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ABSTRACT

This thesis compares geometric programming as a viable 
alternative for determining cycle times for cyclic steam in­
jection. This thesis discusses cyclic steam injection, re­
sults that it has had in the past. Next there is a review 
of geometric- programming techniques with the reader, Using 
the geometric programming techniques cyclic steam injection 
problems were solved and compared with the heuristic method. 
The results of the geometric programming method cut cycle 
time from 5 to 20 percent, and increased cycle time by 20 
percent where the total production from the start of the cycle 
to the maximum product rate was small (36 barrels/day) It 
appears that geometric programming is an alternative for 
the calculation of cycle time.
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INTRODUCTION

The purpose of this thesis is to help solve a problem 
in the petroleum industry in the area of secondary recovery.
This is, what should be the length of time needed to inject 
steam into wells to increase the amount of production and at 
the same time achieve the maximum net profit possible to the 
oil producer. Secondarily, in this time of petroleum short­
ages at home, and oil embargoes from abroad, it is desirable 
to be able to produce as much as possible from our own resources,

This thesis deals with the use of geometric programming 
as an optimization technique to solve the problem. The thesis 
will cover in general the nature of cyclic steam injection 
and that of geometric programming. It will also encompass 
the combination of these two areas to achieve a solution.
The paper will deal primarily with the optimiazation techni­
que rather than the petroleum engineering problems related 
to cyclic steam injection.

The information used to develop this thesis has come from 
literature in the areas of cyclic steam injection and geometric 
programming. Having looked at other techniques and methods

1
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to solve this problem, this method would appear to be a better 
way for the petroleum industry to meet its goals for the future.
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CYCLIC STEAM INJECTION

Cyclic s:team injection is a secondary recovery method 
that has become popular in the past fifteen years. It is a 
method in which steam is pumped into wells to increase their 
production or to increase the total life of the reservoir. 
Several companies in different parts of the world have used 
and are using cyclic steam injection to increase their re­
covery rates.

Tidewater used cyclic steam injection on their.
Kern River property. Tidewater injects steam into 
wells for five days and then returns the wells to 
production. Tidewater usually returns these wells 
to steam injection every 124 days. A second opera­
tor on the Kern River field (Cresmont Oil) produced 
15,381 barrels during the first cycle period, which 
was the equivalent of 94.. 2% of the cumulative pro­
duction over a seven year period. Their production 
record can be seen in Table 1. (l )

As seen from their production record, cyclic steam injection
is impressive on the additional recovery. This does not imply
that such ventures will be profitable in all cases, only that
production should increase.

A third example is the Wilmington Field. The payout 
period for this field is averaging 3 1/2 months, and 
some wells are paying out in four weeks. The payout 
period is the time needed to recover investment. The 
injected heat lasts for about six months. (1 )

3



T-1737 4

o
h-o
ZD
CDOCD
Cl-

i— iG

111, 1. Characteristic production cycle (2)



T-1737I 5

Here it can be seen that the company is getting the increased 
production rate for about 2 1/2 months at no cost to them.

After the steam has been injected into the well the rate 
of production will increase to a point and then decline until 
it reaches its steady-state level. When the steady state is 
reached, steam is again injected into the well. This process 
is repeated several times depending upon the condition of the 
reservoir. Since production cannot take place during the 
period of steam injection, it is important to keep the injec­
tion time as low as possible to maximize profits before taxes. 
It is therefore desirable to have a method that can be used 
to determine the times for steam injection and for production 
after injection. The reason for wanting to know how long the 
cyclic will last is so that there will be steamers on hand
to start the process over again. Also, the number of steamers
can vary from well to well to achieve the rate of production 
for an optimum solution. The cashed line on the right-hand 
side represents the steady-state flow.

Some general considerations that are made when cyclic 
steam injection is used are such things as

The oil in place should be greater than 1,200 
barrels per acre foot. The production interval 
should be in excess of fifty feet. Most of the 
wells that have been using steam injection have 
been producing about twelve to fifteen years.
It has been found that there is no advantage
to using steam injection for wells that are pro­
ducing from depths greater than 3,000 feet.



T-1737 6

The reason for this is that the heat loss 
of the pipe length is too great and wells at 
this depth tend to have enough heat and there­
fore do not benefit from this type of stimula­
tion. It has been found that reservoirs that 
are producing at 10 percent of their primary 
recovery rate can be increased to 15 percent.
The reason for the increase in the rate of pro­
duction is that we are increasing the pressure 
of the well causing oil to flow more readily. (1 )
In conclusion, this is a viable method of secondary re­

covery in which we would like to know steaming times and pro­
duction times for maximum petroleum production. By maximizing 
production we maximize profits. A technique to calculate 
these times and related factors is geometric programming which 
is discussed in Chapter 2.
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GEOMETRIC PROGRAMMING

Geometric programming is a mathematical programming 
technique used to optimize nonlinear problems. This is done 
with the use of linear equations using the dual, This will 
obviously make calculations easier. In G.P. there are sev­
eral rules and concepts which we must observe when attempting 
to solve a problem. First, look at the degrees of difficulty, 
which will be defined later. If it is zero or a positive 
number, it is a well-formulated problem. The problem can be 
solved by hand for zero D.D. problems. For problems with 
positive D.D., depending upon the degrees of difficulty we 
can solve by hand, get bounds to the problem or solve with 
the aid of a computer. If the problem has a negative D.D., 
then it is a poorly formulated problem.

In geometri-c programming, the dual is* easier to solve 
than the primal, and at optimality both have the same solu­
tion. The G.P. primal problem should be in the form of 
minimizing the objective function subject to constraints 
which are less than or equal to one or negative one.

The following is a step-by-step problem set up and 
solution procedure. [ 3 ]



T-1737 10

STEP 0. Formulate the Geometric Programming 
primal problem.

Minimize: T q N aotn
E sot Got n xn t=l n=l

Subject to: Tm N amtn
9m(X) = E Smt Cmt n Xn < 1 ^

t=l n-1

There are N primal variables (XR) and M primal constraints 
(gm ) The constraint functions gm (X) must be dimensionless 
(with no constant terms)
Example:

Minimize: 5X^2X2 - 3X23X3 *
Subject to:

+ 1/8Xx"4 + 1/8 X^2 < 1

In terms of the general notation

s o i =1

cll-8 sll-1

N=3 T =2xo z o o H II

c02=3 s02=”1
M=1 Tx=2 Ri=-

C12=1 S12=1
ao n =2 a012_1 a013=0
a021=0 a022=3 a023=1
alll= 4 2112=0 aH 3 = °

a121=0 a122=0 a123=2
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STEP 1. Write the Geometric Programming dual objective 
function.

MAXIMIZE M Tm smt Wmt
Ro 1 " * (Cmt Wmo/wmt> 1R°m=0 t=l

As the primal objective function is positive or negative
at the optimum, Rq is equal to +1 or -1. The dual variables
are the wn, , w , and w ^  above. These may also be called Ot mt m0
weights.
EXAMPLE
MAXIMIZE:
(5/w1)w l (3/w 2)_w2 (8/w 3)+w3 (1/w 4)w4 (w 3+w 4)w 3+w4

where = the weight of the ith term.
STEP 2. Write the dual normality equation for the terms 

of the primal objective function.

T o
Z S0t W 0t " Ro 

t=l
EXAMPLE

W;L = W 2 = 1
STEP 3. Write the N dual orthogonality equations, one 

for each primal variable.
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EXAMPLE
2w^ - 4w^ “ 4w^ = 0

W1 ” ^w 2 “ 0
-w2 + 2w 3 = 0

STEP 4. Write the M linear inequality constraints, one
for each primal constraint.

Tm

Wm0 - «b  Smt wmt 1  0t=l
EXAMPLE

W1Q = -(-3/4+1/4) = 1/2 £  0

for the other system this term has already been incorporated 
into the objective function.

STEP 5. Find the degree-of-difficulty of the primal problem 
by the following formula:

DEGREE OF DIFFICULTY =
# independent primal terms - # primal variables - 1 

EXAMPLE
D.D. = 0 = 4 -  3 -  l

STEP 6. If the degree of difficulty is zero, solve the
dual equality constraints for the dual variables.
If the degree of difficulty is negative, the 
problem is badly formulated. If the degree of 
difficulty is positive, attempt to reduce it with 
condensations or approximation. Bound the dual 
variables and estimate the primal minimum. If 
an exact solution is necessary, resort to a com­
puter program.
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STEP 7, Find the minimum value gQ of the dual objective 
function; at optimality the primal and dual ob­
jective function are equal,

EXAMPLE
gQ (x) = [5/(3/2)]3/2 [3/(1/2)]-1/2[8/(i/8)]1/8*

*[l/(5/8)]5/8 [1/8+5/8] (l/8+5/8)

STEP 8. Write the T q primal-dual optimality relations for 
the terms of the objective function.

N
Wot = (C0t Z Yna°tn)/(K0 go) t = 1,. ,T0n=l

EXAMPLE

W 1 = ^5xl2 x 2 ^ g0 = 3//2 'ARTHUR LAKES LIBRARYCOLORADO SCHOOL of MINES 
 ̂ GOLDEN, COLORADO 80401

w 2 = (3x 2 x3)/g0 = 1/2
m

STEP 9. Write the £ Tm primal-dual optimality relations
m=l

for the terms of the primal constraints.

Cmt ", Xnamtn = Wmt/Wm0 t = 'Tmn=l
m = 1,.. , ,M

EXAMPLE
8x^4 = w3/(w3 + w 4) = (1/8)/(3/4) 
x32 = w 4/ ( w 3 + w 4 ) = (5/8)/(3/4)
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STEP 10. Choose any N of the primary optimality relations.
These are a system of N linear equations in the 
logarithms of the primal variables. Solution of 
this system completes the problem.

Using the above techniques, we will solve the cyclic steam
injection problem in the next chapter.

In the Appendix will be found the Quick and Dirty rules
for geometric programming. These are easier to follow than
the 10-step method and were used to work the problem.
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CYCLIC STEAM INJECTION USING GEOMETRIC PROGRAMMING

In applying geometric programming to the solution of a 
steam injection problem there are some assumptions which must 
be noted.

Assumption 1: If there is nothing done to the production
rate it will produce at the steady state. Before starting 
the injection the well is producing at the steady state.

Assumption 2 : There is no production during steam injec­
tion, and there is a soak period after steam injection before 
production begins.

Assumption 3; The production rate will increase until it 
reaches a peak and then decline to the steady state.

Looking at the model of Curry, Chang, and Curry, Jr., 
the total profit per cycle is P(t) where T = T^ + t.

P(t) = VBO.A.QM ■(l-e“t/A ) + QS.t.VBO +
VBO.QX - CBS.BSTR + CSC.

15
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A and QM are curve fit parameters for the production decline
rate and are known for the model. The following are constants
and are known for the model:

VBO, QX, QS, CBS; BSTR, CSC. 
where PPD(t) = P(T)

Rewriting PPD(t) = P(t) where t = T-TX *
t

P(t) = VBO.A.QX (l-e-t/A ) + QS.t.VBO + VBO.QX - CBS.BSTR - CSC

Cleaning up the equation where
K1 = VBO.A.QM K 2 = QS.VBO

K 3 = VBO.QX K 4 = CBS.BSTR + CSC

(t) = K 1  (1-e t//A) + K2t + K -

let K - K = K,3 4 5
v “t/Athen PPD(t) = P(t) = Kl(1~e ) + K 2 + K5^t
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Kle"t/a + K2t t

let K1 + K 5 = K 6

In order to find the optimum cycle period for each well, 
the production decline response curve for each well must be 
known. There are in general three basic classifications of 
production decline response, i.e.

1 . constant percentage decline,
2 . hyperbolic decline
3. harmonic decline (2)

The first classification was selected for the following 
reasons:

1. It gave a better fit for the sample data and 
has been recommended by Dunn.

2. It has a simpler mathematical expression than 
the others; moreover, it is easier to find the 
optimum period of time for each well. (2 )

The profit per day is PPD(t)

t t
Rewriting:
P(t) = PPD1 (t) — PDD(t)
t

K 2 = ^ 6  - K 1 e“t/a
t t

PPD1  (t) = 1  (K, - KTe- ^ 3  
t 6 1

let t= lnx
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= K - Kie-lnx/a
lnX

au = elna
= Kfi - KlX - V a 

lnx
However we can minimize the reciprocal to maximize then

MIN: lnx = yV _ 1
K 6  - KjX-l/p

where y E~lx^ -
v <. K - K X"1//A — 6 I

Rewriting in the form of < 1

K x ” 1 / 3  + V < 1
4  «; "

and S" 1  x S I1 - 1  - 2 - 1  W" 1  < 1

Writing the dual geometric programming problem.
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The dual normality equation is:
W 1 = 1

The dual orthogonality equations are:
(U) W-l - W5 + W5 = 0
(Vl-W-,̂  + W 3 = 0
(X) -1 W^ + zw4 = 0 

A

g ' ARTHUR LAKES LIBRARY
w - ! u - 1 COLORADO SCHOOL of MINES1 3 GOLDEN. COLORADO 80401
W = -A - AW2 5
W 4 = ! + W 4 or W 5 = W 4 - 1

w 4 = “1__ w 2 or w 5 = “W 2 - 1

AE ~ A

Writing the primal-dual optimality relations:

W = (^1 X_1 /A )(W_ + W )K 2 3
6

W = (E-ix^u-1) (W + Wc)
H 4 5

w 5  = (S- 1  y-1)(w + W 5)

Since X is the variable that relates the cycle time, solution
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(4) W, = -1 _ W 
AC

(5) W = (z 1  X 2 y-1) (W4 + W 5)

(6 ) W 5 = (2f 1 u_1) (W4 + W )

W = (Z 1u_1)(w4+ W )

.-i = W 5

(W4 + W 5 )X-1

w 4 = Z 1  x£w5 (W1 + W 5)
(w4 + w5)2-1

w. = x̂ -w.

Wc = W -1 4

w ,  = XZW,-14

W = -XE 
l-X^

W. = -1W2 
4 a T "

W = -XE AZ = XZAE 
1-XE (-1) 1-x^
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(K1 X"1^ )  (W + w3) 
K 6 2

(K1 x“1//A) (ZAXZ i 1)
K 6 ( 1 - XE)

KjX 1 /AZAXZ + Kl /-1 /A
K 6 (1-x ^) k 6

ki ex_1//a AXe + ^1 X"1/A(l - XE) 
K 6 K 6

K1 X */A + K1 x~~1^A (i - XZ)
K 6 K 6 ZAXZ

K1 X 1//A + K1 X 1//A - Kl X 1//A 
K6 Kg AXZ K . SAX^

X-l/A + X 1/A _ x"1^  XZ 
eaxe eax2

X 1 + X_1/A (1 - X Z)
ZAXZ

X_1^A + 1 Z 1 X 1//A ”E- 1 X-1/A Z-1 
A A

x"ly/A + 1 X“1/A (Z-1 X“E -Z”1)
A
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if lnx 1 = LIM(Z _ 1  X ^ - z ”1)z->o
then

k6
K = X"1/A + I X ^ / A  In X X 

1  A

k 6

k T = X"1/A (1 + i  In X”1)
A

K 6 A = A X~1//A - X~1//A lnx 
K1

- k 6 a + A = lnx 
K1 X_1//A

t := lnx

A - *^6 Ae“t//A = t 
kl

= VBO.A.QM

K = (1.16) (32.34 X 7) (60)
1 7

K = 2250.864 1

K = K n + VBO.QX - CBX.BSTR - CSC 6 1
= + (1.16) (187) - (.17) (3969) - 350

K = 1442.954 6

A = 226.38
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TABLE 2
Nonlinear Regression Results

Corr.
Well QM A Coef.
1 60. 32.34 0.997
2 73. 46.84 0.999
3 6 6 . 35.78 0.998
4 44. 33.68 0.989

Stand.
Dev.
16.4
22..9
36.5
52..5
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The equation is now
226.,38 - (1442.954) (226. 38) e (-00442)(t) = t

2250.864
226.38 - 145,124 [e( ,00442) (t)] = t

solve for t by iteration.
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TABLE 4

1
Results Using Geometric Programming

Well QM A t t g TH Well % Chan<
1 60 32.34 47.42 63.42 67 1 5.34
2 73 46.84 44.64 59.64 72 2 17.16
3 6 6 35.78 28.16 39.16 51 3 23.21
4 44 33.68 99.90 111.90 8 8 4 27.15
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CONCLUSIONS

Geometric programming gives an optimal solution for 
cycle time for cyclic steam injection. Looking at the pre­
vious chapter, geometric programming cuts the cycle time 
from 5 to 20 percent. In one case geometric programming 
increases the cycle time by 20 percent. The increase occurs 
where the total production from the start at the cycle until 
time TX which is QX is small (36 bbls/day) The difference 
in the solutions between the heurestic method and the geo­
metric: programming method are not dependent upon just one 
parameter but upon changes in the total production from the 
start of the cycle until time TX (QX) and the curve fit 
parameters, QX and A.

The geometric programming solution will be within 1 
percent of the heuristic solution when the values of QX 
(total production from the start of the cycle until time 
TS), QM and A (curve fit parameters) are (150, +1, -15),
(60, +.07, -.49), and (30, +.29, -.71), respectively. When
these numbers were used to calculate the cycle time for well 
2 , the cycle time was within a half day of the heuristic

27
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after the first iteration. When using the original values 
of the parameters QX, QM, and A, the geometric programming 
solution took six iterations to converge and differed from 
the heuristic model by 17 purcent. It would appear that the 
nature of the geometric programming model is such that when 
the above values are used for the parameter QX, QM, and A,
the model behaves like the heuristic model. If QX (the
total production from the start of the cycle until time TX) 
is decreased, keeping all other things equal, it will force 
the cycle time to increase. Keeping all other things equal 
and decreasing the value of either curve fit parameters, QM 
or A, the cycle time will increase in both cases.

The optimum cycle time for the maximization of daily 
profit from wells using cyclic steam injection can be found 
with the use of geometric programming. Economic and engi­
neering data will now be available to calculate when and how 
many steamers should be brought on line.

The time that steamers are in use is known and since,
in this formulation, steaming time is given, any increase or 
decrease will only increase or decrease cycle time by the 
same amount. The loss of production from the well can be 
calculated during the steaming and soak period. The man­
power requirements for the operation of steamers at a given 
time will be known, from past history and experience.
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The geometric programming solution provides information 
such that, a conversational computer program can be written 
to allow the operators to change the values of any of the 
constants. These are the mc^t important constants that one
may wish to change:

, . - - , . . .. 5SR7BUR CAKES LIBRARY(a) the value of a barrel of orl, COLORADO SCHOOL of MINES
(b) cost of steam, * GOLDEN. COLORADO 80401 *

(c) total production from the start of the cycle 
to time TX (QX),

(d) QM, curve fit parameter,
(e) A, curve fit parameter.

The program must provide for any combination of changes of 
the above constants.

Another recommendation for future work in the area of 
’cyclic steam injection using geometric programming is that 
the problem should be formulated using only the injection 
time as a given. The reason is that the soak period should 
be a function of the injection time, because the maximum 
heat created during the soak period is dependent on the 
amount of steam injected. Secondly, the total production 
from the start of the cycle to time TX which is QX, should 
be a function of the maximum heat executed during the soak 
period. This method would give a better solution for cycle 
time. A variation of this would be if the cycle time is 
dictated, then it would be possible by working backward to
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find the appropriate injection and soak times as well as 
the decline time t.

Finally, an opportunity cost could be added to account 
for the loss of production during the injector and soak 
periods,

On the basis of this thesis, geometric programming 
appears to be a viable alternative method for the calculation 
of the optimum cycle time for cyclic steam injection.
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NOMENCLATURE

IT^ - steam injection time (fixed for given i) (days)
TX^ - time from the start of injection until the 

maximum production rate has been reached 
(fixed for given i) (days)

QX^ - total production from the start of the cycle until 
time TX^ (fixed for given i) (bbl)

QS^ - well stable production state (fixed for given i) (bbl/ day)
t^ - production time since maximum rate has been reached (day)

QMj_ - curve fit parameter for production decline rate (bbl/ week)
Aj_ - curve fit parameter for production decline rate (weeks)

VBO - value of a barrel of oil ($/bbl)
CBS - cost of a barrel of steam ($/bbl)
CSC - constant cost of setting up a steaming operation ($)

BSTR^ - barrels of steam required (fixed for given i) (bbl)
T - total cyclic time using geometric programming (days)9
T^ - total cyclic time using heuristic method (days)

32
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QUICK AND DIRTY FOR SIGNOMAL GEOMETRIC PROGRAMMING

1. The Primal Geometric Programming Problem may be written 
in the form:

T ° N 3n+-Minimize: g (X) = 2 a cn. n xk mU t = 1  Ot ur n = 1

Tm N a
Subject To: gm (X) = I amt cmt n XR mtm < am ; m=l. ,m

t= 1  e, , n=l

Where omt = _ 1; m = '0, ,M; t = 1, ,Tm

Cm t > 0  ; m — 0 / • / M ; t = 1 / /Tĵ

xn ^ 0; n = 1, ,N X = (x-wX2 , ,xR )

amtn = arbitrarY real number; m = t = 1,. , Tm
n = 1,.. . ,.N

2. The Dual Geometric Programming Problem is then:
Maximize: aQ *1 f^Ot]0^ 0* "  ( &mt m0^mt5mt °°

t=1lv 0 tj m=1 I «mt

Subject to: T q
Z a 6 - a (NORMALITY)t=1 Ot Ot 0
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Z Z a amtn6mt = 0; n = 1, ,N (ORTHOGONALITY)
m = 0  t=l

6 > 0; m = 0, , . ,M; t=l, ,Tm (POSITIVITY)

t=Tm
6">° =°m amtsmt 1 0; m=1' 'M (POSITIVITY)
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QUICK AND DIRTY GEOMETRIC PROGRAMMING RULES FOR PQSYNOMIALS

1. Optimum value of the objective function is always of the 
form:

g (x) * = (coeff. of first term/w-,)wl *
0 1

(coeff. of second term/w2 ) w 2 *,
...* (coeff. of last term/w^ast)w last *

(2w 's in 1st constraint)^w's in 1st constr.

...* <Zw's in last constraint^ ' 3  in last constraint
2. Equations generated for a geometric program are:

Ew's in objective function = 1, (normality constraint),
and

For each primal variable Xj, given in variables and 
m terms:

i=m thE (exponent on x- in 1 term)* (w^) = 0, for j=l,2,3, ,n
i=l

(orthogonality constraint)
3. Primal variables may be found by (objective function rule)

g^(x) = (1 st term in obj, fun./w^) ='
(2 nd term ra ob j , fun./w2 ) =

... = (last term in ob j - fun./w^as -̂ term in obj fun.^
4. Primal variables may be found by (constraint rule):

Let w^ be the weight of the i ^  term in a constraint, 
then:
w^ = (i ^  term in constraint) *

(sum of all w's in that constraint)
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DERIVATIVE OF PROFIT FUNCTION

P(t)

dP(-t)

(1 + t) = o A

K ne t/A = k1-k3+k4 
1  (1 +t)

e“t/A = K 1 ^K3 +K4  

K 1 (l+t)

K 6 = e”t/A (1-t/A)

e_t/A = K 6 [ A ] 
(A-t)

dT
t t

(-*1-K3+K4) + Kle

At
=t/A

= Ki _ kie-t/A k2 + K3 - *4 
U  t

= K 1
-t/A + KjE ' + “t/AKXE _ K 3 -K4

36
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