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ABSTRACT

With the recent advances in seismic data acquisition, such aswide-azimuth, long-o!set

surveys and low-frequency sources, full-waveform inversion (FWI) has become an e"cient

tool in building high-resolution subsurface models. Conventional FWI relies mainly on diving

waves to update the low-wavenumber components of the background model. However, such

FWI algorithms may fail to provide a satisfactory model update for regions probed primarily

by reßected waves. This typically occurs for deep target zones where the conventional FWI

updates mostly the high-wavenumber model components due to the absence of diving waves.

Reßection waveform inversion (RWI) has been developed to retrieve the intermediate-to-long

wavelength model components in those deeper regions from reßection energy.

In this thesis, I highlight the limitations of conventional waveform inversion whenap-

plied to reßections-dominated seismic data and propose a newimplementation of RWI for

acoustic VTI (transversely isotropic with a vertical symmetryaxis) media. I extend the

idea of scale separation between the background and perturbation models to VTI media and

use an optimized parameterization to mitigate parameter trade-o!s in RWI. The proposed

workßow repeatedly alternates between updating the long-wavelength model components by

Þxing the perturbation model and the shorter-wavelength, migration-based reßectivity up-

date. I develop an hierarchical two-stage approach that operates with the P-wave zero-dip

normal-moveout velocityVnmo and anisotropy coe"cients ! and " . At the Þrst stage,Vnmo is

estimated by applying the Born approximation to a perturbation model in! to compute the

corresponding reßection data. Although the algorithm does not invert for ! , this parameter

helps improve the amplitude Þt for the employed acoustic model that ignores the elastic

nature of the subsurface. At the second stage, the parameter" , which can be constrained

by far-o!set data, is estimated from the obtained perturbation model in Vnmo. The pro-

posed 2D algorithm is tested on a horizontally layered VTI medium and the VTI Marmousi
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model. Application of a temporal correlation-based objective function signiÞcantly improves

recovery of the long-wavelength" -component, as demonstrated on the Marmousi model.
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CHAPTER 1

INTRODUCTION

Conventional seismic imaging relies on a scale separation between the macro-velocity

model (long-wavelength components) built by migration velocity analysis or reßection to-

mography and reßectivity (short-wavelength components) obtained by migration (Gazdag,

1978; Stolt, 1978; Baysal et al., 1983; Yilmaz, 2001). FWI attempts to Þll this scaling gap

by integrating the processes of macro-velocity model buildingand migration into a single

workßow when low frequency, long-o!set, wide-azimuth data are available.

Over the past decade, full-waveform inversion (FWI) has emerged as an e"cient data-

Þtting technique capable of building high-resolution velocity models (Lailly 1983; Tarantola

1984; Pratt et al., 1998; Virieux and Operto, 2009). FWI seeks to exploit the information in

the waveforms provided by diving waves, precritical and, sometimes, postcritical reßections.

Conventional FWI is mainly driven by the contributions of diving waves that help reconstruct

the low-to-intermediate wavenumber part of the velocity model. The penetration depth of

diving waves is controlled by the velocity Þeld, the maximum source-receiver o!set, and the

frequency of the source. For most conventional streamer surveys, diving waves illuminate

only shallow layers. At these depths, the gradient of the conventional FWI obtained by

correlating the forward and adjoint waveÞelds produces a high-wavenumber update, asin

least-squares migration. However, low-to-intermediate wavenumbers do not get updated for

deep targets without including reßections.

Several image-domain methods designed to retrieve the macro-velocity model from re-

ßection data have been proposed (Symes and Carazzone, 1991; Sava and Biondi, 2004;

Yang and Sava 2011; Almomin and Biondi, 2012; Biondi and Almomin, 2012). These ap-

proaches operate in the extended domain and improve the focusing of reßections. However,

image-domain inversion produces relatively low-resolution models and are computationally
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expensive. These limitations can be overcome by mixed image/data domain approaches that

yield better images that contain higher-resolution features (Sun and Symes, 2012; Diaz et

al., 2013).

FWI is a highly nonlinear inversion technique and generally requires low-frequency data

and a su"ciently accurate initial model, so that the modeled events are not shifted by more

than half a period with respect to the observed events (i.e., data are not cycle-skipped). Most

existing FWI algorithms use a least-squares objective function, which may have multiple

local minima, especially when reßected waves dominate the data. An initial model not

prone to cycle-skipping can be obtained by kinematic methods, such as migration-based

traveltime tomography (Chavent et al., 1994; Cl«ement et al., 2001; Plessix et al., 1995) and

reßection tomography (Wang and Tsvankin, 2013a,b). Ma and Hale (2013) apply waveform

tomography to reßection data for long-wavelength velocity recovery using dynamic warping.

In the framework of FWI, Xu et al. (2012) develop an algorithm similar to migration-

based traveltime tomography, which is called reßection-waveform inversion (RWI) and is

designed to invert reßection data for the long-wavelength components of the velocity model.

A migration/demigration approach (Zhou et al., 2012) can be employed to update the back-

ground model along the source and receiver wavepath. The mainidea behind RWI is a

scale separation between the macro-velocity model and reßectivity. Such a separation leads

to a two-step workßow which repeatedly alternates between updating the long-wavelength

component by Þxing the reßectivity (or the perturbation) model and the reßectivity update

obtained by migration. S. Wang et al. (2013) implement RWI in the frequency domain and

demonstrate that low-frequency data are as essential for RWIas they are for conventional

FWI.

A correlation-based objective function that can handle phase delays larger than half a

period may alleviate the nonlinearity of the inverse problem (Brossier et al., 2015; H. Wang

et al., 2015; Chi et al., 2015). Another way to build the long-wavelength components of the

model involves the waveÞeld decomposition method (Tang et al., 2013; F. Wang et al., 2013;
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Alkhalifah, 2014; Wu and Alkhalifah, 2014a), in which the forward- and backward-scattering

components are separated in the sensitivity kernel. Integrating MVA and FWI using a hybrid

objective function helps estimate both the background and perturbed models simultaneously

(Biondi and Almomin, 2013a; Alkhalifah and Wu, 2015). In addition, combining diving and

reßected waves helps overcome the cycle-skipping problem and build a reliable macromodel

for both shallow and deep targets (Zhou et al., 2015; Wu and Alkhalifah, 2015, 2016).

However, most existing RWI implementations are limited to isotropic models, which are

often incapable of matching even the kinematics of seismic arrivals, especially at far o!-

sets where anisotropy tends to have the largest impact on wave propagation. Incorporating

anisotropy into the inversion scheme leads to improved dataÞtting, which in turn results

in better convergence towards the global minimum of the objective function (Plessix 2010;

Lee et al., 2010; Vigh et al., 2010). A key issue in anisotropicinversion is its multiparam-

eter nature, which leads to trade-o!s. In the framework of RWI, an appropriate choice of

the medium parameters is essential in improving the resolution and reducing the inherent

parameter trade-o!s.

A practical implementation of anisotropic RWI should take into account the sensitivity

of data to di!erent parameters as a function of the scatteringangle. Radiation patterns

are an important tool to study the amplitude variation of waves scattered by parameter

perturbations. Gholami et al. (2013) perform numerical analysis of the radiation patterns for

acoustic VTI media. Alkhalifah and Plessix (2014) investigate radiation patterns analytically

and show that a set that includesVnmo, " , and ! is suitable for inversion of high-quality

reßections.

This thesis is divided into four parts and organized as follows. In Chapter 2, I start by

describing the pseudoacoustic wave equation for VTI media. Because the pseudoacoustic

wave operator is not self-adjoint, I discuss both the forward andadjoint modeling operators.

The modeling procedure and waveÞeld properties are illustrated using a 2D horizontally

layered model with a VTI background. The modeling results helpunderstand the basic

3



steps involved in reßection waveform inversion.

In Chapter 3, I discuss the radiation patterns for VTI media based on the model vector

m = { Vnmo, ", ! } . The radiation patterns are constructed by linearizing theconstant-density

pseudoacoustic wave equation using the single-scattering Born approximation and employing

a high-frequency approximation of the GreenÕs function forsmooth media. AsVnmo and "

largely control the kinematics of reßected P-waves in VTI media, the discussion of radiation

patterns is focused primarily on these two parameters. I also present the radiation pattern

for ! , which is used as an extra parameter to compensate for inadequate amplitude Þtting

due to the acoustic assumption. The numerical examples illustrate the radiation patterns for

a horizontal reßector. The reßection-type sensitivity kernel for the chosen parameterization

is also computed to corroborate the conclusions derived from the radiation patterns.

Chapter 4 Þrst highlights the limitations of the conventional FWI when seismic data are

dominated by reßections. A sensitivity kernel decomposition is employed to understand the

FWI and RWI sensitivity kernels. Then I present a new implementation of anisotropic RWI

based on a two-stage algorithm to invert reßection data for the parameters of VTI media.

The methodology is tested on a horizontally layered medium andthe VTI Marmousi model.

The results illustrate how the outcome of the inversion depends on model assumptions and

the choice of the objective function.

In chapter 5, I summarize the thesis results and provide recommendations for future

work.
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CHAPTER 2

PSEUDOACOUSTIC WAVEFIELD SIMULATOR

Using the elastic anisotropic wave equation in waveÞeld-based inversion methods remains

challenging due to the high computational cost and the complexities involved in wave-mode

separation. Therefore, anisotropic FWI is typically implemented using the pseudoacoustic

approximation of the elastic wave equation. Employing the P-wave dispersion relation,

Alkhalifah (2000) introduced the pseudoacoustic wave equation for transversely isotropic

(TI) media by setting the shear-wave velocity along the symmetry axis to zero. The P-wave

dispersion relation for a constant-density VTI medium is given by:

v2
n

÷k2
z(2v2

n" (k2
x + k2

y) ! %2) ! v2
n (2" + 1) %2(k2

x + k2
y) + %4 = 0, (2.1)

where ÷kz =
kz

1 + 2!
. This dispersion relation leads to a complicated fourth-order partial

di!erential equation (PDE) involving waveÞeld derivatives in space and time, including the

mixed space-time derivatives. Therefore, various systems of second-order coupled equations

for acoustic TI media have been developed (Fletcher et al., 2008, 2009; Fowler et al., 2010;

Duveneck and Bakker, 2011; Zhang et al., 2011). Pseudoacoustic wave equations have

been widely used in anisotropic waveform inversion because they signiÞcantly reduce the

computational cost, while accurately describing the P-wave kinematic signatures.

Here, the VTI medium is parameterized byVhor (the P-wave horizontal velocity), Vnmo

(the P-wave normal-moveout velocity) andVP 0 (the P-wave vertical velocity). This param-

eterization is related to the Thomsen parameters#, ! , and the anellipticity parameter "

[" = ( #! ! )/ (1 + 2! )] introduced by Alkhalifah and Tsvankin (1995) as:

Vnmo = VP 0

"
1 + 2!,

Vhor = VP 0

"
1 + 2#= Vnmo

!
1 + 2".

(2.2)
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According to Fletcher et al. (2009), pseudoacoustic wave propagation in 2D TI media can

be described by the following coupled equations:

&2up

&t2
= V 2

hor H2up + V 2
P 0H1uq,

&2uq

&t2
= V 2

nmoH2up + V 2
P 0H1uq,

(2.3)

whereup and uq are the solutions of the fourth-order PDE proposed by Alkhalifah (2000),

and H1 and H2 are di!erential operators:

H1 = sin2 $cos2 '
&2

&x2
+ cos2 $

&2

&z2
+ sin 2$cos'

&2

&x&z
,

H2 =
&2

&x2
+

&2

&z2
! H1;

(2.4)

$ is the angle between the symmetry axis and the vertical and' is the azimuth of the

symmetry axis. For simplicity, I use the VTI form ($ = 0 ! ) of equation 2.3:

&2up

&t2
= V 2

hor
&2up

&x2
+ V 2

P 0
&2uq

&z2
,

&2uq

&t2
= V 2

nmo
&2up

&x2
+ V 2

P 0
&2uq

&z2
.

(2.5)

The Þeldsup and uq include a shear-wave ÒartifactÓ caused by settingVS0 to zero. S-wave

artifacts can be eliminated by placing sources and receivers in a purely isotropic or elliptic

(" = 0) medium (Alkhalifah, 2000; Duveneck et al., 2008).

2.1 Forward modeling

The coupled system 2.5 can be written in a more compact form:

L
"

up
s

uq
s

#
!

"
f p

s
f q

s

#
= 0, (2.6)

where the subscript ÔsÕ stands for the state variables,up
s and uq

s are the forward-propagated

waveÞelds,f p
s and f q

s are the source terms, and the operatorL is deÞned as
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L =
"

V 2
hor&xx ! &tt V 2

P 0&zz

V 2
nmo&xx V 2

P 0&zz ! &tt

#
. (2.7)

2.2 Adjoint modeling

Since the pseudoacoustic operatorL is not self-adjoint, the adjoint wave equations do

not retain the same form and are solved di!erently from those used for forward modeling.

Here, the source terms and the output waveÞeld in the adjoint system have to be adjoint to

those in the forward system. The adjoint waveÞeld can be evaluated from:

L T

"
up

r
uq

r

#
!

"
dp

r
dq

r

#
= 0, (2.8)

where ÔrÕ stands for the adjoint variables,up
r and uq

r are the p and q adjoint waveÞelds,dp
r

and dq
r are the source terms for the adjoint equations, respectively, and the adjoint operator

L T is deÞned as:

L T =
"

&xx V 2
hor ! &tt &xx V 2

nmo
&zzV 2

P 0 &zzV 2
P 0 ! &tt

#
. (2.9)

2.3 Modeling example

Here, I apply both the forward and adjoint modeling algorithms to a simple 2D horizon-

tally layered VTI model (Figure 2.1). The Þnite-di!erence modeling is second-order in time

and fourth-order in space and employs a regular grid with the horizontal and vertical grid

spacing equal to 10 m. There is an elliptic layer (" = 0) at the top of the model to suppress

the SV artifacts for both the forward-propagated source waveÞeld and back-propagated ad-

joint waveÞeld. The model parameters satisfy the pseudoacoustic stability condition ( ## !

or Vhor # Vnmo). A Ricker wavelet with a peak frequency of 15-Hz (Figure 2.2(a)) is used to
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model the source waveÞeld.

The adjoint waveÞeld is generated by propagating back in timethe data recorded at the

receiver shown in Figure 2.2(b) (used as the adjoint source function). The adjoint waveÞeld

interacts with the forward-simulated source waveÞeld (Figure 2.3) along both the transmis-

sion and reßection wavepaths. These interactions, represented in the form of transmission

and refection sensitivity kernels in section 4.2, are helpful in understanding the spatial dis-

tribution of long- and short- wavenumber model updates in FWI.
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(a)

(b)

(c)

Figure 2.1: VTI model with parameters (a)Vnmo, (b) ! , and (c) #. The source (red dot) is
at (z, x) = (0 .03, 1) km and the receiver (blue dot) at (z, x) = (0 .03, 4.5) km. The shot and
receiver are in the thin subsurface elliptic layer added to suppress the S-wave artifacts.
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(a)

(b)

Figure 2.2: (a) Ricker wavelet of peak frequency 15 Hz is used asthe source function for
the forward-simulated waveÞeld. (b) The data recorded at the receiver (used as the adjoint-
source term).
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(a) t = 0 .45s (b) t = 0 .45s

(c) t = 1 .47s (d) t = 1 .47s

(e) t = 1 .73s (f) t = 1 .73s

(g) t = 1 .81s (h) t = 1 .81s

(i) t = 1 .88s (j) t = 1 .88s

Figure 2.3: Snapshots of the forward-simulated waveÞeld (left column) and the adjoint
waveÞeld (right column) in the order of increasing time.
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CHAPTER 3

RADIATION PATTERNS AND SENSITIVITY KERNELS

In multiparamater FWI, the resolution is greatly inßuenced bythe parameterization

used in the inversion algorithm. A major issue with anisotropic inversion is the trade-o! or

crosstalk between di!erent parameters. Trade-o!s occur when di!erent parameter combina-

tions can explain the same data, which renders the multiparameter inversion nonunique.

To assess the sensitivity of seismic data to di!erent parameterizations in the framework

of anisotropic FWI, one can use the angle-dependent energy (Òradiation patternÓ) scattered

by a perturbation in a particular parameter (Wu and Aki, 1985;Tarantola, 1986; Forgues

and Lambar«e, 1997; Virieux and Operto, 2009; Plessix and Cao, 2011; Prieux et al., 2011;

Gholami et al., 2013a, 2013b). Such patterns can help in choosing the optimal parameteri-

zation, reduce the null space of the inversion and increase the parameter resolution. Plessix

and Cao (2011) investigate parameter trade-o!s for VTI mediaby using a numerical eigen-

value and eigenvector decomposition of the Hessian matrix ofthe objective function. They

show that ! is poorly constrained by surface seismic data because of the inherent trade-o!

between the vertical velocity and depth. They conclude that the kinematics of the diving

and reßected waves in a VTI medium is controlled just byVnmo and " , as was previously

shown by Alkhalifah and Tsvankin (1995).

Gholami et al. (2013) perform numerical analysis of the radiation patterns for VTI

media and propose a Òmonoparameter strategyÓ for data dominated by reßections, where

the parameter which has the most inßuence is updated, while the other two parameters are

kept constant. Alkhalifah and Plessix (2014) investigate radiation patterns analytically and

show that a set that includesVhor , " and # is suitable for an hierarchical implementation of

FWI starting with diving waves, whereas the parametersVnmo, " , and ! are preferable for

joint inversion of reßections and diving waves.
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The sensitivity of waveform inversion to anisotropy parameters can also be studied in

a more qualitative way with the help of Þnite-frequency sensitivitykernels (Sieminski and

Zhou, 2009; Zhou and Greenhalgh, 2009, 2011; Djebbi and Alkhalifah, 2013). Sensitivity

kernels for the acoustic VTI equation describe the inßuence of parameter perturbations when

the data residuals are smeared along the wavepath between a source and receiver.

In this chapter, I discuss the radiation patterns for the parameterizationm = { Vnmo, ", ! } .

The patterns are constructed by linearizing the constant-density pseudoacoustic wave equa-

tion using the single-scattering Born approximation and a high-frequency approximation of

the GreenÕs function for smooth media. The discussion is focused on the parametersVnmo

and " that largely control P-wave reßection traveltimes in VTI media. I also present the

radiation pattern for ! Ð the parameter used to compensate for inadequate amplitude Þtting

due to the acoustic assumption. This discussion helps justify parameterizing the medium in

terms of Vnmo, " , and ! for purposes of RWI (see section 4.4). Finally, I analyze parameter

trade-o!s using reßection-type sensitivity kernels, where the wavepath is formed by two seg-

ments: one from the source to a subsurface scatterer and the other from the scatterer to the

receiver.

3.1 Radiation patterns

An overlap of the scattering patterns corresponding to perturbations in di!erent param-

eters indicates the trade-o! between these parameters for this range of angles. InsigniÞcant

overlap of scattering patterns means that the corresponding parameters can be resolved

by the data. The derivation of radiation patterns is generally based on the slowness and

polarization vectors obtained by replacing the GreenÕs functions with their asymptotic rep-

resentation in the Born approximation (Wu and Aki, 1985; Gholami et al., 2013; Alkhalifah

and Plessix, 2014; Kamath and Tsvankin, 2016).

By parameterizing the medium in terms ofVnmo, " , and ! , the pseudoacoustic wave

equation 2.3 can be written as:
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1
V 2

nmo
&tt up ! (1 + 2" )&xx up !

1
"

1 + 2!
&zzuq = f p,

1
V 2

nmo
&tt uq !

1
"

1 + 2!
&xx up !

1
(1 + 2! )

&zzuq = f q.
(3.1)

According to Zhou et al. (2006), Plessix and Cao (2011), and Alkhalifah and Plessix (2014),

equation 3.1 can be transformed into an equivalent expression in terms of the parameterpn ,

wherepn = uq
"

1 + 2! , and its deviation from up (pr = up ! pn ), leading to:

1
V 2

nmo
pn ! &xx (pn + pr ) !

1
"

1 + 2!
&zz(

1
"

1 + 2!
pn ) = f,

1
V 2

nmo
pr ! 2" &xx (pn + pr ) = 0 .

(3.2)

The radiation patterns are derived from the Born approximation of equation 3.2 for per-

turbations in the parameters Vnmo, " , and ! . The perturbed parameters along with the

waveÞeld components can be expressed as the sum of background value (subscript ÔoÕ) and

a perturbation (subscript ÔdÕ) in the following way

1
V 2

nmo
=

(1 + vd)
v2

o
; " = " o + " d; ! = ! o + ! d;

pn = pno + pnd ; pr = pro + prd .
(3.3)

Assuming a purely isotropic background (" o = 0, ! o = 0) and neglecting the second-order

terms, the Born approximation of equation 3.2 in the frequency domain is given by (see

Appendix A):

!
1
v2

o
%2pnd ! (&xx pnd) = ! %2 1

v2
o
(vd) pno ! 2

v2
o

%2

$
&xx " d(&xx pno)

%
! (! d&zz pno + &zz! d pno).

(3.4)

Using the asymptotic GreenÕs function, the perturbationpnd can be written as:

pnd(xs, xr , %) = ! %2
&

V (x)
f (xs, %)

G(xs, x, %)G(xr , x, %)
v2

o
r ák dV(x), (3.5)

where xs and xr are the source and receiver locations, respectively,V(x) is the volume

containing all scatterers, and
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r =

'

(
vd

" d

! d

)

* ; k =

'

(
1

2n2
sxn2

rx
(n2

sz + n2
rz )

)

* . (3.6)

The elements ofk represent the radiation patterns (Aki and Richards, 1980; Alkhalifah and

Plessix, 2014) due to the corresponding perturbed parameters given inr . Here,ns and n r are

the unit slowness vectors for the source and receiver side, respectively, which for a horizontal

reßector can expressed through the scattering angle$s:

ns =
+

nsx

nsz

,
=

+
sin$s

cos$s

,
; n r =

+
nrx

nrz

,
=

+
sin$s

! cos$s

,
. (3.7)

Substituting equation 3.7 into equation 3.6, the radiation patterns can be expressed as:

r =

'

(
vd

" d

! d

)

* ; k =

'

(
1

2 sin4 $
2 cos2 $

)

* . (3.8)

3.2 Anisotropic sensitivity kernels and trade-o! analysis

The sensitivity kernel for a particular model parameter is the response in the model

space to data perturbations for a single source and a single receiver. Here, I extend the

trade-o! analysis based on radiation patterns by using reßection-type sensitivity kernels for

the pseudoacoustic VTI wave equation. In the case of waveforminversion with reßected

waves, the sensitivity kernel includes two parts. One is thesource-side kernel, which is the

cross-correlation of the source waveÞeld with the adjoint-source waveÞeld, and the other is the

receiver-side kernel which represents the cross-correlation of the residual receiver waveÞeld

with the adjoint-receiver waveÞeld.

The sensitivity kernel can be computed from the pseudoacoustic VTI wave equation 2.5

using the least-squares misÞt function and the adjoint state method (Tromp et al., 2005;

Plessix, 2006). The source-side and receiver-side gradients are described in Appendix C.
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3.3 Numerical Examples

For a perturbation in the NMO velocity the radiation pattern is independent of the

scattering angle and, therefore, has a signiÞcant trade-o! with both" and ! (Figure 3.1). A

perturbation in ! produces most energy at small scattering angles, which implies that! is

mainly associated with the vertical wavenumber for the source and receiver waveÞelds. At

small scattering angles, as in the case of short-spread reßections, a trade-o! exists between

Vnmo and ! . On the other hand, the radiation pattern for " shifted toward large scattering

angles and is associated with the horizontal wavenumber.

Therefore, there is limited coupling between the parameters! and " at either small

or large scattering angles. This analysis suggests an hierarchical approach for reßection

waveform inversion, whereVnmo is reconstructed Þrst, followed by" . In this case,! serves

as an additional parameter used for amplitude Þtting, while density is kept constant. The

amplitudes of the radiation patterns for the parameters" and ! are much smaller than those

for Vnmo, so the inversion gradient has to be properly scaled to ensureaccurate updates in"

and ! .

To complement the analysis of radiation patterns, I present reßection-type sensitivity

kernels for the parametersVnmo, " , and ! . In all three cases, the parameter perturbation

is generated for a monochromatic 12-Hz waveÞeld. As expected, the energy distribution

in the sensitivity kernel for the NMO velocity (Figure 3.1) is relatively uniform. However,

for the perturbations in both " and ! , the sensitivity kernels vary with direction of wave

propagation. The energy with! -sensitivity kernel is concentrated mostly near the vertical

direction. In contrast, the sensitivity kernel for" has a higher amplitude for near-horizontal

wave propagation. This analysis conÞrms that the NMO velocity has a trade-o! with " near

the horizontal direction and with ! near the vertical direction. If ! is known from additional

information (e.g., check shots) and data have a su"ciently wide angular coverage, reßection

waveform inversion should be able to estimate bothVnmo and " .
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(a)

Figure 3.1: Radiation patterns forVnmo (red), " (green), and! (blue) plotted as a function
of the scattering angle$.
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(a)

(b)

(c)

Figure 3.2: Sensitivity kernels for perturbations in (a)Vnmo, (b) " , and (c) ! for a source
(yellow dot) located x = 1 km, receiver (pink dot) at x = 2 km, and a scatterer (white dot)
at x = 1.5 km and z = 0.4 km.
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CHAPTER 4

REFLECTION WAVEFORM INVERSION

Reßection waveform inversion aims to retrieve long-wavelength components of the ve-

locity model, mostly in the deeper horizons illuminated primarily by reßections. The key

components of anisotropic RWI are an accurate and e"cient waveÞeld simulator, proper

medium parameterization, a robust misÞt function that prevents cycle skipping, and an ef-

Þcient optimization algorithm. In this chapter, I highlight the limitations of conventional

FWI in handling reßections and then discuss RWI for acoustic VTI media (the waveÞeld

simulators were described in chapter 2). The gradient is computed from the adjoint-state

method (see section 4.6). Synthetic tests illustrate how the inversion results depend on model

assumptions and the choice of the objective function.

4.1 Introduction

When surface seismic data contain intensive diving waves, FWI has been successfully used

to employ them in building the long-wavelength components of the subsurface model. In

FWI, model updates at a subsurface point are governed by the basic principles of di!raction

tomography (Devaney, 1982; Miller et al., 1987, Wu and Toks¬oz, 1987). In isotropic media,

the wavenumber vectork at a potential di!ractor is related to scattering angle$, the velocity

v and the angular frequency%by

k = ks + k r =
%
v

cos
- $

2

.
n, (4.1)

whereks and k r are the source and receiver wave vectors, respectively, andn is a unit vector

normal to the reßector. Here, the model is assumed to be locally homogeneous with respect

to the dominant wavelength( at the subsurface di!ractor, and the approximation is based

on a plane-wave representation of the source and receiver waveÞelds. For anisotropic mediak
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is not the midpoint wavenumber vector (as is the case for isotropy), even though the formula

k = ks + k r still holds (Figure 4.1). For 2D TI media, the wavenumberk and scattering

angle$ are related by (Sava and Alkhalifah, 2013):

k = ks + k r = K ($)n, (4.2)

where K ($) is a certain function of the scattering angle andn is a unit reßector normal.

If the symmetry axis is perpendicular to the reßector, this relationship can be simpliÞed to

k =
%

vp

- $
2

. cos
- $

2

.
n, wherevp is the phase velocity.

Figure 4.1: Wavenumber vectorsks and k r associated with the rays connecting the source
and receiver (respectively) to a subsurface di!ractor. The scattering angle is denoted by$;
n is the reßector normal.

This relationship between the wavenumber vector and scattering angle shows that for

wide-azimuth acquisition, large scattering angles associated with diving waves facilitate the

reconstruction of low-wavenumber components of the subsurface model. In contrast, for

narrow-azimuth acquisition, small scattering angles associated with reßections contribute to

high-wavenumber model updates.

20



FWI starts with a smooth initial velocity model free from reßections by applying only low-

wavenumber updates to the background model. Because the low-wavenumber information

is associated mostly with diving waves, this update is typically restricted to the shallow

part of the model. In the deeper regions, FWI produces a high-wavenumber update due to

the absence of diving waves but fails to properly update the low-wavenumber components.

To improve the resolution at depth, longer-o!set data and lower frequencies are required.

Unfortunately, for most o!shore surveys the maximum o!set-to-depth ratios are insu"cient

for FWI to recover the deeper segments of the model. To achieve meaningful background

model updates at depth, it is necessary to incorporate reßection data. Hence, it is important

to understand the relationship between the sensitivity kernels of the conventional FWI and

RWI.

4.2 FWI and RWI sensitivity kernels

The sensitivity kernel identiÞes the model areas that can be updated for a particular

receiver location (Woodward, 1992; Snieder and Lomax, 1996; Dahlen et al., 2000). In the

framework of FWI, dividing the full sensitivity kernel into it s sub-kernels helps in separating

the contributions from diving and reßected waves. To understand the performance of both

FWI and RWI, it is convenient to study the sensitivity kernels numerically.

Figure 4.2: Schematic representation of the experiment. Both the transmission and reßection
wavepaths contribute to the full FWI sensitivity kernel.
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First, I consider the full FWI sensitivity kernel that includes the Fresnel zones associated

with both diving and reßected waves (Figure 4.2). FWI starts with a smooth initial model,

which is updated iteratively by minimizing an objective function, generally the least-squares

norm of the di!erence between the modeled and recorded seismic data (Tarantola, 1987):

C1(m) =
1
2

$dobs(xs, x r , t) ! dcal(xs, x r , t)$2, (4.3)

where xs and x r are the source and receiver location, respectively,dobs(xs, x r , t) is the

observed data,dcal(xs, x r , t) = us(x, z = 0, t) is the modeled (calculated) data andm is the

model vector. The modeled waveÞeldus can be computed from the wave equation:

L(m) us(x, t; xs) = f (t)! (x ! xs), (4.4)

where L is the pseudoacoustic wave operator (equation 2.7) andf (t) is the source function.

For a single source (xs)-receiver (x r ) pair, the gradient K corresponding to the objective

function in equation 4.3 can be computed by the adjoint-state method (Plessix, 2006):

K (x; xs, x r ) = us(x, t; xs) ) u r (x, t; x r ), (4.5)

where) denotes the cross-correlation in the time domain,us(x, t; xs) is the forward-modeled

waveÞeld andur (x, t; x r ) is the adjoint-waveÞeld for the receiver. The adjoint waveÞeld is

computed by using the data residuals for selected waves (could be direct, diving, reßected,

and/or backscattered waves) as the source term. The adjoint-state method is discussed in

more detail in section 4.6.

The full FWI sensitivity kernel for a homogenous VTI background model is shown in

Figure 4.3. The initial model is smooth with no reßections, sothat the data residual con-

tains both diving and reßected waves. These data residuals are back-propagated along the

sensitivity-kernel path to update both the low-and high-wavenumber model components.

The full FWI sensitivity kernel can be written as the sum of the primary kernel K p and
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Figure 4.3: Schematic representation of the full FWI sensitivity kernel.

secondary kernelK s:

K (x; xs, x r ) = K p(x; xs, x r ) + K s(x; xs, x r ), (4.6)

where

K p = ut
s(x, t; xs) ) u t

r (x, t; x r ),

K s = k1 + k2,

k1 = ut
s(x, t; xs) ) u r

r (x, t; x r ) + ur
s(x, t; xs) ) u t

r (x, t; x r ),

k2 = ur
s(x, t; xs) ) u r

r (x, t; x r ).

(4.7)

Here, ut is the transmitted waveÞeld andur is the waveÞeld generated from the seismic

response of reßectors. The primary kernelK p(x; xs, x r ), formed by the correlation of the

transmitted source and receiver waveÞelds, produces the Fresnel zone associated with div-

ing waves and represents the main part of the conventional FWI sensitivity kernel. The

secondary kernelK p(x; xs, x r ) consists of two components,k1 and k2. The componentk1

includes the correlations of the downgoing source-side waveÞeld and the upgoing scattered

receiver waveÞeld and of the upgoing scattered source waveÞeld and the downgoing receiver

waveÞeld. The componentk2 is formed by the correlation of the scattered source and receiver

waveÞelds and usually is negligibly small (Brossier et al., 2015, Chi et al., 2015).

The componentk1 produces a wide Fresnel zone (rabbit-ears) between the reßector and

the surface and is the dominant part of the RWI sensitivity kernel. Becausek1 is formed by
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the correlation of the transmission wavepaths between the surface and the reßector, it allows

for the reconstruction of long-to-intermediate wavelengths at deep targets. In practice, a

single-scattering Born approximation is used in computing the RWI gradient to generate the

scattered waveÞeld for both the source and receiver sides (Xuet al., 2012b; S. Wang et al.,

2013); for more details, see section 4.6.

The contributions of the FWI and RWI sensitivity kernels are illustrated in Figure 4.4.

The full FWI sensitivity kernel in Figure 4.4(a) can be divided into three parts. The con-

ventional sensitivity kernel in Figure 4.4(c), largely based on diving waves, has the highest

amplitude in the shallow regions. For the deeper regions, themain contribution comes from

the migration ellipse (Figure 4.4(b)), which has a higher amplitude than the RWI sensitivity

kernel (Figure 4.4(f)). Therefore, removing the migration ellipse from the full sensitivity

kernel highlights the RWI sensitivity kernel (rabbit-ear wavepath), which is responsible for

updating the low-wavenumber components in the deeper regions of the model.

4.3 Two-stage inversion approach

The model parameters in the FWI gradient have di!erent units andmagnitude, which

may prevent FWI from successful convergence. An appropriate choice of parameterization

and proper scaling of the gradient accelerates the rate of convergence of the inversion al-

gorithm. Optimal parameterization is supposed to mitigate the trade-o!s between model

parameters for a given type of input data. I have analyzed these trade-o!s with the help

of radiation patterns and reßection-type sensitivity kernels presented in Chapter 3. Based

on that discussion, the model vector is deÞned as mmm = { Vnmo, ", ! } , which helps reduce the

trade-o!s and improve model resolution.

The RWI approach introduced here separates the subsurface model into long-wavelength

components updated via a correlation-based objective function and short-wavelength com-

ponents estimated by perturbing model parameters. The algorithm is designed to estimate

just the NMO velocity and parameter " because typically! is poorly constrained by P-

wave reßection data. Stable inversion for! cannot be performed without additional (e.g.,
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Sensitivity kernels for the model in Figure 2.1. (a) The full FWI sensitivity kernel
formed by both diving and reßected waves. (b) The migration ellipse, which provides high-
wavenumber updates. (c) The conventional FWI sensitivity kernel formed by diving waves.
(d) The source-side reßection sensitivity kernel. (e) The receiver-side reßection sensitivity
kernel. (f) The RWI sensitivity kernel, which provides smooth updates for deep targets.
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borehole) information (Wang and Tsvankin, 2013a,b).

The method operates with P-wave reßection data and includesthe following steps:

1. At small scattering angles (i.e., for small o!sets), there isa trade-o! betweenVnmo and

! . Hence, the parameter! is perturbed Þrst, while keepingVnmo and " Þxed. At each

iteration, the reference NMO velocity is updated using a demigration process for the! -

perturbation model to generate the simulated data. The main goal of the Þrst inversion

stage is to eliminate the data residuals at the near o!sets caused by inaccurate initial

values of! and Vnmo. Because this procedure is limited to near-o!set data, it seldom

su!ers from cycle skipping.

2. According to the analysis of the radiation patterns and sensitivity kernels for " , that

parameter is mainly associated with the horizontal wavenumber and there exists a

trade-o! between Vnmo and " in near-horizontal directions. Therefore, at the second

stage, the previously updated NMO velocity is used to generate the perturbation model.

At each iteration, " is updated by applying a demigration to theVnmo-perturbation

model to generate the simulated data. The goal of the second stage is to invert for

" by eliminating the data residuals at the far o!sets. With su"ciently wide angular

coverage, the two-stage RWI is expected to be able to estimateboth Vnmo and " .

A correlation-based objective function, which evaluates thesimilarity between the ob-

served and predicted data, is employed at both stages. The RWIgradient is computed from

the adjoint-state method discussed in section 4.6. Employing ! in this approach helps com-

pensate (at least, to a certain extent) for inadequate amplitude Þtting of reßection data in

the acoustic approximation. Therefore,! is perturbed at the Þrst inversion stage and the

Born approximation for the pseudoacoustic wave equation is used to generate the scattered

waveÞeld; this is described in the next section.
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4.4 Born approximation using parameter !

Representing the parameter! as the sum of the background value (! o ) and a perturbation

(! d), the waveÞelds from equation 2.6 can be expressed asup = upo + up1 and uq = uqo+ uq1,

whereup1 anduq1 are the perturbations andupo anduqo are the waveÞelds for the background

medium.

For a small ! -perturbation, equation 2.4 can be written in matrix form as(see Appendix B):

L
"

up1

uq1

#
=

/

0
0
0
1

2! d V 2
P 0(

&2uqo

&z2
)

2! d V 2
P 0(

&2uqo

&z2
)

2

3
3
3
4

, (4.8)

whereL =

/

0
1

V 2
hor &xx ! &tt V 2

P 0&zz

V 2
nmo &xx V 2

P 0&zz ! &tt

2

3
4.

Here, we refer to the term 2! dV 2
P 0 as the Ò! -image.Ó The dot product of the! -image with

the squared double-derivative of the q-component of the source waveÞeld produces secondary

sources in the model space. The Born-scattered data (i.e., predicted data) are computed by

forward modeling with these secondary sources using equation 4.9. Next, this ! -image is

used as the perturbation model to invert only forVnmo and get an updated NMO-velocity

Þeld. This update, based primarily on short-o!set data, completes the Þrst stage of the

inversion. In contrast, existing RWI algorithms obtain the image from near-o!set least-

squares migration. At the second inversion stage, the estimatedVnmo is used to generate the

perturbation model and invert for " by eliminating the far-o!set data residuals.

4.5 Correlation objective function

We employ the constant-density pseudoacoustic wave equation, which does not properly

model reßection amplitudes. In addition, because the actualreßectivity cannot be obtained

by cross-correlating the source and receiver waveÞelds, amplitude matching of the observed

and predicted data using a least-squares objective function may be problematic. The require-
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ment of amplitude matching can be relaxed by using a normalized cross-correlation objective

function C that evaluates the similarity between the observed (dobs) and Born-modeled (dm)

data (Routh et al., 2011a,b; Choi and Alkhalifah, 2012; Xu et al., 2012a; Liu et al., 2016):

C = !
5

s

5

r

dm

$dm$
á

dobs

$dobs$
. (4.9)

The similarity between the observed and simulated data is maximized in the process of

model updating. The correlation value goes to zero when the observed and predicted data

are completely out of phase, and is equal to unity when their kinematics completely match.

4.6 Adjoint-state method

The adjoint-state method (Tromp et al., 2005; Plessix, 2006) provides an e"cient way of

computing the derivatives of the objective function with respect to the model parameters.

The method operates with the objective function, state equations, and adjoint equations.

The objective function depends on the model parameters through the state equations.

The adjoint-state method involves four main steps:

(i) Computation of the state variables (forward waveÞeld) by solving the state equations.

(ii) Computation of the adjoint source functions.

(iii) Computation of the adjoint-state variable (adjoint waveÞeld) by solving the adjoint

equations.

(iv) Computation of the gradient of the objective function.

The problem in hand includes two state equations: the pseudoacoustic wave equation that

generates the forward waveÞeld and the Born approximation ofthat equation for a small

perturbation in a certain model parameter. RWI can be posed asthe following optimization

problem:

minimize
m

C(m, up, uq, up1, uq1),

subject to F(m, up, uq) = 0 & F1(m, up1, uq1) = 0 ,
(4.10)
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whereup and uq are the forward-modeled waveÞelds andup1 and uq1 are the Born-scattered

waveÞelds. As discussed above, the functionsF and F1 are the state equations for the

forward-modeled and Born-simulated data, respectively, and m = { Vnmo, ", ! } is the model

vector.

Using equation 4.9 and 4.10, the Lagrangian can be formulatedas:

# = C(x, t) ! %Lu s ! f, ((( us & ! %Lu 1 ! I us, ((( u1 &, (4.11)

whereC(x, t) = !
dm

$dm$
á

dobs

$dobs$
is the correlation-based objective function (equation 4.9),

L is the wave operator,I is the perturbation model,f is the source term,us and u1 are the

state variables, and((( us and ((( u1 are the adjoint variables. The source waveÞeldus and the

Born-scattered waveÞeldu1 are generated by solving the following equations:

Lu s ! f = 0, (4.12)

Lu 1 ! I us = 0. (4.13)

Next, the adjoint variables for both the source and receiver sides are obtained from:

L T ((( us ! I ((( u1 = 0, (4.14)

L T ((( u1 !
1

$dm$

$
ödm(ödm áödobs) ! ödobs

%
= 0. (4.15)

Here, ödm =
dm

$dm$
, ödobs =

dobs

$dobs$
, and the adjoint sources are:

rd =
1

$dm$

$
ödm(ödm áödobs) ! ödobs

%
. (4.16)

Equation 4.16 shows that the Born-simulated data are scaled by the dot product of the ob-

served data and the Born-simulated data. This ties the amplitude matching to thesimilarity

29



between these two data sets. Finally, the gradient for the model parametersm is computed

from &#/&m = &J/&m. The expressions for the source- and receiver-side gradients can be

found in Appendix C.

4.7 SYNTHETIC EXAMPLE

The proposed two-stage inversion approach is applied to twogridded VTI models. The

forward and adjoint waveÞeld extrapolation is carried out with a Þnite di!erence algorithm

developed within the framework ofMADAGASCAR . For both tests, I use the zero-lag nor-

malized correlation-based objective function (equation 4.9).

Test1

The algorithm is Þrst tested on the layered VTI model in Figure 4.5. The horizontal and

vertical grid spacing is 25 m. The data are excited by 16 sourcespositioned at 500 m

intervals on the surface with a maximum source-receiver o!set of 7.5 km. The receivers are

also located on the surface at every grid point. The source signal is a Ricker wavelet with a

central frequency of 5 Hz. The sources and receivers are embedded in a thin isotropic layer

to suppress the shear-wave artifacts produced by the pseudoacoustic wave equation. The

modeled waveÞeld is computed for a smooth background medium free from reßections, and

the adjoint sources are injected back into the medium to generate the adjoint waveÞeld.

The gradients in Figure 4.6 are obtained by perturbing the parameter ! and using the

adjoint-state method discussed in section 4.6. Note that the gradient spreads even to the

third layer without applying any illumination compensation. The initial model is isotropic

(! = " = 0), with the NMO velocity equal to the velocity in the Þrst layer. As described

above, the Þrst stage involves using the! -perturbation model to generate the near-o!set

demigrated data, which are inverted forVnmo. The algorithm was able to recoverVnmo in

the second and the third layers, although the velocity in thedeepest layer is somewhat

overestimated (Figure 4.7).

At the second stage, the demigrated data are obtained by usingthe inverted Vnmo to

generate the perturbation model. The algorithm inverts justfor " by Þtting the data at the
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far o!sets. The estimated" in the Þrst layer is accurate because the o!set-to-depth ratio for

its bottom is uncommonly large (x/z = 7), whereas the inverted" -values in the second and

third layer are slightly distorted (Figure 4.8). Even betterestimates of" could be obtained if

the model contained dipping reßectors (Tsvankin, 2012). Clearly, the hierarchical inversion

approach makes it possible to handle the nonlinearity of theobjective function and mitigate

the trade-o!s between the parametersVnmo and " .

(a) (b) (c)

Figure 4.5: Parameters (a)Vnmo, (b) " , and ! of a layered VTI model.

(a) (b) (c)

Figure 4.6: Gradients of the objective function (equation 4.10) with respect to (b) Vnmo,
(c) " , and (d) ! for the model in Figure 4.5.
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(a) (b) (c)

Figure 4.7: First stage of the inversion: (a) the actualVnmo-Þeld, (b) the initial Vnmo, and
(c) the inverted Vnmo.

(a) (b) (c)

Figure 4.8: Second stage of the inversion: (a) the actual" -Þeld, (b) the initial " , and (c) the
inverted " .
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Test2

The algorithm was also applied to the VTI Marmousi model with the acquisition geometry

consisting of 20 shots and 151 receivers. The shots and receivers are distributed evenly in

the horizontal direction at a depth of 30 m. The grid spacing is 10 m in both thex- and

z- directions, and the time step size for the modeling is 1 ms. The synthetic data set is

generated with a a Þnite-di!erence pseudoacoustic simulator and a 5-Hz Ricker wavelet. A

water layer is added on top of the model to suppress the shear-waveartifact.

The initial model for RWI is elliptic ( " = 0) with a linearly increasing NMO velocity in

the vertical direction (Figure 4.9(a)) and a smooth! -Þeld, which is assumed to be known

(e.g., from check shots). The conventional FWI for this initial model is likely to get trapped

in local minima. In contrast, after 25 iterations of RWI, the backgroundVnmo-Þeld (Figure

4.9(c)) converges towards the actual model. Note that the NMO velocity has been updated

even at depth, although the waveÞeld is reßection-dominated.This is because at this stage

the algorithm Þts the near-o!set data free from cycle-skipping.

Inverting for the " -parameter at the second stage requires Þtting the far-o!setdata

distorted by the inaccurate initial " -values (" = 0). The Vnmo perturbation model is obtained

by using the inverted backgroundVnmo (Figure 4.9 (c)). Despite the initial " = 0 being far

from the actual model, the algorithm was successful in obtaining a smooth" -update (Figure

4.10 (c)) towards the actual background model. However, the accuracy of the update is

reduced by cycle-skipping caused by the low quality of the initial model and the need to Þt

the far-o!set data.
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(a)

(b)

(c)

Figure 4.9: Test for the VTI Marmousi model. (a) The actualVnmo-Þeld, (b) the initial
Vnmo, and (c) Vnmo obtained after the Þrst stage of RWI.
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(a)

(b)

Figure 4.10: (a) Actual " -Þeld for the Marmousi model and (b)" obtained after the second
stage of RWI.
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4.8 Temporal-correlation objective function

To alleviate the problems of cycle-skipping during the inversion for" , I use an alternative,

correlation-based objective function that can handle time delays larger than half a period.

A better match between the predicted and observed data can be achieved through a time

shift or an extension in the time domain. A time-lag normalized cross-correlation function

can be deÞned as (Brossier et al., 2014; Chi et al., 2015):

X (*, h) = !

6
dm(t, h)dobs(t + *, h) dt

$dm(t, h)$ $dobs(t + *, h)$
, (4.17)

where * is the time lag, dm(t, h) and dobs(t, h) are the predicted and observed data, re-

spectively, recorded at the source-receiver o!seth and time t. The corresponding objective

function can be written as (Leeuwen and Mulder, 2008, Brossier et al., 2014):

C =
5

h

5

!

1
2

-
X (*, h)

. 2
. (4.18)

The adjoint sources for the function in equation 4.18 can be derived using the adjoint state

method:

rd = J (*, h)
- dobs(t + *, h)

$dm(t, h)$$dobs(t + *, h)$

!
dm(t, h)J (*, h)

$dm(t, h)$3$dobs(t + *, h)$

.
, (4.19)

where

J (*, h) =
5

t

dm(t, h) dobs(t + *, h). (4.20)

The computational cost of inversion stays the same as that for the zero-lag normalized

correlation-based objective function (equation 4.9). Theonly change in the gradient involves

a di!erent adjoint-source term.
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4.9 Application to the Marmousi Model

The goal of this test is to demonstrate that the temporal-correlation objective function

(equation 4.18) helps invert for" by minimizing the inßuence of cycle-skipping at the far

o!sets. RWI is applied with the same initial " -model that was used in the previous sec-

tion where the inversion was based on the zero-lag normalized correlation-based objective

function. The addition of the time lag to the objective function leads to a signiÞcant im-

provement in the background" -update, mostly for the deeper part of the model. Indeed, the

time-lag cross-correlation objective function can properly handle delays greater than half a

period, which relaxes the requirements for the high accuracy of the initial model.

(a)

(b)

Figure 4.11: Parameter" estimated by RWI with (a) the conventional correlation objective
function, and (b) the temporal-correlation objective function.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

In this chapter I summarize the thesis results and provide some recommendations for

future work.

5.1 Conclusions

I developed a two-stage RWI (reßection waveform inversion) algorithm for VTI media

designed to incorporate P-wave reßections into acoustic waveform inversion. To reduce the

nonlinearity of the inverse problem, Þtting of near-o!set data is performed Þrst, followed by

inversion of long-o!set reßections. To analyze the trade-o!s inherent in such multiparameter

inversion, I studied the radiation patterns and reßection sensitivity kernels for perturbations

in the VTI parameters Vnmo, " , and ! .

These trade-o!s are mitigated by the proposed hierarchicalimplementation of RWI where

the inversion for the normal-moveout velocityVnmo is followed by" -estimation, with the co-

e"cient ! used to improve amplitude Þtting. At the Þrst stage of RWI, a! -perturbation

model is employed to estimateVnmo from near-o!set data, which makes the inversion less

sensitive to cycle-skipping. Then the updated NMO velocity is used to generate a perturba-

tion model, which includes far-o!set velocity information needed to constrain" at the second

inversion stage. At both stages, the parameter Þelds are decomposed into the background

and perturbation models and data are generated by applying Born modeling for the corre-

sponding parameter perturbations. This strategy has provedto be e!ective in recovering

low-wavenumber model components from reßection data.

The employed correlation-based objective function reduces the sensitivity to amplitude

errors because it evaluates the general similarity between the observed and Born-modeled

data. Synthetic examples demonstrate that the hierarchicalinversion approach mitigates the

multimodal nature of the objective function and the trade-o!sbetween the model parameters.
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Testing for layered VTI media proves that the algorithm can resolve the interval parameters

Vnmo and " from P-wave reßection waveforms. As is the case in moveout analysis, either

dipping interfaces or large o!set-to-depth ratios are required to estimate " with su"cient

accuracy.

A synthetic test for the more complicated VTI Marmousi model shows that the back-

ground velocity Vnmo can be recovered even when the initial model is relatively simple and

signiÞcantly deviates from the actual velocity Þeld. This is an important advantage of the

developed algorithm that employs a! -perturbation model to mitigate cycle-skipping in Þt-

ting the near-o!set data. The recovery of the long-wavelength component of" by Þtting the

far-o!set data is more sensitive to cycle-skipping problem if the initial " -model is inaccu-

rate. This issue could be partially addressed by using a temporal correlation-based objective

function designed to handle cycle-skipped data. Overall, the proposed method has shown

the potential to recover the long-wavelength components ofVnmo and " , while mitigating the

trade-o!s and nonlinearity-related issues during model updating.

5.2 Recommendations

The conventional pseudoacoustic wave equations become unstable for" < 0 and for highly

complex, heterogeneous TI media with varying interface dips and azimuths. Moreover, the

pseudoacoustic approximation produces shear-wave artifacts that contaminate modeled data

and inversion gradients. These artifacts can be eliminated by placing the sources and re-

ceivers in an isotropic or elliptic layer or by using the generalized pseudospectral methods,

but P-waves may still be converted into shear modes while propagating through complex

media. To incorporate shear-wave information, it is necessary to use the more complicated

elastic wave equation. However, employing elastic wave equation is computationally expen-

sive and requires mode separation and development of advanced imaging conditions.

The proposed RWI method inverts reßection data forVnmo and " in two stages to mitigate

the nonlinearity of the inverse problem. Employing scattering-angle Þlters to condition the

parameter gradients can also reduce the nonlinearity and address trade-o!-related issues
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(Alkhalifah et al., 2015). Additionally, incorporating information from both diving and

reßected waves into a single objective function to invert forVnmo and " can increase the

e"ciency of model building. A parameter set that includesVhor , " , and #may be worthwhile

to explore in the RWI framework because it does not require an hierarchical implementation

(Alkhalifah and Plessix, 2014; Alkhalifah and Wu, 2016). Other parameter combinations

can also be analyzed for di!erent types of input data using radiation patterns and sensitivity

kernel analysis (Plessix and Cao, 2011; Gholami et al., 2013; Alkhalifah and Plessix, 2014).

The e"ciency of RWI implementation and convergence of the optimization algorithm de-

pends on proper use of core-memory resources available on modern computational platforms.

For example, RWI can be carried out for a few selected frequencies (Sirgue and Pratt, 2004)

with a parallelized frequency-domain algorithm that uses a direct matrix solver implemented

on distributed-memory platforms (S. Wang et al., 2011; 2013).

To incorporate multiply-scattered waves into the RWI optimization scheme, it is neces-

sary to estimate the inverse Hessian matrix via the Gauss-Newton or exact Newton algo-

rithms. Recent research shows that implementation of the truncated Newton framework can

substantially increase the rate of convergence of waveform inversion (M«etivier et al., 2014).

Also, application of preconditioners and regularization-based misÞt functions can make the

algorithm more robust, while improving its convergence rate.

Finally, extending the proposed RWI technique to 3D is highly challenging due to its

computational cost, the need to account for 3D parameter variations, and parameter trade-

o!s. Also, application of this method to Þeld data will require careful quality control,

accurate estimation of the initial model, and case-by-case parameterization analysis.
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APPENDIX A -

RADIATION PATTERNS

The constant-density pseudoacoustic wave equation (Duveneck et al., 2008) can be written

in the following way by parameterizing the medium in terms ofVnmo, " , and ! :

1
V 2

nmo
&tt up ! (1 + 2" )&xx up !

1
"

1 + 2!
&zz uq = f p

1
V 2

nmo
&tt uq !

1
"

1 + 2!
&xx up !

1
(1 + 2! )

&zz uq = f q.
(A.1)

According to Zhou et al. (2006), Plessix and Cao (2011), and Alkhalifah and Plessix (2014),

equation A.1 can be transformed into an equivalent expression in terms of pn (where pn =

uq
"

1 + 2! ) and its deviation from up (pr = up ! pn ), leading to

1
V 2

nmo
pn ! &xx (pn + pr ) !

1
"

1 + 2!
&zz(

1
"

1 + 2!
pn ) = f,

1
V 2

nmo
pr ! 2" &xx (pn + pr ) = 0 .

(A.2)

The radiation patterns are derived from the Þrst-order Bornapproximation of equation A.2

due to perturbations in the parametersVnmo, " , and ! . The perturbed parameters along with

the waveÞeld components can be expressed as the sum of their background values (subscript

ÔoÕ) and a perturbation (subscript ÔdÕ):

1
V 2

nmo
=

(1 + vd)
v2

o
, " = " o + " d, ! = ! o + ! d,

pn = pno + pnd , pr = pro + prd .
(A.3)

Assuming a purely isotropic background (" o = 0, ! o = 0) and neglecting the second-order

terms, the background valuespno andpro in the frequency domain can be found as (Alkhalifah

and Plessix, 2014):
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! 1
v2

o
%2 pno ! (&xx pno + &zz pno) = f,

pro = 0.
(A.4)

Sincepro = 0, the scattered waveÞeldprd depends only onpno and can be obtained from:

! 1
v2

o
%2 prd = 2" d(&xx pno) (A.5)

Replacing the parameterprd in the Born equation yields an equation for the scattered wave-

Þeldpnd :

!
1
v2

o
%2 pnd ! (&xx pnd) = ! %2 1

v2
o
(vd) pno ! 2

v2
o

%2

$
&xx " d(&xx pno)

%
! (! d &zz pno+ &zz ! d pno). (A.6)

Equation A.2 can be solved in the frequency domain using the representation theorem:

pn (x", xr , %) =
&

V (x ! )
k(x", %) G(xr , x", %) dV(x"), (A.7)

wherek is the force density,V(x") is the volume that includes all sources, andG(xr , x", %)

is the GreenÕs function for the source atx" and receiver atxr given by

$! 1
v2

o
%2 ! (&xx + &zz)

%
G(x, x ", %) = ! (x ! x"). (A.8)

The background waveÞeld componentpno can be expressed through the force applied at the

source locationxs and the GreenÕs function:

pno(xs, xr , %) = f (xs, %) G(x", xs, %). (A.9)

Using equations A.9 and A.7 and employing the reciprocity theorem, i.e., G(x", xs, %) =

G(xs, x", %), the scattered waveÞeldpnd can be expressed as:

pnd(xs, xr , %) = !
&

V (x)
f (xs, %)

%2

v2
o

(vd) G(xs, x, %) G(xr , x, %) dV(x)

!
&

V (x)

2v2
o

%2
" d Gxx (xs, x, %) Gxx (xr , x, %) dV(x)

!
&

V (x)
! d (G(xs, x, %) Gzz(xr , x, %) + Gzz(xs, x, %) G(xr , x, %)).

(A.10)
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Under a high-frequency approximation, the GreenÕs functionsin equation A.10 can be re-

placed by their asymptotic versions (Vavryÿcuk, 2007):

G(xs, x, %) = K s exp
$
i
+
2

, 0 + i%
ns

vs
á(xs ! x")

%
,

G(xr , x, %) = K r exp
$
i
+
2

, 0 + i%
nr

vr
á(xr ! x")

%
,

(A.11)

where K is a function of the group velocity and distance along the ray,, 0 is a function of

the Gaussian curvature of the slowness surface,ns and n r are the unit slowness vectors for

the source and receiver side, respectively, andv is the phase velocity. Employing the WKBJ

approximation, the derivatives in equation A.10 are computedonly for the exponentials in

the GreenÕs functions (Aki and Richards, 2002). Equation A.10 can be rewritten as:

pnd(xs, xr , %) = ! %2
&

V (x)
f (xs, %)

G(xs, x, %)G(xr , x, %)
v2

o
rrr ákkk dV(x), (A.12)

where

r =

'

(
vd

" d

! d

)

* ; k =

'

(
1

2n2
sxn2

rx
(n2

sz + n2
rz )

)

* . (A.13)

Here, ns and n r for a horizontal reßector can be given as functions of the scattering angle

$s:

ns =
+

nsx

nsz

,
=

+
sin$s

cos$s

,
; n r =

+
nrx

nrz

,
=

+
sin$s

! cos$s

,
. (A.14)

Substituting equation A.14 into equation A.13, the radiationpatterns for the parameteriza-

tion { Vnmo, " , ! } can be found as:

r =

'

(
vd

" d

! d

)

* ; k =

'

(
1

2 sin4 $
2 cos2 $

)

* . (A.15)
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APPENDIX B -

BORN APPROXIMATION FOR A PERTURBATION IN !

The coupled system of the pseudoacoustic wave equations for VTI media can be written as

(equation 2.6):

L
"

up
s

uq
s

#
!

"
f p

s
f q

s

#
= 0, (B.1)

where up
s and uq

s are the forward-propagated waveÞeld variables,f p
s and f q

s are the corre-

sponding source terms, and the operatorL is deÞned as:

L =
"

V 2
hor &xx ! &tt V 2

P 0 &zz

V 2
nmo (&xx ) V 2

P 0 &zz ! &tt

#
. (B.2)

The adjoint waveÞeld can be evaluated by computing the adjoint of equation B.2:

L T

"
up

r
uq

r

#
!

"
dp

r
dq

r

#
= 0, (B.3)

whereup
r and uq

r are the adjoint waveÞeld variables,dp
r and dq

r are the source terms for the

adjoint equations, and the adjoint operatorL T is:

L T =
"

(&xx )V 2
hor ! &tt (&xx )V 2

nmo
&zzV 2

P 0 &zzV 2
P 0 ! &tt

#
. (B.4)

The parameter! can be represented as the sum of the background value (! o ) and a pertur-

bation (! d) (see equation A.3):

! = ! o + ! d, (B.5)

1 + 2! = 1 + 2 ! o + 2! d ' (1 + 2! o)(1 + 2 ! d). (B.6)

The waveÞelds can be expressed asup
s = upo

s + up1
s and uq = uqo

s + uq1
s , where upo

s and uqo
s

are computed for the background medium andup1
s and uq1

s are the perturbations. Then the
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pseudoacoustic wave equation B.1 can be rewritten as:

!

"
"
"
"
"
"
"
"
"
"
"
#

V 2
hor&xx ! &tt

V 2
nmo

(1 + 2! o)(1 + 2 ! d)
&zz

V 2
nmo(&xx )

V 2
nmo&zz

(1 + 2! o)(1 + 2 ! d)
! &tt

$

%
%
%
%
%
%
%
%
%
%
%
&

!

"
"
#

up
s + up1

s
uq

s + uq1
s

$

%
%
&"

!

"
"
#

f p
s

f p
s

$

%
%
& = 0. (B.7)

Because! d is assumed to be small, we can use a linear Taylor-series expansion:

!

"
"
"
"
"
"
"
"
"
"
"
#

V 2
hor&xx ! &tt

V 2
nmo(1 ! 2! d)
(1 + 2! o)

&zz

V 2
nmo(&xx )

V 2
nmo(1 ! 2! d)
(1 + 2! o)

&zz ! &tt

$

%
%
%
%
%
%
%
%
%
%
%
&

!

"
"
#

up
s + up1

s
uq

s + uq1
s

$

%
%
&"

!

"
"
#

f p
s

f p
s

$

%
%
& = 0. (B.8)

Then the Born approximation of the pseudoacoustic wave equation takes the form:

!

"
"
"
#

V 2
hor &xx ! &tt V 2

P 0 &zz

V 2
nmo(&xx ) V 2

P 0 &zz ! &tt

$

%
%
%
&

!

"
"
#

up1
s

uq1
s

$

%
%
&=

!

"
"
"
"
"
"
"
"
"
#

2! dV 2
P 0(

&2uqo
s

&z2
)

2! dV 2
P 0(

&2uqo
s

&z2
)

$

%
%
%
%
%
%
%
%
%
&

. (B.9)
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APPENDIX C -

RWI GRADIENTS

The source-side gradients forVnmo, " , and ! can be found from equation 4.11 as:

&Js

&Vnmo
=

&&
2up

sx Vnmo(1 + 2" ) up
rx ds dt +

&&
2uq

sz
Vnmo

(1 + 2! )
up

rz ds dt

+
&&

2up
sx Vnmo uq

rx ds dt +
&&

2uq
sz

Vnmo

(1 + 2! )
uq

rz dsdt,
(C.1)

&Js

&"
=

&&
2up

sx V 2
nmoup

rx ds dt, (C.2)

&Js

&!
=

&&
! 2uq

sz
V 2

nmo

(1 + 2! )2
uq

rz ds dt +
&&

! 2uq
sz

V 2
nmo

(1 + 2! )2
up

rz ds dt. (C.3)

The receiver-side gradients forVnmo, " and ! are:

&Jr

&Vnmo
=

&&
2up1

sxVnmo(1 + 2" ) up1
rx ds dt +

&&
2uq1

s
Vnmo

(1 + 2! )
up1

rz ds dt

+
&&

2up1
sxVnmo uq1

rx ds dt +
&&

2uq1
sz

Vnmo

(1 + 2! )
uq1

rz ds dt,
(C.4)

&J
&"

=
&&

2up1
sx V 2

nmo2up1
rx ds dt, (C.5)

&J
&!

=
&&

! 2uq1
sz

V 2
nmo

(1 + 2! )2
uq1

rz ds dt +
&&

! 2uq1
sz

V 2
nmo

(1 + 2! )2
up1

rz ds dt. (C.6)

Here, the integration for both the source- and receiver-sidegradients is performed over

the sources and time.
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