>0.0</td>
<td>4.8</td>
</tr>
<tr>
<td>8.</td>
<td>11.8</td>
<td>227.5</td>
<td>879</td>
<td>290</td>
<td>29.3</td>
<td>45.6</td>
<td>0.0</td>
<td>22.4</td>
</tr>
<tr>
<td>9.</td>
<td>11.8</td>
<td>214</td>
<td>868</td>
<td>280</td>
<td>38.8</td>
<td>41.5</td>
<td>0.0</td>
<td>17.2</td>
</tr>
</tbody>
</table>
APPENDIX D

This appendix contains results from an analysis of a synthoil from West Virginia coal from an ERDA installation in Bartlesville Energy Research Center. (18)
Comparison of distillates of similar boiling ranges from three syncrudes on a weight-percent of distillate basis

<table>
<thead>
<tr>
<th></th>
<th>W.Va. 207°-363°</th>
<th>W.Ky. 205°-380°</th>
<th>Utah 204°-381°</th>
<th>W.Va. 363°</th>
<th>W.Ky. 380°</th>
<th>Utah 381°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturates</td>
<td>16.0</td>
<td>25.0</td>
<td>27.8</td>
<td>9.7</td>
<td>23.8</td>
<td>25.3</td>
</tr>
<tr>
<td>Monoaromatics</td>
<td>27.8</td>
<td>42.0</td>
<td>25.1</td>
<td>4.7</td>
<td>25.1</td>
<td>14.4</td>
</tr>
<tr>
<td>Diaromatics</td>
<td>21.6</td>
<td>13.0</td>
<td>17.5</td>
<td>22.6</td>
<td>24.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Polyaromatics</td>
<td>7.9</td>
<td>5.4</td>
<td>7.1</td>
<td>41.1</td>
<td>20.0</td>
<td>25.1</td>
</tr>
<tr>
<td>Heteroaromatics</td>
<td>22.2</td>
<td>4.4</td>
<td>15.2</td>
<td>15.6</td>
<td>4.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Distillate weight-% of syncrude</td>
<td>42.6</td>
<td>54.2</td>
<td>45.4</td>
<td>27.3</td>
<td>24.2</td>
<td>40.3</td>
</tr>
</tbody>
</table>

Note: Temperature in degrees centigrade.
APPENDIX E

The program based on Kesler and Lee's correlation (11), (12) is presented. A sample calculation is performed on the California naphtha correlated in appendix A.
Equations Used by Kesler and Lee: (11), (12)

Physical properties:

\[T_c = 341.7 + 811 \times \text{SG} + (0.4244 + 0.1174 \times \text{SG}) T_b + (0.4669 - 3.2623 \times \text{SG}) \times 10^5/T_b \]
\[\ln P_c = 8.3634 - 0.0566/\text{SG} - (0.24244 - 0.1174 \times \text{SG}^2) \times 10^7/T_b \]
\[10^{-3} T_b + (1.4685 + 3.648/\text{SG} + 0.47227/\text{SG}^2) \times 10^{-7} T_b^2 - (0.42019 + 1.6977/\text{SG}^2) \times 10^{-10} T_b^3 \]
\[m = -12272.6 + 9486.4 \times \text{SG} + (4.6523 - 3.3287 \times \text{SG}) T_b + (1 - 0.77084 \times \text{SG} - 0.02058/\text{SG}^2) \times (1.3437 - 720.79/T_b) \times 10^7/T_b + (1 - 0.80882 \times \text{SG} + 0.02226/\text{SG}^2) \times (1.9828 - 181.98/T_b) \times 10^{12}/T_b^3 \]
\[\omega = -7.904 + 0.1352 \times K - 0.007465 \times K^2 + 8.359 \times T_{br} + (1.408 - 0.01063 \times K)/T_{br} \] (for \(T_{br} > 0.9 \))
\[\omega = \ln P_{w} - 5.92714 + 6.09648/\text{Tr} + 1.28862 \times \ln T_{br} - 0.169347 \times T_{br}^6 \]
\[\frac{15.2513 - 15.6975/T_{br} - 13.4721 \times \ln T_{br} + 0.43577 \times T_{br}^6}{15} \]
If this acentric factor is used:

the specific heat capacity of ideal gas is

\[C_{pv}^* = -0.33886 + 0.02827 \times K - (0.9291 - 1.1543 \times K + 0.0368 \times K^2) \times 10^{-4} T - 1.6568 \times 10^{-7} T^2 - CF(0.26105 - 0.59332 \omega - (4.56 - 9.48 \omega) \times 10^{-4} T - (0.536 - 0.6828 \omega) \times 10^{-7} T^2) \] (41)

Where \(CF \) is \((12.9 - K)(10 - K)/(10 - \omega))^2\) (42)

If \(T_{br} > 0.9 \):

\[C_{pv}^* = -0.32646 + 0.02643 \times K - (1.3892 - 1.2122 \times K + 0.03803 \times K^2) \times 10^{-4} T - 1.5393 \times 10^{-7} T^2 - CF(0.084773 - 0.080809 \times \text{SG} - (2.1773 - 2.0826 \times \text{SG})\times 10^{-4} T + (0.78649 - 0.70423 \times \text{SG}) \times 10^{-7} T^2) \] (43)
where CF is \((12.9/K-1)(10/K-1)*100)^2\) \(\text{(44)}\)

\[C_{pl}^* = (0.35 + 0.055*K)(0.6811 - 0.308*SG + (0.000815 + 0.000306*SG)t)\] \(\text{(45)}\)

where:

the enthalpy departure is calculated by:

\[
Z = \frac{P_r}{T_r}V_r - 1 + \frac{E}{V_r} + \frac{C}{V_r^2} + \frac{D}{V_r^5} + \frac{C}{T_r^2} (\frac{\gamma}{V_r^2 + \theta}) \exp \left(- \frac{\gamma}{V_r^2}\right) \tag{46}
\]

where \(B = b_1 - \frac{b_2}{T_r} - \frac{b_3}{T_r} - \frac{b_4}{T_r}^3\) \(\text{(47)}\)

\(C = c_1 - \frac{c_2}{T_r} + \frac{c_3}{T_r}^3\) \(\text{(48)}\)

\(D = d_1 + \frac{d_2}{T_r}\) \(\text{(49)}\)

Enthalpy departure:

\[
\frac{H - H^0}{RT} = T_r \left(Z - 1 - \frac{b_2}{T_r} + \frac{2b_2}{T_r} + \frac{3b_4}{T_r^2} - \frac{c_2}{T_r^2} - \frac{3c_2}{T_r^2} \right)
\]

\[
+ \frac{d_2}{5T_r^2} + 3E \right) \tag{50}
\]

where \(E = \frac{C}{2T_r^2} \left(\beta + 1 - (\beta + 1 + \frac{\gamma}{V_r^2}) \exp \left(- \frac{\gamma}{V_r^2}\right)\right) \tag{51}\)

\[
\frac{H - H^0}{RT} = \left((H - H^0)/RT\right)^0 + \omega \left((H - H^0)/RT\right)^r - \left((H - H^0)/RT\right)^0 \tag{52}\]

\(r\) represents reference fluid

\(0\) represents simple fluid

Steps in program:

1) Determine \(V_r\) and \(Z^0\) for the simple fluid at the \(T_r\) and \(P_r\). Calculate \(\frac{H - H^0}{RT}\) for the simple fluid.

2) Repeat the previous step, except for the reference fluid.

3) Determine the overall enthalpy departure term for
isothermal pressure effects.

4) Calculate ideal gas enthalpy.

5) Add isothermal pressure enthalpy departure term to find enthalpy.

See the flow diagram on the next page.
Read ASTM data, temperature, pressure

Calculate boiling point, K, molecular weight, critical properties

Is Fraction Liquid

Yes

Initial \(V_r \) is \(V/V_c \) for density of .8 gm/cc

No

Initial \(V_r \) is ideal gas

\[V_r = \left(\frac{T_r}{P_r} \right) \]
Solve for V_r from BWR equation by Newton-Raphson

Calculate enthalpy departure for pressure

Calculate ideal gas enthalpy:
1) $H_{\text{vap}} = H^c - H \frac{RT_c}{RT_c - M}$
 at ref. of 759 liquid.
2) Integrate C_p to temperature

Calculate enthalpy by adding ideal gas enthalpy and isothermal pressure enthalpy term

Print Results
The program currently exists on disk, under the file name DAVE.F10. The input parameters and readout values are in real free-field format.

READING PARAMETERS INTO THE PROGRAM

Read(4,11) P1,T1,T10,T30,T50,T70,T90,SG,TB

where:

- P1 = system pressure, psia
- T1 = system temperature, °F
- T10-T90 = ASTM Distillation Volumetric Boiling Points, °F, used to estimate a mixture's boiling point. If the mixture's boiling point has already been determined, read in 5 0.'s for these values
- SG = specific gravity
- TB = if the mixture's boiling point has already been determined, it is fed in by this parameter; if the mixture's boiling point has to be estimated by ASTM data, read in a 0. for this value

Read(4,12) ALIQ

where:

- ALIQ = indicates whether the fraction exists as a vapor or liquid. A 0. indicates that the fraction is a vapor, a 1.
T-1913

indicates it is a liquid.

OUTPUT

The following values are output:

```
211   FORMAT(1X,'ENTHALPY=',F,5X,'MW=',F,5X,'TC=',5X,'PC=',F,/
       1 ,X,'ACENTRIC FACTOR=',F,5X,'IDEAL VAPOR=',F)
```

where:

- **ENTHALPY** = enthalpy of fraction at system's temperature and pressure in Btu/lb referenced to liquid, 75°F
- **MW** = molecular weight, lb/lb-mole
- **TC** = critical temperature, °R
- **PC** = critical pressure, psia
- **ACENTRIC FACTOR** = acentric factor, dimensionless
- **IDEAL VAPOR** = ideal gas enthalpy at system's temperature

SAMPLE CALCULATIONS

Performed on the California naphtha used for sample calculations in appendix A, having a specific gravity of 0.7365.

Conditions: vapor at 500°F and 300 psia; the experimentally determined enthalpy value referenced to 75°F is 332.8 Btu/lb.

READ-IN

```
300.,500.,174.,184.,196.,231.,.7365,0.
```

0.
T-1913

OUTPUT

ENTHALPY = 339.2547500 MW = 99.0607910 TC = 981.9159300
 PC = 468.2372700

ACENTRIC FACTOR = 0.3056040 IDEAL VAPOR = 361.8919300

COMMENTS

More fractions need to be tested, and at a wide range of conditions. The program is capable of predicting liquid enthalpies but needs to be tested. Problems are encountered near the pseudocritical point, as liquid volumes and vapor volumes approach one another, values which are calculated in the program by the EWR equation of state. A better way of estimating the mixture's boiling point can be incorporated.

A listing of the program follows.
DIMENSION E(2), C(2), B1(2), B2(2), B3(2), B4(2), D(2), DELH(2)
DIMENSION C1(2), C2(2), C3(2), C4(2)
DIMENSION VR(2), B1(2), B2(2), E(2), GAM(2), D(2), E(2)
READ(4, 11) P1, T1, T01, T30, T50, T70, T90, SG, TB
READ(4, 12) ALIG
T = Ti
P = P1
IF (TB .GT. 0.) GO TO 911
CALCULATE BOILING POINT
TB = (T10 * T30 * T50 * T70 * T90) / 5. * 460.
C CALL CALCULATE WATSON FACTOR
911. AK = (TB)**(1.73) / SG
C READ IN SIMPLE AND REFERENCE FLUID CONSTANTS
B1(1) = 118.1193
B1(2) = 2026579
B2(1) = 265729
B2(2) = 331511
B3(1) = 154793
B3(2) = 027655
B4(1) = 030323
B4(2) = 023488
C1(1) = 023674
C1(2) = 031335
C2(1) = 015698
C2(2) = 0503618
C3(1) = 016921
C3(2) = 042724
C4(1) = 041577
C4(2) = 030823
D1(1) = 153408/10. ** 4
D1(2) = 18736/10. ** 4
D2(1) = 023689/10. ** 4
D2(2) = 0740336/10. ** 4
BET(1) = 65392
BET(2) = 1.226
GAM(1) = 0.3754
GAM(2) = 0.3754
C CALL CALCULATE CRITICAL PROPERTIES
TC = 341.7 + 811. * SG * (4244 + 1174 * SG) * TB
PC = EXP(8.3634 - 0.566 / SG - 2.2898 / SG)
1 * T3 = TB * (0.4219 + 1.6977/SG/SG) * 10. ** (-13.)
1 * T8 = TB / TB
C CALL CALCULATE MOLECULAR WEIGHT
AMW = 12272.6 + 9436. * SG * (4.6523 - 3.3287 * SG) * TB
1. * (1. * 7.7084/SG * 2205/SG** 2.) * (1.3437 -
1 * (1.8828 - 1.81.98/TB) = 10. ** 12.
J = 1
T = 7 + 460.
TR = T / TC
PR = P / PC
VR(1) = TR / PR
IF (ALIG .EQ. 1.) VR(1) = AMW * 7.12 * TR, ** (-4.)
VR(2) = VR(1)
C CALL CALCULATE ENTHALPY DEPARTURE FROM IDEAL GAS
7 DO 2 I = 1, 2
2 CONTINUE
GO TO 4

IF (TBR .GT. 0.8) GO TO 5

C
CALCULATE ACENTRIC FACTOR
W = ALOG(TBR) - 6.60174 + 0.09648/TBR + 1.28862
1
ALOG(TBR) = -1.69347/TBR**6,
1
= 6.60174 - 0.09648/TBR
1
GO TO 6

5
W = 7.924 - 1.365/AK - 0.77456/AK + 8.359/TBR
1
= 7.924 - 1.365/AK
1
GO TO 6

6
ENTH = DELH(1) + W/WR*(DELH(2) - DELH(1))
1
IF (J.EQ.1) ENTH = ENTH
1
IF (J.EQ.2) ENTH = ENTH
1
IF (J.EQ.2) GO TO 8

C
CALCULATE HEAT OF VAPORIZATION
T = 75.460.
1
PR = 1.0
1
TR = T/TC
1
VR(1) = AHW = 7.12*10**(-4)
1
VR(2) = VR(1)
1
J = 2
1
GO TO 7

8
CF = ((17.8/AK=1.) * (10.8/AK=1.) * 100.)**2
1
IF (TBR .LE. 0.8) GO TO 18
1
T = 71.462.

C
CALCULATE VAPOR ENTHALPY ABOVE 75 DEGREES
VAP = 3.2646 + T**0.22678 - AK*T - (1.3922 - 1.2122*A)
1
= 3.2646 + T**0.22678 - AK*T
1
GO TO 18
1
T = 71.462.
M=1
GO TO 19
GO TO 811
18
CF=((12.8*AK+10.0*W)/(10.1*W))**2.
T=T*460.
119
VAP=.-33886*T+.02827*AK*T-.9291-1.1543*AK
1*.0348*AK*2.*T*T/2.*10.**(-4.)-1.6658*10.**(-7.)
1*T*T*T/3.-CF*(-.26105*T=.59332*W*T=(4.56-.9.48*W)
1*10.**(-4.)*T*T/2.-(.536.6828*W)*10.**(-7.)*T*T**3./3.)
IF(M.EQ.1) Go TO 811
VAP1#VAP
T=75.460.
M=1
GO TO 119
119
VAP1=VAP
R=1.9869
RTC=R*TC
C
CALCULATE IDEAL GAS ENTHALPY
V1DEAL=ENTH2+RTC/AMW+AI
ENTHAL=V1DEAL-ENTH1+RTC/AMW
211
FORMAT(1X,'ENTHALPY='F,5X,'MW='F,5X,'TC='F,5X,'PC='F,5X/'
1X,'ACENTRIC FACTOR='F,5X,'IDEAL VAPOR='F)
WRITE(4,211) ENTHAL,AMW,TC,PC,VIDEAL
11
FORMAT(F)
12
FORMAT(F)
STOP
END
LITERATURE CITED

18) Compositional Analyses of Synthoil from West Virginia Coal, Bartlesville, ERDA, BERG/R1-76/2, 18 (1976).

