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ABSTRACT 

 

In this study, pore-scale simulation tools to resolve flow and transport using the lattice 

Boltzmann (LB) method and the random walk particle tracking method (RWPT) were developed 

to solve advection-diffusion of solute or colloidal particles through porous media. Both LB and 

RWPT codes were parallelized to enable direct simulations of column and microfluidic 

experiments, conducted by collaborators, in acceptable computational times. The RWPT code, 

specifically, can generate tracer concentration profiles at the outlet known as breakthrough curves 

(BTCs). 

To directly compare with column experiments, digitalized images of the columns that 

contains about 10 million fluid voxels were directly used in LB and RWPT simulations. LB 

simulation was used to obtain the velocity field in the column. Using the average advection 

velocity from the LB simulation, input parameters for the RWPT simulation were determined to 

match the Péclet number of the column experiment. The breakthrough curves of the column 

experiment for non-adsorbing solutes such as iodide (I−) agree with those from the experiments. 

For transport of solute involved in equilibrium sorption-desorption processes between the solution 

and the porous medium such as cesium (137Cs+), a probabilistic method was developed. 

Numerical batch experiments were performed to determine the probabilities that reproduce the 

partition coefficients measured in the experiments. Without relying on curve fitting methods or 

empirical correlations, RWPT simulations reproduced retarded breakthrough curves matching the 

experimental data.  

To simulate colloid transport experiments conducted in microfluidic porous media models 

with embedded collectors, which are beads with surface charge that irreversibly adsorbs colloidal 

particles with finite adsorptive capacities, RWPT was extended to include linear and nonlinear 

finite adsorptivity models. Flow and transport in bead-based microfluidic porous media analogues 

with mixed surface charges were simulated. Colloid transport and deposition from simulations 

were compared to experiments on the level of breakthrough curves. With the inclusion of physics-

based electrostatic interaction range and dynamic blocking functions, RWPT simulations captured 

the kinetics of this complex advection-diffusion-adsorption process and generated breakthrough 

curves that are in good agreement with the experiments. Lastly, the movement of colloids under 
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the influence of hydrodynamic lubrication that hinders colloid deposition was modeled as an 

anisotropic random walk. Preliminary numerical simulations, performed on a body centered cubic 

(BCC) domain, suggested that near-wall hindered diffusion can facilitate transport of reactive 

colloids.  
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CHAPTER 1  

INTRODUCTION 

 

This chapter presents the motivation and objectives of this dissertation. Pore-scale direct 

numerical models for studying advection-dispersion in porous media is introduced, and the 

organization of this dissertation follows at the end of this chapter.   

1.1 Motivation of pore-scale models   

Advection-dispersion of reactive and non-reactive species in porous media is a subject of 

active research in many branches of science and engineering including biology, hydrology, 

environmental engineering and petroleum engineering. Practical engineering applications 

pertaining to this transport phenomenon in porous media include groundwater contamination (Batu 

2005; Fetter 2008; Bear and Cheng 2010), bacteria transport in soil (Abu-Ashour et al. 1994), 

engineered nanoparticle (ENP) transport for soil remediation (Tungittiplakorn et al. 2004), CO2 

sequestration (Molins et al. 2012), radionuclide transport in nuclear waste repository (Flury et al. 

2002), flow and diffusion in water and oil reservoirs (Perkins and Johnston 1963). 

A large number of transport models have been developed and applied successfully to solve 

continuum- and field-scale problems. The mathematical foundation for these classical transport 

models is to apply physical laws such as mass and momentum conservation over a representative 

element volume (REV) (Wiest 1969; Bear 1972) where effects of small-scale features of porous 

medium are averaged out. These models are usually in the form of partial differential equations 

(PDEs), and they are solved analytically or numerically with given initial and boundary conditions. 

Analytical solutions for some simple problems are still efficient tools to understand and analyze 

laboratory column experiments, e.g., those for the one dimensional advection-dispersion equation 

(1D-ADE) (van Genuchten and Wierenga 1976). Analytic models are, however, limited in that 

they can only be applied to simple systems. For complex problems, numerical solutions are 

preferred (Rhodes 2008). Transport properties of REV needed to close the transport models, in the 

past, were usually obtained from laboratory experiments (including empirical correlations 

developed from laboratory experiments) or derived from theoretical or numerical analysis of 

smaller systems. 
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Traditional Eulerian approaches were limited in solving flow and transport in 

heterogeneous porous media particularly for advection-dominated problems. This limitation was 

mainly attributed to that the solutions of traditional models are susceptible to numerical dispersion 

(Jiménez-Hornero et al. 2005). As an alternative to traditional Eulerian approaches in which 

governing partial differential equations are solved, Lagrangian particle tracking (LPT) methods 

emerged to solve field-scale ground water contaminant transport problems (Tompson et al. 1987; 

Ackerer 1988).  

With advances in high performance computing and image acquisition / processing 

techniques, particle tracking methods started to be used to solve pore-scale transport with complex 

pore and solid geometries explicitly considered, and pore-scale processes that contribute to 

macroscopic flow and transport explicitly modeled. Salles et al. (1993) applied particle tracking 

methods to porous media at pore-scale. They performed the pore-scale numerical simulation using 

random walks to study macroscopic transport coefficients of porous media. They validated their 

numerical solutions of dispersion tensor with analytic solutions for a plane Poiseuille flow. For 

arrays of cylinders and spheres, they reproduced dimensionless longitudinal dispersion tensor 

agreeable with existing data. They extended their approaches to three-dimensional porous medium 

that was reconstructed from Fontainebleau sandstones. In this line of work, Maier et al. (2000) 

studied pore-scale Taylor dispersion using the lattice-Boltzmann and random walk particle 

tracking (RWPT) methods. Flow and transport of tracer in periodic random packings was 

simulated to evaluate the time-dependent dispersion tensor. The numerical results of pre-

asymptotic and asymptotic dispersion coefficients were compared with those from nuclear 

magnetic resonance (NMR) spectroscopy. In these earlier works, pore-scale simulations focused 

on obtaining macroscopic transport properties including dispersion coefficients on statistically 

generated porous medium replicas. 

Interests in recent studies include incorporating physio-chemical interactions between 

transported species and porous surface and simulating column-scale breakthrough experiments of 

more complex or natural porous media. Hlushkou et al. (2013) employed random walk particle 

tracking (RWPT) combined with the lattice Boltzmann method to simulate microscopic advective-

diffusive transport in statistically generated porous media of chromatographic beds. To study the 

separation process in chromatography, they incorporated adsorption kinetics of analyte molecules 



  3  
 

at the interface of solid and liquid phase. The numerical model was validated using Taylor-Aris 

dispersion with adsorption-desorption processes on the adsorbent wall of a tube (Hlushkou et al. 

2014).  

Pham et al. (2014) studied the transport of nanoparticles under advection-diffusion-

adsorption through columns packed with spherical particles using LB/RWPT methods. Pore 

surface retention was modeled using a probability of adsorption and desorption that is pre-assigned 

to each tracer. They conducted breakthrough experiments in a column randomly packed with 

spheres. In the simulations, simple ideal packing arrays such as simple cubic, body centered cubic 

(BCC), and face centered cubic (FCC) were used. Breakthrough curves for conservative tracer 

were constructed to be compared with theoretical predictions. They also investigated into transport 

and retention of nanoparticles under surface charge heterogeneity combined with surface blocking 

conditions. In that study, they analyzed the mineralogy of Berea sandstones based on their micro-

CT-scanned images, and then assigned charge heterogeneity to the pore surface.   

To simulation laboratory column experiments of nature porous media, Scheibe et al. (2015) 

performed direct numerical simulations, particularly on the images of decimeter-scale soil column 

samples that were obtained in a nuclear waste repository. The images of the column samples were 

captured with X-ray computed tomography (XCT) and reconstructed into computation domains 

thorough image segmentation processes. They used a multiscale Stoke-Darcy simulation for flow 

field and solved the advection-diffusion equation to obtain the distribution of solute concentration. 

Breakthrough curves constructed from their simulations were compared with those from the 

column experiments.  

In this dissertation, we performed pore-scale direct numerical simulations to make direct 

comparisons with laboratory experiments conducted by collaborators: 1) solute transport 

experiments conducted in bead-packed columns, and 2) colloid transport experiments conducted 

in microfluidic porous media analogues packed with engineered beads. To generate realistic 

computational domains, 1) CT-scanned images of bead-packed columns were processed and 

assembled, and 2) coordinates and radius of beads in microfluidic devices were used to reconstruct 

digital replicas. Pore-scale processes including 1) equilibrium adsorption-desorption of solute and 

2) irreversible adsorption of colloid were modeled to investigate into the effect of surface-related 

phenomena on macroscopic transport behavior. As with recent trends in direct simulations of 



  4  
 

advection-diffusion, our numerical results were compared with those of the laboratory experiments 

on the level of breakthrough curves. Lattice Boltzmann (LB) and random walk particle tracking 

(RWPT) codes were parallelized to meet high computational demands in solving flow and 

advection-dispersion-adsorption of solutes / colloids.  

1.2 Objectives 

The primary objectives of this research are to 1) develop pore-scale simulation methods 

for transport of solutes and colloids in porous media with retention, and 2) to directly compare 

numerical solutions from pore-scale simulations with experimental data on the level of 

breakthrough curves.  On 1) simulation methods for transport, we specifically focus on the random 

walk particle tracking (RWPT) method, which is also known as Lagrangian particle tracking in 

the literature (Tompson and Gelhar 1990; Maier et al. 2000; Jiménez-Hornero et al. 2005; Boek 

and Venturoli 2010; Pham et al. 2014; Scheibe et al. 2015) to solve advection and dispersion in 

porous media. 

To these ends, we first developed a framework of pore-scale numerical methods to simulate 

decimeter-scale column and millimeter-scale microfluidics experiments. RWPT was massively 

parallelized to handle high computational demands. A robust specular reflection scheme was 

implemented. These efforts enabled generation of breakthrough curves directly from pore-scale 

simulations for quantitative comparisons with laboratory experimental data.    

Computational domains for direct numerical simulations were reconstructed both for 

column and microfluidics experiments. For the bead-packed column experiments, the digitalized 

column replica was reconstructed from the images scanned by a microfocus XCT scanner. 

Customized routines were developed to differentiate the pores and glass beads in the column. In 

this binary segmentation process, a different threshold value was assigned to each image to match 

the bulk porosity of the column used in the experiment. Whereas in the microfluidics experiments, 

we used the center coordinates and radius of beads obtained in the image processing in the 

experiments.  

Direct comparisons on the level of breakthrough curves were performed. We first aimed to 

obtain agreeable predictions from pore-scale simulations for a non-reactive solute and colloid. Our 

pore-scale models were further extended to incorporate microscale physio-chemical interactions 
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including 1) equilibrium partitioning processes in the column experiments, and 2) colloid 

deposition in the microfluidics experiments.      

1.3 The contents of dissertation 

This dissertation is organized to provide an introduction to pore-scale simulations of 

advection-diffusion in porous media with motivations and objectives of this research in Chapter 1, 

to provide a brief review of continuum-scale transport models in Chapter 2, to provide an overview 

of lattice Boltzmann method (LBM) and random walk particle tracking (RWPT) in Chapter 3 and 

Chapter 4, respectively. Comparisons between pore-scale simulations and bead-packed columns 

and between simulations and microfluidics experiments are presented in Chapter 5 and Chapter 6, 

respectively. In Chapter 7, anisotropic random walk was introduced and simulated over a simple 

BCC domain. Lastly, Chapter 8 closes this dissertation with summary and recommendations for 

future work.  
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CHAPTER 2  

TRADITIONAL APPROACHES TO TANSPORT IN POROUS MEDIA 

 

This chapter briefly reviews the fundamentals of solute and particle transport in porous 

media including three major processes: advection, diffusion and dispersion. Traditional continuum 

transport models formulated based on the classical advection-dispersion equation (ADE) are 

presented. Extended advection-dispersion equations for equilibrium partitioning and kinetic 

deposition are also presented to facilitate a comparative discussion with pore-scale simulations. 

Breakthrough curves from analytic solutions of one-dimensional advection dispersion equation 

(1D-ADE) are illustrated for further discussion.   

2.1 An overview of traditional approaches to flow and transport in porous media 

In our subsurface system, solute, in the form of dissolved substance in the solvent, exists 

everywhere. Physical mechanisms of flow and transport of solute in porous media are advection 

(or convection) and diffusion. Advection refers to transport of solutes by the motion of fluid. The 

advective flux through a saturated porous media with effective porosity (ϕe) is the product of the 

interstitial velocity or pore velocity (V) of flow and macroscopic concentration of the solute (C) 

(Eq. 2-1).  Diffusion, on the other hand, is the result of thermal motion of solute molecules in 

solution that drives solutes to move from regions of high concentration to regions of low 

concentration (Eq. 2-4). On the level of a representative element volume (REV), total flux is the 

sum of advective and dispersive fluxes (Eq. 2-3), and the many tortuous paths of porous medium 

within REV slows down the spreading of solutes from high concentration to low concentration. 

Therefore, the effective diffusion coefficient (De) in porous media is usually smaller than the 

molecular diffusion coefficient in bulk solution (Do) by a factor of tortuosity (τ) of porous media 

(Eq. 2-4). When flow is present, spreading of solutes is also attributed to the sub-REV velocity 

variations relative to the mean velocity due to the many different paths that solutes travel through. 

The net spreading of solutes on the REV level during flow is called dispersion. Both microscopic 

advection and diffusion contribute to dispersion and it is not possible to clearly separate their 

contributions. That said, the effective diffusion coefficient De may be phenomenologically 

subtracted from the apparent dispersion coefficient Da (Eq. 2-2), leading to the definition of the 

mechanical dispersion coefficient Dm (Bear 1972) (Eq. 2-5). Apparent dispersion coefficient Da is 
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an anisotropic property that is usually expressed as a tensor. The longitudinal component of Da (in 

the direction of flow) is named the longitudinal dispersion coefficient (DL) (Bear 1972). Apparent 

dispersion is also called “hydrodynamics dispersion”. As described above, it is the result of 

collective processes by molecular diffusion and advection. 

advective eJ VC  (2-1) 
 

dispersive e a

dC
J D

ds
   (2-2) 

 

advective dispersiveJ J J   (2-3) 

 

0diffusive e e e

dC dC
J D D

ds ds
       (2-4) 

 

 dispersive diffusive e a e e e a e e m

dC dC dC dC
J J D D D D D

ds ds ds ds
             (2-5) 

 

The advective and dispersive processes in porous media have been extensively studied 

since they are related to a wide range of practical engineering problems. Phenomenological 

observations using column scale laboratory experiments played a pivotal role in understanding 

physical mechanisms of flow and transport of solute in porous media (Lowe and Frenkel 1996). 

Mass and momentum conservation over a REV of porous media with the effective porosity (ϕe) 

yields the following partial differential form of the classical advection-dispersion equation (Eq. 2-

6). 

   e e e

C
C C

t
  

   


V D  (2-6) 

Eq. 2-6 is the governing differential equation in the most general form of the advective-dispersive 

transport in a fully saturated porous media without sorption and retardation (Batu 2005). The 

velocity term V is the interstitial velocity, and the macroscopic solute concentration C is volume 

averaged concentration, the mass of solute dissolved over a unit volume of solution in an REV. 
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The dispersion term D can be written in a tensorial form for anisotropic dispersive processes (Eq. 

2-7) (Bear 1961). 

11 12 13

21 22 23

31 32 33

[ ]ij

D D D

D D D D

D D D

 
   
  

 (2-7) 

For a homogeneous isotropic media, Eq. 2-6 is reduced to one-dimensional from with the uniform 

interstitial velocity U in the flow direction or x direction (Eq. 2-8).  

2

2L

C C C
D U

t x x

  
 

  
 (2-8) 

, where DL is the longitudinal dispersion coefficient. 

2.2 Equilibrium and Non-equilibrium sorption models 

A sink or source term (G) can be added to the Eq. 2-8 when there a mass transfer between 

the solid and liquid phases.  

2

2L

C C C
D U G

t x x

  
  

  
 (2-9) 

The sink or source term (G) is normally expressed in terms of the rate of solute concentration on 

the solid phase (S) (van Genuchten and Wierenga  1976; Gillham and Cherry 1983; Batu 2005).  

2

2
b

L

C C C S
D U

t x x t




   
  

   
 (2-10) 

ρb is the bulk density of porous media and S is the mass of the solute adsorbed onto the solid phase. 

Now the sink-source term for sorption-desorption is further expanded by chain rule (Eq. 2-11) on 

the premises that 1) the sorption-desorption processes occurs almost instantaneously to achieve 

thermodynamic equilibrium, and 2) the process is isothermal controlled only by the mass of the 

solute on the solid phase (Batu 2005). 

2

2
b

L

C C C S C
D U

t x x C t




    
  

    
 (2-11) 

Rearranging Eq. 2-11 yields,  
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2

2
1 b

L

S C C C
D U

C t x x




    
       

 (2-12) 

Assuming that the concentration of the solute in solution (C) is proportional to the concentration 

of the solute on the solid phase (S), i.e., a linear sorption isotherm, Eq. 2-12 is rewritten in terms 

of the partitioning coefficient or distribution coefficient (Kd).  

2

2
1 b

d L

C C C
K D U

t x x




    
       

 (2-13) 

By defining the retardation factor (Rd), 

1 b
d dR K




   (2-14) 

the one-dimensional advection-dispersion equation (1D-ADE) for a homogeneous porous medium 

with uniform flow under retardation is given,  

2

2d L

C C C
R D U

t x x

  
 

  
 (2-15) 

  A mass transfer between the liquid and solid phases in porous media may occur when 

equilibrium conditions are not met. For example, the mass transfer under a very high flow rate 

may not satisfy the thermodynamic equilibrium condition, then it becomes a kinetic process (Fetter 

2008). The kinetic process can be modeled as reversible or irreversible of any order (Cameron and 

Klute 1977). If the process is reversible, i.e., the solutes once sorbed on the solid phase are not 

desorbed, it is modeled as the first order irreversible kinetic reaction (Eq. 2-16 and Eq. 2-17) 

(Kretzschmar et al. 1997).  

2

2
b

L

e

C C C S
D U

t x x t




   
  

   
 (2-16) 

 

b

e

S
kC

t








 (2-17) 

where k is the first order kinetic deposition rate constant.  
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2.3 Analytic solution of 1D-ADE 

The dispersion tensor D (Eq. 2-7) represents the ensemble average of microscopic transport 

processes by molecular diffusion and advection in isotropic and anisotropic natural porous media 

(Icardi et al. 2014). Dispersion coefficients are still among the most controversial properties of 

porous media. A lot of studies have been made to understand fundamental mechanisms of 

dispersion in flow and transport and determination of the hydrodynamic dispersion coefficients. 

Those research efforts include laboratory or field experiments in combination with analytic or 

numerical transport models. Traditionally, laboratory column flow-through experiments were 

widely used to determine the longitudinal dispersion coefficient by analyzing the effluent 

concentration profile scaled by inlet solute concentration (i.e., breakthrough curve or BTC) with 

one-dimensional advection-dispersion equation (1D-ADE). The longitudinal dispersion 

coefficient DL is obtained by fitting the measured concentration data to analytic or numerical 

solutions with given boundary conditions.  For example, the analytic solution of Eq. 2-8 with unit 

step input is given in Eq. 2-18 (Ogata and Banks 1961),  

0

1
C = exp            

2 2 2LL L

x Ut Ux x Ut
C erfc erfc

DD t D t

      
              

 (2-18) 

, where C is effluent concentration, C0 is inlet concentration, t is time, x is the location in the 

column in the flow direction, and U is the uniform velocity (interstitial velocity) in the flow 

direction. For column experiments, Eq. 2-18 is rearranged to get the effluent concentration (C) at 

the column exit (x = L) as a function of pore volume (tR) (Eq. 2-19).  

 
1/2 1/2

0

1
C = (1 ) exp (1 )

2 4 4

/

/

R R

R R

R

L

Pe Pe
C erfc t Pe erfc t

t t

t Ut L

Pe UL D

                   



 

(2-19) 

The characteristic length in the Péclet number is a column length (L) and DL is a longitudinal 

dispersion coefficient. Figure 2-1 shows breakthrough curves with three different Péclet numbers 

obtained using Eq. 2-19.  
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Figure 2-1: Breakthrough curves from the analytic solution of 1D-ADE (Eq. 2-19) under fully 
saturated porous media with unit step input concentration for a passive solute: longitudinal 
dispersion coefficients used are 99, 19.8, and 0.198. 

The analytic solution under retardation is easily obtained, 

0

1
C = exp            

2 2 2
d d

LL d L d

R x Ut R x UtUx
C erfc erfc

DD R t D R t

      
              

 (2-20) 

Figure 2-2 illustrates a comparison between a breakthrough curve of a non-sorbing solute 

and that of a sorbing solute with the retardation factor of 5. The equilibrium partitioning process 

represented by retardation factor (Rd) in Eq. 2-20 scale down the advection and dispersion, 

resulting in retarded breakthrough curves. 

 
Figure 2-2: A comparison between a breakthrough curve of a passive solute and that of a 
sorbing solute: retardation factor is 5 at Pe = 99.  
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 Traditionally, longitudinal dispersion coefficients of conservative tracers are obtained by 

fitting experimental data (column) with the solution of the 1D-ADE (Eq. 2-18 or Eq. 2-19). For 

adsorbing solutes, batch experiments are first conducted to evaluate partitioning coefficients. With 

the longitudinal dispersion coefficient and equilibrium partitioning coefficient obtained as such, 

the effluent concentration profile is then predicted using the analytic solution under retardation 

(Eq. 2-20).  

To summarize this chapter, illustrative breakthrough curves predicted by classical 1D-

ADEs are presented. They are used to show how the Péclet number and equilibrium partitioning 

and irreversible kinetic adsorption processes affect effluent concentration profiles (Molnar et al. 

2015) (Figure 2-3). In this study, pore-scale simulations generated the breakthrough curves of a 

conservative solute (I−), a radioactive solute that exhibits equilibrium partitioning (Cs+), and a 

colloid with irreversible deposition. While direct comparison between simulation data and 

experiments is the main objective, analytical solutions presented in this chapter will also be used 

to check the quality of simulations. 

 

 
Figure 2-3: Illustrative breakthrough curves of particle transport under equilibrium partitioning 
(blue: Eq. 2-15) and kinetic adsorption (red: Eq. 2-16 and Eq. 2-17) processes relative to a 
conservative tracer (black: Eq. 2-8) (reproduced from Molnar et al. 2015). 
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CHAPTER 3  

LATTICE BOLTZMANN METHOD 

 

This chapter provides an introduction to the lattice Boltzmann method (LBM). A single 

phase parallelized LB code was validated using benchmark problems including Poiseuille flow 

(steady state) and Taylor-Green vortex (transient).  

3.1 Overview of the lattice-Boltzmann method (LBM) 

The lattice Boltzmann method does not rely on the continuum mechanics of fluids that 

traditional computational fluid dynamics (CFD) methods such as finite difference and finite 

element are based on. Instead, it is based on a simplified kinetic theory established to describe 

movements and collisions of clusters of molecules, dubbed as “particles”, on a space-filling lattice. 

The particle distribution function describes the probability of finding a particle at a given location 

having a certain velocity (Succi 2001). Instead of using macro-scale physical quantities such as 

density, velocity and pressure, the kinetic theory traces the evolution of the particle distribution 

function in the space-velocity phase space. At equilibrium, the particle distribution function 

follows the Maxwell-Boltzmann distribution. When system is at non-equilibrium, i.e., with 

gradients in macroscopic velocity, the second-order moment of particle distribution (macroscopic 

stress) is adjusted to reflect the outcome of inter-particle collision, which is relaxation of local non-

equilibrium. Finally, macroscopic properties of interest such as density and velocity are recovered 

from the zeroth- and first-order moments of the particle distribution function. It has been 

mathematically proven that the lattice-Boltzmann method recovers the solution of Navier-Stokes 

equation (Chen et al. 1992).  

In the lattice Boltzmann method, the evolution of the particle distribution function follows 

a discretized version of the Boltzmann transport equation known as the lattice Boltzmann equation 

(LBE) (Eq. 3-1).  In the lattice-Boltzmann equation, the discrete particle distribution function  fi  

is the primary variable. According to the LBE, each discretized particle distribution function 

moves in space with a lattice velocity that allows a particle to reach a neighboring lattice in the 

direction of the lattice velocity in a single time step. An example of a set of lattice velocity for 

two-dimensional flows with nine discrete velocities (D2Q9) is given in Eq. 3-2. After this 

movement or propagation, particles that arrive at a lattice node collide with each other, which is a 
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process to relax the non-equilibrium particle distribution, the deviation from the local equilibrium 

distribution eq

if  (Eq. 3-3). The relaxation of non-equilibrium distributions occurs at a constant rate, 

the inverse of which is known as the relaxation time  , according to the BGK (Bhatnagar-Gross-

Krook) collision scheme given in Eq. 3-4 (Bhatnagar et al. 1954). The macroscopic properties such 

as density and velocity are recovered as the zeroth- and first-order moments of the discrete particle 

distribution function, respectively (Eq. 3-5 and Eq. 3-6).  

 , ( , )i i i if x c t t t f x t        (3-1) 
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 (3-2) 
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i i
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


     (3-4) 

 

( ( , )i

i

x t f x t , ) =  (3-5) 

 

( , ) ( , )i

i

t f t  iu x c x  (3-6) 

The LBE (Eq. 3-1) with collision operator (Eq. 3-4) may be rearranged in a form to show that the 

overall procedure of solving the LBE can be viewed in two steps: collision (Eq. 3-7) and streaming 

(Eq. 3-8).  

( , ) ( , ) 1 ( , )coll eq

i i i

t t
f x t f x t f x t

 
     

 
 (3-7) 

 

 , ( , )coll

i i if x c t t t f x t      (3-8) 
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The collision operator Ωi can be formulated in many ways. In addition to the popular the 

Bhatnagar-Gross-Krook (BGK) scheme (Bhatnagar et al. 1954) presented in Eq. 3-4, another well 

used scheme is the multiple relaxation time (MRT) collision operator (d’Humieres et al. 2002). 

Owing to its extreme simplicity, the BGK scheme has been widely used for various hydrodynamics 

problems in spite of some limitations including stability issues in fluid flows with high Reynolds 

numbers (Aslan et al. 2014). The multiple relaxation time (MRT) lattice Boltzmann method or the 

generalized lattice Boltzmann method has advantages over BGK in that it is less susceptible to 

numerical instability in high Reynolds number hydrodynamics (d’Humieres 1994). It is well 

known that the stability and accuracy of BGK LB solution depend on the relaxation time. Using 

Poiseullie flows, it was shown that the numerical accuracy decreases with increasing relaxation 

time (Ginzbourg and Adler 1994). For high-Reynolds-number hydrodynamics problems, BGK LB 

exhibits numerical instability. To improve numerical accuracy and stability, multi-relaxation time 

(MRT) collision process was proposed by d’Humieres (1994). With higher degree of freedoms in 

relaxation rates, MRT generally yields improved numerical solutions than BGK.  

The key difference of MRT from BGK is that the collision step is implemented in the 

moment space to allow different moments of lattice particle distribution to relax toward their 

respective equilibriums with different relaxation rates (Krüger et al. 2017). For D2Q9 MRT LB, 

the nine moments are defined in a vector m (Eq. 3-9).  

( , , , , , , , , )T

x x y y xx xye j q j q p p m  (3-9) 

, where ρ is density as the zeroth order moment, e  is kinetic energy as a second order moment, 
is energy squared as a fourth order moment, jx and jy are momenta in x and y directions as first 

order moments, qx and qy are heat fluxes in x and y directions as third-order moments, pxx and pxy 

are normal and shear stresses, respectively, as second-order moments. The transformation from 

particle distribution functions to moments can be written in Eq. 3-10. 

m Mf  (3-10) 
 

BGK LB, recast into Eq. 3-11, where   is the relaxation rate, the inverse of relaxation time τ, 

shows that it is a special case of MRT LB. Using the transformation (Eq. 3-10), the MRT LB 
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update (Eq. 3-12) includes a transformation matrix M (Eq. 3-13) and a relaxation matrix S (Eq. 3-

14). 

 , ( , ) ( , ) ( , )eqx c t t t x t x t x t t           f f f f  (3-11) 
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(3-14) 

In the relaxation matrix S (Eq. 3-14), the elements corresponding to conserved quantities (e.g., 

density and momentum) are set to zero since they are not affected by collision  0 3 5 0     . 

Moments of the same order have same relaxation parameters  4 6 7 8and      (Eq. 3-14). 

Other elements can be arbitrarily chosen. In our D2Q9 MRT LB, the relaxation matrix is defined 

as in Eq. 3-14. More detailed derivation of the transformation and  relaxation  matrices can be 

found in d’Humieres et al. (2002). Lastly, the relation between the shear viscosity of the fluid and 

the relaxation time is Eq. 3-15 (d’Humieres 1994). 
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 (3-15) 
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3.2 Forcing scheme in the lattice-Boltzmann method 

Subsurface flows through complex pore geometries are mostly driven by pressure gradients. 

When geometries of porous media are repeating or periodic, the pressure gradient can be replaced 

by an equivalent force density (Kim and Pitsch 2007). Flow of incompressible fluids in porous 

media driven by a constant pressure gradient therefore is often simulated using a constant body 

force in combination with periodic boundary conditions. This approach of replacing a pressure 

gradient with an equivalent body force is very attractive because LB suffers less compressibility 

errors (Krüger et al. 2017) when the flow is driven by a body force. The lattice Boltzmann equation 

(LBE) with a forcing term is as follows (Eq. 3-16):  

  ', ( , ) ( , ) ( , )eq

i i i i i if x c t t t f x t f x t f x t tF            (3-16) 

There has been a large number of discussions on the implementation of forcing schemes in 

the lattice-Boltzmann method. Different forcing schemes were proposed by researchers including 

Ladd and Verberg (2001), Guo et al. (2002), Shan and Chen (1993), He et al. (1998) and 

Kupershtokh (2004). When a body force term is introduced to the LBE, the momentum term must 

be redefined to accommodate the forcing term regardless of which forcing scheme is used (Krüger 

et al. 2017). As Eq. 3-17 shows, the momentum is shifted by half the forcing term. This treatment 

can be interpreted as the average momentum between two time steps when a force term is present 

(Ladd and Verberg 2001).  

2i

i

f t    i

F
u j = c  (3-17) 

It should be noted that there is no significant difference between the momentum defined in 

Eq. 3-6 and the shifted momentum based on Eq. 3-17 for Poiseullie flows. However, the more 

solid nodes are present in simulation domains, the more evident the difference becomes in the 

momentum / velocity field. In our study, the shifted momentum defined by Eq. 3-17 was used for 

flows through porous media driven by a constant body force. 

3.3 Validations of lattice-Boltzmann simulations 

In this section, time-invariant Poiseuille flow and time-dependent two-dimensional Taylor-

Green vortex are used to verify the accuracy of our LB codes. Simulations of Poiseuille flows 

employed a three-dimensional and nineteen-velocity model (D3Q19) (Xiao and Yin 2016). 
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Simulations of Taylor-Green vortex used a two-dimensional and nine-velocity (D2Q9) lattice 

Boltzmann model (Newman and Yin 2013). Both D2Q9 and D3Q19 models can use either BGK 

or MRT collision operators 

First, Poiseuille flow between two stationary walls driven by a constant pressure drop was 

simulated using the parallelized D3Q19 LB code. The computational domain size is 22×1×111 in 

x, y and z directions, respectively. A constant body force was applied in the mean flow direction 

and the simulation was run until flow achieved steady state. Periodic boundaries were used along 

y and z directions and solid nodes were placed at x = 0 and x = 22. Flow direction is z and the 

height of the flow channel is 20. A constant body force of 10−5 was applied along the z-direction.  

Figure 3-1 shows the distribution of the z-velocity and Figure 3-2 shows the comparison 

between the numerical solution and the analytical solution, which is very good. The permeability 

of the channel calculated using the velocity from the numerical simulation was compared to the 

analytical solution. The relative error in the permeability is 0.126%.  

 

 
 

Figure 3-1: Distribution of z-velocity (flow direction) from LB simulation.   

 

 
 

Figure 3-2: Comparison between the analytical and the numerical solutions for the Poiseuille 
flow. 
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Second, the two-dimensional Taylor Green vortex (Taylor and Green 1937) was used to 

test the D2Q9 model for a case of transient flows. The simulation domain, which is a periodic box 

of dimension [0 2π] in both x and y directions, was discretized using 100 lattices in each direction. 

An initial velocity field was applied using the analytical solution of the Taylor Green vortex (Eq. 

3-18). In the absence of pressure and body force, the initial velocity field decays due to viscous 

dissipation. Figure 3-3 and Figure 3-4 show that the numerical solution is in good agreement with 

the analytical solution of the Taylor Green vortex, both in the pressure and the velocity field.        
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 (3-18) 

 

  
(a) (b) 

Figure 3-3: Pressure distribution based on the analytical solution (a) and that from the 
numerical simulation (b) at the same time t = 500. 

  
(a) (b) 

Figure 3-4: Comparison between the analytical and the numerical solutions: x-velocity (a) and 
y-velocity (b) along y = 25 at the time step of t = 500. 
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CHAPTER 4  

RANDOM WALK PARTICLE TRACKING 

 

Since the pioneering work of Albert Einstein (1905) revealed the physics of Brownian 

motion and the associated diffusive processes, random walk methods have been widely used to 

model diffusion in many branches of science and engineering including biology, economics, 

physics, mechanical, chemical, environmental engineering, material and medical sciences. The 

random walk particle tracking method employed in this study models biased random walk of a 

large population of particles on a high performance parallel computing platform to simulate 

advection-diffusion in the pore space.       

4.1 Overview of random walk particle tracking (RWPT)  

The primary motivation of random walk particle tracking method in hydrodynamics 

problems is that grid based Eulerian numerical approaches to advection-diffusion problems suffer 

numerical dispersion due to discretization in time and space (Park et al. 2008). Random walk 

methods have been considered as a good alternative to the Eulerian methods such as finite 

difference or finite element because they track particles explicitly in a Lagrangian framework, 

making it far less susceptible to numerical dispersion and instability. Although issues of numerical 

dispersion and instability in grid-based methods can be avoided or alleviated to a certain degree 

by increasing spatial and temporal discretization, these treatments inevitably lead to more time and 

resources spent in computation (Liu et al. 2004). Particularly for high-Péclet number problems in 

which advection prevails over diffusion, the spatial discretization required to fall within the 

stability criteria of the standard transport models may not be practically attainable. The Péclet 

number is defined as /Pe ud D , where u is superficial velocity, d is characteristic length of the 

porous medium (the bead diameter unless specifically stated otherwise), D is the molecular 

diffusion coefficient. This leads to a great deal of difficulty in solving advection dominated 

problems with high spatial and temporal gradients in the velocity field (Park et al. 2008). 

Advection dominated transport problems with high spatial gradients in the velocity are often 

observed in fluid flows in porous media. Hence, using random walk particle tracking to simulate 

advection-diffusion in porous media is a good choice. In addition, RWPT is computationally more 
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efficient both in serial and parallel implementations since it solves a simple algebraic equation 

instead of a system of linear equations.  

The classical advection-dispersion equation (ADE) (Eq. 2-6) has long been used to describe 

transport of solutes in fluids flowing through porous media. It should be noted that the solution for 

velocity V in Eq. 2-6 is the Darcy-scale interstitial velocity governed by Darcy’s law. Traditional 

approaches to modeling solute transport solve this partial differential equation analytically or 

numerically. The coefficients in the advection-dispersion equation reflect averaged properties of a 

complex transport process (Icardi et al. 2014). On the scale of the advection-dispersion equation, 

the effects of small scale heterogeneities and molecular diffusion through porous media are scaled 

up (Rhodes et al. 2009). In traditional approaches, the dispersion tensor in the ADE is evaluated 

by comparing breakthrough curves of column experiments with analytic or numerical solutions of 

the advection-dispersion equation.  

In this study, RWPT solves the advection-diffusion equation at the pore scale (Eq. 4-1).   

 0

c
c c

t


     


v D  (4-1) 

The solution for v, the pore-scale velocity, comes from lattice Boltzmann simulations. Do is 

molecular diffusion coefficient (Eq. 4-2). 
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D

 
   
  

D  (4-2) 

A solute or a colloid whose size is much smaller than pore throats is modeled as a volume-

less point tracer in RWPT. It is also assumed that the motion of a tracer has no influence on the 

fluid flow. The movement of a tracer in a biased random walk, where the bias comes from 

deterministic advection, is computed using Eq. 4-3. 

( ) ( ( )) ( )d t t dt d t  x v x B W  (4-3) 

x is the displacement vector, v is the velocity vector, B represents the magnitude of diffusive 

movement, and W is a Gaussian random process of the Brownian motion (Tompson and Gelhar 

1990).  
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The above stochastic differential equation was marched explicitly in time using an Euler 

approximation (Eq. 4-4) (Maier et al. 2000). Those authors established that the time step (Δt) for 

tracer movement should be limited such that the maximum movement of a tracer in one time step 

is less than half the grid size (h) of the fluid flow simulation from which the local maximum 

velocity ( maxu ) is obtained (Maier et al. 2000). This feature was implemented in our RWPT code 

to control the size of time step (Eq. 4-5).  

0( ) ( ) ( ( )) 2t t t t t D t     x x v x   (4-4) 

 

max 06 / 2u t D t h     (4-5) 

Computing the dispersion tensor on the REV level from RWPT is straightforward following the 

relation between the dispersion tensor and the covariance tensor of squared displacement Eq. 4-6 

and Eq. 4-7. If averaged transport cannot be well described by a single dispersion tensor, it will be 

reflected through the time dependence of the covariance tensor. 
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2 ( ) ( ) ( ) ( )ij i i j jx t x t x t x t           
(4-7) 

 

4.2 Boundary conditions of random walk particle tracking  

Tracers in RWPT are allowed to move only in the pore space (fluid) and they are not 

allowed to enter the solid phase. Therefore, if a tracer moves into the solid phase as a result of 

advection and diffusion, such movement needs to be properly handled to ensure that the physics 

of solute-solid interaction is respected. In this section, we present methods to recover the no-flux 

boundary condition imposed on the interface between the solid and the fluid for solutes that do not 

interact with solids.  

Different methods of implementing no-flux boundary condition in RWPT have been 

proposed and they are summarized as follows (Khirevich 2011):  1) rejection, 2) multiple rejections, 

3) time step division, 4) interruption, 5) specular reflection. In the rejection scheme, a tracer’s 
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movement into the solid phase is rejected and the tracer stays at its previous position. In the method 

of multiple rejections, if a tracer enters the solid phase, such a movement is negated and the tracer 

is moved only by diffusion until it finds its position in fluid. In the method of time step division, 

if a tracer hits the solid phase, the tracer is returned to its original position, and the time step is 

divided into smaller fractions to move the tracer in multiple time steps without hitting the solid, 

until the sum of divided time steps reaches the full time step. In the method of interruption, the 

time step of a tracer crossing the interface is divided into two: before collision and after collision. 

This tracer is placed at the contact point on the interface after the first part of the time step elapses. 

The velocity component normal to the surface is then reversed to calculate the displacement during 

the remaining time step. In the specular reflection scheme, if a tracer enters a solid node, the 

“trajectory” of the tracer is secularly reflected on the interface that the tracer first hits. When 

multiple interfaces exist, reflection may be repeated until the reflected tracer falls into a fluid node.  

 Szymczak and Ladd (2003) investigated different methods to achieve no-flux boundary in 

random walk particle tracking. They showed that the specular reflection method satisfies mass 

conservation. Khirevich (2011) also suggested that the specular reflection scheme, though 

computationally heavy, is the most accurate. Our RWPT code uses the specular reflection method 

to simulate the no-flux boundary condition, as illustrated in Figure 4-1, which specifically shows 

a scenario where two reflections are needed to return a tracer into the fluid phase. A tracer in the 

fluid phase is first advected by the local velocity and diffused in random motion. The position after 

advection and diffusion is in the solid phase, which lead to the first specular reflection on the 

interface between the solid and liquid phase. The new position after the first specular reflection is 

in the solid phase. This leads to the second specular reflection. Finally, the position falls into the 

liquid phase after two consecutive specular reflections.   

Robust reflection algorithm is a crucial element in large-scale particle tracking simulations 

due to a very large number of grid blocks and tracers needed to suppress statistical uncertainties 

in obtained macroscopic transport properties. The specular reflection scheme implemented in our 

parallel RWPT code is very robust compared with the previous implementation. For instance, not 

a single error was found in a large-scale test conducted in a computational domain with 49,467,652 

nodes (solid and fluid nodes) using 10,117,521 tracers that was run for 109 time steps using 256 

processors.  
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Figure 4-1: Specular reflection method to achieve no flux boundary at the interface of the solid 
node and fluid node. 

 
4.3 Generating breakthrough curves (BTCs) from random walk particle tracking  

Tracer concentration at the “outlet” of the computational domain, or the effluent 

concentration, is obtained by counting the number of tracers crossing the designated exiting 

boundary per unit volume of fluid that passes the same boundary during a pre-specified sampling 

time. This sampling volume and its ratio to the net pore volume are proportional to the average 

advection velocity from the lattice-Boltzmann simulation. The effluent concentration, scaled by 

the inlet concentration and presented as a function of pore volume, which equals the sum of all 

sampling volumes collected and normalized by the net pore volume, generates a breakthrough 

curve that is directly comparable to those from column experiments.  

Implementation of the above method in our RWPT code, however, is complicated as our 

RWPT code adopts a periodic boundary condition to maintain load balance for parallel computing. 

At the beginning of a simulation, tracers are distributed uniformly in the entire computational 

domain. Tracers that have passed through the computational domain are moved to the other side. 

Assume that mean flow is in the z-direction and tracers are located at ( 1,2, , ), 0i zii N r L   r . 

For any tracer that moved past L the following rule was applied (Eq. 4-8):  

' , .zi zi ziL L  r r r  (4-8) 

This treatment ensures that each process in the parallel program, which handles calculations within 

a subdomain of the porous medium, has similar number of tracers. Clearly, by this initialization 

strategy and the periodic boundary condition, breakthrough curves for tracers that do not have any 
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interactions with the solid will simply be unity at any time. To generate breakthrough curves that 

are directly comparable with experiments, we let these tracers carry pseudo-positions *
ir . Initially, 

pseudo-positions  * 0, 0,i i L r r . According to the pseudo-positions, all initialized tracers are in 

the periodic image of the computational domain along the z-direction (Figure 4-2a). Pseudo-

positons *
ir can therefore be considered as the locations of tracers that are about to enter the 

computational domain. When 
ir  is updated, *

ir is also updated by the same amount. When *
i Lr , 

a breakthrough event is recorded. This tracer *
ir is then updated by the periodic rule (Eq. 4-8) as it 

“flows” out of the domain 0 .zir L   Based on the periodic rule, as a tracer leaves the domain at

z L , it is returned to the side 0z   so that the total number of tracers in the domain remains as 

a constant. Figure 4-2 illustrates how the pseudo-locations of tracers evolve from initialization to 

the point when all the tracers have been counted for breakthrough curves.     

  

(a) (b) 
 

 
 

 

(c) (d) 

Figure 4-2: Evolution in pseudo-positions of tracers over time (a) Initial pseudo-location of 
tracers, (b) a portion of tracers entering the porous medium, (c) most tracers in the porous 
medium, (d) all tracers that have left the domain returned using the periodic boundary condition. 

 
A two-dimensional RWPT code was used to see if the method presented above for domains 

with periodic boundaries for tracers generates breakthrough curves equivalent to that from the 

constant–inlet-concentration boundary condition. In simulations with the constant-inlet boundary-

condition, tracers are initialized at a constant frequency proportional to the local prescribed flux at 

the inlet side of the flow channel. These tracers are carried to the outlet by fluid flow. When they 
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leave the channel, they are counted into the breakthrough curve and eliminated from the total tracer 

count, unlike the periodic boundary condition. This comparison was made using a plug flow with 

uniform velocity. The breakthrough curve generated by the method of pseudo-positions with the 

periodic boundary condition and that from the constant-inlet-boundary condition are practically 

identical (Figure 4-3), proving that breakthrough curves can indeed be generated from RWPT 

simulations with periodic boundaries. 

 
Figure 4-3: Comparison between BTC form constant inlet boundary condition (green) and 
periodic boundary condition (black) and BTC. 
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CHAPTER 5  

PORE-SCALE SIMULATION OF A BEAD PACKED COLUMN EXPERIMENT 

 

This chapter presents pore-scale simulations of transport of non-adsorbing and adsorbing 

solutes in bead-packed columns. Rod et al. (2018) conducted a set of column experiments to 

investigate the effect of chemical and physical heterogeneities on colloid-facilitated radionuclide 

transport. We simulated transport of a conservative and adsorbing solutes (iodide and cesium) 

through a column packed with homogeneous beads. CT-scanned images of columns that were 

packed with glass beads were processed to digitally reconstruct the computational domains for LB 

and RWPT simulations. The velocity fields resolved by LB simulations were passed to RWPT to 

generate simulated breakthrough curves and these curves are comparable to those from the 

experiments. For adsorbing solutes, the equilibrium partition between solvent and solid surface 

was incorporated into RWPT by a probabilistic approach to reproduce the retardation seen in 

experiments.  

5.1 Digitalization of a bead-packed column for simulation of column experiments 

 The first step in the workflow of pore-scale modeling is to create a three-dimensional 

geometry model of a porous medium (Wu et al. 2006; Lin et al. 2016). Recent advances in three-

dimensional rock imaging techniques enabled us to capture microscopic details of porous media 

at high resolutions. X-ray microtomography (XMT) or micro-CT scanners are the most widely 

used imaging tools in the studies of geologic material and the typical resolution is a few microns 

(Wildenschild et al. 2002; Arns et al. 2007; Iassonov et al. 2009). Other imaging methods include 

Scanning Electron Microscopy (SEM), Focused Ion Beams/Scanning Electron Microscopy 

(FIB/SEM). Once the images are obtained, they are segmented into phase types, i.e., pores and 

grains. This process is known as image segmentation (Lindquist et al. 1996). There are various 

approaches to 3D image segmentation. A binary segmentation is the simplest method by which 

pores (fluid phase) and grains (solid phase) are differentiated to assign digital values (i.e., zero for 

pores and one for grains) to each voxel of the image. A threshold value or multiple values are 

applied based on the light intensities of the image. Then the segmented images are recombined to 

reproduce a three dimensional voxel-based computational replica of porous media.  
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A computer code to process CT-scanned images (2000 images, 298 KB and 525 × 582 

pixels each) of bead-packed columns used in the column experiments was developed. A binary 

segmentation was implemented to differentiate glass beads and void spaces inside the column and 

generated the computational domain for LB and RWPT simulations. The images were visually 

inspected to determine the top and bottom sections of the column. Considering the quality of 

images, the top was chosen at image # 0161 and the bottom was at image # 1881 (Figure 5-1). The 

original image files were then cropped to the size of 169 × 169 pixels to remove much of the solid 

area outside the column. Otsu’s algorithm was applied to each cropped image to find appropriate 

threshold values based on the histogram of the light intensity values (Otsu 1979). These images, 

as shown in Figure 5-1, show cross-sections of the column. A problem with the images is that the 

inner surface of the column could not be clearly identified. To determine the location of the inner 

surface of the column, an ellipse with adjustable major and minor axes and orientation was used 

to fit the contour of the beads. After the inner surface was determined, pixels inside the column 

were converted to binary (0: fluid; 1: solid) using different threshold values till the porosity of 

images matches the porosity of the column in the experiment. The porosity of the digital column 

was calculated by counting the number of fluid pixels and the total number of pixels inside column 

(Eq. 5-1). 

fluid pixels
porosity 0.32

pixels inside column
  


 (5-1) 

The real column used in the experiment was constructed by packing large 500-600 µm beads and 

has a length of 10.26 cm and a diameter of 0.75 cm. The resolution of the images is 51.3 μm per 

pixel and the distance between consecutive images is also 51.3 μm. A 500~600 µm bead was 

resolved by 10 to 12 voxels. Figure 5-2 shows one example of the original CT-scanned image and 

the binary image processed by the established threshold, where white denotes the pore space 

(image #1590). After thresholding, fluid and solid voxels are represented by zeros and ones, 

respectively, in a Cartesian lattice system (Figure 5-2). The total 1,722 images were processed and 

stacked to form the three-dimensional digitalized column for flow and transport simulations 

(Figure 5-3). 
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Figure 5-1: The top and bottom images of the bead-packed column. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5-2: Procedure of image processing of CT-scanned column images to generate digitized 
bead-packed column images (#1590): (a) original CT-scanned image, (b) cross-section of 
column established by an ellipse, (c) cropped cross-section and (d) binary image of cropped 
cross-section with pores (white) and grains (black). 
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Figure 5-3: Processed images of a bead-packed column are stacked to form a 3D digitalized 
column for LB and RWPT simulations (only the surfaces of glass beads are visualized). The size 
of the domain is 169×169×1722 in each direction. A three-quarter section view in the mid-section 
of the column (from 700 to 1000) is also presented. 

 

5.2 Comparison between solutions of 1D-ADE and experiments 

Before presenting our pore-scale simulations, traditional approaches that use solutions of 

1D-ADE to analyze laboratory column flow-through experiments are discussed to facilitate 

comparative discussions with our pore-scale simulations later in this chapter.  

Perkins and Johnston (1963) compiled experimental data from unconsolidated sand- or 

bead-packed column experiments and presented an empirical correlation to estimate longitudinal 

dispersion coefficients (Eq. 5-2 and Figure 5-4). The parameters in the correlation include flow 

rate, column diameter, bead diameter, and porosity. The values of these parameters in the column 

experiments are given in Table 5-1. The molecular diffusion coefficient of iodide (I−) was taken 

from literature (Friedman and Kennedy 1955).   
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Table 5-1: Experimental details of the bead-packed column experiment 
Parameter Value Unit 

Flow rate  14  cc/day 
Column diameter 0.75  cm 
Bead diameter 0.05 ~ 0.06 cm 
Porosity 0.32 - 
Diffusion coefficient of iodide1 1.693  cm2/day 
1from the work of Friedman and Kennedy 1955 

 

Taking the average grain size as the characteristic length (d = 0.055 cm), the Péclet number 

of the bead-packed column experiment of iodide (I−) is 3.2 (Eq. 5-3) and it is in the transition zone 

between the diffusion dominated and the advection (convective dispersion) dominated regimes 

(Figure 5-4).  
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Figure 5-4: Longitudinal dispersion coefficients for unconsolidated, random packs of uniformly 
sized sands or beads (adapted from Perkins and Johnston 1963): the dimensionless longitudinal 
coefficient of the iodide column experiment is obtained as DL /D0 = 7 at Pe = 3.2. 
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The dimensionless longitudinal dispersion coefficient at Pe = 3.2 is seven (DL /Do = 7) from 

Figure 5-4. The longitudinal dispersion coefficient (DL) is therefore seven times the molecular 

diffusion coefficient of iodide (DL = 7×Do = 1.3713×10-4 cm2/s = 11.85 cm2/day). Now let us use 

the analytical solution of 1D-ADE (Eq. 2-19) to construct a breakthrough curve for iodide (I−). 

Figure 5-5 shows the comparison between the solution of 1D-ADE and the column experiment. 

There are a few notable differences. First, for the initial point of breakthrough, 1D-ADE predicts 

that iodide should be detected at about 0.7 pore volume (PV) whereas in the experiment iodide 

was detected at 0.5 PV. Second, the only experimental data point measured in the build-up portion 

of the experimental breakthrough curve seems more retarded than the 1D-ADE prediction. Overall, 

the solution of 1D-ADE (Eq. 2-19) using the empirical correlation (Eq. 5-2) for longitudinal 

dispersion does not quite accurately predict the effluent profile of the bead-packed column 

experiment. This discrepancy could be attributed to many sources, for instance, the limitations in 

the traditional 1D-ADE, the applicability of the empirical correlation to the column experiments, 

and uncertainties in the experimental setup and measurements such as packing and pore volume, 

etc. In the next section, we will add the results of pore-scale simulations into this comparison.  

 
Figure 5-5: A comparison between the breakthrough curve from the analytical solution of 1D-
ADE and that from column experiments. 
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5.3 LB simulation of fluid flow in packed-column 

The D3Q19 LB code was used to obtain the velocity field within the digitalized bead-

packed column. The simulation was run to 20,000 LB time steps, at which fluid flow in the column 

reached the steady state. The computational domain size was 169 × 169 × 1732 including 

additional five fluid layers on both ends of the column in the z-direction to maintain periodicity of 

the computational domain. A constant body force was applied in the z-direction to drive the fluid 

flow. The velocity in the direction of fluid flow is visualized in Figure 5-6. A three-quarter section 

view (from 700 to 1000) as well as plane views in each direction are also presented.  

 

 
(a) 

 
 

(b) (c) 

  
(d) (e) 

Figure 5-6: Visualization of z-velocity obtained from LB simulation: (a) z-velocity in the entire 
column, (b) z-velocity from a three-quarter section view from image number 700 to 1000, (c) z-
velocity on a zx-plane, (d) z-velocity on a yz-plane, (e) z-velocity on a xy-plane. All three planes 
cut through the center of the column (84, 84, 850). 
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The permeability of the column was calculated at 156 darcy. This permeability is close to 

the range of permeability estimated using the Kozeny-Carman equation (Eq. 5-4): kK-C = 99 ~ 144 

darcy. The parameters of LB simulation are summarized in Table 5-2 

2 3 2 3

2 2

(500 600 μm) 0.32
99 144 darcy

180 (1 ) 180 (1 0.32)K C

d
k





   

 
 (5-4) 

 

Table 5-2: Parameters of LB simulation of the column experiment 
Parameter Value 

Grid type Cartesian 
Domain size 169 × 169 × 1732 
Total number of grids 49,467,652 
Total number of fluid nodes 10,117,521 
Body force [0   0  10-6] 
Collision operator MRT 
Relaxation time 1.0 
Boundary condition Periodic  
Simulation time step 20,000 
# of CPUs 128 

 

5.4 RWPT simulation of iodide 

In the column experiment, iodide (I−) was used as a non-adsorbing solute since it does not 

adsorb to glass beads. The velocity field obtained from LB simulation was passed to RWPT. The 

diffusion coefficient and time step size of RWPT were chosen to match the experimental Péclet 

number so that tracers in RWPT travel with the same advection-diffusion dynamics as the 

experiment. The definition of the Péclet number is the same as that in Eq. 5-2 except that pore 

velocity is used.  

Here, we note the sources of the diffusion coefficient, also termed the “free-solution” 

diffusion coefficient, of ionic species in aqueous solution including iodide (I−) and cesium (+Cs) 

in the literature. Robinson and Stokes (2002) calculated diffusion coefficients of ions using the 

Nernst-Einstein equations. (Aslan et al. 2014). Yuan-Hui and Gregory (1974), Lerman (1979), and 

Quigley et al. (1987) also presented diffusion coefficients of ions in soils. Friedman and Kennedy 

(1955) measured diffusion coefficients of radioactive ions in aqueous solutions using the open-

ended capillary method. Sato et al. (1996) measured ionic diffusion coefficients of radioactive 
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elements in free water and their values are comparable to those reported prior to their study. In this 

study, the molecular diffusion coefficients of iodide (I−) and cesium (Cs+) at the condition most 

comparable to the column experiment were taken from the work of Friedman and Kennedy (1955) 

(Table 5-3). Parameters of the RWPT simulation for iodide (I−) transport are summarized in Table 

5-4. 

 
Table 5-3: Molecular diffusion coefficients of iodide and cesium in 11.36% solution at 
25 ± 0.0005° (reproduced from Friedman and Kennedy 1955) 
Type of solute Value  Unit 

Iodide (I−) 1.959 ± 0.020×10−9 m2/s 
Cesium (Cs+ ) 2.047 ± 0.011×10−9  m2/s 

 

Table 5-4: Parameters of RWPT simulation of iodide transport 
Parameter Value 

Grid type Cartesian 
Domain size 169 × 169 × 1732 
Grid resolution 51.3 μm / pixel 
Total number of grids 49,467,652 
Total number of fluid nodes 10,117,521 
Number of tracers initialized per grid 1 
Superficial velocity from LBM 2.06616 × 10−7 
Péclet number 1.03 
Dimensionless diffusion coefficient 3.66 × 10−6 
RWPT time step size 6.59064 × 103 
Duration of simulation 1.45211 × 106 (5 PV) 
Number of cores used 128 

 

RWPT simulations were run with the above parameters to generate a breakthrough curve 

for iodide. This breakthrough curve is compared to that from the column experiment in Figure 5-

7. Statistical noise in the simulated breakthrough curve was smoothed by integrating the number 

of tracers over a longer sampling time interval. The breakthrough curve generated directly from 

the RWPT simulation shows the typical trend of a conservative solute with low to moderate Péclet 

number. The simulated breakthrough curve is comparable to the experimental data on both the 

initial breakthrough at 0.5 PV and the late-time behavior. The experimental data point in the build-

up part, just like the comparison with the solution of the 1D-ADE, arrives later than the simulation. 

Due to limited experimental data, it is not easy to tell what factors contributed to this difference. 
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When the solution of the 1D-ADE is added to the comparison, it may be seen that the agreement 

between the solution of 1D-ADE and the result of RWPT is better than the agreement between 

RWPT and experiments (Figure 5-8). In the experiments, the calculation of pore volume is usually 

not very accurate. The difference between experimental breakthrough curve and those from 1D-

ADE and RWPT simulation is therefore likely due to uncertainties in the experiment.   

 

 
Figure 5-7: Comparison between the breakthrough curve from RWPT simulation (black) and 
that from the experiment (red).  

 

 
Figure 5-8: Comparison among the solution of 1D-ADE (blue), breakthrough curve from 
RWPT (black), and that from experiment (red).  
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5.5 Tortuosity and longitudinal dispersion coefficient from RWPT 

Tortuosity is one of the key parameters that characterizes advection-dispersion in porous 

media. As reviewed by Bear (1972), it is the measure of the effect of tortuous paths in a porous 

medium on diffusive transport. Tortuosity is normally defined as the square of the ratio of the 

averaged effective length of transport pathways to the end-to-end length of the porous medium. 

There have been scores of attempts to determine tortuosity of the porous medium, theoretically, 

empirically and experimentally. Experimental approaches including electrical ultrasonic method, 

resistivity measurements and diffusion coefficient measurements, estimate tortuosity quite 

successfully but very time consuming (Boudreau 1996). 

The tortuosity of porous media can be numerically obtained using RWPT by simulating 

pure diffusion of tracers. The tortuosity of the bead-packed column, studied in this chapter, was 

obtained as the ratio of molecular diffusion coefficient to effective diffusion coefficient (Eq. 5-5). 

The latter was obtained from the mean square displacement (MSD) of tracers in pure diffusion  
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 (5-5) 

 A RWPT simulation of pure diffusion was performed. Tracers were uniformly initialized 

in each fluid voxel to achieve fast convergence of the time-dependent dispersion tensor (Eq. 4-6) 

(Maier et al. 2000). The position of every tracer was tracked and the squared displacements in the 

flow direction were averaged and plotted as a function of time steps, as exemplified in Figure 5-9.   

 
Figure 5-9: The mean square displacement (MSD) of tracers under pure diffusive process to 
estimate the tortuosity of the column (in RWPT simulation unit). 
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The effective diffusion coefficient (De) in the flow direction is obtained as half of the slope 

of the plot (MSD = 2Dt). The tortuosity of the bead-packed column is calculated at 2.214. This 

value of the tortuosity obtained from our pore-scale simulations agrees well with tortuosity-

porosity correlations for spherical particles cited in literature (Bear 1972; Dullien 1975; Comiti 

and Renaud 1989; Mauret and Renaud 1997; Koponen et al. 1996 ) (Table 5-5).  

 
Table 5-5: Tortuosity-porosity correlations for spherical particles in literature 
Literature Correlation Tortuosity 

Bear (1972), Dullien (1975) 0.33

1effL

L 
  2.120 

Comiti and Renaud (1989) 1 0.41lneffL

L
   2.152 

Mauret and Renaud (1997) 1 0.49lneffL

L
   2.427 

Koponen et al. (1996) 1 0.8(1 )effL

L
    2.384 

 

The asymptotic longitudinal dispersion coefficient in the flow direction was obtained from 

RWPT simulation. The mean square displacement and time-dependent dispersion coefficient 

normalized by the molecular diffusion coefficient (DL/Do) in the flow direction is shown in Figure 

5-10. The asymptotic dimensionless dispersion coefficient was 5.74, and the steady-state 

dispersion coefficient was 9.72 cm2/day.  

  
(a) (b)  

Figure 5-10: The mean square displacement (a) and normalized longitudinal dispersion 
coefficient (b). 
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Now macroscopic properties including permeability, tortuosity, and longitudinal 

dispersion coefficient were obtained from our pore-scale direct numerical simulations, and they 

are compared with empirical correlations (Table 5-6). 

 
Table 5-6: A summary of permeability, tortuosity, and longitudinal dispersion coefficient 
obtained from LB and RWPT simulations and those estimated using empirical correlations 
Properties Simulated Correlation Unit 

Permeability (k) 156  99~144 darcy 
Tortuosity (τ) 2.214 2.120 ~ 2.427 - 
Dispersion coefficient (DL) 9.72 11.85 cm2/day 

 

5.6 Implementation of adsorption-desorption processes in RWPT 

Sorption refers to a collection of processes through which solutes are transferred or 

removed from the solution to the solid phase (Fetter 2008). Sorption results from interactions 

between solutes and solid surfaces. Mechanisms behind sorption processes can be adsorption, 

electrostatic interaction, chemisorption, and absorption. Adsorption or physisorption is a process 

in which a solute molecule is attached to a solid surface by van der Waals force. For electrostatic 

interaction, cations (anions) in the solution are attracted to solid surfaces that are negatively 

(positively) charged. Chemisorption involves formation of chemical bonds that incorporates 

solutes onto the structure of the solid surface. Lastly, solutes may diffuse into the interior of the 

solid (Wood et al. 1990) and this process is called absorption. Most times, these processes are 

collectively called “sorption” since they cannot be easily differentiated especially in natural 

subsurface systems. Sorption processes can be considered from two perspectives: equilibrium and 

kinetics. Equilibrium sorption refers to situations where the solute concentration in solution is in 

equilibrium with the solute sorbed on adsorbents (i.e., solid phase). Kinetic sorption, on the other 

hand, studies the dynamics of sorption processes that drive the evolution from non-equilibrium 

toward equilibrium.  

Adsorption processes make some solutes move slower than the motion of bulk fluid. If 

adsorption-desorption processes are reversible in equilibrium, they lead to equilibrium retardation 

as in Figure 2-2. This equilibrium retardation was also observed in the column experiment of 

cesium (Rod et al. 2018). The RWPT code was modified to simulate solutes with adsorption-

desorption equilibrium. The equilibrium adsorption model was implemented by introducing a 
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probability of adsorption (Pa) and another probability of desorption (Pd) to determine whether a 

tracer adsorbs on or leaves the surfaces of the solid phase. A random probability (Prand) is generated 

when a tracer is intercepted by an interface between the liquid and solid phases. If this random 

number is smaller than the prescribed probability of adsorption (Pa > Prand), the tracer is adsorbed 

on the surface. If not (Pa < Prand), a specular reflection is carried out to keep the tracer in solution. 

For tracers that are already adsorbed, random numbers are generated to decide whether they should 

be sent back to solution. An adsorbed tracer would leave solid surface if a random number, 

generated specifically for this tracer, is smaller than the prescribed probability of desorption (Pd > 

Prand). Otherwise, it would stay on the surface during this time step, waiting for the random number 

for the next time step. To simulate adsorption-desorption equilibrium under periodic boundary 

condition, two types of tracers were used in RWPT (Figure 5-11).  

 

 

Figure 5-11: Illustration of “pseudo tracer” and “real tracer” implemented in RWPT to 
simulate the equilibrium adsorption-desorption. 

 
“Pseudo tracers” are initialized at pseudo positions at the beginning of simulation. When a 

pseudo tracer become active and hit the solid phase, a random probability is compared with a 

prescribed probability of adsorption. If a random probability is smaller than a probability of 

adsorption, the adsorption condition is met, and then a “real tracer” is copied and allocated to a 

variably designated memory for real tracers. At this moment, the pseudo tracer is nullified with 
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the adsorption event recorded. This pseudo tracer keeps moving to the exit without being adsorbed 

to satisfy periodic boundary condition. The copied real tracer stays on the interface between the 

liquid and solid phases until desorption condition is met. Contrary to pseudo tracers, real tracers 

undergo adsorption-desorption every time adsorption or desorption condition is met. When they 

cross the exit, they are counted in the construction of breakthrough curves, and then removed from 

computational domains. The memories for real-tracers are dynamically allocated to improve 

memory efficient. We implemented dynamic memory allocation for real-tracers.         

5.7 Simulation of adsorption-desorption equilibrium 

  The governing differential equation for continuum-scale solute transport with adsorption-

desorption was presented in Eq. 2-13. The partitioning coefficient (Kd) is the measure of 

equilibrium solute partition between the solid and liquid phases due to reversible adsorption and 

desorption. Under this equilibrium, the tendency for solute in solution to adsorb to the solid phase 

is balanced by the tendency for adsorbed solute to return to solution.  Kd  is usually measured from 

American Society of Testing and Materials (ASTM) batch experiments (ASTM 2010; Kaiser and 

Guggenberger 2000) in which a mass of solid, i.e., rock or soil, is immersed in a known volume 

of solution for enough time so that the solute achieves equilibrium between the solid and liquid 

phases (Batu 2005). Results from such experiments are generally presented in the form of an 

isotherm, i.e., concentration of the solute in the solid phase (S) (μg/kg) plotted as a function of the 

solute concentration in solution (L) (μg/L). For linear sorption isotherms, the slope of the isotherm 

is Kd (L/kg or mL/g).      

Kd for cesium (Cs+) was measured in laboratory batch experiments. The Kd for Cs+ with 

specific area, particle density, bulk density and porosity of the column are presented in Table 5-7 

from the column experiment (Rod et al. 2018).  

 
Table 5-7: Sorption partitioning coefficient (Kd) of cesium, specific surface area, and particle 
density for glass beads (reproduced from Rod et al. 2018) 
Parameter Value Unit 

Partitioning coefficient  1.00 mL/g 
Surface area  0.0094 ± 0.0001 m2/g 
Bead density  2.47 g/cm3 
Bulk density  1.41 g/cm3 
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In RWPT, probability of adsorption and that of desorption were determined from 

simulations of the batch experiments. Assuming that a single tracer corresponds to certain mass of 

solute, Kd defined as the ratio of solute mass per solid mass (μg/kg) to solute mass per solvent 

volume (μg/L) may be rewritten using the number of tracers on the surface of solid to the number 

of tracers in the  liquid phase (Eq. 5-6). 

 
 

 
 

number of tracers on solid volume of liquid

number of traers in liquid surface area
S LS

d

L L S

N VC
K

C N A
    (5-6) 

With the help of Eq. (5-6), Kd = 1 mL/g for Cs+ can be converted to the ratio of surface 

concentration of tracers to volume concentration of tracers. RWPT simulations were carried out to 

determine Pa and Pd that would reproduce this ratio. In these simulations, packings of glass beads 

on which solutes are adsorbed and desorbed in the batch experiments were modeled as a body-

centered cubic (BCC) array periodic in all three directions. The BCC domain with the size of 13 × 

13 × 13 was set to match the porosity of the column of the experiment. Tracers that are initially 

put in the liquid phase move with pure diffusive motion and are allowed to adsorb on the surfaces 

of spheres in the BCC array based on the prescribed Pa. Tracers adsorbed on the wall can be 

released back to the liquid phase based on the prescribed Pd. Now Kd can be expressed in terms of 

the ratio of the number of tracers on the surface of beads (Ns) to the number of tracers in the fluid 

(NL) and the ratio of mass of the solid (Ms) and the volume of solution (VL) (Eq. 5-7).  
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 Figure 5-12 shows Kd achieved by three different combinations of Pa and Pd. For the 

combinations (Pa = 5.0 × 10−4 ; Pd = 6.8 × 10−5) and (Pa = 5.0 × 10−4 ; Pd = 2.7 × 10−5), the simulated 

values of Kd  are about 0.5 and 1.5, respectively. The simulated Kd matches the experimental Kd  

when Pa and Pd are 5.0 × 10−4 and 1.35 × 10−5, respectively (Pa / Pd = 37.04). Therefore, this 

combination is one set of probabilities that would reproduce Kd of Cs+ in the column experiments. 
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Figure 5-12: Simulated adsorption-desorption equilibriums at three different combinations of 
Pa and Pd.   

 
Note that the above solution is one of the many sets of Pa and Pd that can produce the same 

Kd. Figure 5-13 shows that, as long as / 37.04a dP P   Kd = 1 mL/g can always be reproduced. 

However, the transient behavior is different. This finding suggests that Kd as a parameter 

describing equilibrium is only a function of /a dP P . The specific values of probabilities under the 

condition that /a dP P  is held constant control the rate toward equilibrium. As Rod et al. (2018) did 

not give any rate information of the batch experiments, the probability of adsorption was arbitrarily 

chosen, then a probability of desorption was determined from /a dP P that matches the experimental 

Kd.  

 
Figure 5-13: The partitioning coefficient from numerical batch experiments using the same 
ratio of a probability of adsorption and desorption (Pa / Pd = 37.04). 
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A time-lapse sequence of tracer distribution in the BCC array, from the simulation with 

45.0 10aP    and 51.35 10dP    is given in Figure 5-14. With / 37.04a dP P  , it is clear to see 

that more and more tracers became adsorbed as simulation progressed.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-14: Time-lapse sequence of simulation with  Pa = 5.0×10−4 and Pd = 1.35×10−5: (a) time 
step = 0 and Kd = 0, (b) time step = 3 and Kd = 0.231, (c) time step = 6 and Kd = 0.509 (d) time 
step = 10 and Kd = 0.907 (e) time step = 20 and Kd = 0.963, (f) time step = 25 and Kd = 0.925 
(red denotes adsorbed tracers and green denotes tracers in solution). 

In an attempt to see the effect of probabilities of adsorption and desorption on the level of 

breakthrough curves, different values of Pa and Pd having the same ratio were tested and the results 

are presented in Figure 5-15. It shows that, although the retardations in the five curves are similar, 

the build-up part of the breakthrough curve becomes steeper as the probability of adsorption 

increases. This feature clearly shows that the traditional method based on a single value of 

partitioning coefficient from laboratory batch experiment is limited in predicting transient behavior 

of effluent concentration. Hence, this degree of uncertainty may be avoided if one considers, in 

addition to the partitioning coefficient, knowledge on the kinetics of adsorption and desorption 
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processes. If experimental data on how Kd changes over time are available, unique values of Pa 

and Pd can be determined by simulating laboratory batch experiments. 

 
Figure 5-15: BTCs for various ratios of Pa and Pd 

 

5.8 RWPT simulation of cesium ion transport 

 Using probabilities of adsorption and desorption determined from the previous section 

( 45.0 10aP    and 51.35 10dP   ), RWPT simulation was performed to simulate Cs+ transport 

in the same column as that used in the iodide simulation. Parameters of this simulation are 

summarized in Table 5-8. 

 
Table 5-8: Parameters of RWPT simulation of cesium transport 
Parameter Value 

Grid type Cartesian 
Domain size 169 × 169 × 1732 
Total number of grids 49,467,652 
Total number of fluid nodes 10,117,521 
Total number of tracers 1,012,551 
Boundary condition Periodic  
Acceleration applied in z direction 1 × 10−6 
Superficial velocity from LBM 2.06616 × 10−7 
Péclet number  0.99 
Maximum velocity 1.76595 × 10−5 
Dimensionless diffusion coefficient 3.823688 × 10−6  
Probability of adsorption/desorption 5.0 × 10−4 / 1.35 × 10−5 
Time step size 6.4788 × 103 
Simulation time step (5PV) 1.45211375 × 106 
Number of cores used 128 
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The breakthrough curves from our RWPT simulation is presented in Figure 5-16. The 

breakthrough curves of the experiment and 1D-ADE with the Perkins and Johnston correlation are 

also presented for comparison. As shown in Figure 5-16, RWPT successfully generated a 

breakthrough curve for Cs+ that compares well with the experimental data. Admittedly, as there 

are only three experimental data points, this comparison cannot be considered as highly 

quantitative. However, some conclusions can still be drawn. The dispersion coefficient of Cs+ was 

obtained using the Perkins and Johnston correlation (Figure 5-4), and the solution of equilibrium 

retardation with Kd = 1 is presented. The initial breakthrough time predicted by our pore-scale 

simulation (about 1 to 2 PV) is earlier than that of the 1D-ADE solution (4 PV). Our pore-scale 

simulation therefore appears to be more dispersive than the solution of 1D-ADE. The retardation 

factor estimated graphically based on the value of 
0/ 0.5C C   is 5.16 (Rd = 5.16), which agrees 

well with the retardation factor (Rd = 5.4) calculated using Eq. 2.14 with the data of the laboratory 

batch experiment (Table 5-7). Clearly, when compared to that of iodide (I−), the breakthrough 

curve of cesium (Cs+) was significantly retarded due to adsorption-desorption in the column 

(Figure 5-17). 

 

  
Figure 5-16: Simulated BTC (black) for cesium under equilibrium sorption-desorption relative 
to the analytic 1D-ADE (DL = 12.38 cm2/day and Rd = 5.4) and the experimental data (red) of 
the column experiment.   
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Figure 5-17: Simulated BTC for cesium under equilibrium sorption-desorption in the column 
experiment with the retardation factor (Rd = 5.16). 
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CHAPTER 6  

PORE-SCALE SIMULATION OF MICROFLUIDICS EXPERIMENTS 

 

This chapter presents the results of pore-scale simulations for a bead-based microfluidics 

experiment in which colloids propagate through electrostatically homogeneous and heterogeneous 

porous media analogues (PMAs). Voxel-based computational domains were generated based on 

the center coordinates and radius of the beads. The range of electrostatic attraction between 

positively charged beads and negatively charged colloids was estimated and implemented in 

RWPT to simulate the irreversible deposition of colloids under this favorable condition. In addition, 

the effect of blocking was incorporated by decreasing a probability of deposition of a colloid on a 

positively charged bead as more colloids are deposited on the surface of the bead. 

6.1 A bead-based microfluidics experiments 

Guo et al. (2016) used a bead-based microfluidic platform of porous media analogue (PMA) 

to investigate colloid transport through electrostatically heterogeneous porous media. The PMA 

was constructed by injecting amine-functionalized beads one-by-one into a microfluidic device 

with a stepping change in the height. Beads are caught at the location where the height of the 

device is suddenly reduced. Gradually, stopped beads fill the space upstream of the location of 

height change and form a porous medium. Most beads have their vertical positions either against 

the top wall (red) or against the bottom wall (green) of the device (Figure 6-1). Colloidal particles 

injected into PMA have diameter approximately 0.5 μm. They were made of polystyrene (PS) with 

fluorescent coating exhibiting net negatively charged surfaces. These engineered colloids were 

injected into PMA from the same side through which the beads were injected, at a constant 

volumetric flow rate of 1 nL/s. The number of colloids that had passed through the beads was 

counted using epifluorescence microscopy to construct breakthrough curves. Various ratios of 

positively charged to negatively charged beads were used to investigate the impact of surface 

charge heterogeneities. The portion of positively charged beads in the packing ranged from 0% to 

50%. The dimensions of the PMA are summarized in Table 6-1 and the schematics of the bead-

based micromodel experiment are given in Figure 6-1. Guo et al. (2016) presented more details on 

the precedure of fabricating PMAs with charge heterogeneity.  
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 Table 6-1: Dimensions of PMA domain 
Parameter Dimension  Unit 

Domain size  600 × 15 × 1981 - 
Grid resolution 1 μm/pixel 
Total number of grids 20,375,894 - 
T-junction height 8 μm  
Diameter of beads (negative / positive) 9.9 / 10.2 μm  
Diameter of pillar  24 μm  
Flow rate 1.0 nL/s 

 

 
Figure 6-1:  Schematics of bead-based microfluidic porous media analogue: positively charged 
bead (red), negatively charged bead (green), and pillars (dotted). This schematics is not to 
scale. 

 

6.2 Reconstruction of microfluidic porous media analogues  

 A customized code was written to generate voxel-based computational domains for LB 

and RWPT simulations of colloid transport in microfluidic PMAs. The location of the center of 

each bead in a transparent PMA, including the information on whether the bead is adjacent to the 

top or the bottom wall of the PMA, was captured through confocal imaging. Different from 

simulations carried out for bead-packed columns that directly used images from CT scan, here the 

coordinates of centers of beads were used to reconstruct the digitalized PMAs. The diameter of 

negatively charged beads and positively charged beads was set to 10 μm. The pillars in PMAs 

were also incorporated into the computational domains so that they are realistic. Figure 6-2 shows 

the computational domain constructed for the electrostatically homogeneous PMA with no 

positively charged beads. The pillars and the walls of the chamber of PMA are not visualized. 



 50  
 

 
Figure 6-2:  Computational domain for the electrostatically homogeneous PMA with 0% 
positively charged beads: grey (negatively charged beads). 

 
Electrostatically heterogeneous PMAs consist of negatively charged beads and positively 

charged beads. The percentages of positively charged beads are 4%, 9%, 13%, 17%, 25% and 50%. 

To distinguish voxels that belong to positively charged surfaces from those that belong to 

negatively charged surfaces, in the computational domains one was assigned to voxels in 

negatively charged beads, walls and pillars, and two was assigned to those in positively charged 

beads. Values of zero were assigned to voxels in pores. Detailed information on each PMA is 

presented in Table 6-2. The computational domains are visualized in Figure 6-3. Beads in grey and 

red colors denote negatively charged beads and positively charged beads, respectively.  

 
Table 6-2:  Number of positively charged beads (p-bead) and negatively charged beads (n-bead) 
on the top and bottom walls, and porosity of PMAs 
Parameter 0% 4% 9% 13% 17% 25% 50% 

Total # of bead 7,245 6,310 6,566 6,966 6,815 7,575 7,018 
# of p-bead 0 240 557 957 1,168 1,788 3,364 
# of n-bead 7,245 6,070 6,009 6,009 5,646 5,787 3,652 
# of top-bead 3,736 2,923 3066 3,210 3,183 3,520 3,361 
# of bottom-bead 3,509 3,387 3,502 3,756 3,631 4,058 3,650 
Porosity1  54.5 % 55 % 54 % 54.3 % 55.1 % 55.9 % 56.8 % 

1Porosity is the average porosity in the region where beads are located. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6-3: Electrostatically heterogeneous PMAs with positively charged beads: (a) 4%, (b) 
9%, (c) 13%, (d) 17%, (e) 25%, and (f) 50%. Grey represents negatively charged beads and red 
represents positively charged beads. 

 



 52  
 

6.3 Lattice Boltzmann simulation of fluid flow through bead-based microfluidic PMAs 

The single-phase parallelized LB code used in the last chapter to obtain steady-state 

velocity fields was also applied here to simulate flows through digitalized PMAs. We assume that 

flow fields are not affected by surface charge heterogeneities (i.e. no electro kinetic flows). A 

constant body force was applied to drive the flow with periodic boundary condition along the flow 

direction. The LB simulation parameters are listed in Table 6-3 and velocity fields are visualized 

in Figure 6-4 (homogenous PMA) and Figure 6-5 (heterogeneous PMAs). These visualizations 

also include divisions of computational domains into high-velocity (above 300% of the average 

velocity) and low-velocity regions (lower 50% of the average velocity) to highlight potential 

preferential flow paths and stagnant zones in the PMAs.  

 
Table 6-3: Parameters of LB simulations of the microfluidics experiments 
Parameter 0% 4% 9% 

Grid type Cartesian Cartesian Cartesian 

Grid size 602 × 17 × 1981 602 × 17 × 1981 602 × 17 × 1981 

Total number of voxels 20,273,554 20,273,554 20,273,554 

Total number of fluid voxels 11,048,552 114,022,55 11,402,255 

Body force [0  0  10−6] [0  0  10−6] [0  0  10−6] 

Collision operator MRT MRT MRT 

Relaxation time 1.0 1.0 1.0 

Boundary condition Periodic Periodic Periodic 

Total time step 10,000 10,000 10,000 

Number of cores used 128 128 128 

 

Continued from Table 6-3 
13% 17% 25% 50% 

Cartesian Cartesian Cartesian Cartesian 
602 × 17 × 1981 602 × 17 × 1981 602 × 17 × 1981 602 × 17 × 1981 
20,273,554 20,273,554 20,273,554 20,273,554 
11,192,910 11,048,552 11,402,255 11,402,255 
MRT MRT MRT MRT 
1.0 1.0 1.0 1.0 
[0  0  10−6] [0  0  10−6] [0  0  10−6] [0  0  10−6] 
Periodic Periodic Periodic Periodic 
10,000 10,000 10,000 10,000 
128 128 128 128 
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(a) 

 
(b) 

 
(c) 

Figure 6-4: Velocity field from LB simulation (on slice y = 11). Domain is that of the 
electrostatically homogeneous PMA: (a) Distribution of velocity component in the mean-flow 
direction over the entire PMA; (b) 3D view of high-velocity region (above 300% of the average 
velocity: orange) and low-velocity region (below 50% of the average velocity: blue) with beads 
(grey); (c) 2D top view of (b) with no beads visualized. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6-5: Velocity field from LB simulation (on slice y = 11). Domain is that of the 
electrostatically heterogeneous PMA: distribution of velocity component in the mean-flow 
direction over the entire PMA and 2D top view of high-velocity region (above 300% of the 
average velocity: orange) and low-velocity region (below 50% of the average velocity: blue) 
with beads (grey) for (a) 4%, (b) 9%, (c) 13%, (d) 17%, (e) 25%, and (f) 50%. 
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6.4 RWPT simulation of colloid transport in electrostatically homogeneous PMA  

 The random walk particle tracking (RWPT) code presented in the last chapter for solute 

transport was used to solve advection-diffusion of colloids through the PMAs. In RWPT, the 

steady-state velocity fields obtained from LB simulations were used to determine the advective 

displacements of colloids. Diffusive displacements by random motions were added to locate the 

final positions of colloidal particles (Eq. 4-4). The random motions in RWPT are isotropic. No 

flux boundary condition was implemented in RWPT using the specular reflection method. Colloids 

were modeled as non-aggregative volumeless point tracers with no tracer-to-tracer interactions 

considered.   

  The electrostatically homogeneous experiment free of colloid deposition was first 

investigated. The molecular diffusion coefficient of colloid used in the experiment is Dm = 8.58 × 

10−13 m2/s. The dimensionless molecular diffusion coefficient of RWPT was chosen to match the 

Péclet number of the experiment. To faithfully simulate microfluidic experiments, the first step is 

to ensure that colloid concentration measured at the inlet is reproduced in the simulation. Due to 

variations in the injection condition, the concentration of colloids at the inlet was not a constant in 

the experiment (Figure 6-6). The injection concentration rapidly built up in about three pore 

volumes (PV) and leveled off at approximately 8-10 PV. At 38 PV, injection of colloids stopped 

and the concentration of colloids declined from 38 to 48 PV.  To account for this experimental 

detail, RWPT code was modified so that it can use the actual inlet concentration profiles from the 

experiments.   

   
(a) (b) 

Figure 6-6: (a) Variation in the inlet concentration of colloids with time; (b) Inlet concentration 
normalized by the average steady-state concentration. 
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Logistics growth curves were used to fit the actual inlet concentration profile. Constants 

in Eq. 6-1 were determined so that the logistic curves matches the early time build-up 

( 1 1 1 1 1, , ,  and a b c d e ) and late time elution ( 2 2 2 2 2, , , and a b c d e ) of the actual inlet 

concentration profile (Table 6-4). In RWPT, a random number is generated when a tracer’s 

pseudo-position enters the inlet region (0 to 100 in z direction) at a given pore volume (tR). This 

random number is compared with probability P in Eq. 6-1. If the random number is greater than 

P, this tracer is tagged so that it will not be counted in the construction of breakthrough curves.  
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Table 6-4: Constants in logistics growth curves to match the inlet concentration profile  
Constants 0% 4% 9% 13% 17% 25% 50% 

1a  2.40 12.00 2.60 12.00 2.60 2.60 2.60 

1b  0.75 0.85 0.60 1.22 0.60 0.85 1.10 

1c  1.44 1.11 1.56 1.16 1.50 1.50 1.50 

1d  0.48 0.11 0.52 0.13 0.50 0.50 0.50 

1e  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2a  7.00 12.00 8.00 13.00 1.10 1.00 0.80 

2b  1.30 0.80 1.00 1.10 1.00 2.50 1.60 

2c  1.44 1.11 1.04 1.16 1.00 1.00 1.50 

2d  0.33 0.11 0.00 0.13 0.00 0.00 0.00 

2e  40.00 44.50 44.00 41.50 38.50 34.00 34.40 

 

Figure 6-7a shows the comparison between the mathematical model and the actual 

normalized inlet concentration profile for the electrostatically homogeneous PMA. Figure 6-7b 

shows the comparison between the simulated inlet concentration profile and the actual normalized 

inlet concentration profile. Both the mathematical model and the simulated inlet concentration 

profile are in good agreement with the actual profile. 
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(a) (b) 

 Figure 6-7: The inlet concentration of logistics model (a) and simulated inlet concentration (b). 

 
With controlled inlet concentration profile, RWPT successfully generated a breakthrough 

curve that is in good agreement with that of the electrostatically homogeneous experiment (Figure 

6-8a). The simulated breakthrough curve with no inlet control is also presented for comparison 

(Figure 6-8b). As previously discussed, this comparison at the level of breakthrough curves, 

confirms that our pore-scale simulations of advection-diffusion of colloids under the given Péclet 

number successfully reproduced macroscopic advection-dispersion. This comparison additionally 

confirms that the appeared retardation in the experimental breakthrough curve stemmed mainly 

from the relaxed inlet concentration of the experiment rather than equilibrium partitioning as 

discussed in Chapter 2.  

 

    
(a) (b) 

Figure 6-8:  Comparison of the BTCs between the experiment and simulations. (a) With 
controlled inlet concentration; (b) with a constant inlet concentration. 
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6.5 Random walk particle tracking (RWPT) simulation of the micro-colloidal flow in 

chemically heterogeneous bead-based microfluidic sediment analogues 

Transport and deposition of colloids through electrostatically heterogeneous microfluidic 

PMAs were then investigated. The heterogeneous PMAs contained a certain percentage of 

positively charged beads and therefore can retain colloids by electrostatic attraction force. 

Electrostatic adsorption of colloids is typically irreversible while that of solutes is reversible 

(Johnson et al. 1996). Observations from microfluidics experiments supported that adsorption 

occurred in an irreversible manner that led to irreversible deposition of colloids on the surface of 

positively charged beads, or collector beads.   

Irreversible deposition due to electrostatic attraction between colloids and positively 

charged surfaces was modeled in RWPT by letting tracers attach permanently to solid voxels of 

positively charged beads when the distance between tracers and solid voxels becomes less than a 

prescribed “interaction length”. When adsorption takes place, the location of adsorption is 

recorded. Like in solute transport simulations, upon an adsorption event a pseudo tracer is released 

to ensure that at the boundary of the periodic domain the flux of tracers is maintained (Figure 6-

9).  

 
 

Figure 6-9:  Illustration of a tracer falling into the interaction length (grey) of a positively 
charged bead (p-bead). Adsorption is recorded, and a pseudo tracer keeps moving to the exit. 

 

Pseudo tracers are not intercepted by positively charged beads and they are not counted in 

breakthrough curves. Once a pseudo tracer passes through the exit of the periodic domain, the 

probability of turning it back into a real tracer is determined by Eq. 6-1 to meet the need to 

reproduce realistic inlet concentration profile. We assumed that the repulsive electrostatic 
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interaction between negatively charged beads and colloids led to negligible adsorption of colloids 

on negatively charged beads based on observations made in the experiments. Collisions between 

tracers and negatively charged surfaces therefore were modeled by the specular reflection.  

The electrostatic interaction length was evaluated by comparing the attractive potential 

energy between a colloidal particle and the surface of a bead and the thermal energy of the colloid 

particle. It was assumed that a colloidal particle is retained on the surface of a bead if the attractive 

potential energy is ten times of the thermal energy. Through personal communication with 

collaborator who conducted the experiment, the electrostatic interaction range of 500 nm was used 

and its calculation procedure is given as follows, 

First, the Debye length for low potentials is given (Israelachvili 2011), 
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 (6-2) 

In the experiments, H2CO3 was formed by the dissolved carbon dioxide (CO2), the pH 

measurement of DI water gave the concentration of H+. If we assume that H2CO3 was completely 

dissociated, then we obtained the following parameters for Debye length calculation (Table 6-5). 

Then the Debye length was calculated at 63 nm. 

 
Table 6-5: Values for calculating the Debye length 
Parameter Value Unit 

Vacuum permittivity  8.85 × 10−12 Fm−1 
Relative permittivity of water at 20 °C 0.75  - 
Boltzmann constant 1.38 × 10−23 JK−1 
Room temperature 298 K 
pH 5.8  - 
Concentration of H+ 1.58 × 10−5 mole/L 
Concentration of CO3

2− 7.90 × 10−6 mole/L 
 

Sader et al. (1995) derived an analytic solution for the double layer interaction between two 

dissimilar spheres (Eq. 6-3).  
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 (6-3) 
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V is the interaction free energy between dissimilar spheres, e is the proton charge, Rc is the center 

distance between two spheres, h is the surface distance between two spheres, a and y are the radius 

and the reduced surface potential of each sphere, respectively. The reduced surface potentials were 

approximated by using the measured zeta potentials. We assumed that irreversible adsorption 

occurs when the interaction free energy is greater than ten times the thermal energy (V > 10kBT), 

and then the surface-to-surface separation length was calculated at 273 nm. The radius of a 

colloidal particle was considered, and the interaction range then became 520 nm.  

We note that exact kinetics of adsorption is an area of active research because interactions 

of various time and length scales are involved. Detailed mechanistic models should include 

hydrodynamic and Brownian forces, gravity, and complete DLVO (Derjaguin, Landau, Verwey, 

and Overbeek) forces (Deraguin and Landau 1941; Verwey and Overbeek 1948). In our 

calculations, we only focused on electrostatic attraction. It has a longer range compared to the van 

der Waals force, and therefore is the first attractive force that a colloid sees when it approaches the 

surface of a positively charged bead. 

The dynamics pertaining to colloid deposition also involves variable kinetics that can be 

attributed to blocking of surfaces. At the early stage when most of the reactive surfaces are not 

occupied, the rate of adsorption is at its maximum. As retained colloids gradually cover the reactive 

surfaces, the rate of deposition generally decreases. However, under certain conditions the rate 

may increase if the layer of retained colloids on the surface interacts favorably with free colloids 

approaching the surface and speed up the rate of deposition (Johnson and Elimelech 1995). In the 

literature, this effect has been named as “surface coverage effect” or “blocking effect” (Johnson 

and Elimelech 1995). This effect of surface blocking is usually modeled by introducing either a 

linear or a non-linear dynamic blocking function (Privman et al. 1991; Song and Elimelech 1992). 

A linear Langmurian dynamic blocking function assumes a linear dependence between rates and 

available surfaces while a non-linear dynamic blocking function uses a power law function.  

The surface coverage or blocking effect was also observed in our experiments. In order to 

account for this effect in RWPT simulations, the maximum number of colloids that can attach to a 

single positively charged bead was determined by continuously flowing colloid suspensions 

through the PMAs. The average number of colloids collected per bead was counted to be 82 (Nbead). 

The ratio of the number of tracers in RWPT to the number of colloidal particles was determined 
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by comparing the number of colloids injected in the experiments with the number of tracers 

released in our RWPT simulations. The ratio is approximately 150, which means 150 tracers in 

RWPT are statistically equivalent to one colloidal particle in the experiment. Therefore, the 

capacity of a single voxel on the surface of a positively charged bead can be estimated by dividing 

the number of colloids that is equivalent to 82 colloids by the surface area of the bead (Eq. 6-4). 

colloid-to-tracer ratio
40

surface area of beadnode beadn N    (6-4) 

After establishing the capacity of a single voxel on the surface of a positively charged bead (nnode), 

in RWPT we let the probability of adsorption decrease linearly or nonlinearly from one to zero 

with increasing number of retained tracers, following the linear and nonlinear Langmuir adsorption 

models described below. 

The linear Langmuir adsorption model follows, 

( ) 1B     (6-5) 

, where B(θ) is the surface blocking parameter, θ is the surface coverage, and β = 1/θmax is the 

excluded area parameter. Using the average maximum number of colloids collected in the 

experiment (Nbead = 82) per bead, the excluded area parameter is,  

max 2
82 0.051

4

a

R




    (6-6) 

R and a are the radii of a collector bead and a colloidal particle, respectively, in micrometer. 

Then, the linear Langmuir adsorption model yields, 

( ) 1 19.5B      (6-7) 

To implement this into RWPT, the Langmuir adsorption model is recast in terms of the maximum 

number of tracers allowed on a single voxel on the surface of a positively charged bead (nnode = 

40). The probability of adsorption (P) of a single voxel on the surface of a positively charged beads 

is thus expressed as a function of the number of tracers that the node has collected (n). The 

probability of adsorption (P) becomes zero when a voxel has collected its maximum number of 

tracers (nnode). 
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( ) 1 1/ 40P n n    (6-8) 

Similarly, the non-linear random sequence adsorption (RSA) model was obtained through the 

following procedure.  

 Adamczyk and Belouschek (1991) presented the RSA model with the inclusion of an 

effective particle radius that were give, 

* *

* *
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
 (6-9) 

where H* is a dimensionless length that characterizes the electrostatic repulsion of particles 

deposited on the surfaces. 

The surface blocking parameter was expressed as a function of surface coverage θ (Eq. 6-10). 
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The coefficients are obtained using Eq. 6-11. 
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 A is the ratio of the radius of a colloidal particle to the radius of a collector bead, 
p

is the surface 

potential of the particle, and γ is a constant that accounts for lateral particle interaction. Typical 

values of γ ranges from 0.25 to 0.5. For this calculation, γ (0.25) and θmax (0.051), and H* (2.2) was 

used to obtain the following RSA model, 

2 3( ) 1 37.2 285.5 1127.3B         (6-12) 

In the same way, the voxel-based probability of adsorption is,  

2 4 2 4 3( ) 1 4.65 10 4.460938 10 2.201758 10P n n n n          (6-13) 
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 The shapes of the linear Langmuir adsorption model and the non-linear RSA model as well as 

those of the corresponding voxel-based probability models for RWPT are presented in Figure 6-

10. 

  
(a) (b) 

Figure 6-10: (a) Linear Langmuir adsorption and non-linear RSA models; (b) the 
corresponding probability models. 

 

6.6 Breakthrough curves of electrostatically heterogeneous PMAs 

Using controlled inlet concentration profiles of experiments and incorporating the 

interaction length and the surface coverage effect, RWPT simulations were performed for all 

heterogeneous PMAs. The parameters of RWPT simulations are summarized in Table 6-6.  

 
Table 6-6: Parameters of RWPT simulations of the microfluidics experiments 
Parameter 0% 4% 9% 

Grid type Cartesian Cartesian Cartesian 

Domain size 602 × 17 × 1981 602 × 17 × 1981 602 × 17 × 1981 

Total number of grids 20,273,554 20,273,554 20,273,554 

Total number of fluid nodes 11,048,552 114,022,55 11,402,255 

Total number of tracers 54,997 58,210 54,997 

Average velocity 4.46456 × 10−6 5.19594 × 10−6 4.71715 × 10−6 

Maximum velocity 1.40242 × 10−4 6.53804 × 10−5 5.68874 × 10−5 

Diffusion coefficient 3.92023 × 10−8 4.56244 × 10−8 4.142026 × 10−8 

Time step size 3.36466 × 103 6.67901 × 103 8.005230 × 103 

Total time step 140 × 24782 140 × 11773 140 × 11261 

Number of cores used 128 128 128 
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Table 6-6 Continued  
13% 17% 25% 50% 

Cartesian Cartesian Cartesian Cartesian 
602 × 17 × 1981 602 × 17 × 1981 602 × 17 × 1981 602 × 17 × 1981 
20,273,554 20,273,554 20,273,554 20,273,554 
11,192,910 11,048,552 114,022,55 11,402,255 
55,717 56,346 54,493 55,871 
4.834690 × 10−6 4.93270 × 10−6 4.65152 × 10−6 5.28837 × 10−6 
7.266740 × 10−5 6.00841 × 10−5 5.94276 × 10−5 6.38512 × 10−5 
4.245235 × 10−8 4.33130 × 10−8 4.08440 × 10−8 4.64360 × 10−8 
6.338310 × 103 7.58285 × 103 7.68342 × 103 7.13255 × 103 
140 × 12543 140 × 10375 140 × 9263 140 × 9082 
128 128 128 128 
 

The simulated breakthrough curves relative to those of the experiments are presented in 

Figure 6-11. Breakthrough curves from RWPT simulations are in very good agreement with those 

from experiments. Taking the PMA that contains 4% positively charged beads for example, the 

normalized effluent concentration builds up till about seven pore volumes (PV), and then the rate 

of increase in the effluent concentration slows down, showing a distinctively lower slope from 7 

PV on. The initial build-up is typical of advection-dispersion in porous media with irreversible 

adsorption. Colloids traveling near the positively charged beads are removed / filtered (Eq. 2-16 

and Eq. 2-17). The effluent concentration stabilizes at about 40% at 7 PV. Past 7 PV, the 

concentration increases at a slower rate because the surfaces of positively charged beads are 

gradually covered by retained colloids. As the surfaces available for adsorption slowly deplete, 

more colloids can reach the exit, leading to increased effluent concentration. Note that there is only 

a subtle difference between the linear Langmurian blocking function and the non-linear RSA 

model. This indicates that the specific form of surface blocking tested in this study does not have 

a significant impact under the given flow and transport conditions. At 38 PV, the concentration 

drops as the injection of colloids is stopped.  

Figure 6-11 shows that our RWPT simulations implemented with 1) inlet concentration 

variation, 2) interaction length for electrostatic adsorption, and 3) blocking functions for surface 

coverage effect, have successfully predicted the early-time build-up (0 to 7 PV), the slow rise in 

the effluent concentration due to surface blocking (7 PV to 38 PV), and the final elusion (38 PV 

to 52 PV). These comparisons successfully validated our modeling approaches. They also confirm 

on the level of breakthrough curves that the dominant mechanisms that controlled advection-
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dispersion and electrostatic adsorption of colloids in heterogeneous PMAs are irreversible kinetic 

adsorption combined with surface blocking. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6-11: The breakthrough curves of electrostatically heterogeneous PMAs with 4% (a), 9% 
(b), 13% (c), 17% (d) 25% (e), and 50% (f) of positively charged bead: the interaction length = 
0.5 and the nodal adsorption capacity n = 40. 
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For PMAs with high percentages of positively charged beads (17, 25, and 50%), the 

effluent concentration profiles predicted by RWPT simulations were slightly higher than those of 

the experiments. There may be several reasons:  1) it was observed in the experiments that some 

colloids were trapped near negatively charged beads, probably due to finite size of colloid particles 

as some pore spaces were not large enough due to geometric configurations and some colloidal 

particles could be trapped. Since colloidal particles are modeled as volumeless point particles in 

our RWPT, retention due to finite size cannot be captured. 2) The accuracy of image processing 

tends to become less accurate along the edges of the PMAs. If the space along the upper and lower 

edges of the PMAs were overestimated in the simulations, preferential flow paths that are not 

present in the experiments would develop in the simulations. Then, tracers would pass through 

those spaces easily without encountering positively charged beads, leading to higher effluent 

concentrations.  

    In sum, our RWPT simulations successfully reproduced breakthrough curves of colloids 

in both electrostatically homogeneous and electrostatically heterogeneous microfluidics PMAs. 

The case of electrostatically homogeneous PMA confirms that our pore-scale modeling approach 

is applicable to colloid transport, which has a much higher Péclet number than solute transport 

studied in Chapter 5. Cases of electrostatically heterogeneous PMAs show that our pore-scale 

modeling approaches have correctly captured the interactions between colloids and surfaces 

including irreversible kinetic adsorption and surface blocking / exclusion. These validations should 

pave way for many potential applications. 
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CHAPTER 7  

ANISOTROPIC RANDOM WALK 

 

As a solute or colloidal particle approaches the surface of the solid phase, its diffusive 

movement is hindered by the hydrodynamic force exerted by the fluid between them, i.e., 

lubrication effect. As a result, the movement of colloids under the effect of the lubrication 

interaction is hindered in the normal and tangential direction. In this study, we focus on the effect 

of hindered diffusion due to lubrication effect on breakthrough curves.  

7.1 Microscale interactions between a spherical colloidal particle and a flat surface 

Although the above probability model, in principle, can simulate the equilibrium between 

the sorbed solutes / colloids and those in solution, the kinetics of sorption depends on the detail of 

colloid-surface interactions such as electrostatic, van der Waals, and lubrication, and thus, they 

need to be considered. As a small colloidal particle approaches the surface, the diffusive movement 

of colloids is significantly affected by such surface induced interactions, and therefore, the 

diffusion tensor (Do) in Eq. (4-2) needs to be modified to incorporate the consequences of such 

interactions.  

A small sphere carried by advection in unbound fluid is subject to hydrodynamic drag. The 

hydrodynamic force balances the internal forces as inertia is negligible at the micro-scale (Kim 

and Karilla 2013). The motion of a small spherical particle immersed in a Newtonian viscous liquid 

follows Stokes’ law (Eq. 7-1).    

3 6
du

m du au
dt

      (7-1) 

, where m is mass of a sphere, u is velocity of the sphere, μ is viscosity of the fluid, d and a are 

diameter and radius of the sphere, respectively. Eq. 7-1 can be rearranged to estimate the relaxation 

time τ.     
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If the relaxation time τ is smaller than the time interval of flow simulation, there is no need to 

consider the equation of motion for colloids and then the motion of colloids can be treated as purely 

diffusive. Under this diffusive condition, using Stokes-Einstein equation, relaxation time (τ), 

Brownian diffusivity (DB), Brownian velocity (uB) and Brownian force (FB) of colloid in water at 

20 °C are estimated using typical values for colloids in water (Eq. 7-3).  
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The estimated magnitude of the Brownian force can be used to evaluate the influence of 

colloid-surface forces on the motion of colloids. The range of interaction of a specific colloid-

surface force can be estimated as the distance where the magnitude of this force becomes 

comparable to that of the Brownian force. The lubrication force FLub (Eq. 7-4) on a sphere that 

approaches a flat and homogeneous surface with velocity uB is governed by Eq. 7-3. When this 

force is balanced by the Brownian force FB, the separation distance h is given by (Eq. 7-5) (Figure 

7-1). 
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Figure 7-1: Illustration of a colloidal particle under the effect of lubrication interaction. 

 

Therefore, lubrication force begins to hinder the motion of a colloid normal and tangential 

to the solid surface, as the colloid approaches the solid surface within half of its diameter (h = d/2). 

Because the magnitude of lubrication force acting along the normal and tangential to the surface 

is not identical, an important consequence of the lubrication force near solid surface is that the 

diffusive movement of colloids is no longer isotropic. In this region, it turns from isotropic to 

anisotropic random walk due to the tangential and lateral hindrance. Depending on colloid size 

and fluid viscosity, lubrication causes a colloid particle that diffuses in an isotropic fashion in 

every direction (i.e., isotropic random walk) to turn to an anisotropic random walk as it enters the 

region that lubrication interactions prevail. The governing stochastic equation of RWPT should be 

modified to implement anisotropic random walk within the range of lubrication interaction.  

7.2 Analytic solutions for a particle nearing a wall in a viscous liquid 

Stokes’ law has been widely used to estimate the resistance of a sphere traveling through a 

viscous liquid (Brenner 1961). However, the Stokes’ law was originally derived on the premise 

that there is no bounding walls around in the fluid. Most engineering problems involve a sphere 

moving in fluid bounded by walls. As such, the movement of a particle bounded by a flat wall 

vertically or laterally was first studied theoretically (Brenner 1961; Goldman et al. 1967; Kim and 

Karilla 2013) and verified experimentally (Banerjee and Kihm 2005) and now the theory on near-

wall hindered Brownian motion has been established. Now it is well known that hindered diffusion 

substantially deviates from the original Stokes’ law (De Corato al. 2015). 

 Brenner (1961) derived an exact solution of mobility for sphere moving through a viscous 

fluid perpendicular to a flat solid plane. The original Stokes’ law (Eq. 7-1) was modified by a 
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correction factor λ in Eq. 7-6 to account for normal hindrance. Brenner (1961) presented an infinite 

sum of a function of the radius of sphere, a, and the separation distance or surface-to-surface 

distance between a sphere and a solid surface, h (Eq. 7-7). Bevan and Prieve (2000) simplified the 

infinite sum based on regression and presented a simple algebraic from (Eq. 7-8). Following this 

line of work, (Goldman et al. 1967) derived a correction term for mobility parallel to a surface (Eq. 

7-9).  The mobility correction terms, normal to a surface as well as tangential to a surface, are a 

function of the radius of a sphere (a) and the surface-to-surface distance between a sphere and a 

solid surface (h).  
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The Brownian diffusivity tensor of the original Stokes’ law is replaced by the near-wall hindered 

diffusion tensor (DH) (Choi et al. 2007)(Eq. 7-10). 
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The inverse of the normal and tangential correction terms for a particle with 0.5 μm diameter are 

plotted as a function of separation distance (h) (Figure 7-2). 
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Figure 7-2: Correction factors for normal and tangential hindrance. 

 

7.3 Numerical study of anisotropic random walk 

In this study, we focus on the influence of hydrodynamic lubrication effect. The diameter 

of a colloidal particle and the grid resolution are assumed to be 0.5 μm and 1 μm /pixel, respectively. 

Then the separation length of lubrication interaction (h) is 250 nm. A colloid moving isotopically 

enters the region (h < 250 nm), undergoes normal and lateral hindrance and turns to anisotropic 

random walk. Moving closer to the surface, a colloidal particle is either attached to the surface or 

reflected against the surface, depending on each depositional scenario, i.e., favorable or 

unfavorable condition. The separation distance of hydrodynamics lubrication for 0.5 μm particle 

illustrated in Figure 7-3.  

 
 

Figure 7-3:  Illustration of separation distances of lubrication interaction for 0.5 μm particle. 
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The normal and lateral hindrance of lubrication effect restrain the diffusive movement resulting in 

anisotropic random walk (Figure 7-4). 

 
Figure 7-4:  Illustration of hindered diffusive movement near a homogeneous flat wall by 
normal and lateral hindrance (the dotted line represents the magnitude of diffusive motion). 

 

In our RWPT, a sub-routine checks if the current position of a trace is in the range of the 

lubrication interaction, and then, the isotropic diffusivity tensor (Do) in the isotropic random walk 

(Eq. 4-4) is replaced by the hindered Brownian diffusivity tensor DH (Eq. 7-10) to account for 

normal and lateral hindrance, respectively (Eq. 7-11). If we assume that a colloidal particle 

approaching a wall normal to x-direction, Eq. 7-11 is expressed in a scalar form (Eq. 7-12). When 

a tracer in RWPT is located within half of the radius of a particle (h < 0), each minimum correction 

factors in normal and tangential direction is applied.  
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A three dimensional body-centered cubic (BCC) porous medium was generated to see the 

microscopic effect of lubrication on breakthrough curves. The voxels of the sphere located at the 

center were assigned to two for adsorption, and other were one for reflection. This configuration 

can be interpreted that tracers propagate under repulsive interaction with negatively charged 

spheres and attractive interaction with a positively charged sphere. As previously discussed, the 

simulation time step must be small enough so that the motion of a colloidal particle under the 

lubrication effect should be purely diffusive. In addition, the maximum displacement in RWPT 

(Eq. 4-5) was adjusted to be small enough to resolve the separation length of the lubrication effect, 

and the maximum displacement in RWPT was set to one tenth of the separation length. A Dirac-

delta type input was used by initializing 500 tracers per node at the first layer of the domain. The 

tracers that have passed the left side of the domain were removed. Total 4,050 tracers were 

initialized to suppress statistical nose in breakthrough curves. In an attempt to quantify the effect 

of hindered diffusion on breakthrough curves, four different simulations were performed, CASE 

1: isotropic random walk using a non-adsorbing tracer, CASE 2: anisotropic random walk using a 

non-adsorbing tracer, CASE 3: isotropic random walk using an adsorbing tracer, and CASE 4: 

anisotropic random walk using an adsorbing tracer. In CASE 1 and CASE 2, tracers move being 

reflected on the wall. In CASE 3 and CASE 4, tracers are removed from the domain when adsorbed 

by the collector sphere at the center. The simulation parameters of each case are summarized in 

Table 7-1. The LB velocity field is given in Figure 7-5. 

 

Table 7-1: Parameters of RWPT simulations for hindered diffusion 
Parameter  CASE 1 CASE 2 CASE 3 CASE 4 

Domain size  15 × 15 × 65 15 × 15 × 65 15 × 15 × 65 15 × 15 × 65 
Total number of grids  14,625 14,625 14,625 14,625 
Total number of fluid nodes  3930 3930 3930 3930 
Total number of tracers  40,500 40,500 40,500 40,500 
Tracer interaction   non-adsorbing non-adsorbing adsorbing adsorbing 
Near wall diffusion  isotropic anisotropic isotropic anisotropic 
Number of BT tracers  40,498 40,444 14,753 22,883 
Average velocity  2.4292 × 10−7 2.4292 × 10−7 2.4292 × 10−7 2.4292 × 10−7 
Maximum velocity  2.1247 × 10−6 2.1247 × 10−6 2.1247 × 10−6 2.1247 × 10−6 
Diffusion coefficient  6.0 × 10−8 6.0 × 10−9 6.0 × 10−9 6.0 × 10−9 
RWPT time step size  4.53 × 103 4.53 × 103 4.53 × 103 4.53 × 103 
Total time step (3PV)  6.0 × 104 6.0 × 104 6.0 × 104 6.0 × 104 
# of CPUs  16 16 16 16 
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Figure 7-5:  LB velocity field in the BCC domain. 
 

Figure 7-6 shows the breakthrough curves using an impulse input for all the cases. For a 

non-adsorbing tracer, tracers are advected and diffused either in an isotropic or in an anisotropic 

fashion when they are within the prescribed range of lubrication interaction around a positively 

charged sphere. The breakthrough curves of isotropic and anisotropic random walk are compared 

in Figure 7-6b. This comparison shows that isotropic random walk exhibits a higher peak value in 

the relative concentration curve than anisotropic random walk. The anisotropic random walk also 

shows slightly more retardation in the build-up portion of the breakthrough curve and a longer 

tailing than the isotropic random walk. The comparison indicates that the hydrodynamic 

lubrication effect under a repulsion-dominant depositional scenario may result in retardation. This 

is because the lubrication layer near the surface of spheres acted like a stagnant pocket, making 

harder and longer for tracers escape the region with hindered diffusion. As opposed to this, 

anisotropic random walk in the presence of attractive collectors can facilitate transport. Figure 7-

6c shows the comparison in breakthrough curves between isotropic and anisotropic random walk 

for an adsorbing tracer. The anisotropic random walk showed a higher peak than the isotropic 

random walk in relative concentration, and so were the total numbers of tracers recovered: 14,753 

for isotropic random walk (CASE 3) and 22,883 for anisotropic random walk (CASE 4). It is clear 

that anisotropic random walk hindered the deposition of tracers on the surface of the collector 

sphere, making more tracers achieve breakthrough events at the exit. This indicates that anisotropic 

random walk under favorable condition can facilitate earlier breakthrough. Therefore, it is clear 

that hindered diffusion near the surface of solid phase can have an impact on breakthrough curves. 
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This set of numerical tests suggest that the lubrication effect can either retard or facilitate transport 

depending on depositional conditions.   

 

 
(a) 

 

 

 

(b) (c) 

Figure 7-6: Breakthrough curves of non-adsorbing and adsorbing tracers with isotropic and 
anisotropic random walk (a). The breakthrough curves are separately presented for (b) a non-
adsorbing tracer with isotropic (red) and anisotropic (black) random walk, and for (c) an 
adsorbing tracer with isotropic (green) and anisotropic (blue) random walk. 
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

Many research efforts have been made to capture fundamental aspects of flow and transport 

in porous media. Pore-scale numerical simulations are one of the research areas that have 

contributed greatly to our ability to investigate and understand complex flow and transport 

phenomena in porous media. In line with those works, in this study we developed pore-scale 

numerical models as an integral part of a comprehensive study encompassing column-scale and 

micro-scale experiments. We applied our models to solute transport in a bead-packed column and 

colloid transport in a bead-based microfluidics porous media analogue. Using pore-scale 

simulations enabled by parallel computing, the effects of pore-scale mechanisms on a macroscale 

observable quantity, the breakthrough curves, were successfully characterized. The predictions of 

our models were validated by direct comparisons with the experiments. The benefit of using a 

breakthrough-level comparison is that, unlike specific up-scaled properties such as permeability 

and dispersion coefficients that often rely on assumptions that may or may not be valid on the level 

of a representative element volume, breakthrough curve is the manifestation of all different levels 

of transport mechanisms in a phenomenologically observable form. Even though generating 

breakthrough curves using a large collection of particles over a laboratory scale porous medium 

replica is computationally expensive, we have successfully achieved this with efficient parallel 

computing strategies and robust reflection algorithms. Recalling the primary objectives of this 

dissertation, we directly simulated flow and convective transport of conservative and non-

conservative solutes and colloids, and the predictions of our pore-scale simulations agreed well 

with experimental data, which confirms our predictive modeling approaches were successfully 

validated.  

Summarized discussions on selected tasks and recommendations for future work are 

presented in the following sections before closing this dissertation.     

8.1 Reconstruction of porous media replica for pore-scale simulations 

In this dissertation, computational domains of a bead-packed column experiment and a 

microfluidics porous media analogue experiment were generated. For the column experiment, 

customized routines were developed to process CT-scanned images of glass beads in the column. 
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Totally, 2,000 images were processed. To reduce uncertainty, images were processed iteratively 

to match the bulk porosity of the actual column. For a bead-packed column with a length of 10.26 

cm and a diameter of 0.75 cm, 50 million grids with 10 million fluid voxels were reconstructed 

and the resolution was 51.3 μm/pixel. One glass bead (500~600 μm) was therefore resolved by 

about 11 voxels.  

For microfluidics experiments, a customized code reconstructed the computational 

domains of microfluidics experiments based on the center coordinates and radius of beads to 

differentiate the solid and liquid phases. The physical size of the PMA is 600 × 15 × 1891 in 

micrometers. The PMAs were digitally reconstructed at the resolution of 1 μm/pixel, resulting in 

20 million grids with 11 million fluid voxels. As such a bead with a diameter of 10 μm was resolved 

by 10 voxels. To simulate heterogeneities in the charge possessed by surfaces, solid voxels were 

tagged with values of one, two, or three depending on whether they belong to negatively charged 

beads, positively charged beads, or walls and pillars of the PMA, respectively. One was assigned 

to negatively charged beads (repulsive – specular reflection), two to positively charged beads 

(attractive – irreversible adsorption), and three to the wall and pillars (repulsive – specular 

reflection; different from one for visualization purpose). Totally, seven digitalized PMAs were 

reconstructed including one homogeneous and six heterogeneous cases.  

8.2 Improvements in efficiency and robustness of algorithms to generate breakthrough 

curves 

Generating breakthrough curves directly from RWPT requires significant computational 

times. To complete simulation tasks within a reasonable amount of time, message passing interface 

(MPI) was used to parallelize LB and RWPT codes. In addition, a more robust algorithm of 

specular reflection for no-flux boundary condition at solid- liquid interface was implemented in 

RWPT. The new algorithm correctly accounts for all cases of reflections. The updated RWPT code 

can be stably run to the time steps required for completion of our simulation tasks.  

8.3 Pore-scale simulations of a conservative solute and colloid 

Our pore-scale framework using LB and RWPT was applied to two experimental systems 

for solute and colloid transport, respectively. For both systems, agreements with experiments were 

achieved without using any fitting parameters.  
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For a non-adsorbing solute (I−) in the column experiment, our pore-scale simulations 

recovered breakthrough curves comparable to the experiment. The experimental data showed some 

delay (retardation) in the build-up part. With the limited data from the experiment (only one point 

available in this region), it is not easy to identify what factors contributed to this. Our data, however, 

are in better agreement with the analytical solution of 1D advection-dispersion equation (ADE) 

than with the experimental data. The solution of 1D-ADE used longitudinal dispersion coefficients 

from the empirical correlation of Perkins and Johnston (1963). When examined closely, our 

simulation data exhibited a little more dispersion than the 1D-ADE solution and a little less 

dispersion than the experimental data. Additionally, tortuosity, and longitudinal dispersion 

coefficient obtained from pore-scale simulations were good agreement with those from empirical 

correlations.   

For the simulation of colloid transport in electrostatically homogeneous microfluidics 

experiment with repulsive interactions between colloids and beads, initial simulations using a step 

function as the inlet concentration profile did not achieve good agreement with the experiment, 

because the inlet concentration profile in the experiment was not an ideal step function. RWPT 

was coded to implement the actual inlet concentration profile, and then the simulated breakthrough 

curve was in good agreement with the experimental data.  

8.4 Equilibrium partitioning, irreversible kinetic deposition, and surface coverage effect 

   For transport of solutes with equilibrium partitioning and that of colloids with irreversible 

deposition kinetics and surface coverage effects, these pore-scale physio-chemical mechanisms 

were implemented into our RWPT.  

For simulations of column experiments, equilibrium adsorption-desorption process was 

implemented using a probability of adsorption and a probability of desorption. We simulated the 

laboratory batch experiment used to establish equilibrium partition of solute between the fluid and 

the solid surface, and obtained probabilities of adsorption and desorption that reproduced the 

partitioning coefficient of Cs+ measured in laboratory batch experiments. Note that in the absence 

of kinetic (rate) data, there are many pairs of probabilities that can recover the same partitioning 

coefficient, provided that they have the same ratio of probability of adsorption to that of desorption. 

Different sets of probabilities of adsorption and desorption that have the same ratio were tested 

and they produced different shape of breakthrough curves. This indicates that the 1D-ADE 
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breakthrough curves that depend on a single value of the partitioning coefficient from batch 

experiment is limited. Using these probability values in RWPT generated a breakthrough curve for 

the adsorbing solute (Cs+) that is in reasonable agreement with that from the column experiment. 

With limited number of experimental data points available, it is not easy to make more rigorous 

comparisons. Nevertheless, a comparison with the solution of 1D-ADE was also made. RWPT 

simulation predicted a more dispersive breakthrough curve than 1D-ADE in that the initial 

breakthrough time from RWPT simulation was earlier.  

For simulations of microfluidics experiments, kinetic deposition processes and surface 

coverage effects were implemented. The interaction length between a colloidal particle and a 

positively charged surface was calculated using an analytic solution and 500 nm was used. To 

model the surface coverage effect both linear and non-linear dynamic blocking functions were 

applied. RWPT simulations with the inclusion of these effects successfully recovered the 

breakthrough curves of the experiments. This comparison at the level of breakthrough curves 

confirms that the pore-scale mechanisms that control the characteristics of observable transport in 

the experiments were the irreversible deposition of colloids combined with finite adsorptive 

capacity of collectors, the positively charged beads.       

8.5 Effect of hydrodynamic interaction with surfaces on advection-diffusion of colloids 

The diffusive movement of a colloidal particle is hindered due to lubrication effect as it 

nears the surface of solid phase. The hindered diffusion due to lubrication interaction, different in 

the directions normal to and tangential to the surface, can have an impact on breakthrough and 

retention. We simulated the effect of anisotropic random walk of colloids near surfaces under the 

influence of hydrodynamic lubrication interaction on the breakthrough curve in a small-scale 

porous medium model. Two analytic solutions that address the lateral hindrance and the tangential 

hindrance were used to model anisotropic random walk within a prescribed separation distance in 

which the effect of hydrodynamic lubrication interaction begins to affect the isotropy of Brownian 

motion. Considering the length and time scales of such interactions, a small domain with 10 beads 

arranged in an in-line, body-centered cubic configuration, with a single collector sphere at its 

center was used with a pulse-type input. Our simulations generated breakthrough curves of 1) a 

non-adsorbing tracer with isotropic random walk, 2) a non-adsorbing tracer with anisotropic 

random walk, 3) an adsorbing tracer with isotropic random walk, and 4) an adsorbing tracer with 
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anisotropic random walk. The results show that anisotropic random walk can either facilitate, or 

surprisingly, hinder transport of tracers depending on depositional conditions. For a non-adsorbing 

tracer, anisotropic random walk due to the lubrication interaction hindered transport because 

tracers migrate into zones of low Brownian diffusivity near solid surfaces where they are 

practically stagnant. For an adsorbing tracer, anisotropic random walk facilitates transport because 

it lowered the rate at which tracers approach the adsorbing surface. These results suggest that near-

wall hindered diffusion can play a significant role in breakthrough and deposition.  

8.6 Recommendations for future work 

  The framework of pore-scale numerical simulations using LB and RWPT has advanced to 

the level that not only REV-scale macroscopic properties such as permeability, tortuosity, and 

dispersion tensor, but also breakthrough curves of entire (small-scale) experiments can be directly 

obtained. With opportunities to insert fundamental physics, pore-scale simulations provide us not 

only theoretically more profound understating of flow and transport in porous medium but also 

practical tools to connect the pore-scale mechanisms to macroscopic scale observable traits of 

transport. Based on my experience in this area of research, I would recommend, in this regard, the 

following directions for future research efforts,      

 Develop advanced image processing algorithms to extend the work flow proposed in this 

dissertation to more complex natural systems of porous media such as natural rocks 

including shale.  

 Develop efficient parallelized visualization environments that can be used for digital 

reconstruction of large-sized computational domains and visualization of trajectories of a 

large collection of particles over such domains. They would provide a great deal of insights 

on understating of complex phenomena as visualization is not just a fancy representation 

of simulations.  

 Develop a more efficient parallelized RWPT that can implement both periodic and constant 

injection boundary conditions. For a pulse type injection, Open Multi-Processing (OpenMP) 

can be combined efficiently with MPI.  

 Incorporate a finite-sized particle model in RWPT. Even though the finite size effect is 

somewhat implicitly considered in Brownian diffusivity term in RWPT, an explicit 
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modeling of a finite-sized tracer would help us to understand the size exclusion effect for 

large-size colloids that should have a considerable impact on breakthrough and deposition.   

 Develop a new modeling approach incorporating the complete DLVO interactions in 

RWPT. Currently, simulations incorporating the effect of lubrication interactions are 

forced to run with very small time steps to meet the requirement to resolve the thin 

lubrication range (250 nm). The ranges of DLVO interactions are even smaller, and hence 

the requirement on time step size would be more demanding. If DLVO interactions can be 

implemented such that simulations tasks can be performed in a practically reasonable 

amount of time, it could pave a way to solving many unanswered problems on transport of 

macromolecules, colloids, bacteria and virus, as well as colloid-facilitated transport of 

radionuclides.  
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