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ABSTRACT 

Groundwater is an important resource in the Unites States and provides about 40% of the 

country’s public water supply. Withdrawals have dramatically increased in many aquifers, 

leading to groundwater depletion and questions about future sustainability. In Colorado, the 

long-term sustainability of the Denver Basin Aquifer System is considered by some as 

questionable and insufficient to support future demands. Groundwater depletion has been widely 

documented over the past several decades as groundwater withdrawals have increased and 

competition for water further stresses supplies. Groundwater monitoring is fundamental to 

understanding system dynamics, trends in storage, and the long-term sustainability of an aquifer. 

However, groundwater level data are typically spatially and temporally sparse relative to the data 

density desired for aquifer-scale analysis. The problems with missing temporal data from water 

wells in particular has not been addressed in much detail, yet can cause important 

misinterpretation with regard to groundwater sustainability. This research aims to mitigate some 

of the problems with current approaches to analyzing water well data by incorporating a new 

method of spatial-temporal analysis, with particular emphasis on addressing missing temporal 

data. In addition, we evaluate the ability of the Gravity Recovery and Climate Experiment 

(GRACE) satellites to improve the temporal sustainability analysis. The methodology is first 

illustrated using a case study in the Arapahoe Aquifer and is then expanded to all aquifers of the 

Denver Basin Aquifer System. Remote sensing is utilized from GRACE to provide another 

perspective on determining groundwater storage changes. Results from this dissertation provide a 

framework for monitoring and management of groundwater resources along the Colorado Front 

Range as well as other water-stressed regions of the western U.S. 
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CHAPTER 1 

INTRODUCTION 

Groundwater is an important resource in the Unites States (U.S.) and provides about 40% 

of the country’s public water supply (Alley et al. 1999; Maupin et al. 2014). It is also the primary 

source of drinking water for many rural areas and an important source for irrigated agriculture 

(Scanlon et al. 2012a; Maupin et al. 2014). Withdrawals have dramatically increased since the 

20th century leading to groundwater depletion in many aquifer systems and questions about 

future sustainability (Brown 1999). Since 1990, groundwater volumes have decreased by about 

1,000 km3 across the U.S., highlighting the severity of the problem (Konikow 2015). Some 

detrimental effects of depletion include reduced well yields, increased pumping cots, the need to 

drill deeper wells, land subsidence, reduced water quality, and reduced flow to surface waters 

(Alley et al. 1999; Konikow and Kendy 2005).  

The long-term groundwater sustainability of an aquifer system is a complex issue that 

involves scientific, political, legal, and socioeconomic influences (Alley et al. 1999; Gleeson et 

al. 2012). Water imbalances in groundwater systems between inflows and outflows can create 

large deficits, especially when withdrawals are large (Scanlon et al. 2012a). Water level and use 

data are key for scientific assessments and determination of sustainable withdrawals (Butler et al. 

2016). Political influences also help place value on water and promote conservation. For 

example, in Colorado, the state’s Water Plan has been implemented for two years and sets forth a 

framework at the state, local, and individual level to address future water challenges (Colorado 

Water Conservation Board 2015). However, the details on how to appropriately quantify 

sustainability or current groundwater use are not provided. Western states also vary in their legal 
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framework to manage and regulate groundwater withdrawals, but are often focused on short-term 

management plans that may not sustainable in the long-term (Gleeson et al. 2012; Schlager 

2006). A recent study identified socioeconomic variables such as a rural-urban divide, per capita 

income, education level, pricing structures, and regional location all influence water-use 

efficiency (Sankarasubramanian et al. 2017). Ensuring adequate water resources to support 

growing populations and economic development is an ongoing challenged due to the complex 

overlap of influences.  

In Colorado, the long-term sustainability of the Denver Basin Aquifer System (DBAS) is 

considered by some as questionable and insufficient to support future demands (Everett 2014; 

CDM 2004). The DBAS is a critical water resource for many uses, including municipal, 

industrial, agricultural, and domestic use along the Colorado Front Range Urban Corridor. 

Groundwater depletion has been widely documented over the past several decades as 

groundwater withdrawals have increased (Topper and Raynolds 2007; Paschke et al. 2011; 

Bauch et al. 2015). Over the next thirty years, the supply gap is expected to approach 690,000 

acre-feet per year (0.85 km3) for municipal, industrial, and agricultural use (HDR Inc. and 

Consultants 2015). Population growth is recognized as one of the strongest drivers for increasing 

future water resource needs in the area (HDR Inc. and Consultants 2015; Colorado Water 

Conservation Board 2011; Moore et al. 2007). Since 1990, population in the Denver metro area 

has increased by over 1.8 million people. While much of the water demand will be offset by 

surface water resources, an increased reliance on groundwater from the DBAS is expected, 

particularly as other western states with rights to Colorado River water (accounts for 30 – 50% of 

supply for Front Range in a given year) are likely to demand their full share. Because of this, the 

DBAS faces future management and resource challenges. 
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Most aquifers in the arid west, as well as in many other locations across the globe, are 

facing serious questions about future sustainability (e.g. (Famiglietti 2014; Konikow 2015; 

Scanlon et al. 2012a). Typically, sustainability is evaluated by analyzing groundwater well 

records to determine if water levels can be sustained into the future under certain use scenarios. 

Of course, water levels only tell part of the story, because groundwater availability actually 

depends on future projects of groundwater storage, which is highly uncertain. In addition, 

analysis of water well data as it is typically conducted has serious limitations. Data are typically 

spatially and temporally sparse relative to the data density desired for aquifer-scale analysis.  The 

problems with missing temporal data from water wells in particular has not been addressed in 

much detail, yet can cause important misinterpretation with regard to groundwater sustainability. 

This research aims to mitigate some of the problems with current approaches to analyzing 

water well data by incorporating a new method of spatial-temporal analysis, with particular 

emphasis on addressing missing temporal data. In addition to this proposed method, we evaluate 

the ability of GRACE satellite data to improve the temporal sustainability analysis. The strengths 

of GRACE data may help minimize the impact of the weaknesses on the water-well data 

analysis, and vice versa. The research is applied to the DBAS, an important aquifer system in the 

Colorado Front Range that is expected to be highly stressed with regard to future sustainability. 

The DBAS extends from Colorado Springs to Greeley and covers approximately 6,700 

mi2 (~18,000 km2 ) (Moore et al. 2004; Paschke et al. 2011). It consists of four layered aquifers 

in a structural, sedimentary basin containing sandstones and siltstones deposited 65 -70 million 

years ago (Topper and Raynolds 2007; Robson 1987; Paschke et al. 2011). The DBAS underlies 

the South Platte Alluvial Aquifer which is another important groundwater system in the area. 

Groundwater development began in the late 1880s with many wells under artesian pressure, 
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pushing water as high as 100 ft above the ground surface (Topper and Raynolds 2007). However, 

due to the eventual widespread declines in artesian pressures and as drilling became widespread, 

legislation of Senate Bills (SB) 73-213 and 85-05 passed prompting how the DBAS aquifers 

should be managed and groundwater withdrawn (Moore et al. 2004; White 1995). Since 1990, 

over 23,000 new groundwater wells have been installed, leading to continual water-level declines 

and in some cases areas are changing from confined to unconfined conditions (Colorado 

Division of Water Resources 2018; Moore et al. 2004). 

There is an ongoing need to continue to monitor and improve understanding of water-

level and storage changes in the DBAS due to its high importance. Numerous groundwater 

models have been developed over the years using various approaches and scales. In 1998, under 

SB 96-74, a model of the Denver Basin was refined from previous Denver Basin models of 

Robson (1987), Banta (1989), and the MODFLOW model developed from SB 85-05 (Simpson 

and Lite 1998). In 1991, the Denver Basin model from Banta (1989) was combined with 

RIVINT, a river module for MODFLOW, to predict declines in aquifer heads and stream 

baseflow during times of drought when pumping was occurring. In 2003, MODFLOW-2000 in 

conjunction with the State’s SB-74 model were used to develop a regional Denver Basin 

groundwater model to estimate water levels in various aquifers under various pumping scenarios 

(Black & Veatch et al. 2003). In 2011, an extensive model of the DBAS  was completed by the 

U.S. Geological Survey (USGS) to better understand the hydrogeological framework of the 

system (Paschke et al. 2011). Later this model was then used to understand various pumping 

schemes to protect the Arapahoe aquifer from depletion of saturated thickness (Banta and 

Paschke 2012). In 2011, USGS and Rural Water Authority of Douglas County began a study to 

assess groundwater levels in the DBAS of Douglas County (Everett 2014). Comparison of recent 
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USGS modeling studies and Colorado Division of Water Resources (CDWR) data do show 

variable results and different rates of annual depletions across the DBAS aquifers (Paschke et al. 

2011; Banta and Paschke 2012; Everett 2014; Flor 2015, 2016). 

The DBAS would benefit from additional analysis and interpretation of groundwater 

level data to better understand stresses in the system. Groundwater monitoring is fundamental to 

understanding an aquifer, determining direction of flow, and trends in groundwater storage. 

Knowing were areas are decreasing, increasing, or stable allows managers to appropriately focus 

their efforts and better manage resources. However, volumetric depletion assessments can be 

challenging and difficult to assess (Konikow 2015). Many areas lack adequate water-level data, 

adequate data characterizing aquifer properties, and pumping data. It is necessary to frequently 

monitor groundwater elevations to capture seasonal fluctuations and long-term trends. 

Obviously, more data leads to a better understanding of an aquifer system. The DBAS is no 

exception. All four of the aquifers lack adequate spatial and temporal groundwater level data. 

Most groundwater wells are irregularly sampled and not every well is sampled every year. This 

complicates groundwater assessments and determination of trends and stresses.  

Groundwater level or storage change evaluations typically employ some sort of 

interpolation scheme to estimate data at unsampled locations. Point measurements of water table 

levels are used to generate groundwater surfaces (i.e. potentiometric surfaces) and understand 

spatial and temporal variations (Sun et al. 2009; Gundogdu and Guney 2007). Numerous spatial 

interpolation methods exist and have been applied across many disciplines. In general, estimation 

of data at unsampled locations are represented as a weighted average of surrounding data (Li and 

Heap 2008). Some common non-geostatistical techniques applied to groundwater mapping 

include inverse distance weighting (Varouchakis and Hristopulos 2013; Yao et al. 2014), nearest 
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neighbor (Rouhani 1986), splines and trend surfaces (Yao et al. 2014; Xiao et al. 2016), and 

regression models (Delbari 2014; Ohmer et al. 2017). Kriging is a geostatistical interpolation 

method and comes in many forms (e.g. Ordinary, Universal, Block, CoKriging.) (Brus and 

Heuvelink 2007; Hengl et al. 2003; Li and Heap 2008). Kriging is considered the best linear 

unbiased estimate for the variable in question. The variable is assumed to be a random function 

with a correlation structure in its spatial distribution that can be explained by a semivariogram. 

The advantage of kriging compared to other deterministic methods, is that the interpolation error 

can be estimated.  

Groundwater surfaces are generally non-stationary due to a trend in the surface 

(Maheswaran and Khosa 2013; Gundogdu and Guney 2007). When applying kriging, the 

equations can be expanded to include a trend or drift in the surface (i.e. universal kriging, kriging 

with external drift, regression kriging) and account for the drift to achieve stationarity necessary 

for kriging. Covariates can be used to account for the trend in the data as well as help infer the 

predictions in un-sampled locations. However, an insufficient number of sample points creating 

spatial and temporal gasp in the groundwater level record can be problematic. This can 

potentially lead to anomalies and incorrect representation of the groundwater level or head data. 

In order to avoid some of these pitfalls, many studies aggregate the data in to bins where the 

same timestamp is given, even though the data might be from different periods. The likely 

increases the number of spatial data points to infer the interpolation. However, this assumes that 

the temporal response of the system response can be represented a sequence of spatial 

interpolations invoked at user-defined times (Li and Revesz 2004). This presents problems for 

irregular datasets.  
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Spatio-temporal approaches offer an alternative to classical geostatic and can overcome 

some of the limitations of sparse and irregular data. Time is incorporated as another dimension 

and covariance is modeled as a function of both space and time (Kyriakidis and Journel 1999; 

Heuvelink and Griffith 2010; Tadic et al. 2017). Spatio-temporal kriging is common to a number 

of studies that have spatially and temporally mapped precipitation, soil moisture, and satellite 

observations (Hu et al. 2017; Wang et al. 2015; Zeng et al. 2017). However, despite these 

applications to environmental research, spatio-temporal kriging applications are lacking in 

groundwater applications. Spatio-temporal kriging has only been applied to three known studies, 

including an early groundwater quantity study (Rouhani and Hall 1989), design of groundwater 

monitoring networks (Júnez-Ferreira and Herrera 2013), and recently groundwater level 

variations (Varouchakis and Hristopulos 2017). The concept of spatio-temporal kriging in 

groundwater applications is not a normal concept used in groundwater studies. The recent 

publication by Júnez-Ferreira and Herrera (2013) and Varouchakis and Hristopulos (2017) may 

highlight new interest in spatio-temporal methods for groundwater applications.  

While these studies introduce spatio-temporal techniques, they are of limited application. 

The objective of  Júnez-Ferreira and Herrera (2013) was to optimize a groundwater head 

monitoring network in order to minimize the number of the number of samples needed to 

maintain the current level of uncertainty. Their focus was on a small part of a 379 km2 

unconfined aquifer. Their methodology utilized a Product-Sum model (De Iaco et al. 2001) to 

model space-time covariance and Kalman filter to estimate the residuals. Varouchakis and 

Hristopulos (2017) evaluated groundwater levels for wet and dry periods across two separate two 

year spans. Separable Matérn, diffusive, and Spartan models were used to model space-time 

trends in variograms for an unconfined aquifer of ~26 km2 using eleven wells. While these 
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studies have recently introduced space-time geostatistics to the groundwater realm, much 

validation and assessment is still needed. Further studies are needed to 1) assess the applicability 

of different space-time variogram models, 2) evaluate larger aquifers, 2) further assess usefulness 

for confined, semi-confined, and unconfined systems, 3) evaluate longer time periods, 4)  

evaluate different methods to remove global groundwater trends or drift, and 5) advocate the 

advantages of spatio-temporal applications for irregular or sparse groundwater datasets. Remote 

sensing offers unique capabilities in monitoring and understanding spatial and temporal earth 

system processes. 

Lately, the Gravity Recovery and Climate Experiments (GRACE) have been effective in 

advocating and educating the public on groundwater sustainability. Estimates of gravitational 

changes can be used to infer time-variable changes in mass above and below the Earth’s surface. 

Most monthly mass changes are due to the redistribution of water within the global water cycle 

across the oceans, atmosphere, land, and cryosphere. GRACE has been used for many hydrology 

applications across much of the globe (Seyoum and Milewski 2016; Castle et al. 2014; Sun 2013; 

Scanlon et al. 2012b; Famiglietti et al. 2011; Strassberg et al. 2009; Rodell et al. 2009; Chen et 

al. 2014; Tiwari et al. 2009). These studies have looked at droughts (Houborg et al. 2012; Long 

et al. 2013; Leblanc et al. 2009; Thomas et al. 2014), flooding and surface waters (Swenson and 

Wahr 2009; Lee et al. 2011; Wang et al. 2011; Zmijewski and Becker 2014; Reager et al. 2014), 

and groundwater depletion (Rodell et al. 2009; Feng et al. 2013; Scanlon et al. 2012b; Voss et al. 

2013) 

Studies have shown good agreement between GRACE derived groundwater storage 

changes and groundwater well observations (Rodell et al. 2007; Chen et al. 2016; Swenson et al. 

2006; Castle et al. 2014; Scanlon et al. 2012b; Huang et al. 2016). However, because the 
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GRACE footprint is ~200,000 km2, many studies evaluate the use and validity over areas close 

to or much larger than the footprint. Few studies have evaluated use below the recommended 

area. In the Central Valley, California, high amounts of pumping for irrigation have allowed 

storage changes to be detected by GRACE even though the area of interest is ~52,000 km2 

(Scanlon et al. 2012b). In regions such as Mali (~54,971 km2) with sparse hydrogeological data, 

GRACE TWS was used to estimate annual recharge (Henry et al. 2011). (Need to add a few 

more studies).  

As with other types of data, GRACE is not without limitations. The gridded GRACE 

spherical harmonic product is at a course 1° x 1° (~111 km at the equator) resolution while the 

mascon approach is at a gridded 0.5° x 0.5 ° (~56 km at the equator) resolution. This lower 

resolution limits the use for smaller scales (Alley and Konikow 2015). Individual grid-cells may 

also suffer from spatial leakage and measurement errors that are large at small scales 

(Longuevergne et al. 2010). These errors are assumed to be constant over time, but may actually 

vary seasonally and annually. GRACE reports changes in water storage in one-dimension. It 

cannot determine flow velocities, directions of flow, drawdowns, sources of groundwater 

depletion, differentiate elastic from non-elastic storage and releases, and be used for real-time 

monitoring due to the few month lag in results being released (Alley and Konikow 2015). Alley 

and Konikow (2015) suggest that there are more important things to consider like other external 

effects (e.g. water quality, pumping and lifting costs, land subsidence) that will impact aquifer 

use long before storage depletions. However, in many areas, there are a lack of data available 

that limits the understanding of spatial and temporal dynamics (Seyoum and Milewski 2016). 

This is what makes GRACE appealing, despite the resolution and cautions waring against use at 

smaller scales. Groundwater data however, is not without limitations and weaknesses. Generally, 
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groundwater data has poor temporal resolution, poor spatial resolution, and does not provide a 

direct identification of volumetric storage changes without the use of aquifer parameters which 

are often not well known. GRACE overcomes these limitations and can potentially still add 

value to systems at the aquifer-scale.  

The overarching objective of this dissertation is to mitigate some of the problems with 

current approaches to analyzing groundwater well data by incorporating a new method of spatial-

temporal analysis, with particular emphasis on addressing missing temporal data.  In addition to 

this proposed method, we evaluate the ability of GRACE satellite data to improve the temporal 

sustainability analysis. The research is applied to the DBAS, an important aquifer system in the 

Colorado Front Range. This is accomplished through three studies evaluating the advantages of 

spatio-temporal kriging (Chapter 2), application to the DBAS (Chapter 3), and the applicability 

of utilizing GRACE to overcome some of the ground-based limitations (Chapter 4).  

1.1 Objectives and Research Questions 

This section summarizes the objectives for the three main chapters of this dissertation and 

the efforts taken to address the relevant research questions. 

Objective 1: Evaluation of Spatio-Temporal Kriging to Predict Potentiometric Surfaces 

The first objective includes evaluation of spatio-temporal kriging as an alternative 

interpolation method for groundwater data, with a goal of demonstrating the ability to improve 

potentiometric surface predictions. The following science question was addressed:  

Science Question 1: Do estimated potentiometric surfaces using spatio-temporal kriging improve 

our understanding of groundwater sustainability than traditional methods of groundwater well 

data analysis (e.g., inverse distance weighting, point to raster) or methods that use only spatial 

kriging?  
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Objective 2: Evaluation of Groundwater Storage in the Denver Basin Aquifer System 

The second research objective focuses on applying the developed spatio-temporal kriging 

approach to the DBAS, with the goal of understating storage changes in each aquifer, any spatial 

patterns, and the influence of the storativity parameter on volumetric estimates. The following 

science questions were addressed:  

Science Question 2: How has groundwater storage changed for aquifers of the DBAS since 

1990?  

Science Question 3: Utilizing available storativity data, what is the variability in storage change 

estimates?  

Science Question 4: Can we identify the main drivers for groundwater storage changes and how 

these impact aquifer sustainability?  

Objective 3: Evaluation of GRACE at the Aquifer-Scale  

The third research objective evaluates the applicability of using the GRACE satellites at 

the aquifer-scale to help infer groundwater storage changes, with the goal of determining the 

usefulness and challenges across the DBAS. The following science question was addressed:  

Science Question 5: Does analysis of groundwater storage trends from GRACE improve our 

understanding of groundwater availability/storage at the aquifer-scale compared to those 

determined from ground-based data for the DBAS?  

1.2 Dissertation Organization 

This dissertation is organized into five chapters. Chapter 1 provides an overview of the 

importance of groundwater, the challenges faced in resource evaluations, and outlines the 

research goals and questions for the material in the main body of the dissertation. Chapter 5 

summarizes the conclusions from the dissertation and provides recommendations for future 
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direction of research. The main body of the dissertation (Chapters 2 – 4) describes three research 

efforts to address the main research objectives and questions. Relevant supporting information 

for Chapter 3 is provided in Appendix A. The following is a description of the main chapters in 

the dissertation:  

 Chapter 2, “Evaluation of Groundwater Levels in the Arapahoe Aquifer Using Spatio-

Temporal Kriging.” The chapter addresses Objective 1. The goal of this chapter is to 

present and demonstrate a novel spatio-temporal kriging approach used to improve 

confidence in evaluating groundwater levels across irregular and sparsely gauged aquifer 

systems. The spatio-temporal approach is defined along with the steps taken to predict 

groundwater levels at locations in space and time. The Arapahoe Aquifer in the DBAS is 

used as a case study to further demonstrate the benefits of spatio-temporal approaches in 

groundwater resource evaluations.  

 Chapter 3, “Assessment of Groundwater Depletion and Implications for Management in 

the Denver Basin Aquifer System.” This chapter addresses Objective 2. Supporting 

information for this chapter is provided in Appendix A. The goal of this chapter is to 

extend the spatio-temporal analysis to all four aquifers of the Denver Basin Aquifer 

System (DBAS) and further evaluate the variability in groundwater depletion and 

uncertainties in volumetric calculations. Water level changes and storage changes are 

evaluated from 1990 to 2016. This assessment compliments other groundwater studies in 

the DBAS and provides a different perspective on analyzing ground-based data.  

 Chapter 4, “Monitoring Groundwater Storage Changes Using GRACE at the Aquifer 

Scale: Accuracy and Validity in the Denver Basin.” This chapter addresses Objective 3.  

The goal of this chapter is to evaluate the validity of using the GRACE satellites at the 
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aquifer-scale to better understand groundwater depletion in DBAS. The spatio-temporal 

analysis presented in Chapters 2 and 3 are used to compare to the GRACE results. 

GRACE is becoming a popular tool to assess groundwater storage changes. This study 

highlights the limitations of both GRACE and ground-based data and provides another 

perspective on evaluating groundwater resources in the DBAS.  

 

Since the framework for the spatio-temporal assessment of the DBAS is setup and 

introduced in this dissertation, additional data collection or incorporation of other available data 

can be easily added as it becomes available. This approach enables improvement of predictions, 

allows for annual updates, and continually helps in water resource management decision-making. 

Additionally, the methodology described in this dissertation can easily be applied to other 

groundwater systems. 
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CHAPTER 2 

EVALUATION OF GROUNDWATER LEVELS IN THE ARAPAHOE 

AQUIFER USING SPATIO-TEMPORAL KRIGING 

2.1 Abstract 

Groundwater monitoring is fundamental to understanding system dynamics, trends in 

storage, and the long-term sustainability of an aquifer. Water-level data are the key source of 

information used to understand the response. However, groundwater level data are often 

irregularly sampled, leading to temporal gaps in the record, and spatially are not adequately 

distributed across an aquifer. This presents challenges when spatially interpolating 

potentiometric surfaces and creating groundwater maps due data availability. We present a 

spatio-temporal kriging methodology to improve spatial and temporal confidence in groundwater 

level predictions at unsampled locations. The space-time dataset consists of a trend and residual 

component modeled with a linear regression and utilize a sum-metric model to represent spatio-

temporal covariances. The Arapahoe Aquifer is used as a case study to demonstrate the benefits 

of spatio-temporal kriging over spatial kriging across a sparsely gauged and irregularly sampled 

aquifer. The Arapahoe Aquifer is a major source of water for many residents along the Rocky 

Mountain Front Range in Colorado. The results show superior performance of spatio-temporal 

kriging to predict groundwater levels over the traditional spatial kriging. Spatio-temporal kriging 

represents realistic temporal and spatial changes in water levels and avoids some of the problems 

inherent to spatial kriging. This study demonstrates the power of spatio-temporal kriging to help 

inform system dynamics in irregularly sampled aquifers.  
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2.2 Introduction 

Groundwater monitoring is essential to groundwater management and provides 

fundamental information regarding the long-term sustainability and status of an aquifer (Taylor 

and Alley 2001; Reghunath et al. 2005). However, groundwater level measurements are typically 

irregularly collected and have many spatial and temporal gaps in the record which presents 

challenges in understanding spatial and temporal changes and stresses to the system.  

A variety of deterministic and geostatistical interpolation methods are often used to 

spatially interpolate groundwater data to make estimates at unsampled locations. Kriging is a 

common geostatistical method that takes into account spatial dependence, and unlike 

deterministic methods (e.g. nearest neighbors, inverse distance weighting), provides a measure of 

the uncertainty in the predictions. Kriging has been applied to many spatial hydrological 

analyses, including evaluation of groundwater level fluctuations and groundwater surface map 

generation (Ahmadi and Sedghamiz 2007, 2008; Ta′any et al. 2009; Sun et al. 2009; Yao et al. 

2014; Costelloe et al. 2015). However, most studies only consider spatial relationships when 

evaluating temporal changes. Data are usually aggregated into temporal bins where the same 

time stamp is given, even though observations may not be from the same time period (Tadić et 

al. 2015). This approach assumes that the spatio-temporal response is accurately represented by a 

sequence of spatial interpolations invoked at several user-defined times. This approach is 

appropriate if the same locations are sampled in each temporal period (Li and Revesz 2004). 

However, most datasets are temporally irregular and do not contain consistent spatially located 

data over all relevant temporal periods. Kriging with such spatio-temporal inconsistent data can 

lead to anomalies and incorrect representations of groundwater level or head data. An improved 
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representation of temporal trends in a traditionally spatial domain is necessary to avoid temporal 

anomalies that can lead to an inaccurate spatio-temporal analysis of groundwater data.  

One approach for extending spatial geostatistics to space-time geostatistics is to 

recognize the importance of temporal relationships to help infer predictions. Spatio-temporal 

approaches incorporate time as a dimension and model covariance/variance as function of both 

space and time (Kyriakidis and Journel 1999; Heuvelink and Griffith 2010; Tadic et al. 2017). 

This approach improves the traditional spatial approach by leveraging data in neighboring time 

periods to compensate for sparseness in temporal data at specific locations. Spatio-temporal 

kriging has only been applied in three known studies to groundwater data analysis, including an 

early groundwater quantity study (Rouhani and Hall 1989), design of groundwater monitoring 

networks (Júnez-Ferreira and Herrera 2013), and recently groundwater level variations 

(Varouchakis and Hristopulos 2017). Despite the limited applications to groundwater, spatio-

temporal kriging is common to a number of other environmental studies. These studies include 

the analysis and mapping of precipitation (Martínez et al. 2017), MODIS temperature and 

precipitation (Hengl et al. 2012; Hu et al. 2017), soil moisture, temperature, and electrical 

conductivity (Wang et al. 2015; Gasch et al. 2015), satellite observed CO2 (Tadić et al. 2015; 

Tadic et al. 2017; Zeng et al. 2017), ozone data (Xu and Shu 2015), NO2 pollutants (De Iaco and 

Posa 2012; Beauchamp et al. 2017), standardized precipitation index (Bayat et al. 2015), gamma 

dose rates (Heuvelink and Griffith 2010), solar irradiance forecasting (Aryaputera et al. 2015), 

and soil heavy metal distribution (Yang et al. 2015).  

Current applications of spatio-temporal kriging for groundwater data are of limited 

application, but demonstrate the benefits of incorporating temporal relationships into the kriging 

process. Júnez-Ferreira and Herrera (2013) present methods for optimizing a groundwater head 
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monitoring network using spatio-temporal geostatistics. Their focus was to maintain the current 

monitoring network’s level of uncertainty in estimated hydraulic heads while reducing the 

spatio-temporal redundancy of monitoring data to cut costs for a portion of a 379 km2 

unconfined aquifer. Júnez-Ferreira and Herrera (2013) utilized the product-sum model (De Iaco 

et al. 2001) to model space-time covariance and Kalman filter to estimate the residuals in the 

methodology. Varouchakis and Hristopulos (2017) evaluate the performance of three spatio-

temporal models in estimating groundwater levels. Separable Matérn, diffusive, and Spartan 

models were used to model space-time trends in variograms for an unconfined aquifer of ~26 

km2 using eleven wells. While these studies have recently reintroduced space-time geostatistics 

to the groundwater realm and show promising results, further validation and assessment are still 

needed. Studies are needed to 1) assess the applicability of additional space-time variogram 

models to predict groundwater levels, 2) evaluate aquifers on a larger scale, 2) further assess 

usefulness for confined, semi-confined, and unconfined systems, 3) evaluate longer time periods, 

4) evaluate different methods to remove global groundwater trends or drift, and 5) advocate for 

the advantages of spatio-temporal applications on irregular or sparse groundwater datasets.  

This research applies a spatio-temporal kriging approach to groundwater data at scales 

relevant to regional groundwater resource evaluations. The goal of this study is to improve 

potentiometric surface estimates at utilizing a regression model to remove the global trend and a 

sum-metric model to represent spatio-temporal covariances and variances in the sample data. 

Comparisons against spatio-temporal kriging will be made to traditional spatial kriging, both as 

monthly estimates and as an annual aggregate. The approach will be demonstrated using the 

Arapahoe Aquifer, a semi-confined aquifer and important groundwater resource for the greater 

Denver metro area in Colorado. Additionally, groundwater maps will be generated for the 
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aquifer to understand changes over that past 27 years and identify areas of the aquifer that may 

be experiencing higher water stress.  

2.3 Methods 

2.3.1 Spatio-Temporal Random Function Model  

Let ݖ = ,ݏሺݖ} ݏ|ሻݐ ∈ ܵ, ∋ ݐ ܶ} be a space-time dataset of a variable that is characterized 

by spatial coordinates ݏ = ሺݔ, ݏobserved at space-time points ሺ ݐ ሻ and a timeݕ , ሻݐ = ͳ,…݊ 

within spatial domain S and time interval T. Assuming that z is a realization of a spatio-temporal 

random function model, ܼሺݏ, ,ݏሺݖ ሻ, predictions ofݐ  ሻ at unmeasured  space-time points can beݐ

made (Heuvelink et al. 2015). A basic model to consider for random function Z is (Kyriakidis 

and Journel 1999), 

 ܼሺݏ, ሻݐ = ݉ሺݏ, ሻݐ + �ሺݏ,  ሻ                          (2-1)ݐ

 

where ݉ሺݏ, ,ݏሻ is the deterministic trend and �ሺݐ  ሻ is the stochastic residual. The trend ݉ can beݐ

assumed constant in space and time or allowed to vary as a function of known covariates. This 

component models the underling variation in the spatio-temporal process. The trend can be 

constructed by a regression type model that relates the variable of interest, z, to relevant 

covariates. The residual � represents the difference between the observations and the predictions 

from the trend model. Assuming stationarity of spatio-temporal variance and covariance, the 

stochastic residual � is assumed to be multivariate normally distributed and depends on spatial 

and temporal separation distances, ℎ and ݑ. In this study, Z is the target variable of groundwater 

levels represented as feet above mean sea level.  
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2.3.2 Trend Component  

The trend can be represented as a function of known covariates that span the spatio-

temporal domain. Assuming a linear relationship, ݉ሺݏ,  ሻ is represented as (Heuvelink andݐ

Griffith 2010),  

 ݉ሺݏ, ሻݐ = ∑ ߚ ݂ሺݏ, ሻ =ݐ                                 (2-2) 

 

where ߚ are the regression coefficients (ߚ is the estimated intercept), ݂ are the known 

covariates, and  is the number of covariates. The regression coefficients ߚ are estimated from 

some method, such as ordinary least squares or generalized least squares. Before using a linear 

regression to determine the trend component for this study, we need to account for the 

multicollinearity, or overlap in information, in the covariates. 

Principal component analysis (PCA) is useful to reduce this overlap. Two covariates used 

in this study are a digital elevation model and the upper boundary of the Arapahoe Aquifer 

represented as rasters. Before running the analysis, the two input raster’s were linearly stretched 

to the binary scale 0-255 (Hengl 2009). Upon completion of the PCA, the first component, 

PCA1, explained 76% of variance and the second, PCA2, 24%. Using PCA1 and PCA2 in place 

of the digital elevation model and the upper boundary of the aquifer, a regression analysis was 

performed using various combinations of the predictors, including PCA1, PCA2, latitude (Lat), 

longitude (Lon), year the measurement was taken, and month the measurement was taken.  

PCA1 and Lon were determined to be the most important predictors. We assumed a global trend 

that was temporally constant and only consisted of spatial components. Therefore, the trend ݉ሺݏ,  ,ሻݏሻ for groundwater levels becomes ݉ሺݐ
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݉ሺݏሻ = .ͻͳͻ���ͳ + Ͳ.ͲͲ͵ͷͲͻ�݊ + ʹͷͲͶ                (2-3) 

 

This regression model explained 90% of the variability in the observed groundwater data. Each 

variable is statistically significant (p-value <0.001), therefore rejecting the null hypothesis that ߚ 

= 0. The residuals of the model are normally distributed. The fitted linear regression model is 

used to remove the global trend in the groundwater level data.  

2.3.3 Residual Component Analysis 

The estimated spatio-temporal trend ݉ሺݏሻ is subtracted from the groundwater level point 

observations to yield the spatio-temporal residual �ሺݏ,  ሻ. The residual component may haveݐ

variations and correlations in space and time. The resulting residuals are used to construct the 

sample semivariogram in space and time.  

The sample spatio-temporal semivariogram is calculated as,  

,ሺℎߛ  ሻݑ = ଵଶ∙�ሺℎ,௨ሻ∑ [�ሺݏ, ሻݐ − �ሺݏ + ℎ, ݐ + ሻ]ଶ�ሺℎ,௨ሻ=ଵݑ                        (2-4) 

 

where ℎ is the separation distance for points in space, ݑ is the separation in time, and �ሺℎ,  ሻisݑ

the number of paired observations of ݖ separted by lag ሺℎ, -ሻ. The structure of the spatioݑ

temporal semivariogram is similar to that of the purely spatial case in that locations are binned 

according to their separation distance, or lag. However, the spatio-temporal case uses spatial and 

temporal distance yielding a semivariogram surface (Heuvelink et al. 2015). The space-time 

semivariogram solely depends on the lags in space and time. Implementation of spatio-temporal 
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geostatistics was utilized the R software (Team 2014) and gstat and space-time packages 

(Pebesma 2004; Pebesma 2012; Gräler et al. 2016).  

Once the sample spatio-temporal semivariogram has been calculated (Figure 2-3), a 

model may be fitted. A number of studies have used various models to estimate spatio-temporal 

covariances and variances, and include the metric model (Dimitrakopoulos and Luo 1994), non-

separable models (Cressie and Huang 1999), product sum model (De Iaco et al. 2001; De Iaco 

and Posa 2012; De Iaco et al. 2012), and the sum-metric model (Myers 2004; Derakhshan and 

Leuangthong 2006). Further information on space-time models can be found in Kyriakidis and 

Journel (1999). We utilize the sum-metric model for this study.  

The sum-metric model is a combination of the sum and metric models (Rouhani and Hall 

1989; Dimitrakopoulos and Luo 1994; Myers 2004; Derakhshan and Leuangthong 2006). The 

sum model assumes that the sum of the spatial and temporal variogram, or covariance equivalent, 

represents the spatio-temporal variance. This model treats space and time separately, however it 

fails the strict definiteness condition for the resulting spatiotemporal variogram and covariance 

function (Myers and Journel 1990). This problem is resoled when combined with the metric 

model. The sum-metric model is represented as: 

,ݏௌ்ሺߛ  ሻݐ = ௌሺℎሻߛ + ሻݑሺ்ߛ + �ߛ ቀ√ℎଶ + ሺߢ ∙  ሻଶ   ቁ                           (2-5)ݑ

 

where ߢ is the space-time anisotropy ratio that merges spatial distances with temporal distances, 

and ߛௌ, ߛ ,்ߛ�, are the spatial, temporal, and joint semivariograms with separate nugget-effects.  

Parameters of the spatio-temporal semivariogram (i.e. nugget, range, sill, space-time 

anisotropy ratio) are estimated by fitting a space-time model to the sample variogram (Heuvelink 
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et al. 2015). We use a Spherical model for the spatial component, a Gaussian model for the 

temporal component, and a Spherical model for the joint semivariogram. These are represented 

as,  

 

ሻ݈ܽܿ�ݎℎ݁ௌሺℎሻሺܵߛ = {�ௌଶ ( ଷℎଶ�ೄ − ଵଶ ቀ ℎ�ೄቁଷ) + �௨�_௦ଶ , Ͳ < ℎ ≤ ܽௌ�ௌଶ + �௨�_௦ଶ  , ℎ > ܽௌͲ, ℎ = Ͳ                    (2-6) 

 

ሻ݊ܽ�ݏݏݑܽܩሻሺݑሺ்ߛ = {�ଶ் ቆͳ − ݔ݁ ቀ− ௨2�2ቁቇ + �௨�_௧ଶ   , ݑ > ͲͲ, ݑ = Ͳ                      (2-7) 

�ߛ                    ቀ√ℎଶ + ሺߢ ∙ ሻଶቁݑ ሺܵℎ݁ݎ�݈ܿܽሻ = 

 {  
  ��ଶ ቆଷ√ℎ2+ሺ�∙௨ሻ2ଶ�� − ଵଶ (√ℎ2+ሺ�∙௨ሻ2�� )ଷቇ + �௨�_ଶ , Ͳ < √ℎଶ + ሺߢ ∙ ሻଶݑ ≤ �ܽ��ଶ + �௨�_ଶ  , √ℎଶ + ሺߢ ∙ ሻଶݑ > �ܽͲ, √ℎଶ + ሺߢ ∙ ሻଶݑ = Ͳ      (2-8) 

 

Where �ଶ and ܽ are the variance and range of the spatial, temporal, and joint quantities being 

mapped, and �௨�ଶ  is the nugget variance, representative of measurement and data errors in the 

groundwater level observations. Although other semivariogram models were adequately capable 

of reproducing the sample semivariogram, the sum-metric model best reproduced the lower 

semivariances between spatial separation distances from 0 to 25,000 meters and temporal 

separation from 0 to 100 months, compared to other models (Figure 2-3). Once a model was fit 
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to the sample spatio-temporal semivariogram, kriging was applied to the residuals to predict data 

at unmeasured locations.  

2.3.4 Kriging  

Kriging is performed in a similar way as to the purely spatial case. In the case of 

regression kriging, separate predictions are made for the trend and residual components and then 

added back together. Regression kriging is mathematically equivalent to kriging with external 

drift and universal kriging, such that the same input parameters are used (Hengl et al. 2003; 

Hengl et al. 2004; Hengl et al. 2007). However, the methods differ in how the steps are applied. 

Spatio-temporal kriging on the stochastic residuals is achieved through ordinary kriging and is 

the best linear unbiased prediction of �ሺݏ,  ሻ as (Hengl et al. 2004; Varouchakis andݐ

Hristopulos 2017),  

 �̂ሺݏ, ሻݐ = ∑ ߣ ∙ =ଵ �ሺݏ ,  ሻ                                        (2-9)ݐ

 

where ߣ are the spatio-temporal kriging weights determined by the spatio-temporal dependence 

structure of the residuals and �ሺݏ ,  ሻ are the sample residuals in the neighborhood of theݐ

prediction location ሺݏ,   ,ሻ. The optimal kriging weights are obtained by solving (Mateu 2015)ݐ

 

{∑ =ଵߣ ∙ ݏ)ௌ்ߛ − ݏ , ݐ − (ݐ + ߤ = ݏௌ்ሺߛ  − ,ݏ ݐ − �∀    , ሻݐ = ͳ,… , ݊  ∑ =ଵߣ = ͳ ,           (2-10) 

 

where ߤ is the Lagrange multiplier and ݊ is the number of observations limited to the search 

neighborhood. Due to the size of the space-time dataset, kriging was limited to the nearest 1000 
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observations in terms of the degree of correlation. The kriging was also tasked to three clusters, 

allowing several copies of R to run, which allowed for parallelized computations. These 

measures decreased computational times for the spatio-temporal kriging and increased the 

efficiency. The spatio-temporal kriging produced interpolated maps for the entire space-time 

domain, encompassing 324 months between 1990 and 2016. 

The final spatio-temporal estimate of groundwater level at location ሺݏ,  ሻ is given byݐ

adding the trend and residual components together,  

 �̂ሺݏ , ሻݐ = ݉̂ሺݏሻ + �̂ሺݏ,  ሻ                          (2-11)ݐ

 

Estimation of the prediction variance is given by (Mateu 2015),  

ݏሺ̂�)ݎܸܽ  , ሻݐ −  �ሺݏ, (ሻݐ = ∑ ߣ ∙ =ଵ ݏௌ்ሺߛ  − ,ݏ ݐ − ሻݐ +  (2-12)                   ߤ

 

The variance is used to help understand the uncertainty associated with the kriging predictions.  

2.3.5 Case Study 

The Denver Basin Aquifer System (DBAS) is a major source of water for residents of the 

Rocky Mountain Front Range and Denver metropolitan area, and underlies an area of about 

17,350 km2 (6,700 mi2) (Moore et al. 2007). It includes four layered aquifers: the Denver, 

Dawson, Arapahoe, and Laramie-Fox Hills (Figure 2-1). Each aquifer is located at different 

depths, and has varying water quality and availability. The aquifer system is recognized as 
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nonrenewable due to it predominately being confined and that it receives little recharge (Graham 

and Vanslyke 2004).  

The Arapahoe Aquifer is the third deepest aquifer of the DBAS and is located within the 

Arapahoe Formation (Figure 2-1). It has an extent of approximately 11,135 km2 (4,300 mi2) and 

consists of interbedded conglomerate, sandstone, siltstone, and shale (Robson 1987; Robson and 

Banta 1995). The top of the aquifer is identified as the shale beds of the lower Denver 

Formation, while the bottom is the top of the shale, coal seams, and beds of sandstone and 

siltstone from the Laramie Formation shale (Robson 1987; Robson and Banta 1995). The 

Arapahoe is predominately confined, however crops out along the northern, eastern, and 

southern edges. The Arapahoe aquifer is desirable for municipal water supply due to its excellent 

water quality and higher yielding wells (as much as 700 gallons per minute) (Robson and Banta 

1995). 

Since the 1970s, there has been concern about the sustainability and protection of water 

resources in the DBAS due to the number of wells extracting water and the increasing 

population. Despite these legal measures to protect the DBAS, waters users continue to report 

decreasing water levels and increased pressure to meet increasing populations (Banta 1989; 

Topper and Raynolds 2007; Moore et al. 2007; Banta and Paschke 2012). Sustainable use of the 

DBAS requires the ongoing need to improve our understanding of the current state of each 

aquifer, how each has evolved through time, and an assessment of water level declines and areas 

experiencing higher water stress. Spatio-temporal techniques offer an opportunity to use existing 

groundwater level data to better understand the system response, such as water level changes, 

over the past several decades. Spatio-temporal kriging has yet to be applied to any aquifer in the 
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DBAS. The results present the most up to date ground-based data study for the Arapahoe 

Aquifer. 

 

 

Figure 2-1 Location of the Arapahoe Aquifer in northern Colorado, USA. The diagonal hatch 

represents the general area where the aquifer is confined. The red points represent available 

groundwater wells used in the spatio-temporal kriging study. The map also shows locations of 

urban areas and irrigated land, both large end users of groundwater in the area. 

 

Groundwater level data were obtained through the Colorado Division of Water 

Resource’s Colorado HydroBase (Colorado Division of Water Resources 2017). HydroBase is a 

central database for water resources data in Colorado and contains historical records from a 
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variety of sources.  Many groundwater wells were sampled beginning in the 1980s, with the 

addition and removal of wells over time. The data were clipped to span the time period between 

1990 and 2016 and only wells with a minimum of five observations were included for further 

analysis. Groundwater wells that did not appear to be at steady state, i.e. pumping wells or under 

pumping conditions, were also removed. We identified 118 groundwater wells that met these 

criteria. 

 

 

Figure 2-2 Heat map showing available monthly groundwater level data for 118 wells in the 

Arapahoe Aquifer from 1990 - 2016. Each tick on the y-axis is a unique well. Wells are arranged 

from increasing latitude (bottom to top) and highlight the irregularity of water level 

measurements and temporal sparseness of the data. 

 

The distribution of groundwater wells spatially covers all ends of the aquifer, but does 

highlight areas that lack adequate well coverage, especially in the south-central region (Figure 2-
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1). Spatial sparseness of data is a problem common to many aquifer systems. The data were also 

explored to identify the temporal frequency at which water level measurements were taken 

(Figure 2-2). Many wells are sampled annually, with a high frequency of these measurements 

occurring in April. However, many wells are also sampled several times per year, including 

some that had continuous monthly measurements. Each groundwater well time series was 

evaluated for outliers that could indicate data measurement or data entry errors. A twelve point 

moving window was used to identify and remove outliers that were greater that two standard 

deviations of the moving mean.  

2.4 Results and Discussion 

2.4.1 Spatio-Temporal Semivariogram  

The sample spatio-temporal semivariogram determined from the groundwater level 

residuals is shown in Figure 2-3. The assumption of stationarity is supported by the spatio-

temporal semivariogram of the residuals approaching a constant sill. Semivariance generally 

increases with increasing time lag, indicating that groundwater level residuals become less 

similar with increasing temporal distance. A dip in semivariance is observed at separation 

distances of around 20,000 meters. This would indicate that locations separated by 20,000 meters 

are more similar than say distances of 10,000 meters. Intuitively this does not make sense, as 

there are no geological or other system characteristics that could explain this pattern. However, 

when graphically evaluating these locations, two distinct clusters of data appear across the 

aquifer due sparseness of spatially distributed data. At this separation distance, these distinct 

clusters form and lead to the drop in semivariance. It is likely however, that in the absence of the 

clustering and if there were more spatial and temporal observations available, the true structure 
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would have higher a semivariance at this range. Therefore, the spatio-temporal model was not fit 

to this dip in semivariance.  

 

 

Figure 2-3 Sample (left) and fitted (right) spatio-temporal semivariogram surfaces of the 

residuals.  

 

The sum-metric model fit to the sample spatio-temporal semivariogram is shown in 

Figure 2-3. The respective parameters for each of the three variograms used in the model are 

found in Table 2-1. The model does a good job of fitting the overall structure of the sample 

spatio-temporal semivariogram. Similar to the sample spatio-temporal semivariogram, the sum-

metric model shows increasing semivariance with increasing time lag and spatial distances.  

 

Table 2-1 Parameters for fitted sum-metric model semivariogram.  

 Model pSill Range  Nugget stAni  RMSE MAE 

Spatial Spherical 18341 8121 1150 

175 6883 4928 Temporal Gaussian 7611 290 0 

Joint Spherical 13841 46711 0 
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2.4.2 Cross-Validation  

“Leave-one-out” cross-validation was used to assess the kriging model performance that 

would lead to the best predictions. The cross-validation is applied to the existing groundwater 

level samples. For comparison to the performance of spatio-temporal kriging, cross-validation 

was also conducted using traditional spatial kriging both at the monthly interval and as an annual 

aggregate (Figure 2-4). During cross-validation, each spatio-temporal data location is removed 

one at a time, while the remaining dataset are used to predict the associated value. Measured and 

predicted groundwater elevations are then compared for goodness of fit. Due to computational 

times, the spatio-temporal dataset was limited to the nearest 1,000 observations in terms of the 

degree of correlation. The leave-one-out approach was repeated for all spatio-temporal locations 

and all spatial locations for the traditional spatial kriging. This approach provides a means of 

choosing plausible spatio-temporal semivariogram models.  

 

 

Figure 2-4 Cross-validation scatterplots of potentiometric surface elevations at well observation 

locations showing the measured surface elevation compared to the predicted elevation using A) 

spatial kriging with monthly data, B) spatial kriging with annually aggregated data, and C) 

spatio-temporal kriging. 
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The cross-validation results show better performance for the spatio-temporal kriging 

approach than traditional spatial kriging. The spatio-temporal model used in the kriging cross-

validation produces points that are roughly symmetrical around the diagonal line (Figure 2-4 C) 

and indicate that the predictions are unbiased. While the traditional spatial kriging cross 

validation results also produce points roughly symmetric around the diagonal line, more 

spreading is evident and show less accurate predictions. In addition to a graphical assessment, 

four statistics were calculated, the correlation coefficient (R2), the root mean squared error 

(RMSE), and mean absolute error (MAE). The high R2 shows that the kriging predictions are 

reliable and that there is a high linear correlation between the measured and predicted values.  

The MAE is similar to RMSE, but is less sensitive to outliers and has a lower value. The spatio-

temporal kriging a higher R2 and lower RMSE and MAE than both spatial kriging variations 

indicating better prediction of measured groundwater elevations.   Spatial kriging as an annual 

aggregate performs better than spatial kriging at the monthly time interval due to greater spatial 

data density of data in each time bin to infer the predictions. The results indicate that the spatio-

temporal semivariogram from the sum-metric model reasonably represents the spatio-temporal 

structure of the groundwater level residuals, leading to accurate predictions. Therefore, we can 

use the spatio-temporal kriging approach to generate potentiometric surfaces for the Arapahoe 

Aquifer and make estimates at unsampled locations.  

2.4.3 Comparison of Spatial to Spatio-Temporal Kriging Maps  

Spatial potentiometric surface maps were also created for monthly observed data and data 

as an annual aggregate using traditional spatial kriging. At each monthly time step, only the 

wells with observed data in a given month were used to infer the kriging predictions. The 

number of groundwater wells changes for each time step based on data availability. Differences 
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were calculated between the monthly spatial maps to show monthly changes in the 

potentiometric surface. For comparison of estimated temporal changes for consecutive months, 

differences were also calculated for potentiometric surfaces estimated through the spatio-

temporal kriging approach. A subset of the maps is shown for April 2004, May 2004, and the 

monthly difference (Figure 2-5). For the maps created using spatial kriging, changes in 

groundwater levels primarily caused by the groundwater wells used in the analysis. Additional 

groundwater wells on the eastern side of the aquifer in May 2004, and variable data availability 

on the northeastern side for both months, results in large changes between the months. In some 

places there is up to either a 350 ft decrease in levels or increase up to 150 ft, which are 

unrealistic changes over a period of one month. For spatio-temporal kriging, the monthly 

predicted potentiometric surfaces are similar and lend to reasonable monthly changes in levels. 

Similarly, spatial potentiometric surface maps and difference maps were created for data that are 

aggregated annually. At each annual time step, wells with multiple measurements during the 

time period were averaged. The average value was used in the spatial kriging for locations with 

multiple measurements.  A subset of the annual maps is shown for 2005, 2006, and the annual 

difference (Figure 2-6). Some of the changes in groundwater levels are caused by different 

available data in each year, but also due to average well data being used in place of actual 

measurements for different locations. Comparison to the results of spatio-temporal kriging show 

large differences. Annual changes for spatio-temporal kriging are much smaller than those 

predicted by spatial kriging of annually aggregated data. The results of the spatial kriging also 

show unreasonably large areas of increasing or decreasing levels that are likely due to artifacts of 

aggregating well data and the spatial distribution of available data in each year.  
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Spatio-temporal kriging produces more realistic monthly and annual changes in 

groundwater levels. Because spatio-temporal kriging is leveraging data from spatio-temporal 

neighbors, more information is available to infer the kriging predictions, yields more accurate 

results, and has smoother transitions. These examples illustrate the problem of using observed 

data that varies throughout time to create spatial groundwater maps. Changes are then a result of 

the groundwater wells used in the analysis, rather than actual groundwater level changes.  

 

 

Figure 2-5 Spatial maps using traditional spatial kriging (A) and spatio-temporal kriging (B) for 

(1) April 2004, (2) May 2004, and (3) the difference between April 2004 and May 2004 

potentiometric surfaces. The groundwater wells used in the spatial kriging analysis are shown as 

‘+’ in A1 and A2. 
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Figure 2-6 Spatial maps using traditional spatial kriging aggregated annually (A) and spatio-

temporal kriging (B) for (1) 2005, (2) 2006, and (3) the difference between 2005 and 2006 

potentiometric surfaces. The groundwater wells used in the spatial kriging analysis are shown as 

‘+’ in A1 and A2. Wells that had multiple measurements and that were aggregated contain a 
circle around the well. 

 

2.4.4 Spatio-Temporal Kriging Predicted Groundwater Levels  

The spatio-temporal kriging approach is applied to the Arapahoe Aquifer from 1990 to 

2016 generated 324 monthly groundwater level maps, represented as potentiometric surfaces in 

feet above mean sea level (ft amsl). A subset of these maps is presented in Figure 2-7 (left side), 

showing the predicted potentiometric surfaces for the month of April in 1995, 2000, 2005, 2010, 

and 2015. Each map shows a trended potentiometric surface with higher elevations to the south, 

reaching 6,750 ft amsl, and lower elevations to the north, reaching 4,250 ft amsl. The spatio-  
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Figure 2-7 Predicted potentiometric surfaces (left column) and standard deviation maps (right 

column) of the Arapahoe Aquifer. All maps shown are for the month of April in select years.  

The black ‘+’ on the standard deviation maps show the locations of groundwater wells used in 
the analysis. 
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temporal patterns remain similar across the years. However, as shown in Figure 2-7, the 

potentiometric surface from 1995 to 2000 shows decreased groundwater level elevations near 

Parker and push south towards Castle Rock. By 2005, the decrease in levels is even larger, 

indicated by the deeper reds and orange colors on the maps. The light blue color band represent 

groundwater level elevations around 5,550 ft amsl also appears to get larger and push south of 

Castle Rock towards Monument. By April 2015, groundwater levels in the aquifer appear to 

show some recovery and increases in potentiometric surface levels.  

The kriging standard deviations, root of the variance, are used to quantify the prediction 

uncertainty (Figure 2-7 right side). The right side of Figure 2-7 shows the spatial distribution of 

the standard deviations over the aquifer area as well as the locations of groundwater wells used 

in the analysis. Each map corresponds to the uncertainty in potentiometric surface predictions for 

the five April maps on the left. A kriging standard deviations map was produced for each of the 

324 months evaluated. As each map shows, lower prediction standard deviations follow the 

spatial distribution of the groundwater wells used in the predictions. The maps indicate higher 

confidence in the kriging predictions in areas around the spatial locations of the groundwater 

wells. Moving to areas where measured data did not exist, i.e. no groundwater wells, standard 

deviations in the predictions are as high as 200 ft.  

Most areas of the Arapahoe Aquifer show decreased groundwater levels from those that 

existed in 1990 (Figure 2-8). The eastern, shallower portion of the aquifer shows generally less 

than 50 ft decrease in levels, but less than 25 ft near the groundwater wells where higher 

confidence exists. A large area of declines greater than 100 ft occurred on the west-central side 

of the aquifer. The larger decreases occurred under the cities of Parker, Castle Rock, and 

Monument where levels have dropped by 500 – 600 ft since 1990. These major decreases occur 
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in the confined portion of the aquifer and indicate decreases in the confining pressure. Several 

areas do show increase levels since 1990, up to 90 ft along a portion of the southwestern edge.  

 

 

Figure 2-8 Changes in groundwater levels in the Arapahoe Aquifer from 1900 to 2016. The 

green ‘+’ show the locations of groundwater wells used in the analysis.  

 

2.5 Conclusions 

This study demonstrates a methodology for spatio-temporal kriging of groundwater level 

data and improves predictions of potentiometric surfaces, especially in irregularly sampled and 

data sparse aquifer systems. Although groundwater level data are often irregularly sampled and 

spatially sparse, spatio-temporal kriging models the covariance in both space and time and 
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utilizes more information to make estimates at unsampled locations. This approach leverages 

groundwater level data in adjacent time periods to estimate groundwater levels in the time period 

of interest and has several advantages over a purely spatial approach to estimating potentiometric 

surfaces. Spatio-temporal kriging allows for 1) estimation of groundwater levels during times 

when data is not available, 2) it avoids biases and anomalies caused by kriging with different 

data available in different time periods, and 3) provides a flexible framework for modeling the 

spatio-temporal structure. 
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CHAPTER 3 

ASSESSMENT OF GROUNDWATER DEPLETION AND IMPLICATIONS 

FOR MANAGEMENT IN THE DENVER BASIN AQUIFER SYSTEM 

3.1 Abstract 

The Denver Basin Aquifer System (DBAS) is a critical groundwater resource for users 

along the Colorado Front Range Urban Corridor. Groundwater depletion has been documented 

over the past few decades due to the increased water use among users, presenting long-term 

sustainability challenges. A spatio-temporal geostatistical analysis is presented using Colorado 

Division of Water Resources data to estimate potentiometric surfaces and evaluate groundwater 

storage changes between 1990 and 2016 in each of the four Denver Basin aquifers. The approach 

utilizes neighboring space-time data to infer the predictions for the timer period of interest. 

Several key depletion patterns and spatial water level changes emerge in this work. First, 

hydraulic head changes are the largest in the west-central side of the DBAS and have decreased 

in some areas by up to 600 ft since 1990. Second, areas to the northwest of Denver show 

increases in hydraulic head by over 100 ft. Third, the Denver and Arapahoe aquifer show the 

largest cumulative groundwater depletion volumes, with the highest rates occurring in the 2000s. 

During this time, parts of the Arapahoe aquifer were declining by up to 55 ft per year. Our results 

highlight the uncertainty in volumetric predictions under various storage coefficient calculations 

and emphasize the need for representative aquifer characterization. The observed groundwater 

storage depletions are due to a combination of factors, which includes population growth 
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increasing the demand for water, variable precipitation and drought influencing recharge, and 

increased groundwater pumping.  

3.2 Introduction 

During the past several decades, competition for water resources has brought significant 

challenges to Colorado’s water supply (Colorado Water Conservation Board 2011). As the 

population along the Colorado Front Range Urban Corridor (CFRUC) continues to increase, so 

does the demand on water resources (Moore 2007). It is estimated that in 2016,  the Urban 

Corridor had a population of over 4.5 million, an increase of 73 percent since 1990 (Colorado 

Department of Local Afairs 2018). During this time period, municipalities such as Parker grew 

by 856%, Castle Rock by 558%, Monument 511%, and Denver by 48% (U.S. Census Bureau 

2005b, 2017b). Strong population growth is recognized as one of the biggest drivers for 

increasing future municipal and industrial (M&I) water resource needs in the area (HDR Inc. and 

Consultants 2015; Colorado Water Conservation Board 2011). Because there is little 

unappropriated surface waters available in the CFRUC, new water demands will require 

transferring water away from other users and increasing the dependence on groundwater 

resources (Moore et al. 2007; HDR Inc. and Consultants 2015). This poses future groundwater 

sustainability challenges in the region, particularly for the Denver Basin Aquifer System 

(DBAS).  

The potential for increased reliance on water resources stresses the importance for 

improved understanding of groundwater dynamics in the DBAS and the need to proactively 

manage available resources to ensure long-term sustainability and resilience.  Some detrimental 

effects of groundwater depletion include reduced well yields, increased pumping costs, the need 
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to drill deeper wells, land subsidence, reduced water quality, and reduced flows to surface waters 

(Alley et al. 1999; Konikow and Kendy 2005).  

Numerous groundwater models have been developed and used to analyze groundwater 

storage changes and the influences of pumping in the DBAS (Robson 1987; Banta 1989; Paschke 

et al. 2011; Banta and Paschke 2012). Comparison of past modeling studies and Colorado 

Division of Water Resources (CDWR) data has shown variable results and rates of annual 

depletions across the different aquifers of the DBAS (Paschke et al. 2011; Banta and Paschke 

2012; Everett 2014; Flor 2015, 2016). While models can be advantageous to dynamically 

estimate many variables, there are disadvantages due to the large amount of spatial and temporal 

input data needed and they can be time and labor intensive. In addition, groundwater models are 

also subject to accumulating errors due to the large number of parameters estimated in the 

modeling process and the associated uncertainty (Xu et al. 2012; Reilly and Harbaugh 2004). 

Spatial interpolation of groundwater level data can potentially simplify modeling efforts to 

determine water level and storage changes. However, most groundwater data are irregularly 

sampled and lack adequate spatial and temporal coverage.  

Numerous spatial interpolation schemes exist (e.g. inverse distance weighting, nearest 

neighbors, kriging) to estimate data at unsampled locations and convert point groundwater level 

measurements to gridded groundwater surfaces (Li and Heap 2008).Kriging is considered the 

best linear unbiased estimator and is commonly applied to groundwater problems (Hengl et al. 

2003; Maheswaran and Khosa 2013; Gundogdu and Guney 2007). However, data availability in 

different time periods can create anomalies and inaccurate representations due to the wells used 

in the analysis and not actual groundwater fluctuations. Spatio-temporal kriging approaches offer 

an alternative to overcome some of the limitation, especially for sparse and irregular data. 
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Applications of spatio-temporal kriging in the literature are limited to a few studies (Rouhani and 

Hall 1989; Júnez-Ferreira and Herrera 2013; Varouchakis and Hristopulos 2017), but common to 

many other environmental applications (Wang et al. 2015; Tadic et al. 2017; Hengl et al. 2012). 

The power of spatio-temporal kriging is leveraging neighboring space-time data to help infer the 

predictions and overcoming some of the sparse data limitations. It has previously been shown 

that spatio-temporal kriging is advantageous in the DBAS (Chapter 1).  

Aside from water level data sparseness, another major uncertainty in regional 

groundwater storage change assessments is accurately quantifying aquifer storage parameters 

such as specific yield and specific storage. Changes can be difficult to assess due to sparse and 

unreliable aquifer characterization data (Gehman et al. 2009; Chen et al. 2003). Specific yield 

and specific storage can change through groundwater basins due to varying geology and 

changing depositional environments. Colorado Division of Water Resource’s estimates of water 

storage for the DBAS use a single specific yield that is higher than measured values from cores 

near Castle Pines and Kiowa  (Flor 2016; Woodard et al. 2002). Understanding the uncertainty in 

storativities is important for assessing the long-term sustainability as well as refining estimates 

about water availability.  

The primary objective of this study is to apply a spatio-temporal kriging approach to the 

DBAS, with the goal of understanding groundwater storage changes in each aquifer, any spatial 

patterns, and the uncertainty of the storativity parameter in volumetric estimates. The current 

study builds upon prior work in the DBAS and presents a historical analysis of groundwater 

storage and level changes in the DBAS using spatio-temporal geostatistics on CDWR data. Our 

analysis extends beyond previous studies by including more recent data, accounting for the 

spatio-temporal correlations in the data, evaluating the uncertainty in groundwater storage 
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calculations, and utilizes a different method to map and understand changes in groundwater 

levels in the DBAS.  

3.3 Study Area 

The DBAS is a critical water resource along the CRFUC, in addition to the South Platte 

River and Alluvial Aquifer (Paschke et al. 2011). It consists of four layered aquifers: from 

youngest to oldest are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills, respectively 

(Figure 3-1). It is estimated that the DBAS contains over 200 million acre-feet (AF) of 

recoverable water (Topper and Raynolds 2007). Robson (1987) provided early estimates of water 

availability in the DBAS and calculated that of the 467 million AF of water that exists, only 269 

million AF is recoverable. While these amounts are quite large, each aquifer yields variable 

amounts of water and can respond differently to pumping stresses due to the hydrogeological 

characteristics of the DBAS.  As development progresses and demands increase in the CFRUC, 

these large reserves will be used to supplement water supplies not met by surface waters.  

The majority of the DBAS underlies the South Platte River Basin (SPB) which is the 

most populous basin in the State and produces about 80% of the State’s economy and tax base 

(HDR Inc. and Consultants 2015). Surface water diversions equate to more than 4 million AF per 

year and groundwater withdrawals exceed 450,000 AF per year (HDR Inc. and Consultants 

2015). The SPB also supplements water resources through 400,000 AF per year of trans-basin 

diversions from the Colorado River Basin and around 100,000 AF per year from the Arkansas, 

North Platte, and Laramie River Basins (HDR Inc. and Consultants 2015). In 2004, the DBAS 

provided more than 70% of the south Denver metro areas municipal water supply (CDM 2004). 

On the eastern side of the DBAS, domestic groundwater use is widespread and many rural areas 

solely rely on the DBAS for water. In 2007, it was estimated that all four aquifers of the DBAS 



44 
 

were permitted to withdrawal over 350,000 AF of water per year (Topper and Raynolds 2007). 

This has likely increased over the past decade and is projected to continue to increase.  

 

 

Figure 3-1 Location of the four aquifer of the Denver Basin Aquifer System in northern 

Colorado, USA. The different points represent available groundwater wells used in the analysis 

for each aquifer. The map also shows locations of urban areas and irrigated land, both large end 

users of groundwater in the area. The cross-hatch area represents a complex area within the 

DBAS and is not considered in this study. 

 

Under medium demand scenarios, by 2050, the SPB M&I supply gap, the difference 

between existing supplies and future needs, is expected to approach 428,000 AF per year and an 

agricultural supply gap of 262,000 AF per year (HDR Inc. and Consultants 2015). Municipalities 
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that are newer, at least over the past several decades, rely heavily on DBAS groundwater due to 

limited surface water available or the rights to use it (Hillier et al. 1978; Moore et al. 2007). The 

widespread dependence and increasing demand threaten the long-term sustainability and 

longevity of the DBAS. The effects of decreasing groundwater levels could lead to lower 

pumping yields for users, increased pumping costs, land subsidence, and reduced flows to 

streams, springs, and other water bodies (HDR Inc. and Consultants 2015; Van der Gun and 

Lipponen 2010; Alley et al. 1999; Topper and Raynolds 2007; Konikow and Kendy 2005).   

Since the 1970s, there has been concern on the sustainability and protection of water 

resources in the DBAS (Graham and Vanslyke 2004; Moore et al. 2007). As a result, in 1973, the 

Colorado legislature passed Senate Bill 213 (SB 73-213) which specified how water pumped 

from nonrenewable aquifers should be managed (Colorado Session Laws 1973; White 1995). It 

set criteria for the State Engineer’s Office to follow when issuing well permits and it tied 

pumping to land ownership. It set pumping rates at 1% of the available water per year, ensuring a 

minimum 100 year life of each aquifer (Jones and Cech 2009).. In 1985, the Colorado General 

Assembly passed Senate Bill 5 (SB 85-05) which allowed the State Engineer’s Office to 

promulgate rules, known as the Denver Basin Rules, and regulations for groundwater 

withdrawals (Colorado Session Laws 1985; White 1995). It identified areas of non-tributary 

groundwater and presumed the 100 year life of the aquifers through pumping rights. However, 

approximately 47% of the DBAS is located within designated basins, as result of the 1965 

Groundwater Management Act. These basins areas are administered by the Colorado Ground 

Water Commission (CRS 37-90-102) and not the State Engineer’s Office, but follow similar 

practices (Jones and Cech 2009; Topper and Raynolds 2007). In 1996, Senate bill 96-74 (SB96-
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74) was passed and commissioned the study of DBAS and South Platte Alluvial Aquiver to help 

develop decision support system for the SPB (Graham and Vanslyke 2004).  

Groundwater depletion in the DBAS has been document over the past several decades 

and withdrawals have increased (Topper and Raynolds 2007; Colorado Foundation for Water 

Education 2006; Paschke et al. 2011; Banta and Paschke 2012; Everett 2014; Bauch et al. 2015). 

The Colorado Division of Water Resources publishes measurements from select wells in the 

DBAS during various years (Flor 2015, 2016). The data indicate that depending on the aquifer 

and location, water levels are declining, rising, or relatively stable. Since the 1980s, water level 

data collection has been irregular and even decreased during some years (Colorado Water 

Conservation Board 2006).  

3.3.1 Groundwater Basins 

The Denver Basin Aquifer System (DBAS) extends from Greely to Colorado Springs and 

from the Rocky Mountain Front Range to the east near Limon (Figure 3-1). It is an asymmetrical 

bowl shaped basin that dips steeply on the western side, and has lower-angle dipping on the 

eastern side (Robson 1987; Robson and Banta 1995; Anderman and Ackman 1963). The four 

layered aquifers have a maximum combined thickness of approximately 3,200 ft. near the Palmer 

Divide (Paschke et al. 2011). The aquifers are generally unconfined along the outer edges where 

they meet the surface and confined in the more central areas. Unconsolidated quaternary alluvial 

aquifers overlie the bedrock aquifers of the DBAS and some groundwater movement occurs 

between the alluvial and bedrock aquifers (Robson 1996). The DBAS is recognized as a 

nonrenewable resource because of the slow rate of recharge (Graham and Vanslyke 2004; Banta 

and Paschke 2012).  
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The Dawson Aquifer is the uppermost aquifer and the least extensive, covering 

approximately 1,200 mi2. It is located within the Dawson Arkose Formation and consists of 

coarse grained, poorly to well consolidated sandstone interbedded with conglomerate, siltstone, 

and shale (Robson and Banta 1995; Major et al. 1983; Robson 1987). In the central part, the 

saturated thickness is between 300 and 400 feet (ft) thick.   

The Denver Aquifer is the second uppermost aquifer located within the Denver 

Formation. It covers approximately 3,000 mi2 and is in a sequence of moderately consolidated, 

interbedded shale, claystone, siltstone, and sandstone (Robson and Banta 1995; Major et al. 

1983; Robson 1987). This aquifer is considered a leaky confined aquifer to the Dawson above 

and the Arapahoe Aquifer below (Robson and Banta 1995). Approximately 40% of the Denver 

Aquifer crops out at the land surface, the largest in the DBAS (Paschke et al. 2011).  

The Arapahoe Aquifer is the third aquifer in sequence and is within the Arapahoe 

Formation. It has an extent of approximately 4,300 mi2 and consists of interbedded 

conglomerate, sandstone, siltstone, and shale. The top of the aquifer is identified as the shale 

beds of the lower Denver Formation, while the bottom is the top of the shale, coal seams, and 

beds of sandstone and siltstone from the Laramie Formation (Robson and Banta 1995; Major et 

al. 1983; Robson 1987). This aquifer is the most permeable and highest yielding aquifer within 

the DBAS.  On the northern end, the Arapahoe is divided into an upper and lower aquifer due to 

a confining shale (Robson 1987). Potential hydraulic connection exists between the Arapahoe 

and Denver Aquifers on the west-central part of the basin (Paschke et al. 2011).  

The Laramie-Fox Hills Aquifer is the deepest in the DBAS and is located within the Fox 

Hills sandstone and sandstones of the lower Laramie Formation. The aquifer covers an area of 

approximately 6,700 mi2 and is the maximum extend of the DBAS. The aquifer consists of fine 
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to very fine grained sandstone or siltstone with interbedded shale and is poorly consolidated 

(Robson and Banta 1995; Major et al. 1983; Robson 1987). The impermeable Pierre Shale 

underlies the aquifer and forms the base of the DBAS. 

3.4 Methods 

3.4.1 Groundwater Level Data 

Groundwater data was obtained through the Colorado Division of Water Resource’s 

HydroBase  (Colorado Division of Water Resources 2017).  HydroBase is a central water 

resources database for Colorado. Groundwater level data were obtained for all four aquifers of 

the DBAS for the time period from 1990 and 2016.  Groundwater wells with fewer than five 

observations were not included in the analysis, as well as groundwater wells that appeared to be 

under pumping conditions and not at steady state. We identified 54 groundwater wells in the 

Laramie-Fox Hills Aquifer, 118 wells in the Arapahoe Aquifer, 60 wells in the Denver Aquifer, 

and 44 wells in the Dawson Aquifer that met these criteria. The frequency of groundwater level 

data collection is highly variable in each aquifer of the DBAS and contains various gaps in the 

spatial coverage. Many wells are sampled annually in April. However, there are many wells 

sampled multiple times per year. Each well record was also evaluated for outliers, possibly due 

to data measurement or data entry errors. A twelve point moving window was used to remove 

outliers that were greater that two standard deviations from the moving mean.  

3.4.2 Spatio-Temporal Kriging  

Spatio-temporal kriging was used to make estimates at unsampled locations. A number of 

advantages exist with spatio-temporal kriging over purely spatial approaches. Spatio-temporal 
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kriging is able to utilize irregular datasets, avoid temporal binning, estimate data during times 

when data is not available, and leverage data in adjacent time periods to help infer the 

predictions in the period of interest (Zeng et al. 2014; Wang et al. 2015; Tadic et al. 2017). 

Implementation of spatio-temporal geostatistics was utilized in the R software (Team 2014) and 

gstat and space-time packages (Pebesma 2004; Pebesma 2012; Gräler et al. 2016).  

We follow the spatio-temporal kriging approach outlined in Chapter 2 and additional 

information is found in the Supporting Information. Groundwater levels are assumed to follow a 

random function model that consisted of a trend and residual component that can be modeled 

separately. The global trend in groundwater levels for each aquifer is assumed constant in time 

and consists of only spatial components. A regression model is constructed for each aquifer and 

contains various combinations of predictors (e.g. latitude, longitude, land surface elevation, top 

boundary of aquifer, principal components 1 and 2 of the land surface and aquifer top 

elevations). The trend calculated from the regression model is subtracted from the groundwater 

level observations to yield the residual component. The resulting residual component is used to 

construct the space-time semivariogram from which a model is fit and used to infer the kriging 

predictions.  

Semivariograms for each aquifer are modeled with a sum-metric model (Rouhani and 

Hall 1989; Dimitrakopoulos and Luo 1994; Myers 2004; Derakhshan and Leuangthong 2006). 

The model is represented as,  

,ݏௌ்ሺߛ  ሻݐ = ௌሺℎሻߛ + ሻݑሺ்ߛ + �ߛ ቀ√ℎଶ + ሺߢ ∙  ሻଶ   ቁ                            (3-1)ݑ

 



50 
 

where  ߢ is the space-time anisotropy ratio that merges spatial distances with temporal distances, 

and ߛௌ, ߛ ,்ߛ�, are the spatial, temporal, and joint semivariograms with separate nugget-effects. 

Various model types (e.g. Gaussian, Spherical, Exponential) were used for the spatial, temporal, 

and joint semivariograms for each aquifer (Tables A – 1 – 4)  

Spatio-temporal ordinary kriging is performed on the residuals. The kriging approach is 

implemented in a similar fashion as spatial kriging (Mateu 2015). Because space-time datasets 

can be quite large, the kriging was limited to the nearest 1,000 neighbors and computations were 

parallelized to decrease computational times. The final spatio-temporal estimate of groundwater 

levels is given by adding the predicted kriging residuals with the trend component that was 

originally removed.  

3.4.3 Volumetric Groundwater Storage Calculations 

Groundwater level changes determined through the spatio-temporal kriging were 

converted to groundwater storage changes. Calculations are made using changes in water level 

and an appropriate storativity for unconfined and confined aquifers. The volume of water drained 

as heads decrease is calculated as (Fetter 2000),  

ܩ∆  ௨ܹሺ݂݊ܿ݊ݑ�݊݁݀ሻ = ܪ∆ ∙ � ∙ ܵ௬                                  (3-2a) ∆ܩ �ܹሺ݂ܿ݊�݊݁݀ሻ = ܪ∆ ∙ � ∙ ܵ௦ܾ                                      (3-2b) 

 

where ∆ܹܩ is the volumetric change in groundwater storage,  ∆ܪ is the groundwater level 

change,  � is the area overlying the drained aquifer, ܵ௬ is the specific yield, ܵ௦ is the specific 

storage, and ܾ is the aquifer thickness. The aquifers of the DBAS generally contain both 
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unconfined and confined conditions. Each monthly potentiometric surface estimated through 

spatio-temporal kriging is compared to the upper boundary of the respective aquifer. 

Potentiometric surface elevations above the upper boundary identify confined conditions 

whereas elevations below the upper boundary indicate unconfined conditions. The upper 

boundary for each aquifer were derived from top contour estimates that were interpreted by the 

CDWR from geophysical logs (Colorado Division of Water Resources 2011).  

In the current study, storativities were obtained through CDWR Denver Basin bedrock 

data (Colorado Division of Water Resources 2011). The available data varied for each aquifer, 

but highlight the spatial heterogeneities in each one (Figure A – 13 – 16). It is common practice 

to apply a representative storativity across an entire aquifer when evaluating storage changes. We 

also apply a single value when determining storage changes across the 27 year period. However, 

we utilize the mean storativities, median storativities, and combinations of available storativity 

data for each aquifer to better understand the range of possible storage calculations, depending 

on the representative storativity values chosen.  

3.5 Results and Discussion  

The estimated potentiometric surfaces show the distribution of hydraulic heads from 

1990 to 2016 (Figures A-9 – 12). Standard deviation maps were also generated to evaluate the 

reliability and uncertainty in kriging predictions (Figures A-9 – 12). Each aquifer has areas 

where few data are available to constrain the interpolation. This leads to higher uncertainty in the 

predictions in data sparse areas. The accuracy of the interpolated potentiometric surfaces also 

assumes that the groundwater level data are representative of static conditions, the data have 

minimal measurement errors, the covariates used in the spatio-temporal kriging accurately 

remove the global trend in the data, the spatio-temporal semivariograms were appropriate, and 
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that the land-surface and aquifer top elevations used in generating potentiometric elevations and 

identifying confined and unconfined areas are accurate. However, these approximations help 

understand how much groundwater has been depleted, how water levels have changed spatially, 

how depletion varies spatially and temporally, and uncertainty in the estimates.  

3.5.1 Comparison of Overall Depletion in DBAS Aquifers  

Each aquifer of the DBAS varies in magnitude of depletion since 1990 (Figure 3-2). The 

Dawson aquifer has been depleted by ~ 3 km3 under average and median storativity conditions. 

However, calculated depletions range between ~1 to 7 km3 depending on storativity data 

determined to be representative of the aquifer. The median scenario depletion represents 1.4% of 

the groundwater storage available in the DBAS assuming that 200 million AF is recoverable in 

total from all four aquifers. Depletions in the Denver Aquifer since 1990 equate to ~ 16 – 20 km3 

under median and average storativities. Under these scenarios, the total depletion represents 

6.5% of the recoverable groundwater in the DBAS. The range of possible depletion for the 

Denver Aquifer is between ~ 5 – 55 km3. The Arapahoe Aquifer is estimated to have depletions 

of ~ 16 km3 under median and average storativities. This represents 6.5% of the recoverable 

groundwater in the DBAS. However, calculated depletions range from ~3 – 34 km3 depending 

on the storativity data used in the calculation. The Laramie-Fox Hills Aquifer has been depleted 

by ~1.6 – 2.1 km3 under median and average storativities. This represents about 0.6% of the 

recoverable groundwater in the DBAS. Calculated ranges of depletion for this aquifer are from 

~0.4 – 5.2 km3. Groundwater storage changes estimated under median storativity conditions 

represents a total of 36.6 km3 (~29.7 million AF) for all four aquifers combined and accounts for 

15% of the total recoverable groundwater in the DBAS. These estimates are variable, however, 

due to the uncertainty in representative aquifer storativities. The aquifer storativities for each  
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Figure 3-2 Cumulative changes in groundwater storage for the four aquifers of the Denver Basin 

Aquifer System since 1990. The gray lines represent possible storage change scenarios and are 

calculated using combinations of reported storativities for each respective aquifer. The red and 

blue lines are the storage changes calculated from the average and median reported storativities.  
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DBAS aquifer were not uniformly distributed and were sparse when considering the size of each 

aquifer (Figures A – 13 – 16). This prevented an area weighted approach in the groundwater 

storage calculations. In turn, the combinations of storativities highlight the impact and 

importance of selecting representative parameters. 

3.5.2 Spatial Groundwater Changes  

Groundwater level changes also vary spatially for each aquifer (Figure 3-3). If depletion 

were uniform, by 2016 the Dawson Aquifer would have average water table declines of 19 ft, the 

Denver Aquifer 60 ft, the Arapahoe Aquifer 112 ft, and the Laramie-Fox Hills 118 ft. In the 

Dawson Aquifer higher depletion was observed on the northern half of the aquifer and little to no 

depletion in the southern end. The areas near the city of Castle Rock had groundwater level 

declines of up to 275 ft since 1990. This area also represents the greatest groundwater depletion 

for the aquifer (Figure 3-4). Areas near the city of Monument and southwest of Castle Rock had 

estimated increases in groundwater storage up to 0.1 km3. In the Denver Aquifer, the highest 

water level changes are localized to the west-central area of the aquifer under the cities of Castle 

Rock and Parker. Since 1990, water tables have declined by up to 400 ft. Similar to the Dawson 

Aquifer, most of the decreasing water tables are spatially on the northern half of the aquifer. 

Volumetric depletions follow similar patterns and range between 0.02 – 0.1 km3 for the majority 

of the aquifer. The highest depletions were located under the city of Parker and to the northwest 

of Castle Rock. As previously reported in Chapter 2, the Arapahoe Aquifer is estimated to have 

water table declines by up to 600 ft in the west-central areas of the aquifer. The highest depletion 

extends from the Highlands Ranch area, between Denver and Parker, down to the city of 

Monument. From this central area, water table declines radially decrease outwards to the outer 

edge of the aquifer. Areas to the northwest of Denver and south of Monument towards Colorado 
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Springs do show estimated increases in groundwater levels since 1990. Volumetric storage 

depletions for much of the aquifer are less than 0.04 km3.  The highest depletion occurs west of 

Castle Rock and has reached up to 0.4 km3. The Laramie-Fox Hills Aquifer is estimated to have 

experienced water table declines by up to 600 ft in the areas underlying Parker and the town of 

Bennett. With the exception for the town of Bennett, this spatial pattern and total water table 

changes are similar to those of the Arapahoe Aquifer. Much of the aquifer shows decreased 

water table levels since 1990, but to the northeast of Denver, levels have increased. The majority 

of the aquifer has depletions less than 0.01 km3. The highest depletion is predicted along the 

southeastern edges of the aquifer and reaches 0.25 km3.  

 

 

Figure 3-3 Changes in groundwater levels in the A) Dawson, B) Denver, C) Arapahoe, and D) 

Laramie-Fox Hills Aquifers from 1990 – 2016. The black ‘+’ show the locations of groundwater 
wells used in the analysis.  
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Figure 3-4 Changes in groundwater storage in km3 for the A) Dawson, B) Denver, C) Arapahoe, 

and D) Laramie-Fox Hills Aquifers from 1990 – 2016. The black ‘+’ show the locations of 
groundwater wells used in the analysis. 

 

Spatial depletion patterns for each of the aquifers might not completely match the water 

table change patterns and extremes. The Denver, Arapahoe, and Laramie-Fox Hills Aquifers are 

predominantly under confined conditions, but do become unconfined along the edges where each 

aquifer crops out. In the confining portions, large decreases in groundwater levels are due to a 

reduction in aquifer pressures and do not always translate to large volumes of water. Water is 

released by compression of the aquifer and expansion of water. However, when conditions 

become unconfined, the storage coefficient is represented by the specific yield and can be orders 

of magnitude larger than the specific storage. The water released is due to the drainable porosity 

by gravity drainage and yields larger volumes. The western edge of the DBAS dips more steeply  
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Figure 3-5 Height of the potentiometric surface in relation to the top designation of each aquifer 

unit for the A) Dawson, B) Denver, C) Arapahoe, and D) Laramie-Fox Hills by the end of 2016. 

Positive values indicate water levels above the top of each aquifer and confining conditions. 

Negative values indicate water levels below the top designation of each aquifer and are 

considered unconfined conditions.  

 

than the central and eastern part due to the asymmetrical, bowl shape of system. Therefore, large 

changes in water levels can cause the potentiometric surface to drop below the upper confining 

unit more easily. Looking at differences between the potentiometric surface elevations and the 

top unit of each aquifer help identify the areas experiencing higher depletion. Areas with 

potentiometric surfaces below the aquifer top elevations are subject unconfined conditions and 

therefore larger calculated depletion volumes for the same water level change. In the Denver 

Aquifer, the higher depletion areas are also the areas where the water level have changed the 

largest and caused the confined portion to become unconfined (Figure 3-5). In the Arapahoe 



58 
 

Aquifer, the areas with the highest volumetric depletion are to the west of Caste Rock and show 

where the confined aquifer has become unconfined. In 2004, Raynolds (2004) predicted that over 

the next several decades some areas of the Arapahoe Aquifer would transfer from confined to 

unconfined conditions. In the Laramie-Fox Hills aquifer, the potentiometric surface is between 

400 and 1500 ft above the upper confining unit. The Dawson Aquifer is an entirely unconfined 

aquifer even though estimated water tables are above the designated aquifer top.  

3.5.3 Temporal Groundwater Changes  

The rates of change in groundwater levels vary across each aquifer and have changed 

over the past 27 years. Linear decadal rates are shown in Figure 3-6 for three time periods, 1990 

to 1999, 2000 to 2009, and 2010 to 2016. The prior two decades experienced higher depletion 

rates in the west-central areas underling Monument and spanning to Denver.  The Dawson 

Aquifer has generally experienced increasing and decreasing water levels of up to 5 ft per year. 

During the 2000s decade, levels near castle rocks experienced between 5 and 20 ft per year 

declines. Since 2010, the majority of the aquifer shows increasing water levels. The Dawson 

Aquifer displays increasing and decreasing storage between 1990 and 2005. During this period 

depletion does appear to follow drought and precipitation patterns as can be seen in 2001 which 

began as moderate drought conditions and led to extreme and exceptional drought until 2004. 

The Dawson Aquifer is the uppermost and an unconfined aquifer that would be influenced by 

variable precipitation and recharge. The Denver Aquifer experienced higher rates of depletion 

across a larger area in the 1990s than in the 2000s. The highest depletion was up to 25 ft per year 

and underlies areas of rapid population growth during the time. The southern areas of the aquifer 

show up to 10 ft per year increases in hydraulic head, but slow down during the 2000s. The 

Arapahoe Aquifer shows much higher rates of depletion in the west-central areas of the aquifer  
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Figure 3-6 Linear decadal rates of groundwater level changes across each of the four Denver 

Basin Aquifers. The aquifers are ordered from shallowest to deepest (top to bottom) and from 

earlier decades to more recent (left to right). The black ‘+’ show the locations of groundwater 
wells used in generating potentiometric surfaces for the analysis. 
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ranging from 15 to 40 ft per year. During the 2000s, the area experiencing high groundwater 

level declining grew in size and experienced decreases in hydraulic head of up to 55 ft per year 

near Castle Rock. Since 2010, rates of water level change are drastically different and show 

much of the aquifer increasing in water levels. It is estimated that Castle Rock now experiences 

about 5 ft per year declines and matches to what the city reports as average annual declines 

(Town of Castle Rock Colorado 2018). The Laramie-Fox Hills Aquifer started to see declines 

between 10 and 35 ft per year under the same areas that the other aquifers were experiencing 

high declines. During the 2000s, rates in this area reached up to 50 ft per year and shifted 

northeast by the town of Bennett. Since 2010, water level rates appear to have reversed and many 

areas are experiencing increasing levels, even as high as 45 ft per year north of Parker. 

Assessment of these trends highlights areas were management is critical. 

3.5.4 Drivers of Groundwater Change  

3.5.4.1 Population  

Groundwater depletion for aquifers of the DBAS is likely a result of a combination of 

many factors including population growth, reduced precipitation and recharge, and groundwater 

well pumping, each adding additional stress. Population growth appears to have a large influence 

on the demand for water as is evident in the spatial patterns for water level change. 

Municipalities such as Parker and Castle Rock have long been dependent on groundwater 

resources of the DBAS and also overlie areas that have experienced up to 600 ft of water level 

declines. The population of these two municipalities grew steadily from 1990 to 1998. However, 

after 1998 the rate of population growth increased for the next decade before slowing down. A 

plot of population growth for these to municipalities (Figure 3-7) shows two pivot points that  
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Figure 3-7 Comparison of possible influences on groundwater storage changes in the DBAS 

from 1990 – 2016. The top panel shows population growth for the Colorado Front Range Urban 

Corridor (CFRUC) and two municipalities that have observed some of the largest water level 

declines over the 27 year period. The second panel from the top shows the percent area of the 

basin experiencing variable drought conditions since 2000. The middle panel shows precipitation 

patterns represented as a cumulative anomaly and departure from the long term mean. The next 

panel shows the number of groundwater wells through time in each aquifer of the DBAS. The 

bottom panel shows groundwater storage changes for each aquifer under median storativity 

conditions.  
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also closely resemble the visual trends in groundwater storage depletion. . The percent 

population change in these cities helps explain some of the decadal rates of change and the large 

decreases in groundwater levels (Table 1).  

 

Table 3-1 Percent population change for select cities across the DBAS during three time periods. 

Data sources: (U.S. Census Bureau 2005a; Colorado Department of Local Afairs 2013; U.S. 

Census Bureau 2017a)  

 1990 - 2000 2000 - 2010 2010 - 2016 

Denver 18.6% 8.2% 15.5% 

Littleton 19.5% 3.5% 11.0% 

Greenwood Village 40.2% 26.2% 13.1% 

Parker 314.2% 92.3% 13.0% 

Castle Rock 135.2% 138.5% 19.6% 

Monument  116.4% 180.6% 18.6% 

 

3.5.4.2 Variable Precipitation  

The 30-yr normal annual precipitation from 1981 – 2010 across the DBAS varies 

spatially and ranges from 12 to 20 inches (PRISM Climate Group 2016). Evaluating the 

departure from the long term mean as an anomaly can help understand when precipitation was 

above or below average. An alternative of this is to evaluate the impact of precipitation declines 

is through the cumulative anomaly, which can help provide a measure of how much precipitation 

the areas has missed out on over the past 27 years. This is shown in the third panel of Figure 3-7. 

It is possible that changes in precipitation patterns, which would influence the amount of surface 

recharge, have contributed to the overall depleting groundwater storage in the DBAS. Prior to 

2000, variability in precipitation led to decreased precipitation between 1992 and 1995, but 

eventual recovery of precipitation by 2000. The most impactful turning point in annual 

precipitation occurred after 2000. The cumulative anomaly continued to become more negative 

and signify reduced precipitation compared to the 1990s. By 2014, precipitation recovered to 
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average conditions. Coincidently, the large period of below average annual precipitation also 

tracks with the larger groundwater depletions of the Denver and Arapahoe Aquifers suggesting 

some influence to the system by reduced recharge. Comparison of the cumulative anomaly to the 

U.S. Drought Monitor also show this time period experiencing  two exceptional drought periods 

(Figure 3-7).  

3.5.4.3 Increased Groundwater Development  

The amount of water pumped from the DBAS is not well monitored. Following the 

methods of Paschke et al. (2011), the CDWR well-permit database was used to determine the 

number of wells constructed from 1990 to 2016 and as a proxy to pumping (Colorado Division 

of Water Resources 2018). The database was filtered to only include groundwater wells with a 

well construction date and a specific aquifer distinction within the DBAS. Wells screened across 

multiple aquifers were excluded. Approximately 13,050 wells were completed in the Dawson 

Aquifer, 6,751 wells in the Denver Aquifer, 5,535 wells in the Arapahoe Aquifer, and 3,948 

wells in the Laramie-Fox Hills Aquifer. In total, approximately 29,284 wells existed in the 

DBAS by 2016 given our criteria. The wells include domestic, monitoring, municipal, stock, 

commercial, and irrigation uses. Figure 3-7 displays the cumulative number of wells constructed 

over time. Three distinct periods of well construction appear and also have some resemblance to 

the cumulative storage change patterns. The fastest rate of wells constructed in the DBAS was 

between 1993 and 2007 and increased by over 18,000 wells. During this period, the Denver and 

Arapahoe Aquifers also had the largest storage declines (Figure 3-7) suggesting that as the 

number of wells increased, so did the amount of pumping. However, after 2007 the number of 

new wells constructed each year decreased, possibly due reduced number of  permits being 
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issued by the State Engineer’s Office, alternative sources of water being developed (e.g. Rueter-

Hess Reservoir), or conservation measures.  

3.5.5 Concerns for Land Subsidence 

Bedrock formations of the DBAS have elastic properties and are compressible (Robson 

1987). Groundwater withdrawals leading to large groundwater level declines could potentially 

stress the system, leading to land subsidence. Little attention however has been given to potential 

subsidence across the DBAS as only several studies make any mention. Galloway et al. (1999) 

report subsidence in the Denver area as a result of groundwater abstractions, but don’t provide 

any additional details. Using rock-compressibility data for other areas, Robson (1987) estimated 

that in the Arapahoe Aquifer, land subsidence due to elastic compression could range from 0.2 to 

2 inches per 100 ft of water level decline. In the Laramie-Fox Hills Aquifer it is estimated to 

range from 0.07 to 0.7 inches per 100 ft of water level declines. Using these estimates, water 

levels declines since 1990 in the Arapahoe Aquifer below the Denver metro reach around 75 ft, 

which would indicate a potential of 0.15 to 1.2 inches land subsidence could have occurred due 

to water declines in the Arapahoe Aquifer. Below the city of Castle Rock, up to 600 ft water 

level declines since 1990 could have led to 1.5 to 12 inches land subsidence. The subsidence 

estimates could potentially be larger, depending on water level declines in the three other 

aquifers of the DBAS, with a contribution from each aquifer. Robson (1987) estimated that water 

level declines in the Arapahoe Aquifer from 1883 to 1960 led to 0.8 to 8 inches of subsidence 

across the Denver metro. Because the DBAS dips to the east, it is estimated that regional 

compaction would begin on the western side of the aquifer (Morgan 2007). 
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3.5.6 Future Planning  

Long-term depletion can be driven by unsustainable withdrawals and the short-term 

variability of precipitation and recharge (Konikow 2015). To combat withdrawals and store 

supplies for future use, Aquifer Storage and Recovery (ASR) is gaining speed in the DBAS. 

Centennial Water and Sanitation District (CWSD) has successfully implemented ASR in the 

DBAS since the mid-1990s (Centennial Water and Sanitation District 2017). CWSD continues to 

expand its infrastructure and more than 4.5 billion gallons of water have been injected into over 

25 wells permitted in the Denver, Arapahoe, and Laramie-Fox Hills Aquifers. Areas near 

Highlands Ranch show increasing hydraulic heads in the Arapahoe and Laramie-Fox Hills 

Aquifer (Figure 3-7) which is also where CWSD operates its ASR field. It’s possible that the 

observed increasing hydraulic heads are due to ASR and reduced groundwater pumping. Other 

water providers in the areas such as Denver Water, South Metro Water Supply Authority, East 

Cherry Creek Valley Water and Sanitation District, the Town of Castle Rock, Rangeview 

Metropolitan District, and Pinery Water and Wastewater District are all exploring ASR to secure 

future water supplies (Denver Water 2018; Hecox 2015; Colorado Water Insitiute 2017).  

Many other projects are being are also being implemented to prepare for future demands. 

A regional project known as WISE (Water Infrastructure and Supply Efficiency) recently 

became operational in late 2017 and is a partnership meant to share existing water resources and 

secure a renewable water supply to South Metro communities (South Metro Water Supply 

Authority 2017). In this project, water used by Denver and Aurora is recaptured, and when 

available, is able to be shared with participating partners (e.g. Highlands Ranch, Parker, and 

Castle Rock) to help reduce reliance on DBAS groundwater.  
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Until 2012, Parker solely relied on groundwater to provide drinking water to its residents. 

In 2012, the Rueter-Hess Reservoir was completed and expanded to 72,000 acre feet. Combined 

groundwater and surface water resources are now used (Parker Water and Sanitation District 

2016). Castle Rock gets most of its water from the DBAS with approximately 85% being 

groundwater and only 15% coming from renewable supplies along Plum Creek. The Plum Creek 

Water Purification facility has been treating and delivering renewable water since 2013. Castle 

Rock is making plans to convert its water supplies to be more than 75% renewable surface water 

by 2050. The town has also purchased water storage in Rueter-Hess Reservoir and is 

participating in a project to capture water supplies in Chatfield Reservoir. Aquifer storage and 

recovery also is a component of Castle Rock’s long-term storage plan (Town of Castle Rock 

Colorado 2018). Over the years, about 80% of Highlands Ranch water supply has been surface 

water derived, but since 2011 it has become 99%. Transitioning to more renewable water 

supplies will be important to help extend the life of the DBAS and reduce depletion rates. 

3.5.7 Comparison to USGS Denver Basin Model  

The USGS Denver Basin model by Paschke et al. (2011) provides a good means to 

compare some of our results, although some time periods don’t overlap. Calibration of the USGS 

Denver Basin Model did not utilize data from the CDWR due to the limited number of annual 

water level measurements that prevented adequate spatial coverage to generate potentiometric 

maps. However simulated heads were compared to select CDWR wells. The USGS model 

provided variable results and had areas of better agreement than others to CDWR data (Paschke 

et al. 2011). Since this spatio-temporal kriging analysis of groundwater levels in the DBAS 

solely relied on CDWR data, the results too are variable to those of the USGS model. The spatio-

temporal kriging approach applied in this study leveraged data in adjacent time periods to help 
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infer the kriging predictions at the time of interest. This increased the available data used to 

generate potentiometric surface maps and possibly overcomes some of the limitation of irregular 

and sparse data. Comparing the USGS 2003 simulated change in hydraulic head for the Dawson 

Aquifer to those of this study (Figure 3-3) show some similarities and differences. Both show 

decreasing hydraulic head around Castle Rock and Parker that propagates outward and both 

show increases levels along the northwestern edge that is attributed to urban recharge. However, 

one major difference is that the spatio-temporal kriging results show increasing hydraulic heads 

underlying Monument while the USGS Denver Basin model shows decreasing levels.  In the 

Denver Aquifer, the USGS model simulated decreasing hydraulic heads in the west-central 

portions under Castle Rock and Parker reaching 250 ft declines since 1880. This study also 

shows larger decreases in this area up to 350ft, though this study is 13 years longer. Differences 

in patterns for head change are predominately in the northern half of the aquifer. This study 

shows overall decreasing levels (Figure 3-3), while the USGS model shows the area underlying 

Denver to be increasing in water level. Storage change patterns in the Arapahoe Aquifer are 

similar between this study and the USGS Denver Basin Model. The areas underlying Monument, 

Castle Rock, Parker, and Highlands Ranch are all experiencing the largest declining storage 

changes. In the UGSG study, by 2003 hydraulic heads had decreased by around 400 ft in this 

area. Since 1990, this study estimates up to 600 ft decreases in hydraulic head. Both this study 

and the USGS study show increasing heads in the northwestern area as well as south of 

Monument. However, this study does not show increasing levels along the eastern edges due to a 

lack of data to infer the kriging predictions. Agreement between the USGS model and this study 

for the Laramie-Fox Hills Aquifer is highest in the areas underlying Castle Rock, Parker, and 

Denver. The USGS model shows some depletion around Thornton, while this analysis shows 
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hydraulic head increases by up to 80 ft. Hydraulic head near the town of Bennett show decreases 

up to 600 ft since 1990 and a cone of depression that radially propagates outward. The USGS 

model does show up to 200 ft decreases in hydraulic head in the area since 1880, but does not 

appear to have a similar cone of depression. One possibility for the differences could be the lack 

of nearby well data to Bennett to help with the kriging predictions. Overall, comparison to the 

USGS Denver Basin model study show some similarities and agreement to hydraulic head 

changes, but also some noticeable differences in data sparse areas.  

Simulated cumulative change in groundwater storage for the DBAS by the USGS model 

shows considerable differences than this study. By 2003, the total cumulative depletion was 

predicted to be 1.00 km3 and was expected to reach 1.30 km3 by 2008 (Paschke et al. 2011; 

Konikow 2013). In this study, applying median storativities calculated from CDWR data 

(Figures S13 – 16) yielded 24 km3 depletion in the bedrock aquifers by 2003. By the end of 

2016, total cumulative depletion is predicted to have reached 36 km3 (Figure7). However, as 

noticed in Figure 3-2, the calculated depletion is heavily dependent on the storativity values 

chosen. This study highlights the uncertainty that results from either applying one representative 

storage coefficient across the entire aquifer or the uncertainty due to aquifer property 

heterogeneities which is common to many groundwater quantity studies. It is plausible that 

selecting different storativities could lead to much lower cumulative depletion predictions. 

Paschke et al. (2011) multiplied specific yield values by the sild-sand fraction of model cells to 

get an adjusted specific yield. Future work could include applying a similar procedure to area 

weight storativities to better predict volumetric storage changes in the DBAS.  

As in all cases, future estimates would benefit from additional data and monitoring wells 

across each aquifer. Filling in the spatial gaps could help improve potentiometric surface 
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predictions and provide additional space-time points to leverage. While this study only evaluated 

CDWR data that resides in Colorado’s HydroBase, additional groundwater level data from other 

sources would greatly improve future predictions. This study also points to the importance of 

representative aquifer storage parameters when calculating volumetric storage changes. 

Additional work is needed to compile more storativity data and a better distribution across each 

aquifer.  

3.6 Conclusions 

The DBAS is a critical resource for many users along the CFRUC, but faces long-term 

sustainability challenges due to increasing demands for water in the region. Spatio-temporal 

kriging techniques were used to estimate potentiometric surfaces and evaluate groundwater 

depletion in the DBAS. Spatio-temporal kriging provides an effective means for interpreting 

sparse and irregular groundwater data. There is an ongoing need to continue to analyze and 

interpret DBAS groundwater data to better understand the resources available. This study 

complements the USGS Denver Basin modeling study and provides a different approach to 

assessing depletion and status of the aquifers by integration space-time approaches.  

A wide range of calculated storage depletions are possible depending on the storativities 

chosen to be representative of the aquifer. The Denver and Arapahoe Aquifer exhibited the 

largest range of storage depletions with varying storativities. Using the median storativities from 

CDWR data, it is estimated that since 1990, the DBAS has been depleted by 36.6 km3 (~29.7 

million AF) and accounts for ~15% of the total estimated recoverable groundwater in the DBAS. 

However, the results show that it is possible for storage depletion to be much less or much more, 

depending on the storativities deemed representative. Groundwater level declines since 1990 are 

more severe in the west-central areas of the Denver, Arapahoe, and Laramie-Fox Hills Aquifers. 
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Spatial patterns of water level changes and depletion are likely a combination of population 

growth in municipalities that rely heavily on groundwater, variable precipitation and drought 

influencing surficial recharge, and an increase in the number of wells pumping groundwater.  

Large variability in cumulative depletions should be considered in management 

decisions. Volumetric groundwater assessments can be difficult and often the uncertainty in 

estimates is unexplored. Because the storativities have a large influence on this estimated amount 

of depletion, so too does their influence on estimated amount of recoverable water in the DBAS. 

Future work would benefit from refining the spatial distribution of storativities in each aquifer 

and incorporating additional data or monitoring networks into the analysis.  
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CHAPTER 4 

MONITORING GROUNDWATER STORAGE CHANGES USING 

GRACE AT THE AQUIFER SCALE: ACCURACY AND  

VALIDITY IN THE DENVER BASIN 

4.1 Abstract 

Few studies have evaluated the validity of using GRACE over smaller basins which are 

less than the recommended footprint of ~200,000 km2, despite the interest in using remote 

sensing as another tool to asses groundwater depletion and storage trends in areas lacking 

monitoring data. Given the lack of adequate temporal and spatial groundwater data in many 

water-limited systems and the growing need for water resources, it is important to determine 

whether GRACE can still provide useful information at smaller scales typical of many aquifer 

systems to help inform and understand system dynamics.  Temporal data sparseness is a 

significant problem common in groundwater well data analysis (see Chapter 2), and spatial 

water-well data scarcity is also common. Thus, it is logical that GRACE data, which is provided 

monthly and averaged over aquifer-scale pixels, might improve storage analyses compared to 

using water-well data alone, even at smaller scales.  The strengths of GRACE data may help 

minimize the impact of the weaknesses of the water-well data analysis, and vice versa.  The 

purpose of this study is to assess the accuracy and validity of applying GRACE at the aquifer-

scale across the Denver Basin Aquifer System (DBAS) to understand groundwater storage 

changes and provide another tool for assessing groundwater storage. GRACE derived 

groundwater storage changes are compared to ground-based groundwater-well data for the 4 
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aquifers of the DBAS and the overlying South Platte Alluvial Aquifer. Under the current 

processing, the ground-based results do not show good agreement to GRACE derived 

groundwater anomalies. This work highlights some uncertainties in appropriately processing 

GRACE for groundwater applications and further work is still need to assess the usefulness 

across the DBAS. 

4.2 Introduction 

Remote sensing has become a powerful tool for assessing environmental processes and is 

an important source of data to improve hydrologic modeling. Groundwater studies have 

benefited from the addition of the Gravity Recovery and Climate Experiment (GRACE) satellites 

as one of the latest remote sensing tools. Estimates of gravitational changes through GRACE can 

be used to infer time variable changes in mass which are attributed to the redistribution of water 

both above and below the Earth’s surface. GRACE has been used to look at droughts (Houborg 

et al. 2012; Long et al. 2013; Leblanc et al. 2009; Thomas et al. 2014), flooding and surface 

waters (Swenson and Wahr 2009; Lee et al. 2011; Wang et al. 2011; Zmijewski and Becker 

2014; Reager et al. 2014), groundwater depletion (Rodell et al. 2009; Feng et al. 2013; Scanlon 

et al. 2012b; Voss et al. 2013), to infer aquifer storage parameters (Sun et al. 2010), and used to 

enhance groundwater models and global hydrologic models (Li et al. 2012; Güntner 2008).  

GRACE has provided useful and unique hydrological information globally and at 

regional scales. However, there is much debate on the usefulness and applicability of GRACE at 

scales smaller than 200,000 km2, which is a common scale for aquifers. Alley and Konikow 

(2015) recently called to attention some of the limitations and misperceptions of GRACE due to 

the popularity and gaining interest of utilizing GRACE for hydrologic investigations. Some of 

the limitations identified include lower resolution that limits use at smaller scales, spatial leakage 
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and measurement errors that can be large, and the inability to show direction of water flow or 

sources of depletion because changes are represented in one-dimension (Longuevergne et al. 

2010; Alley and Konikow 2015). However, despite these limitations, there is still much interest 

in using GRACE due to lack of adequate ground-based data in many places. Indeed, the 

relatively sparse spatial and temporal data availability can negatively impact aquifer storage and 

sustainability analyses, even for highly utilized aquifers with the typical availability and quantity 

of data (see Chapters 2 and 3). 

Several studies have evaluated the use of GRACE below the recommended 200,000 km2 

footprint. In the Central Valley, California, high amounts of pumping for irrigation have allowed 

storage changes to be detected by GRACE even though the area of interest is ~52,000 km2 

(Scanlon et al. 2012b). In regions such as Mali (~54,971 km2) with sparse hydrogeological data, 

GRACE was used to estimate annual recharge (Henry et al. 2011). In three locations across the 

U.S., an artificial neural network (ANN) was used to statistically downscale GRACE to use as a 

predictor of water levels for various wells within a single grid-pixel (Sun 2013); these authors 

determined that GRACE can be used to infer changes in water levels when an ANN was applied. 

Katpatal et al. (2017) characterize the performance of four GRACE pixels across aquifer systems 

with varying lithology in India.  Hachborn et al. (2017) evaluate the sensitivity of GRACE 

derived groundwater to represent ground-based data across a study area of 45,000 km2 in 

southern Ontario using four pixels. It is possible that GRACE can serve as another tool in the 

“toolbox” and help provide a big picture overview in data sparse areas. The strength of GRACE 

is realized when combined with local data to assess system dynamics (Richey et al. 2016; 

Wouters et al. 2014). 
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In many places, there is a lack of in situ groundwater well data with adequate temporal 

and spatial coverage to validate GRACE observations (Chen et al. 2016; Sun et al. 2010; 

Wouters et al. 2014; Sun 2013). In situ observations help understand the dynamics of 

groundwater systems and provide a means by which to compare the accuracy and limitations 

GRACE. However, proper comparisons can be limited by uncertainties in specific yield, specific 

storage, and representative groundwater wells. Given these uncertainties, many studies still have 

shown good agreement between GRACE derived groundwater storage changes and groundwater 

well observations (Rodell et al. 2007; Chen et al. 2016; Swenson et al. 2006; Castle et al. 2014; 

Scanlon et al. 2012b; Huang et al. 2016).  Temporal data sparseness is a significant problem 

common in groundwater well data analysis (see Chapters 2 and 3), and spatial water-well data 

scarcity is also common. Thus, it is logical that GRACE data, which is available at the monthly 

scale and averaged over aquifer-scale pixels, might improve storage analyses compared to using 

water-well data alone, even at smaller scales.  The strengths of GRACE data may help minimize 

the impact of the weaknesses of the water-well data analysis, and vice versa. The primary 

objective of this study is to assess the viability of using GRACE to evaluate groundwater storage 

changes in the multilayered Denver Basin Aquifer System.  

4.3 Study Area 

The Denver Basin Aquifer System (DBAS) is an important water resource for many users 

along the Colorado Front Range (Paschke et al. 2011). It is an asymmetrical, bowl shaped basin 

that extends from Greely to Colorado Springs and from the Front Range to Limon (Figure 4-1). 

It consists of four layered aquifers and from youngest to oldest are the Dawson, Denver, 

Arapahoe, and Laramie-Fox Hills. The aquifers are unconfined along the outer edges where they 

meet the surface, and confined in the more central areas. The DBAS is recognized as a 
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nonrenewable resource because of the slow rate of recharge (Graham and Vanslyke 2004; Banta 

and Paschke 2012). Additional details on the study area are found in Chapter 3.  

 

 

Figure 4-1 Study area showing the location of the GRACE pixels overlying the four aquifers of 

the Denver Basin Aquifer System in northern Colorado, USA. The available groundwater wells 

used in the analysis and for comparison to GRACE are shown. 

 

Groundwater depletion has occurred in the DBAS over the past several decades as 

withdrawals have increased (Topper and Raynolds 2007; Paschke et al. 2011). Since the 1980s, 

groundwater level measurements in the DBAS have been irregular and contain many spatial and 
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temporal gaps. Many wells are sampled annually, with a high frequency during the month of 

April. Other wells are sampled either multiple times a year or every couple of years. 

4.4 Methods 

4.4.1 Ground-Based Groundwater Data  

Groundwater data for all four aquifers of the DBAS were obtained through the Colorado 

Division of Water Resource’s HydroBase, a central water resources database for Colorado  

(Colorado Division of Water Resources 2017). Groundwater data were filtered to only include 

wells with greater than five observations and that appeared to be under static conditions. We 

identified 54 groundwater wells in the Laramie-Fox Hills Aquifer, 118 wells in the Arapahoe 

Aquifer, 60 wells in the Denver Aquifer, and 44 wells in the Dawson Aquifer that met these 

criteria. A twelve point moving window was used to remove outliers that were greater that two 

standard deviations from mean, which are likely due to data entry or measurement errors.  

4.4.2 Normalized Groundwater Method  

 Normalized groundwater level anomalies are compared to the GRACE derived 

groundwater signal as an initial analysis of the potential to utilize GRACE at the aquifer-scale. A 

normalized approach was selected as an initial approach to avoid the uncertainties in applying 

aquifer storativities. Anomalies are calculated as,  

ݖ  = ௫−௫̅�       (4-1) 
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where z is the normalized groundwater level (-), x is the water level measurement, ̅ݔ is the 

groundwater level mean relative to the 2004 – 2009 time mean baseline and then to the 2002 – 

2015 time mean for the study period. Anomalies are generated for each well within the five 

aquifers in the study area. Representative signals from each aquifer are then calculated as an 

average of the well observation anomalies. The cumulative groundwater signal, which is 

comparable to GRACE, is then calculated by adding all of the representative aquifer anomalies 

together.  

4.4.3 Spatio-Temporal Method 

Spatio-temporal kriging was also used to fill temporal data gaps of groundwater levels for 

wells in the DBAS to and obtain representative groundwater level changes for comparison to 

GRACE. This approach was conducted after the initial normalized groundwater level analysis 

previously discussed. We utilize the data and techniques outlined in Chapters 2 and 3. Spatio-

temporal kriging leverages data in adjacent space-time periods to help infer the predictions for 

the time period of interest. This helps overcome some of the limitations in irregularly sampled 

and data sparse aquifers. In general, groundwater levels are assumed to follow a random function 

model that consists of a trend and residual component that can be modeled separately. A global 

trend is removed from each aquifer and the residuals are spatio-temporally kriged. The final 

estimate of groundwater levels is taken by adding the predicted residuals back to the global trend 

component. We utilized the sum-metric model for modeling the sample semivariograms 

(Rouhani and Hall 1989; Dimitrakopoulos and Luo 1994; Myers 2004; Derakhshan and 

Leuangthong 2006).  

Groundwater level changes for individual wells were converted to representative 

groundwater anomalies for comparison to GRACE. Anomalies are first computed relative to the 
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2004 – 2009 time mean baseline and then to the 2002 – 2015 time mean baseline to represent the 

baseline for this study period. The time mean for each groundwater location is determined from 

2004 – 2009 and then subtracted from each groundwater measurement. Then the mean from 

2002 – 2016 is determined and subtracted from each anomaly value determined in the first time 

mean removal. Anomalies are represented as a change in water table height relative to baseline 

mean. Calculations are then made using changes in the anomaly and an appropriate storativity 

for unconfined and confined aquifers. The volume of water drained as heads decrease is 

calculated as (Fetter 2000),  

ܩ∆  ௨ܹሺ݂݊ܿ݊ݑ�݊݁݀ሻ = ܪ∆ ∙ � ∙ ܵ௬                                       (4-2a) ∆ܩ �ܹሺ݂ܿ݊�݊݁݀ሻ = ܪ∆ ∙ � ∙ ܵ௦ܾ                                           (4-2b) 

 

where ∆ܹܩ is the adjusted groundwater anomaly, ∆ܪ is the monthly anomaly represented as a 

change in water table height relative to the baseline mean, � is an area weighting factor, ܵ௬ is the 

specific yield, ܵ௦ is the specific storage, and ܾ is the aquifer thickness. The aquifers of the DBAS 

generally contain both unconfined and confined conditions. Uncertainties exist in determining a 

representative storativity due to spatial heterogeneities. We utilize a combination of available 

storativity data to highlight the uncertainty this parameter has on estimated storage changes. 

Rodell et al. (2007) identify that mischaracterization of Sy can lead to a mismatch when 

compared to GRACE.  
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4.4.4 GRACE Data and Processing  

GRACE data are processed at three main centers, the Center for Space Research (CSR) at 

the University of Texas at Austin, the Jet Propulsion Laboratory (JPL), and the German Research 

Center for Geoscience (GFZ). These centers differ by approaches used to process the data, such 

as background models, how the orbits are integrated, and the maximum degree of estimated 

spherical harmonics (Wouters et al. 2014). The gravity field data are represented through Stokes 

coefficients of spherical harmonic functions. Initial processing removes systematic errors, 

random errors, and reduces noise at the higher frequencies (Wouters et al. 2014; Wahr et al. 

2006; Swenson and Wahr 2006). Several filtering approaches exist (e.g. 300 km Gaussian filter), 

but can lead to signal loss. Bias and leakage corrections are then used to restore the signal 

(Swenson and Wahr 2002). Using an ensemble of the three processing centers (calculated as an 

arithmetic mean) has been shown to reduce noise, scatter, and is more reliable than the product 

of a standalone center (Sakumura et al. 2014). In this study, an ensemble of the three processing 

centers is used.  

Data from the three processing centers are presented as monthly solutions and represent 

averages in time and space (Landerer and Swenson 2012). Gravitational anomalies are converted 

to equivalent water heights and are often referred to as terrestrial water storage or total water 

storage (TWS) anomalies (Wahr et al. 1998). Over land, TWS is a measure of relative storage 

changes on the surface (i.e. lakes, reservoirs, rivers, snow, and ice) and the subsurface (i.e. soil 

moisture and groundwater). In this study, mass changes are based on Release 5 (RL05) spherical 

harmonics and datasets spans from April 2002 to March 2016, giving 152 monthly datasets with 

13 missing months (due to battery maintenance of satellites). The datasets are a 1° x 1° gridded 

product (~111 km at the equator). This is provided as a Level-3 product, as post-processing and 
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geophysical corrections have been applied. GRACE land data are available at 

http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program.  

Signal attenuation during post-processing of GRACE data necessitates the need to apply 

gain factors to restore the lost signal (Landerer and Swenson 2012). Signals not restored limit the 

accurate representation of a closed water balance. Generally three methods are applied and 

include scale factors (Long et al. 2015; Landerer and Swenson 2012; Sun 2013; Rodell et al. 

2009; Chen et al. 2014; Feng et al. 2013), additive approaches (Long et al. 2015; Longuevergne 

et al. 2010), and multiplicative approaches (Long et al. 2015; Swenson and Wahr 2007; 

Longuevergne et al. 2010). Scale factors are one of the most widely used approaches (Long et al. 

2015; Sun 2013). Factors are calculated using a least squares fit between filtered and unfiltered 

TWS from land surface models (LSM) (Long et al. 2015). The LSM used to determine the 

factors potentially bias TWS for smaller spatial scales and can lead to larger errors (Landerer and 

Swenson 2012). At the basin scale, the temporal variability in scaling factors is said to be lower 

than at the grid cell (Long et al. 2015). Gridded scale factors are provided with the GRACE data 

and are derived from the Community Land Model 4.0 (CLM4.0) of the National Center for 

Atmospheric Research (NCAR) (Landerer and Swenson 2012). The same grid of scale factors is 

used across the entire time span of the GRACE data. It is suggested though, that these factors 

may vary temporally (Rodell et al. 2009). To use a scale factor, GRACE TWS anomalies are 

simply corrected by multiplying the scaling factors to the corresponding GRACE data grid cells. 

To be consistent with the baseline period for this study, GRACE TWS anomalies are adjusted by 

computing the average over 2002 – 2016 for each grid point and subsequently subtracting this 

value from all time steps.  
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A more recent basis function used to fit the inter-satellite observations are mass 

concentration blocks (mascons) (Watkins et al. 2015). An advantage of mascons over the 

spherical harmonic coefficient approach is that the noise filtering is applied at the Level-2 step, 

rather than during the post-processing of Level-2 data. Mascons have less reliance on empirical 

scale factors to accurately represent mass estimates and have improved spatial resolution for 

smaller scale basins (Watkins et al. 2015). The solution solves for 4,551 equal area 3° spherical 

cap masons globally. The data are represented as 0.5 degree grid cells (~56 km at the equator), 

but represent 3-degree equal area caps. The mascon solutions are also utilized for comparison to 

the spherical harmonic solutions over the study area.  

GRACE TWS is often disaggregated to isolate different components that make up the 

total signal. TWS represents a vertically integrated product that over land includes surface waters 

(SW), snow water equivalent (SWE), biomass (BM), soil moisture (SM), and groundwater (GW) 

(Strassberg et al. 2009; Scanlon et al. 2012b). These are represented in equation form as,  

 

∆TWS = ∆SW + ∆SWE + ∆BM + ∆SM + ∆GW    (4-3) 

 

where ∆ represents the change (i.e. monthly). If auxiliary data sources are used (e.g. LSM, 

gauges), using the GRACE TWS, equation 1 can be rearranged to back-calculate the change in 

groundwater storage (∆GW) as,  

 

∆GW = ∆TWS - ∆SW - ∆SWE - ∆BM - ∆SM    (4-4) 
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The calculated changes can then be compared to groundwater well data or used to 

estimate long-term or short-term ground water storage changes. However, depending on the 

location of the area of interest, some of the components that comprise TWS can be ignored. Over 

the Norther High Plains Aquifer, changes in surface water storage and plant canopy storage 

(biomass) were insignificant to changes in TWS at the annual time scale (Seyoum and Milewski 

2016; Strassberg et al. 2009). Instead, TWS was dominated by groundwater storage with the 

exception of a few years where the unsaturated zone (i.e. soil moisture) dominated the TWS 

response. Similarly, it was observed that groundwater storage changes dominated the TWS 

observations in a global study (Richey et al. 2015). However, contrary to this, during the 2011 

drought in Texas, it was shown that changes in groundwater storage had a low contribution to the 

TWS change (Long et al. 2013). In other places, such as over Alberta Canada, accounting for soil 

moisture, snow, and ice improved the correlation between GRACE derived groundwater storage 

and groundwater observations (Huang et al. 2016). In this study, we assume soil moisture, snow 

water equivalent, surface water bodies (e.g. reservoirs), and groundwater account for the 

majority of the TWS signal.  

Land surface models (LSMs) such as Global Land Data Assimilation System (GLDAS) 

and the North American Land Data Assimilation System (NLDAS) are commonly used to 

remove components of the TWS signal due to lack of  measured in situ data and/or good spatial 

and temporal coverage of these components. However, several studies have indicated that soil 

moisture problems can exist from LSM’s causing unrealistic storage changes for groundwater 

(Huang et al. 2012; Long et al. 2013; Huang et al. 2016; Breña Naranjo et al. 2014). Most LSM’s 

don’t account for deep soil moisture (greater than 2m)  and ground water storage changes 

(Rodell et al. 2009). In the High Plains Aquifer, it was found that soil moisture variability was 
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limited to the upper 2 m of the soil profile (Strassberg et al. 2009). Even in areas that were 

heavily irrigated, it was found that the upper 2 m accounts for 76 – 98% of the variability in soil 

moisture. In this study soil moisture data were obtained from NLDAS using an ensemble of the 

Noah and Mosaic models. This product is a gridded 12.5 km resolution.  

Soil moisture output from NLDAS was modified to account for increased soil moisture 

due to irrigation. NLDAS does not account for added soil moisture due to irrigation (Xia et al. 

2012).Estimates of actual evapotranspiration (Eta) from the operational version of the Simple 

Surface Energy Balance model (SSEBop) were used as a proxy to the total applied irrigation 

water (Savoca et al. 2013). ETa  is used to represent the associated consumptive use and a 

portion of the applied irrigation water. An irrigation land cover map was used to identify 

irrigated land in the study area and the ETa was masked to include only the regions that were 

considered to be irrigated land. The irrigation season in the area spans from April 1 to October 

15. The added soil moisture from irrigation was assumed to only occur during this period. It was 

determined that plant canopy storage output within NLDAS was considerably smaller than the 

GRACE TWS output. Thus, the biomass term (BM) in equations 2 and 3 is neglected in deriving 

the groundwater storage signal. Surface water influences to the GRACE signal were attributed to 

reservoir storage. Approximately 18 reservoirs were identified and the corresponding storage 

records were obtained.  

Snow and ice are represented as snow water equivalent (SWE) in equation 4-2 and 4-3. 

Many studies use GLDAS for SWE input (e.g. (Huang et al. 2016; Chen et al. 2016; Henry et al. 

2011; Yang and Chen 2015) and others use NLDAS (e.g. (Wouters et al. 2014; Breña Naranjo et 

al. 2014; Long et al. 2013; Scanlon et al. 2012b). Comparison of the 12.5 km cell size of NLDAS 

with Snow Telemetry (SNOTEL) sites in the Rocky Mountains, which are point measurement, 
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indicates NLDAS under predicts SWE. In this study, the Snow Data Assimilation System 

(SNODAS) data product is chosen to represent SWE. SNODAS is a 1 km gridded snow product 

that is used instead of NLDAS due to better agreement with SNOTEL sites. Because SNODAS’s 

period of record begins in October of 2003, SWE values from NLDAS from April 2002 – 

September 2003 were multiplied by a calculated scaling factor (for better agreement with 

SNOTEL sites) and used for the missing record in SNODAS. This was done to have SWE data 

corresponding to the entire GRACE record, which began in April 2002. SNODAS is then 

upscaled to match the GRACE resolution. Soil moisture, snow water equivalent, and reservoir 

storage are all converted to anomalies to be comparable to GRACE. Both the 2004 – 2009 and 

2002 – 2013 averages are subtracted from values for each component.  

4.5 Results and Discussion 

4.5.1 GRACE Total Water Storage 

The GRACE Total Water Storage (TWS) signal (Figure 4-2) shows annual cycles with 

highs and lows following the winter and summer months, respectively. The TWS is represented 

as an average of the nine pixel study area (Figure 4-1). The TWS fluctuated around baseline 

from 2002 – 2008 before overall increasing until 2011. After 2011, TWS decreases to be below 

baseline for the rest of the study period. Of all the water storage components considered in 

Equation 4-3, the dominant signal comes from soil moisture (Figure 4-2). This is possibly due to 

large evapotranspiration (ET) losses across the study area. ET fluxes commonly exceed 

precipitation, leading to greater fluctuations in soil moisture. The soil moisture anomaly closely 

tracks the GRACE TWS seasonal signal and position relative to baseline conditions. Several of 

the annual amplitudes show a slight lag in the soil moisture anomaly relative to GRACE TWS. 
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Soil moisture from NLDAS is adjusted to account for additional soil moisture from irrigation 

that is not accounted for in the model. The other signals (i.e. reservoir storage, snow water 

equivalent) make up only a small component of the GRACE TWS signal. GRACE  

 

Figure 4-2 Monthly GRACE TWS changes (in cm) and monthly soil moisture anomaly (in cm) 

across the study area. 

 

4.5.2 Groundwater Storage  

The monthly changes in GRACE derived groundwater storage are shown in Figure 4-3 

(in cm) and represents the average groundwater signal across the nine-pixel study area. The 

results generally show higher rates of depletion, or anomaly decreases, during times of extreme 

and exceptional drought. In the case of the 2012 – 2013 drought period, groundwater anomalies 

continue to decrease until early 2015. The anomaly fluctuates around baseline for much of the 
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period of record, except for after mid-2013. The overall linear trend from 2002 – 2016 shows 0.3 

cm/year decrease in levels. However, prior to 2014, the long-term rate of depletion was 0.1 

cm/year. During the extended drought from 2002 – 2008, linear rates of groundwater depletion 

amounted to about 0.5 cm/year. From a volumetric perspective, across the DBAS, the trend from 

2002 – 2016 equates to ~0.07 km3/year depletion. The long-term depletion rate prior to 2014 was 

~0.03 km3/year.  

 

 

Figure 4-3 Monthly GRACE derived groundwater (GW) changes (in cm) shown in the bottom 

plot are compared to the U.S. Drought Monitor (top) across the study area. The U.S. Drought 

monitor represents the percent of the study area that is within a given drought index. 

 

4.5.3 Comparison to Groundwater Well Observations 

Groundwater wells were first compared as a normalized groundwater levels (Figure 4-4). 

Comparisons of the water-levels for the cumulative well observations for all aquifers are 

consistent with the increasing and decreasing patterns of the GRACE derived groundwater 

signal. Individually, the normalized levels do not appear to match the GRACE signal for a given 
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aquifer, but do have periods were the trends match. The depletion trends in the Denver Aquifer 

after 2012 appear to strongly influence the declines that the GRACE derived groundwater signal 

also detects. Because the cumulative normalized well observations show similar trends as the 

GRACE derived groundwater signal, further analysis is conducted on using storativities and 

confined versus unconfined wells to better understand the potential for GRACE to help infer 

temporal changes in levels.  

 

Figure 4-4 Normalized groundwater levels for each of the five aquifers in the study area 

compared to GRACE derived groundwater.  

 

Groundwater wells with temporal gaps filled using spatio-temporal kriging were used 

next better understand the contribution of each aquifer on the total signal represented by the 
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GRACE (Figure 4-5). Wells in both unconfined and confined areas were included in the analysis 

and a range of storativities were used in the calculations to better understand the influence of the 

storativity parameter on the observed trends, considering that storativity equals specific yield for 

unconfined aquifers and equals specific storage multiplied by aquifer thickness for confined 

aquifers. The average anomaly produced from the individual well anomalies in a given aquifer is 

used to represent the aquifer specific signal. Results comparing the well observations with 

GRACE do not show similar trends and variations at the individual aquifer level (Figure 4-5). 

There are occasions though where the two time series being compared for a given aquifer portray 

similar increasing or decreasing signals. The groundwater anomalies using observational wells 

exhibit the largest variability for the Laramie-Fox Hills, Arapahoe, and Dawson aquifers. 

Groundwater fluctuations in these aquifers highlight the influence storativity has on the anomaly 

shape and magnitude of variations. These three aquifers also show a shift toward negative 

anomalies after around 2008. The groundwater anomalies for the Denver and South Platte 

Alluvial aquifer had small variations in time.  

The five aquifer anomalies were combined into one total anomaly that would 

theoretically represent the GRACE groundwater derived anomaly. The areas of each aquifer 

areas were used to weight each respective anomaly and the contribution towards the combined 

signal. The combined anomaly shows close resemblance to the anomaly of the Laramie-Fox 

Hills Aquifer, due to the Laramie-Fox Hills anomaly receiving the largest weight based on area. 

The combined anomaly bears some resemblance of the GRACE groundwater signal. Both show 

decreasing levels from 2002 – 2007. After 2007, the GRACE groundwater anomaly generally 

increases and hovers around baseline. The combined groundwater anomaly continues to decrease 

until about 2009 before increasing. At 2012, both show shift towards decreasing levels until 
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2015. However, the combined anomaly has poorer agreement than did the combined normalized 

groundwater levels. This suggests possible misrepresentation through using both confined and 

unconfined aquifers, incorrectly applying area weights based on aquifer size, or improper 

storativity values. 

 

 

Figure 4-5 Monthly GRACE derived groundwater anomaly compared to aquifer specific 

anomalies for the four DBAS aquifers, the South Platte Alluvial Aquifer, and the DBAS 

combined. The color range of each aquifer represents the range of possible anomalies that can be 

calculated which are depended on the storativity values chosen to represent the groundwater well 

data. 
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The range of anomalies were calculated with specific yields between 0.04 – 0.25 and 

confined storativities from 0.00002 – 0.008. In each aquifer, the average anomaly was dominated 

by wells in unconfined portions of the aquifer due to the specific yields being used instead of 

confined storativities in the calculations. Use of smaller specific yields leads to anomalies that 

are closer in magnitude to the GRACE derived groundwater anomaly.  

Each aquifer contained groundwater-well water level observations that were increasing, 

deceasing, or relatively stable. Of these wells, several had anomalies that closely resembled the  

 

 

Figure 4-6 GRACE derived groundwater anomaly compared to select groundwater well time 

series from each aquifer in study area, represented as a normalized groundwater level anomaly 

(i.e. long-term mean removed and divided by standard deviation). The combined average and 

median anomaly of the select wells in each aquifer are also shown. 
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GRACE derived groundwater anomaly. One well from each aquifer was selected and normalized 

by the standard deviations of the time series. Each well was selected based on visual inspection 

of the trends. This was simply done as an exploratory analysis to see if well selection played a 

role on agreement or disagreement to GRACE derived groundwater anomalies. The average and 

median signal from the group of wells was calculated and plotted for comparison to the GRACE 

groundwater anomaly (Figure 4-6). The average and median time series portrays a similar signal 

to the GRACE groundwater anomaly. There is a decreasing trend from 2002 – 2008, an 

increasing trend from 2008 – 2012, and then a decreasing trend from 2012 – 2014. This 

highlights the high influence well selection has on agreement or disagreement to the GRACE 

groundwater anomaly.  

4.5.4 Limitations and Uncertainty 

There are several limitations and uncertainties inherent in the analysis of GRACE for 

applications at the aquifer-scale. Comparison for the accuracy and validity of GRACE was 

restricted solely to time series analysis of groundwater-level observation wells. Many GRACE 

studies that compare to observation well data utilize well time series. Due to the sparse nature of 

groundwater wells in each aquifer and irregular temporal measurements, we decided to not 

compare GRACE to estimated changes in an aquifer wide potentiometric surface at this time.  

The evaluation of GRACE groundwater estimates in this study utilized the common 

GRACE Level 3 post-processed outputs that are scaled using CLM4-baed gain factors (Landerer 

and Swenson 2012). Scaling factors are used to restore signal attenuation and bias that occurs 

during postprocessing techniques that result from spatial leakage (Swenson and Wahr 2002; 

Landerer and Swenson 2012). The scaling factors are generally applied across all temporal 

periods to restore lost signal. However, it is possible that using the same scaling factor across all 
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temporal periods is inappropriate for our study area. These factors may also not be appropriate if 

there is no significant spatial correlation of hydrological signals that can be corrected by a simple 

factor (Nanteza et al. 2016).  

In this study, no additional postprocessing was conducted to either GRACE data or data 

from the other hydrologic components. Some studies apply similar processing techniques that are 

used for GRACE (i.e. spherical harmonics truncated at degree 60, decorrelation filter to destrip, 

and 200 – 3—km Gaussian filter to smooth) to the other hydrologic components (Longuevergne 

et al. 2010; Nanteza et al. 2016; Döll et al. 2014). Other studies incorporate a priori information 

of point mass changes inside and outside of a basin that may cause leakage and influence the 

GRACE results (Longuevergne et al. 2013). Some error in this study could be due to the lack of 

accounting of outside influences and not incorporating a priori spatial information for point 

masses (e.g. reservoirs) as suggested by (Longuevergne et al. 2013). 

One of the goals of this study was to evaluate the application of GRACE at the aquifer–

scale. Despite numerous publications in the literature for applying GRACE below 200,000 km2, 

it is generally recommended to not use GRACE at smaller scales. However, it is possible that 

some useful information about water storage can be inferred. The nine pixels in used in the study 

have an area ~86,000 km2. Disagreement with aggregated observational well data and utilizing 

storativities could be due to several reasons. First, the GRACE TWS signal represented over the 

nine pixel area might be more representative of the larger regional signal and to some extent 

attenuated from the larger decreases in the five aquifers. Therefore when the other hydrologic 

components were removed, the derived groundwater signal could be biased low if the localized 

signal were in actuality much higher than the regional signal. The second reason for 

disagreement might have to do with the distribution of observational well data. Because the 
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dynamics of individual wells in the DBAS and South Platte Alluvial Aquifer are quite variable, it 

is possible that we didn’t have a large enough dataset from which to generate representative 

aquifer changes, that would correspond to average conditions for the areal size of a GRACE 

pixel, especially when separating confined from unconfined wells as was done in our analysis. 

Confined aquifer levels may not be represented by GRACE because even under depletion, the 

aquifer remains saturated, albeit at lower pressure and doesn’t constitute enough mass 

redistribution to be detected (Alley 2016). However, in each aquifer, there existed groundwater 

wells that had similar water-level patterns as GRACE derived groundwater. When plotting these 

wells versus GRACE, there was much better agreement. This suggests that when making 

comparisons to GRACE, not all groundwater well are appropriate to use for comparison. Aquifer 

wide variabilities in storativity (Longuevergne et al. 2013) are another influence on the 

disagreement. One storativity value is attributed to each well within a designated aquifer due to 

lack of spatial storativity data. Having well specific storativities might improve determining 

accurate anomaly changes for each well by allowing an area-weighted analysis of spatially 

variable storativity values. Different aquifer weightings schemes were also used when 

determining the combined groundwater anomaly signal for the ground-based data. Weighting the 

contribution by aquifer size led to the results presented. Finally, it was determined that soil 

moisture was the largest contributor to the GRACE TWS signal. We applied a correction the 

NLDAS soil moisture to account for irrigated agriculture between the irrigation season between 

April 1 and October 15. We assumed that actual evapotranspiration (ETa) could be used as a 

proxy to represent a portion of the applied irrigation water that would remain as added soil 

moisture. We did not apply any scaling to reduce the ETa so that less added soil moisture would 

be considered. Our current approach assumed a shallow soil moisture profile (200 cm) is 
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representative of the entire vadose zone. This might be true for areas with deep vadose zones that 

are well drained, but for shallower vadose zones, this may not be true. The vadose zones across 

the DBAS and South Platte Alluvial Aquifer are quite variable and may be between 5 to 100 ft. 

Accounting for monthly soil moisture fluctuations below 200 cm may be important for 

accurately representing GRACE derived groundwater changes.  

4.6 Conclusions  

Over the past decades, groundwater depletion in the Denver Basin Aquifers has increased 

as population rapidly grown and water withdrawals increased. Groundwater well data across the 

DBAS is irregular with many spatial and temporal gaps and presents challenges for assessing the 

dynamics and long-term sustainability of groundwater resources in the area. The GRACE 

satellites offer a unique opportunity to assess water resources due to the high temporal frequency 

of data collection and big picture view. Although GRACE does have limitations, some are 

different than those of using groundwater level and aquifer characterization data to assess 

groundwater storage changes in an aquifer. In this study, the accuracy and validity of GRACE 

over the Denver Basin Aquifer System is assessed from 2002 – 2016.  

At this point it is uncertain whether or not GRACE can directly be applied to understand 

groundwater resources in the DBAS. A large number of uncertainties exist in processing 

GRACE data and correctly removing the various hydrologic storage components. While 

reasonable agreement was shown using normalized groundwater levels, much poorer agreement 

to GRACE was shown when separating unconfined from confined wells and applying various 

storativities. Further analysis should be done in determining aquifer wide storativities and 

improving the representative time series for each aquifer. GRACE still may useful if the other 
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uncertainties and proper aquifer representation can be determined for more accurate 

comparisons.  
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CHAPTER 5 

CONCLUSIONS 

Most aquifers in the arid west, as well as in many other locations across the globe, are 

facing serious questions about future sustainability (e.g. (Famiglietti 2014; Konikow 2015; 

Scanlon et al. 2012a). Typically, sustainability is evaluated by analyzing groundwater well 

records to determine if water levels can be sustained into the future under certain use scenarios. 

Of course, water levels only tell part of the story, because groundwater availability actually 

depends on future projects of groundwater storage, which is highly uncertain. In addition, 

analysis of water well data as it is typically conducted has serious limitations. Data are typically 

spatially and temporally sparse relative to the data density desired for aquifer-scale analysis. 

Another issue revolves around aquifer storativities, which are fundamental to understanding the 

response of an aquifer to water-level and storage changes. However the availability and 

reliability of storativity data leads to further uncertainties in groundwater storage and 

sustainability calculations. The problems with missing temporal data from water wells in 

particular has not been addressed in much detail, yet can cause important misinterpretation with 

regard to groundwater sustainability. 

This research aims to mitigate some of the problems with current approaches to analyzing 

water well data by incorporating a new method of spatial-temporal analysis, with particular 

emphasis on addressing missing temporal data. In addition to this proposed method, we evaluate 

the ability of GRACE satellite data to improve the temporal sustainability analysis. Continual 

monitoring and assessment of aquifer dynamics is essential for long-term management and 

sustainability of groundwater resources. Assessing aquifer wide water-level and storage changes 
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using sparse datasets is not trivial because of the limited information being used to infer changes 

in a heterogeneous system without introducing unnecessary bias.  

In this dissertation a spatio-temporal kriging methodology is introduced which leverages 

data in space and time to minimize the temporal sparseness of data and understand changes in 

groundwater systems. The methodology is first illustrated using a case study in the Arapahoe 

Aquifer and is then expanded to all aquifers of the Denver Basin Aquifer System (DBAS). 

Remote sensing is utilized from the Gravity Recovery and Climate Experiment (GRACE) 

satellites to provide another perspective on determining groundwater storage changes. Results 

from this work provide a framework for monitoring and management of groundwater resources 

along the Colorado Front Range Urban Corridor as well as other water-stressed regions of the 

western U.S. 

5.1 Summary of Findings 

The following summarizes each objective of this dissertation, which are presented as a 

discussion of how the findings relate to the science questions.  

Objective 1: Evaluation of Spatio-Temporal Kriging to Predict Potentiometric Surfaces 

Science Question 1: Do estimated potentiometric surfaces using spatio-temporal kriging improve 

our understanding of groundwater sustainability than traditional methods of groundwater well 

data analysis (e.g., inverse distance weighting, point to raster) or methods that use only spatial 

kriging?  

Chapter 2 evaluates spatio-temporal kriging as an alternative interpolation method with 

the goal of improving the accuracy of potentiometric surface predictions. This study is only one 

of three other known studies identified in the literature to apply spatio-temporal kriging 
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specifically to a groundwater system. Our approach is different than the other studies in that we 

consider a different space-time model, apply the spatio-temporal approach at a much larger 

aquifer-scale, consider confined and unconfined areas, and utilize a linear regression to remove 

the trend component from the data. It is also the first known study of this type in the DBAS.  

The generated groundwater maps provide a visual and quantitative assessment of the 

uncertainty in predictions for groundwater levels for both spatial and spatio-temporal 

approaches. Potentiometric surfaces created through spatial kriging are subject to unrealistic 

changes in hydraulic head and can lead to an erroneous analysis of spatial ground water 

conditions for a specific time, and in particular to errors in a temporal analysis, problems that are 

common in sparsely monitored areas. Two likely causes exist for erroneous potentiometric 

surfaces created through traditional spatial kriging. First, the differences in spatial maps are a 

result of the wells used in the analysis, rather than the true differences in groundwater level data. 

This leads to problems when trying to understand changes because the fluctuations are attributed 

to the presence or absence of well data. Second, because temporal aggregation of data is 

sometimes used before traditional spatial kriging, well data with multiple measurements during 

the year are averaged and can lead to artificial levels being compared. Differences would then 

represent changes from an average condition, making interpretation of the change difficult to 

assess. Spatio-temporal kriging allows for smoother and more realistic groundwater changes to 

be represented. We assume the strength of the temporal and spatial dependence represented in 

the semivariogram and shape are the same for all locations over the study period. Spatio-

temporal kriging helps overcome some limitation of temporally sparse data, however, it cannot 

increase the spatial density beyond the original well locations used in the analysis. To increase 

the prediction accuracy for some areas, more spatial monitoring locations are needed. The cross-
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validation for the spatio-temporal approached predicted measured water level elevations much 

better than did the spatial kriging approach. Using neighboring temporal and spatial data 

improved the potentiometric surface predictions because more information was available to help 

infer an appropriate estimate.  

The Arapahoe Aquifer in the DBAS is used as a case study to highlight the benefits of 

spatio-temporal kriging. While rates of change have been variable over the 27 year study period, 

rates were the highest during the 2000s with areas of the aquifer experiencing up to 55 ft per year 

declines in levels. The west-central side of the aquifer shows the largest overall declines, with 

some declines up to 600 ft under the municipalities of Parker and Castle Rock.  

Objective 2: Evaluation of Groundwater Storage in the Denver Basin Aquifer System 

Chapter 3 focuses on applying the developed spatio-temporal kriging approach to 

understanding groundwater level and storage changes in the DBAS, any spatial patters, and the 

influence of the storativity parameter on volumetric estimates. This study presents the most 

current information and results for groundwater level and storage changes in DBAS.  

Science Question 2: How has groundwater storage changed for aquifers of the DBAS since 

1990?  

Each aquifer in the DBAS varies in overall depletion over the 27 year study period. 

Higher rates of depletion and larger storage declines occurred in the 1990s and 2000s. The 

cumulative groundwater depletions are highest for the Denver and Arapahoe Aquifers. Due to 

the larger declines in hydraulic head in these two aquifers, areas transitioned from confined to 

unconfined conditions, leading to higher calculated depletion volumes than would otherwise be 

calculated assuming confined conditions. Historically, these areas have been assumed to be 

confined. The higher rates of depletion began in the early 1990s for the Denver Aquifer, while 
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the Arapahoe Aquifer depletion rates increased in the 2000s. The Dawson and Laramie-Fox Hills 

Aquifers experience much less depletion. The Dawson Aquifer displays increasing and deceasing 

storage patters that follow drought and precipitation patterns. The Laramie-Fox Hills Aquifer 

displays steady declines in storage over the study period. However, the cumulative depletion 

volumes for the Laramie-Fox Hills Aquifer are likely larger due to predicted potentiometric 

surfaces being higher than the top boundary of the aquifer in areas thought to be unconfined, 

leading to a specific storage being erroneously used in the calculations instead of a specific yield. 

Due to the spatial sparseness in the data, few groundwater wells are located near the edges of the 

aquifer to help infer the predictions for this aquifer.   

Some areas of the DBAS aquifers do show increasing groundwater storage. In the 

Dawson Aquifer, the increases are located near Monument and west of Castle Rock and reach up 

to 0.1 km3 in areas. The Denver Aquifer also shows increases in storage south of Monument up 

to 0.03 km3. The Arapahoe and Laramie-Fox Hills Aquifers show increases near Highlands 

Ranch and to the northwest of Denver. The Highlands Ranch area is also the location of aquifer 

storage and recovery wells operated by Centennial Water and Sanitation District.  

Potentiometric surfaces by the end of 2016 indicate areas of the Denver and Arapahoe 

Aquifer are transitioning from confined to unconfined conditions. Results indicate that much of 

the Denver Aquifer’s eastern and western portions are unconfined and only a small area remains 

confined in the central region. In the Arapahoe Aquifer, the western side is starting to become 

unconfined and is also where the largest storage changes are occurring. The Laramie-Fox Hills 

Aquifer is still dominated by confining conditions. The west-central region is estimated to have 

up to 1,500 ft of hydraulic head above the upper confining unit. The actual unconfined nature of 

the aquifers must be carefully considered for future groundwater storage and sustainability 



101 
 

evaluations because quantifications using specific storage are likely to be much different than 

those that use specific yield. 

Science Question 3: Utilizing available storativity data, what is the variability in storage change 

estimates?  

Using median reported storativities from CDWR data, the estimated total DBAS 

depletion since 1990 is 36.6 km3 (~29.7 million AF) and represents ~15% of the total estimated 

recoverable groundwater. However, the variability of estimated change is quite large depending 

on the storativity value selected for each aquifer. The Dawson aquifer varies between ~1 - 7 km3 

cumulative depletion from 1990 to 2016. The Denver Aquifer ranges from ~5 – 55 km3, the 

Arapahoe Aquifer from ~3 – 34 km3, and the Laramie-Fox Hills aquifer from ~0.4 – 5.2 km3. 

These results highlight the importance of selecting a representative storativity when calculating 

volumetric storage changes. This study applied a single storativity, different for each aquifer, 

when calculating volumetric changes. This is common in many groundwater assessments. 

However, this research considered the uncertainty in storativity values, an uncommon practice in 

water resources evaluations.  The results highlight the importance of proper characterization of 

storativity and should be of high interest and importance for water managers. Clearly, an 

assessment of volumetric storage changes in the DBAS would benefit from better 

characterization of storativities and possibly even applying an area weighted approach. 

Comparison of estimated groundwater storage changes were variable when compared to results 

from a previous USGS Denver Basin modeling study (Paschke et al. 2011). The most noticeable 

differences occurred in data sparse areas. The highest agreement generally occurred for areas in 

the west-central portion of each aquifer under the municipalities of Castle Rock, Parker, and 

Denver and is likely due to a higher density of data. By 2003, it is estimated that a total of 24 
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km3 had been depleted from the DBAS aquifers, which is 24 times larger than the cumulative 

depletions predicted by the USGS model.  

Science Question 4: Can we identify the main drivers for groundwater storage changes and how 

these impact aquifer sustainability?  

A combination of population growth, reduced precipitation and recharge, and 

groundwater pumping are likely the largest factors contributing to groundwater depletion and 

reduced storage. The population across the Colorado Front Range Urban Corridor has increased 

by 73% since 1990, and now over 4.5 million people reside in the area. Municipalities with 

limited to no surface water access (e.g. Parker, Castle Rock) in the 1990s and 2000s relied 

heavily on groundwater from the DBAS and are also the areas overlying the largest water-level 

declines. Population is expected to continue to grow, further adding stress on limited resources. 

Precipitation departures from the area normal show reduced levels in the 2000s with recovery by 

2014. Severe to exceptional drought was common in the early 2000s and 2012, likely leading to 

increased groundwater reliance because of reduced surface water access. Groundwater well 

development was also large during the study period. Over 18,000 wells were constructed 

between 1993 and 2007 and by 2016, at least 30,000 wells withdrew water from the DBAS. It is 

difficult to identify the relative contributions for each of these factors. However, obtaining better 

information and data on pumping volumes is necessary to better refine these contributions.  

Objective 3: Evaluation of GRACE at the Aquifer-Scale  

Science Question 5: Does analysis of groundwater storage trends from GRACE improve our 

understanding of groundwater availability/storage at the aquifer-scale compared to those 

determined from ground-based data for the DBAS?  
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Chapter 4 evaluates the applicability and usefulness of using the GRACE satellites at the 

aquifer-scale. Based on the altitude of the satellites (~450 km), the footprint of GRACE is 

estimated to be ~200,000 km2 and have an accuracy of 1.5 cm for larger footprints (Famiglietti 

and Rodell 2013). Over the past several years, there has been much debate on the usefulness of 

GRACE at scales relevant for water managers, as well as using GRACE below the recommended 

footprint (Alley and Konikow 2015).  

At this point it is uncertain whether or not GRACE improves our understanding of 

groundwater availability in the DBAS. While the general trends from an initial normalized 

groundwater level approach closely matched the observed trends from the GRACE derived 

groundwater anomaly, an approach that applied spatio-temporal kriging to fill temporal gaps in 

the data and utilize aquifer specific storativities had much poorer performance. A large number 

of uncertainties were identified and possible a source of error. It is possible that the GRACE 

TWS used to derive the groundwater anomalies represents a regionally attenuated signal that 

does not fully capture the changes across the DBAS. Soil moisture appeared to heavily influence 

GRACE TWS. The variability is soil moisture was only accounted for 200 cm in depth from the 

surface and actual evapotranspiration was used as a proxy for added soil moisture due to 

irrigation. Further work should focus on refining soil moisture estimates. In addition, further 

analysis should focus on determining aquifer wide storativities and determining a better method 

to combine the representative time series for each aquifer into a composite signal. GRACE still 

may useful if the uncertainties can be corrected and proper methods for combining the composite 

aquifer signal can be determined.  
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5.2 Concluding Remarks  

The work presented in this dissertation highlights the benefits and advantages that spatio-

temporal kriging and remote sensing products can contribute to groundwater sustainability 

assessments. For spatio-temporal kriging, future work should focus on the impacts of model 

selection, proper grid cell size for predictions, inclusion of spatio-temporal semivariograms that 

account for spatial anisotropy, identifying additional predictors of groundwater levels, and trend 

removal techniques on predicted potentiometric surfaces. In the DBAS, groundwater wells 

should be added in areas that exhibit the highest variance to optimize the monitoring network 

and provide more certainty of hydraulic heads in data sparse areas. Additionally, more data is 

needed on the spatial distribution of storativities. While it is unknown at this point whether or not 

GRACE helps improve our understanding of groundwater availability at the aquifer-scale, future 

work should focus on addressing the uncertainties and sources of error in comparing GRACE to 

ground-based data. The results of this work fortuitously highlight the possibilities of exploring 

land subsidence across the DBAS, which potentially could be attributed to groundwater 

withdrawals, especially near Castle Rock and Parker. Multiple imputation techniques could be 

added to the spatio-temporal kriging approach to explore estimates of missing data to help 

capture uncertainty, increase data density, and further improve confidence in estimates. Finally, 

future work could explore possible influences of climate signals such as El Niño Southern 

Oscillation (ENSO) or Pacific Decadal Oscillation (PDO) on long-term groundwater availability 

and sustainability in the DBAS.  
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APPENDIX A  

SUPPORTING INFORMATION FOR CHAPTER 3 

A.1 Spatio-Temporal Semivariogram Plots and Tables 

Groundwater levels are assumed to follow a random function model, consisting of a trend 

and residual component that can be modeled separately. The global trend in groundwater levels 

is assumed constant in time and consists of only spatial components. A regression model is 

constructed for each aquifer and contains various combinations of predictors. The trend 

calculated from the regression model is subtracted from the groundwater level observations to 

yield the residual component. The resulting residual component is used to construct the spatio-

temporal semivariogram from which a model is fit and used to infer the kriging. The predicted 

groundwater levels are taken as the sum of the trend component and the kriged residuals. 

The sample spatio-temporal semivariograms determined from the groundwater level 

residuals and the sum-metric model fit to the residuals are shown in the following plots for each 

aquifer. The parameters for each fitted sum-metric model are shown in the following tables.    

A.1.1 Dawson Aquifer 

The groundwater level trend (m) is calculated as,  ݉ሺݏሻ = Ͳ.ʹͶ͵ͺ�ܶݎ݂݁�ݑݍ + Ͳ.ͲͳͶͲ͵�݊ − ͳͲͲ�ܽݐ + ͺͺ.ʹ�ܽݐଶ + ͵Ͳ͵�ܽݐଷ −ʹʹͶ�ܽݐସ − ʹ͵ͺ   (A-1) 

where AquiferTop is the top elevation contour of the aquifer at the longitude (Lon) and latitude 

(Lat) of spatial location s. 
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Figure A-1 Sample (left) and fitted (right) spatio-temporal semivariogram surfaces of the 

residuals for the Dawson Aquifer. 

 

Table A-1 Parameters for fitted sum-metric model semivariogram for the Dawson Aquifer. 

 Model pSill Range Nugget stAni RMSE MAE 

Spatial Exponential 14127 3185 0 

29 4811 3815 Temporal Linear 1314 156 0 

Joint Exponential 4994 13435 0 

 

A.1.2 Denver Aquifer 

The groundwater level trend (m) is calculated as,  ݉ሺݏሻ = Ͷͳͻ.Ͳ���ʹ − ͵ͻ.ͻͶ���ʹଶ − ͵ͻͷ.ʹ���ʹଷ − ͵ͷͷ.Ͳͳ�݊ − ͳʹ.ͳͶ�݊ଶ −ͳͻͲͲ.Ͷ�ܽݐ − ͻͻ.ͺͷ�ܽݐଶ + ͵ͻͶ.ͺ�ܽݐଷ − ͷͻͲͷ.    (A-2) 

where PCA2 is Principal Component 2 from a Principal Component Analysis using land surface 

and aquifer top elevations at the longitude (Lon) and latitude (Lat) of spatial location s.  
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Figure A-2 Sample (left) and fitted (right) spatio-temporal semivariogram surfaces of the 

residuals for the Denver Aquifer. 

 

Table A-2 Parameters for fitted sum-metric model semivariogram for the Denver Aquifer. 

 Model pSill Range Nugget stAni RMSE MAE 

Spatial Spherical 15341 10731 29720 

16 13273 10258 Temporal Gaussian 4931 244 0 

Joint Exponential 9821 25091 1600 

 

A.1.3 Arapahoe Aquifer 

The groundwater level trend (m) is calculated as,  ݉ሺݏሻ = .ͻͳͻ���ͳ + Ͳ.ͲͲ͵ͷͲͻ�݊ + ʹͷͲͶ    (A-3) 

where PCA1 is Principal Component 1 from a Principal Component Analysis using land surface 

and aquifer top elevations at the longitude (Lon) of spatial location s.  
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Figure A-3 Sample (left) and fitted (right) spatio-temporal semivariogram surfaces of the 

residuals for the Arapahoe Aquifer 

 

Table A-3 Parameters for fitted sum-metric model semivariogram for the Arapahoe Aquifer 

 Model pSill Range Nugget stAni RMSE MAE 

Spatial Spherical 18341 8121 1150 

175 6883 4928 Temporal Gaussian 7611 290 0 

Joint Spherical 13841 46711 0 

 

A.1.4 Laramie-Fox Hills Aquifer 

The groundwater level trend is calculated as,  ݉ሺݏሻ = .ͳͷ���ͳ − Ͳ.ͲͲͳͺʹ�݊ + ͷ͵͵Ͳ     (A-4) 

where PCA1 is Principal Component 1 from a Principal Component Analysis using land surface 

and aquifer top elevations at the longitude (Lon) of spatial location s.  

 



123 
 

 

Figure A-4 Sample (left) and fitted (right) spatio-temporal semivariogram surfaces of the 

residuals for the Laramie-Fox Hills Aquifer. 

 

Table A-4 Parameters for fitted sum-metric model semivariogram for the Laramie-Fox Hills 

Aquifer. 

 Model pSill Range Nugget stAni RMSE MAE 

Spatial Spherical 38281 31781 5020 

280 10821 9250 Temporal Gaussian 4821 145 640 

Joint Spherical 2661 34271 470 

 

A.2 Kriging Cross-Validation Plots 

“Leave-one-out” cross-validation was used to assess the kriging model performance that 

would lead to the best predictions. The cross-validation is applied to the existing groundwater 

level samples. During cross-validation, each spatio-temporal data location is removed one at a 

time, while the remaining dataset are used to predict the associated value. Measured and 

predicted groundwater elevations are then compared for goodness of fit. 
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A.2.1 Dawson Aquifer 

 

Figure A-5 Dawson Aquifer cross-validation scatterplot of potentiometric surface elevations at 

well observation locations showing the measured surface elevation compared to the predicted 

elevation using spatio-temporal kriging. 

 

A.2.2 Denver Aquifer 

 

Figure A-6 Denver Aquifer cross-validation scatterplot of potentiometric surface elevations at 

well observation locations showing the measured surface elevation compared to the predicted 

elevation using spatio-temporal kriging. 
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A.2.3 Arapahoe Aquifer 

 

Figure A-7 Arapahoe Aquifer cross-validation scatterplot of potentiometric surface elevations at 

well observation locations showing the measured surface elevation compared to the predicted 

elevation using spatio-temporal kriging. 

 

A.2.4 Laramie-Fox Hills Aquifer 

 

Figure A-8 Laramie-Fox Hills Aquifer cross-validation scatterplot of potentiometric surface 

elevations at well observation locations showing the measured surface elevation compared to the 

predicted elevation using spatio-temporal kriging. 
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A.3 Potentiometric Surfaces and Standard Deviations for Select Years  

A.3.1 Dawson Aquifer 

 

Figure A-9 Predicted potentiometric surfaces (left column) and standard deviation maps (right 

column) for the Dawson Aquifer. All maps shown are for the month of April in select years. The 

black ‘+’ on the standard deviation maps show the locations of groundwater wells used in the 
analysis. 
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A.3.2 Denver Aquifer 

 

Figure A-10 Predicted potentiometric surfaces (left column) and standard deviation maps (right 

column) for the Denver Aquifer. All maps shown are for the month of April in select years. The 

black ‘+’ on the standard deviation maps show the locations of groundwater wells used in the 
analysis. 
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A.3.3 Arapahoe Aquifer 

 

Figure A-11 Predicted potentiometric surfaces (left column) and standard deviation maps (right 

column) for the Arapahoe Aquifer. All maps shown are for the month of April in select years. 

The black ‘+’ on the standard deviation maps show the locations of groundwater wells used in 

the analysis. 
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A.3.4 Laramie-Fox Hills Aquifer 

 

Figure A-12 Predicted potentiometric surfaces (left column) and standard deviation maps (right 

column) for the Laramie-Fox Hills Aquifer. All maps shown are for the month of April in select 

years. The black ‘+’ on the standard deviation maps show the locations of groundwater wells 
used in the analysis. 
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A.4 Aquifer Properties (Sy and Ssb) Locations  

A.4.1 Dawson Aquifer 

 

Figure A-13 Location of aquifer data used in storage calculations for the Dawson Aquifer. 

A.4.2 Denver Aquifer 

 

Figure A-14 Location of aquifer data used in storage calculations for the Denver Aquifer. 
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A.4.3 Arapahoe Aquifer  

 

Figure A-15 Location of aquifer data used in storage calculations for the Arapahoe Aquifer. 

A.4.4 Laramie-Fox Hills Aquifer  

 

Figure A-16 Location of aquifer data used in storage calculations for the Laramie-Fox Hills 

Aquifer. 


