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ABSTRACT

This thesis compares geometric programming as a viable
alternative for determining cycle times for cyclic steam in-
jection. This thesis discusses ~yclic steam injection, re-
sults that it has had in the past. Next there is a review
of geometric. programming techniques with the reader. Using
the geometric programming techniques cyclic steam injection
problems were solved and compared with the heuristic method.
The results of the geometric prograqming method cut cycle
time from 5 to 20 percent, and increased cycle time by 20
percent where the total production from the start of the cycle
to the maximum product rate was small (36 barrels/day) It
appears that geometric programming is an alternative for

the calculation of cycle time.
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INTRODUCTION

The purpose of this thesis is to help solve a problem
in the petroleum industry in the area of secondary recovery.
This is, what should be the length of time needed to inject
steam into wells to increase the amount of production and at
the same time achieve the maximum net profit possible to the
0il producer. Secondarily, in this time of petroleum short-
ages at home, and oil embargoes from abroad, it is desirable
to be able to produce as much as possible from our own resources.
This thesis deals with the use of geometric programming
as an optimization technique to solve the problem. The thesis
will cover in general the nature of cyclic steam injection
and that of geometric programming. It will also encompass
the combination of these two areas to achieve a solution.
The paper will deal primarily with the optimiazation techni-
que rather than the petroleum engineering problems related
to cyclic steam injection.
The information used to develop this thesis has come from
literature in the areas of cyclic steam injection and geometric

programming. Having looked at other techniques and methods

1
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to solve this problem, this method would appear to be a better

way for the petroleum industry to meet its goals for the future.
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CYCLIC STEAM INJECTION

Cyclic steam injection is a secondary recovery method
that has become popular in the past fifteen years. It is a
method in which steam is pumped into wells to increase their
production or to increase the total life of the reservoir.
Several companies in different parts of the world have used
and are using cyclic steam injection to increase their re-
covery rates.

Tidewater used cyclic steam injection on their
Kern River property. Tidewater injects steam into
wells for five days and then returns the wells to
production. Tidewater usually returns these wells
to steam injection every 124 days. A second opera-
tor on the Kern River field (Cresmont 0il) produced
15,381 barrels during the first cycle period, which
was the equivalent of 94.2% of the cumulative pro-
duction over a seven year period. Their production
record can be seen in Table 1. (1 )

As seen from their production record, cyclic steam injection
is impressive on the additional recovery. This does not imply
that such ventures will be profitable in all cases, only that
production should increase.

A third example is the Wilmington Field. The payout

period for this field is averaging 3 1/2 months, and

some wells are paying out in four weeks. The payout

period is the time needed to recover investment. The
injected heat lasts for about six months. (1 )

3
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Here it can be seen that the company is getting the increased
production rate for about 2 1/2 months at no cost to them.

After the steam has been injected into the well the rate
of production will increase to a point and then decline until
it reaches its steady-state level. When the steady state is
reached, steam is again injected into the well. This process
is repeated several times depending upon the condition of the
reservoir. Since production cannot take place during the
period of steam injection, it is important to keep the injec-
tion time as low as possible to maximize profits before taxes.
It is therefore desirable to have a method that can be used
to determine the times for steam injection and for production
after injection. The reason for wanting to know how long the
cyclic will last is so that there will be steamers on hand
to start the process over again. Also, the number of steamers
can vary from well to well to achieve the rate of production
for an optimum solution. The cashed line on the right-hand
side represents the steady-state flow. !

Some general considerations that are made when cyclic
steam injection is used are such things as

The oil in place should be greater than 1,200

barrels per acre foot. The production interval

should be in excess of fifty feet. Most of the

wells that have been using steam injection have

been producing about twelve to fifteen years.

It has been found that there is no advantage

to using steam injection for wells that are pro-
ducing from depths greater than 3,000 feet.
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The reason for this is that the heat loss

of the pipe length is too great and wells at

this depth tend to have enough heat and there-
fore do not benefit from this type of stimula-
tion. It has been found that reservoirs that

are producing at 10 percent of their primary
recovery rate can be increased to 15 percent.

The reason for the increase in the rate of pro-
duction is that we are increasing the pressure

of the well causing oil to flow more readily. (1 )

In conclusion, this is a viable method of secondary re-
covery in which we would like to know steaming times and pro-
duction times for maximum petroleum production. By maximizing
production we maximize profits. A technique to calculate
these times and related factors is geometric programming which

is discussed in Chapter 2.
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GEOMETRIC PROGRAMMING

-
v
¥

Geometric programming is a mathematical programming
technique used to optimize ﬁonlinear problems. This is done
with the use of linear equat}ons using the dual. This will
obviously make calculations easier. In G.P. there are sev-
eral rules and concepts which we must observe when attempting
to solve a problem. First, look at the degrees of difficulty,
which will be defined later. If it is zero or a positive
number, it is a well-formulated problem. The problem can be
solved by hand for zero D.D. problems. For problems with
positive D.D., depending upon the degrees of difficulty we
can solve by hand, get bounds to the problem or solve with
the aid of a computer. If the problem has a negative D.D.,
then it is a poorly formulated problem.

In geometric programming, the dual is' easier to solve
than the primal, and at optimality both have the same solu-
tion. The G.P. primal problem should be in the form of
minimizing the objective function subject to constraints
which are less than or equal to one or negative one.

The following is a step-by-step problem set up and

solution procedure. [ 3 ]
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STEP 0. Formulate the Geometric Programming
primal problem.

Minimize: TO N aotn
r S C I X
ot “~ot n
t=1 n=1
Subject to: Th N Qmtn
I (X) = L Smt Cmt I Xn < Rp

t=1 n—_J:

There are N primal variables (Xn) and M primal constraints

(gm) The constraint functions gp(X) must be dimensionless

(with no constant terms)

Example:

Minimize: 5X12X, - 3X,3X3 .
Subject to: v
+1/8%;7% + 1/879x32 < 1
In terms of the general notation

N=3 T0=2 c01=5 SOl=l

COZ=3 502_’—‘
M=1 Tl=2 Rl=‘l cll=8 Sll=

c12=1 512=1
301172 35,71 301370
3 1

202170 202273 20237
311154 277,031,370

312170 335,70 21232
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STEP 1. Write the Geometric Programming dual objective

function.
MAXIMIZE M Tn Smt Wmt 2
R [ I I (C W /W_.) 120
© m=0 t=1 mt Tmo” 'mt

As the primal objective function is positive or negative

at the optimum, R0 is equal to +1 or -1. The dual variables

are the Wit wmt' and Wmo above. These may also be called
‘weights.

EXAMPLE

MAXIMIZE:

(5/wl)W1 (3/wy) "W2 (8/w3)+w3 (1/w,) ¥4 (w3+w4)W3+W4

where W, = the weight of the ith term.

STEP 2. Write the dual normality equation for the terms
of the primal objective function.

To
2 Sot Wor T Ro
=1
EXAMPLE
Wy = Wy = 1

STEP 3. Write the N dual orthogonality equations, one
for each primal variable.

M Tm

Z I Smt %ntn Ymt
m=0 t=1
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EXAMPLE
2wy = 4wy - 4wy =0
Wy -~ 3w, =0
“wy + 2w3 =0

STEP 4. Write the M linear inequality constraints, one
for each primal constraint.

Tm
WmO =Ry I Smt Wit 20
t=1
EXAMPLE -
Wig = -(-3/4+1/4) = 1/2 2 0

for the other system this term has already been incorporated
into the objective function.

STEP 5. Find the degree-of-difficulty of the primal problem
by the following formula:

DEGREE OF DIFFICULTY =

# independent primal terms - # primal variables - 1
EXAMPLE

D.D. =0=4 -3 -1

STEP 6. If the degree of difficulty is zero, solve the
dual equality constraints for the dual variables.
If the degree of difficulty is negative, the
problem is badly formulated. If the degree of
difficulty is positive, attempt to reduce it with
condensations or approximation. Bound the dual
variables and estimate the primal minimum. If
an exact solution is necessary, resort to a com-
puter program.
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STEP 7. Find the minimum value gj of the dual objective
function; at optimality the primal and dual ob-
jective function are equal.

EXAMPLE

g9, () = [5/(3/2)13/2(3/(1/2)171/2 8/ (1/8)11/8*
*[1/(5/8)15/8 [1/8+5/8] (1/8+5/8)

STEP 8. Write the T, primal-dual optimality relations for
the terms of the objective function.

N ;
Wor = (Cop I Yp®OtR)/(Rg gg) t =1, T,
n=1
EXAMPLE
wy = (5x72 x,) /g9, = 3/2 ARTHUR LAKES LIBRARY
COLORADO SCHOOL of MINES
3 GOLDEN, COLORADO 80401
W2 = (3X2 X3)/go = 1/2 . ‘
m
STEP 9. Write the I Th primal-dual optimality relations
m=1 '
for the terms of the primal constraints.
q Amtn
Che T X = Wpe/Wpo t =1, ,Tp
n=1
m=1,. .,M
EXAMPLE
8x,4 = w3/(wy + w,) = (1/8)/(3/4)
x32 = w,/ (w3 + w,) = (5/8)/(3/4)
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STEP 10. Choose any N of the primary optimality relations.
These are a system of N linear equations in the
logarithms of the primal variables. Solution of
this system completes the problem.

Using the above techniques, we will solve the cyclic steam

injection problem in the next chapter.

In the Appendix will be found the Quick and Dirty rules

for geometric programming. These are easier to follow than

‘the 10-step method and were used to work the problem.
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CYCLIC STEAM INJECTION USING GEOMETRIC PROGRAMMING

In applying geometric programming to the solution of a
steam injection problem there are some assumptions which must

-be noted.

Assumption 1l: If there is nothing done to the production

rate it will produce at the steady state. Before starting

the injection the well is producing at the steady state.

Assumption 2: There is no production during steam injec-

tibn,'and there is a soak period after steam injection before

production begins.

Assumption 3: The production rate will increase until it

reaches a peak and then decline to the steady state.

Looking at the model of Curry, Chang, and Curry, Jr.,
the total profit per cycle is P(t) where T = 'I‘X + t.
P(t) = VBO.A.QM (1—e‘t/A) + QS.t.VBO +

VBO.QX - CBS.BSTR + CSC.

15
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A and QM are curve fit parameters for the production decline
rate and are known for the model. The following are constants
and are known for the model:

VBO, 0X, QS, CBS; BSTR, CSC.

where PPD(t) = P(T)
T
Rewriting PPD(t) = P(t) where t = T-TX #
t

‘P(t) = VBO.A.QX (l-e_t/A) + QS.t.VBO + VBO.QX - CBS.BSTR - CSC.

Cleaning up the equation where

Kl = VBO.A.QM K2 = QS.VBO
K3 = VB0O.0QX K4 = CBS.BSTR + CSC
- _a—t/A -
P(t) = Kl (-2 ) + Kzt + K3 K4
lJet K -~ K =
e 3 4 K5
_ K, (1 —t/A)
= = -e
then PPD(t) P(t) 1 + K2 + KS/t




T-1737 17

In order to find the optimum cycle period for each well,
the production decline response curve for each well must be
known. There are in general three basic classifications of
production decline response, i.e.

1. constant percentage declihe,

2. hyperbolic decline

3. harmonic decline (2)

The first classification was selected for the following

reasons:

1. It gave a better fit for the ;ample data and
has been recommended by Dunn.

2. It has a simpler mathematical expression than

the others; moreover, it is easier to find the
optimum period of time for each well. (2)

The profit per day is PPD(t)

= 5_6_ - K]_e-:t/a + K2

t t
Rewriting:
P(t) = PPD'(t) =PDD(t) - K, = Kg - K et/2
t B et
pPDL(t) = 1 (k, - Kle;t/a)
t

let t= 1lnx
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- -lnx/a
K6 Kle

1nX

elna

K¢

- le-l/a

1nx

However we can

minimize the reciprocal to maximize then:

MIN: 1nx =yuv "1
Ke - le~l/p
where u > z-1x % z-1
~-1/a
< - 3
v _.K6 K1 X

Rewriting in

K

K-

and

Writing the dual geometric

Max g,

the form of i 1

xVa i v <

KG ¢

it e Z -1 _ -1 w1 < 1

p>»Oogramming problem.

@) ™

* 1"W5
(__, Wy+Ws w4 + w5
We (w2 +:w3) (w4+w5)

-~
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The dual normality equation is:
Wl=l

The dual orthogonality equations are:

V)-W + W =0
(V) =¥y ;
A
Rearanging: BBTHURLAKESLERBRY
COLORADO SCHOOL of MINES
Wl - W3 =1 GOLDEN, COLORADO 80401
W, = -A - AW,
W4 =1 + W4 or WS = W4 -1
W4 = —g-__ W2 or WS = _W2 -1
A A

Writing the primal-dual optimality relations:

w. = (X1 xRy (w4 W)
2 x 2 3
6
_ -1,Z -1 ,
w4 = (Z7+X%u )(w4 + Ws)
- -1 -1
w5 = (Z u )(w4 + WS)

Since X is the variable that relates the cycle time, solution

will be fo:r X.

- (K7 ¢-1/A
(1) Wy = (ZL 875 Wy + wy)
6
(2) wy =1
() w, -w. =1

4 5
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(4) W

5) w = (71 x
(5) 4 (z

-1 W
AC

2

2 -1
W) Wy + W)

~

-1 -1 :
(6) Wy = (z7hTh (, + )
o=l -1
W5 = (2 ~u )(W4+ W5) m
v
U—l = WS
-1
(W4 + WS)Z
- o3
w, = 22X, + W)
v-1
(Wy + W)
.
W, = X,
= YXLW -
w, = x%w,-1
.
Wy = =k
1-X
_ -1W
W, = 2
4 a3
W, = -xX  ar = xIag

1-xZ (-1)  1-x%

20
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;_jAXZ

il

1

Ky v-1/A
1L /) (w, + wWy)

6
K. .- N
&y x7178) (zax® ® 1)
Ke (1 - x%)
-1/a z <
K; X TAXT K1 < 1/A
Keg (1-x2) Kg
Ky px1/2 axt 4 Ky x1/A(q - I

K - -
1 x~1/A L Ky y"1/A

- XI)

Ke Ke 7AXE

- -1/ -1/Aa
Ky x~1/A 4 Ky x~1/A gl ox /B xI
K z
6 K6 AX K6 EAXZ
X-l/A + X-l/A - X—l/A XZ
AXZ zaxZ
x~1 + x"1/A (1 - xI)
zax?®
x-1/a 1371 x~1/A -I_ g x-1/Ag-1
a A
= x VA 41 x /A (o7l T gl
a

21
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if lnx

then

LM (371 x72-5

..l)

r=>0

x~1/A L 1 x-1/A 1, x~1

x"l/A (1 + 1 1n x~ 1)

A x /A _ x~1/A 154

K6 A + A = 1lnx

-1/A
Ky X

Inx

Ke ne t/A = ¢

K

1

VBO.A.QM

(1.16) (32.34 X 7) (60)

2250.864

K

K

1

+ VBO.QX - CBX.BSTR - CSC

+ (1.16) (187) - (.17) (3969)

1
1442.954
226.38

- 350

22
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Well

Nonlinear Regression Results

oM
60.
73.
66.

44.

TABLE 2

A

32.34
46.84
35.78

33.68

Corr.

Coef.

0.997
0.999
0.998

0.989

23

Stand.
Dev.

16.4
22.9
36.5

52.5
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The equation is now

226.38 - (1442.954) (226.38) e(.00442) (%)
2250.864

226.38 - 145.124[e(-00442) ()

solve for t by iteration.

25
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Results Using

TABLE 4

26

Geometric Programming

Wwell QM A t T Ty  well 32 Change
1 60 32.34 47.42  63.42 67 1 5.34
2 73  46.84 44.64 59.64 72 2 17.16
3 66 35.78 28.16  39.16 51 3 23.21
4 44 33.68 99.90 111.90 88 4 27.15
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CONCLUSIONS

Geometric programming gives an optimal solution for
cycle time for cyclic steam injection. Looking at the pre-
vious chapter, geometric programming cuts the cycle time
from 5 to 20 percent. In one case geometric programming
increases the cycle time by 20 percent. The increase occurs
where the total production from the start at the cycle until
time TX which is QX is small (36 bbls/day) The difference
in the solutions between the heurest%c method and the geo-
metric: programming method are not dependent upon just one
parameter but upon changes in the total production from the
start of the cycle until time TX (QX) and the curve fit
parameters, QX and A.

The geometric programming solution will be within 1
percent of the heuristic solution when the values of QX
(total production from the start of the cycle until time
TS), OM and A (curve fit parameters) are (150, +1, -15),
(60, +.07, -.49), and (30, +.29, -.71), respectively. When
these numbers were used to calculate the cycle time for well

2, the cycle time was within a half day of the heuristic.

27
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after the first iteration. When using the original values
‘of the parameters QX, QM, and A, the geometric Programming
solution took six iterations to converge and differed from
the heuristic model by 17 p%rcent. It would appear that the
nature of the geometric programming model is such that when
the above values are used for the parameter QX, QM, and A,
the model behaves like the Feuristic model. If QX (the
total production from the start of the cycle until time TX)
is decreased, keeping all other things equal, it will force
the cycle time to increase. Keeping all other things equal
and decreasing the value of either curve fit parameters, QM
or A, the cycle time will increase in both cases.

The optimum cycle time for the maximization of daily
profit from wells using cyclic steam injection can be found
with the use of geometric programming. Economic and engi-
neering data will now be available to calculate when and how
many steamers should be brought on line.

The time that steamers are in use is known and since,
in this formulation, steaming time is given, any increase or
decrease will only increase or decrease cycle time by the
same amount. The loss of production from the well can be
calculated during the steaming and soak period. The man-
power requirements for the operation of steamers at a given

time will be known, from past history and experience.
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The geometri¢ programming solution provides information
such that, a conversational computer program can be written
to allow the operators to change the values of any of the
constants. These are the mcst important constants that one

may wish to change:

(a) the value of a barrel of oil, COLORADOEQ%ﬁi%ﬁ%??ﬁ&ES

(b) cost of steam, v GOLDEN, COLORADO 80401 *

(c) total production from the start of the cycle
to time TX (QX),

(d) oM, curve fit parameter,

(e) A, curve fit parameter.

The program must provide for any combination of changes of
the above constants.

Another reccmmendation for future work in the area of
‘cyclic steam injection using geometric programming is that
the problem should be formulated using only the injection
time as a given. The reason is that the soak period should
be a function of the injection time, because the maximum
heat created during the soak period is dependent on the
amount of steam injected. Secondly, the total production
from the start of the cycle to time TX which is QX, should
be a function of the maximum heat executed during the soak
period. This method would give a better solution for cycle
time. A variation of this would be if the cycle time is

dictated, then it would be possible by working backward to
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find the appropriate injection and soak times as well as
the decline time t.

Finally, an opportunity cost could be added to account
for the loss of production during the injector and soak
periods.

On the basis of this thesis, geometric pProgramming
appears to be a viable alternative method for the calculation

of the optimum cycle time for cyclic steam injection.
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NOMENCLATURE

steam injection time (fixed for given i) (days)
time from the start of injection until the
maximum production rate has been reached
(fixed for given i) (days)

total production from the start of the cycle until
time Txi (fixed for given i) (bbl)

well stable production state (fixed for given i) (bbl/ day)
production time since maximum rate has been reached (day)
curve fit parameter for production decline rate (bbl/week)
curve fit parameter for production decline rate (weeks)
value of a barrel of oil ($/bbl)

cost of a barrel of steam ($/bbl)

constant cost of setting up a steaming operation ($)
barrels of steam required (fixed for given i) (bbl)

total cyclic time using geometric programming (days)

total cyclic time using heuristic method (days)
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QUICK AND DIRTY FOR SIGNOMAL GEOMETRTIC PROGRAMMING

1. The Primal Geometric Programming Problem may be written

in the form:

To N 95
Minimize: gO(X) = I GOt Cot I Xy m
t=1 n=1
Tm N g
Subject To: gm(x) = X Omt Cmt I Xk mtm < o_; m=1. ,m
=1 .. » D=l
Where omt = 1l; m=-0, M £ =1, ,Tm
Cmt>0 s m=20, . ,M; £t =1, ..,Tm
Xn > 0:; n=1, N X = (xl,xz, ,xn)
Antn = arbitrary real number; m = 0,...,M; t =1,. ,Tm;
m=1,...,N
2. The Dual Geometric Programming Problem is then:
To I9:89p ™ OmtSmt 90
Maximize: 0, I COt\Ot 0t 7 6mt mO0 mt “mt
Subject to: To
: ootéot = 00 (NORMALITY)
t=1

33
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M T |
z z Omt amtnémt =0; n=1, +N (ORTHOGONALITY)
m=0 t=1
mt >0; m=0, oM; t=1, ' Th (POSITIVITY)
=Tm
8o =0 E Ot St 2 07 m=1,. ,M (POSITIVITY)
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QUICK AND DIRTY GEOMETRIC PROGRAMMING RULES FOR POGYNOMIALS

1. Optimum value of the objective function is always of the

g
»
¥

form:
go(x)* = (coeff. of first term/wl)wl *

(coeff. of second term/wz)wz *
¢

...* (coeff. of last term/w yWlast *

last

(Iw's in 1lst constraint)Iw's in lst constr.

1 ] 3 .
...* (Iw's in last constraintf¥ S in last constraint

2. Equations generated for a geometric program are:

Iw's in objective function = 1, (normality constraint),

and
For each primal variable X5 given in variables and
m terms:
i=m
i§1 {exponent on xj in lth term) * (w;) = 0, for j=1,2,3, ,N.

(orthogonality constraint)

3. Primal variables may be found by (objective function rule):

go(x)* = (lst term in obj. fun./w,) =
(2nd term in obj. fun./wz) =
-.. = (last term in obj. fun./Wisst term in obj fun.)

4. Primal variables may be found by (constraint rule):

Let wj be the weight of the ith term in a constraint,

then:
wy = (ith term in constraint) *

(sum of all w's in that constraint)
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DERIVATIVE OF PROFIT FUNCTION

-t/A
p(t) = K1 - k1€ + Ky + K3 - Ky
t t Tt
-t/A -t/A
ap(-t) = X1+ KiE + KiE - X3-K4 = 9
at 2 .2 At 2
—t/K
(-K1 K3+Ky) 4 Kp© (L+t) =0
; X
L2 L2
(e R = K1-K3tRy
(I+)
A
e~t/A - Ky _K3¥K,
R, (1+t)
17 &
Ke = e~t/A (1-t/a)
Ky
e—t/A _ K__6 [ A ]
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