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ABSTRACT

With the recent advances in seismic data acquisition, such agde-azimuth, long-o!set
surveys and low-frequency sources, full-waveform invessi (FWI) has become an e"cient
tool in building high-resolution subsurface models. Conmgonal FWI relies mainly on diving
waves to update the low-wavenumber components of the backgnd model. However, such
FWI algorithms may fail to provide a satisfactory model updatedr regions probed primarily
by rel3ected waves. This typically occurs for deep target zes where the conventional FWI
updates mostly the high-wavenumber model components due to the absence of diving waves.
RefRection waveform inversion (RWI) has been developed to netve the intermediate-to-long
wavelength model components in those deeper regions from rel@ecenergy.

In this thesis, | highlight the limitations of conventional waveform inversion wherap-
plied to refl3ections-dominated seismic data and propose a nemplementation of RWI for
acoustic VTI (transversely isotropic with a vertical symmetryaxis) media. | extend the
idea of scale separation between the background and pertation models to VTl media and
use an optimized parameterization to mitigate parameter &de-ols in RWI. The proposed
workRow repeatedly alternates between updating the long-wdeagth model components by
pxing the perturbation model and the shorter-wavelength, migration-based ref3ectivity up-
date. | develop an hierarchical two-stage approach that opates with the P-wave zero-dip
normal-moveout velocityV,n, and anisotropy coe"cients! and". At the brst stage,Vomo IS
estimated by applying the Born approximation to a perturbaton model in! to compute the
corresponding refRection data. Although the algorithm does hvert for !, this parameter
helps improve the amplitude bt for the employed acoustic model that ignores the elastic
nature of the subsurface. At the second stage, the parametér which can be constrained
by far-o!set data, is estimated from the obtained perturbaion model in V. The pro-

posed 2D algorithm is tested on a horizontally layered VTI medm and the VTl Marmousi



model. Application of a temporal correlation-based objeate function signibcantly improves

recovery of the long-wavelengtli -component, as demonstrated on the Marmousi model.
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CHAPTER 1
INTRODUCTION

Conventional seismic imaging relies on a scale separationtieeen the macro-velocity
model (long-wavelength components) built by migration velocity analysis or ref3ection to-
mography and ref3ectivity (short-wavelength components) obtained by migration (Gazdag,
1978; Stolt, 1978; Baysal et al., 1983; Yilmaz, 2001). FWI attentgpto Pl this scaling gap
by integrating the processes of macro-velocity model buildingnd migration into a single
workBow when low frequency, long-o!set, wide-azimuth data aravailable.

Over the past decade, full-waveform inversion (FWI) has emegd as an e"cient data-
ptting technique capable of building high-resolution velocity models (Lailly 1983; Tarantola
1984; Pratt et al., 1998; Virieux and Operto, 2009). FWI seeks toploit the information in
the waveforms provided by diving waves, precritical and, sores, postcritical ref3ections.
Conventional FWI is mainly driven by the contributions of diving waves that help reconstruct
the low-to-intermediate wavenumber part of the velocity mdel. The penetration depth of
diving waves is controlled by the velocity beld, the maximum source-receiver olset, and the
frequency of the source. For most conventional streamer segs, diving waves illuminate
only shallow layers. At these depths, the gradient of the ceantional FWI obtained by
correlating the forward and adjoint wavebelds produces a high-wavenumber update,ims
least-squares migration. However, low-to-intermediate wanumbers do not get updated for
deep targets without including ref3ections.

Several image-domain methods designed to retrieve the macro-velocity model from re-
Bection data have been proposed (Symes and Carazzone, 1991; Sava and Biondi, 2004;
Yang and Sava 2011; Almomin and Biondi, 2012; Biondi and Almomir2012). These ap-
proaches operate in the extended domain and improve the faing of ref3ections. However,

image-domain inversion produces relatively low-resolution models and are computationally



expensive. These limitations can be overcome by mixed image/data domain approaches that
yield better images that contain higher-resolution featwgs (Sun and Symes, 2012; Diaz et
al., 2013).

FWI is a highly nonlinear inversion technique and generally riires low-frequency data
and a su"ciently accurate initial model, so that the modeled events are not shifted by more
than half a period with respect to the observed events (i.e., data are not cycle-skipped). Most
existing FWI algorithms use a least-squares objective functip which may have multiple
local minima, especially when rel3ected waves dominate thatd. An initial model not
prone to cycle-skipping can be obtained by kinematic methed such as migration-based
traveltime tomography (Chavent et al., 1994; Clement et §l2001; Plessix et al., 1995) and
ref3ection tomography (Wang and Tsvankin, 2013a,b). Ma and Ha(2013) apply waveform
tomography to ref3ection data for long-wavelength velocity recovery using dynamic warping.

In the framework of FWI, Xu et al. (2012) develop an algorithm sintar to migration-
based traveltime tomography, which is called ref3ection-weform inversion (RWI) and is
designed to invert rel3ection data for the long-wavelength components of the velocity model.
A migration/demigration approach (Zhou et al., 2012) can be empyed to update the back-
ground model along the source and receiver wavepath. The madea behind RWI is a
scale separation between the macro-velocity model and ref3ectivity. Such a separation leads
to a two-step work3ow which repeatedly alternates between updating the long-wavelength
component by bPxing the ref3ectivity (or the perturbation) model and the reRestity update
obtained by migration. S. Wang et al. (2013) implement RWI in he frequency domain and
demonstrate that low-frequency data are as essential for RWdls they are for conventional
FWI.

A correlation-based objective function that can handle phaseethys larger than half a
period may alleviate the nonlinearity of the inverse probla (Brossier et al., 2015; H. Wang
et al., 2015; Chi et al., 2015). Another way to build the long-avelength components of the

model involves the wavebeld decomposition method (Tang dt,&013; F. Wang et al., 2013;



Alkhalifah, 2014; Wu and Alkhalifah, 2014a), in which the fonard- and backward-scattering
components are separated in the sensitivity kernel. Integting MVA and FWI using a hybrid
objective function helps estimate both the background and pirbed models simultaneously
(Biondi and Almomin, 2013a; Alkhalifah and Wu, 2015). In additon, combining diving and
relRected waves helps overcome the cycle-skipping problem and build a reliable macromodel
for both shallow and deep targets (Zhou et al., 2015; Wu and Atllifah, 2015, 2016).

However, most existing RWI implementations are limited to iswopic models, which are
often incapable of matching even the kinematics of seismicriaals, especially at far o!-
sets where anisotropy tends to have the largest impact on wave propagation. Incorporating
anisotropy into the inversion scheme leads to improved datatting, which in turn results
in better convergence towards the global minimum of the objective function (Plessix 2010;
Lee et al., 2010; Vigh et al., 2010). A key issue in anisotropiaversion is its multiparam-
eter nature, which leads to trade-o!s. In the framework of RW] an appropriate choice of
the medium parameters is essential in improving the resolotm and reducing the inherent
parameter trade-o!s.

A practical implementation of anisotropic RWI should take iio account the sensitivity
of data to dilerent parameters as a function of the scatteringangle. Radiation patterns
are an important tool to study the amplitude variation of waves scattered by parameter
perturbations. Gholami et al. (2013) perform numerical arlgsis of the radiation patterns for
acoustic VTI media. Alkhalifah and Plessix (2014) investiga radiation patterns analytically
and show that a set that includesV,mo, ", and ! is suitable for inversion of high-quality
ref3ections.

This thesis is divided into four parts and organized as follows. In Chapter 2, | start by
describing the pseudoacoustic wave equation for VTl media. 8muse the pseudoacoustic
wave operator is not self-adjoint, | discuss both the forward anadjoint modeling operators.
The modeling procedure and wavebeld properties are illustea using a 2D horizontally

layered model with a VTl background. The modeling results helpinderstand the basic



steps involved in refl3ection waveform inversion.

In Chapter 3, | discuss the radiation patterns for VTl media basd on the model vector
m = {Vimo,",! }. The radiation patterns are constructed by linearizing the&eonstant-density
pseudoacoustic wave equation using the single-scattering Born approximation and employing
a high-frequency approximation of the GreenOs function fsmooth media. AsVym, and "
largely control the kinematics of rel3ected P-waves in VTI med, the discussion of radiation
patterns is focused primarily on these two parameters. | also present the radiation pattern
for !, which is used as an extra parameter to compensate for inadegg amplitude btting
due to the acoustic assumption. The numerical examples illustrate the radiation patterns for
a horizontal rel3ector. The refRection-type sensitivity kerl for the chosen parameterization
is also computed to corroborate the conclusions derived fnothe radiation patterns.

Chapter 4 prst highlights the limitations of the conventioml FWI when seismic data are
dominated by ref3ections. A sensitivity kernel decompositiois employed to understand the
FWI and RWI sensitivity kernels. Then | present a new implementton of anisotropic RWI
based on a two-stage algorithm to invert rel3ection data fore parameters of VTI media.
The methodology is tested on a horizontally layered medium artie VTI Marmousi model.
The results illustrate how the outcome of the inversion depends on model assumpsand
the choice of the objective function.

In chapter 5, | summarize the thesis results and provide reconendations for future

work.



CHAPTER 2
PSEUDOACOUSTIC WAVEFIELD SIMULATOR

Using the elastic anisotropic wave equation in wavepbeld-lgakinversion methods remains
challenging due to the high computational cost and the compliies involved in wave-mode
separation. Therefore, anisotropic FWI is typically implemeted using the pseudoacoustic
approximation of the elastic wave equation. Employing the P-wave dispersion relation,
Alkhalifah (2000) introduced the pseudoacoustic wave equah for transversely isotropic
(TI) media by setting the shear-wave velocity along the symmetry axis to zero. The P-wave

dispersion relation for a constant-density VTI medium is give by:

VaRZQ2v7 (KE + K2) 1 9B) 1 vA(2" + 1) (kS + kD) + %6 =0, (2.1)

_z
1+2!°
di'erential equation (PDE) involving wavepbeld derivatives in space and time, including the

where K, = This dispersion relation leads to a complicated fourth-oet partial
mixed space-time derivatives. Therefore, various systems of second-order coupled equations
for acoustic Tl media have been developed (Fletcher et al., @8 2009; Fowler et al., 2010;
Duveneck and Bakker, 2011; Zhang et al., 2011). Pseudoacoustic wave equations have
been widely used in anisotropic waveform inversion becauseeyhsignibcantly reduce the
computational cost, while accurately describing the P-wave kinematic signatures.

Here, the VTI medium is parameterized by, (the P-wave horizontal velocity), Vimo
(the P-wave normal-moveout velocity) andvp, (the P-wave vertical velocity). This param-
eterization is related to the Thomsen parameter#, !, and the anellipticity parameter "

[" = (#! 1)/ (1+2!)] introduced by Alkhalifah and Tsvankin (1995) as:

Vimo = Vpo. 1+ 21,
nmo PO, oo L (2.2)
Vhor = VPO 1 + 2#: Vnmo 1 + 2".



According to Fletcher et al. (2009), pseudoacoustic wave pragation in 2D Tl media can

be described by the following coupled equations:

&uP ) 0 ) q
&ud (2:3)
g = VimoHzu® + VgHau®,

whereuP and u9 are the solutions of the fourth-order PDE proposed by Alkhakth (2000),

and H,; and H, are dilerential operators:

26002’ & , . & &
H — H 1 + + H 2 U
1 =sin“$co oOf COoS $_&22 sin2$cos Tx& )4
@ & (2.4)
= —+ — | :
27 g &2 Hy;

$ is the angle between the symmetry axis and the vertical and is the azimuth of the

symmetry axis. For simplicity, | use the VTI form ($=0"') of equation 2.3:

&uP , &uP . &ud

o hor o2 + VPO—’

&t2 &x2 &7 (2 5)
&ud ., &uP , &u '
ge - Vnmogye T VPoga

The pbeldsuP and u% include a shear-wave OartifactO caused by settivigy to zero. S-wave
artifacts can be eliminated by placing sources and receigein a purely isotropic or elliptic

(" = 0) medium (Alkhalifah, 2000; Duveneck et al., 2008).
2.1 Forward modeling

The coupled system 2.5 can be written in a more compact form:

p# "fp#
u
L ua I qu =0, (2.6)

where the subscript OsO stands for the state variallésand ug are the forward-propagated

wavepbeldsf ? and f J are the source terms, and the operatdr is debned as



thor&xx ! &tt V|:>20&zz

L =
Vo8 Vg ! &

2.7)

2.2 Adjoint modeling

Since the pseudoacoustic operatdr is not self-adjoint, the adjoint wave equations do
not retain the same form and are solved dilerently from those used for forward modeling.
Here, the source terms and the output wavebeld in the adjoinystem have to be adjoint to
those in the forward system. The adjoint wavebeld can be evaluated from:

" P#' " P#:0 (2.8)

! q : :
where OrO stands for the adjoint variable$, and ud are the p and q adjoint wavebeldsgP
and d¥ are the source terms for the adjoint equations, respectively, and the adjoint operator

LT is debned as:

LT = &XX thor ! &{t &XX Vnzmo

2.9
8oVZ, &V & (2:9)

2.3 Modeling example

Here, | apply both the forward and adjoint modeling algorithns to a simple 2D horizon-
tally layered VTI model (Figure 2.1). The Pnite-dilerence moeling is second-order in time
and fourth-order in space and employs a regular grid with the horizontal and vertical grid
spacing equal to 10 m. There is an elliptic layer' (= 0) at the top of the model to suppress
the SV artifacts for both the forward-propagated source wavebeld and back-propagated ad-
joint wavebeld. The model parameters satisfy the pseudoastig stability condition (## !

or Vior # Vimo)- A Ricker wavelet with a peak frequency of 15-Hz (Figure 2.2(p)s used to



model the source wavebeld.

The adjoint wavebeld is generated by propagating back in tinthe data recorded at the
receiver shown in Figure 2.2(b) (used as the adjoint sourcenittion). The adjoint wavebeld
interacts with the forward-simulated source wavebeld (Fige 2.3) along both the transmis-
sion and rel3ection wavepaths. These interactions, represented in the form of transmission
and refection sensitivity kernels in section 4.2, are helgfin understanding the spatial dis-

tribution of long- and short- wavenumber model updates in FWI.
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CHAPTER 3
RADIATION PATTERNS AND SENSITIVITY KERNELS

In multiparamater FWI, the resolution is greatly inBuenced bythe parameterization
used in the inversion algorithm. A major issue with anisotropic inversion is the trade-o! or
crosstalk between dilerent parameters. Trade-o!s occur when dilerent parameter combina-
tions can explain the same data, which renders the multiparameter inversion nonunique.

To assess the sensitivity of seismic data to dilerent parametizations in the framework
of anisotropic FWI, one can use the angle-dependent energyd@iation patternO) scattered
by a perturbation in a particular parameter (Wu and Aki, 1985; Tarantola, 1986; Forgues
and Lambare, 1997; Virieux and Operto, 2009; Plessix and G&011; Prieux et al., 2011;
Gholami et al., 2013a, 2013b). Such patterns can help in choosing the optimal parameteri-
zation, reduce the null space of the inversion and increase the parameter resolution. Plessix
and Cao (2011) investigate parameter trade-o!s for VTI medidy using a numerical eigen-
value and eigenvector decomposition of the Hessian matrix thfe objective function. They
show that ! is poorly constrained by surface seismic data because of the inherent trade-o!
between the vertical velocity and depth. They conclude thathe kinematics of the diving
and rel3ected waves in a VTl medium is controlled just b¥,m, and ", as was previously
shown by Alkhalifah and Tsvankin (1995).

Gholami et al. (2013) perform numerical analysis of the radi@n patterns for VTI
media and propose a Omonoparameter strategyO for data dominated by reRections, where
the parameter which has the most inBuence is updated, while the other two parameters are
kept constant. Alkhalifah and Plessix (2014) investigate @iation patterns analytically and
show that a set that includesV,,, " and #is suitable for an hierarchical implementation of
FWI starting with diving waves, whereas the parameterd/mo, ", and ! are preferable for

joint inversion of ref3ections and diving waves.
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The sensitivity of waveform inversion to anisotropy parameters can also be studied in
a more qualitative way with the help of pPnite-frequency sensitivitkernels (Sieminski and
Zhou, 2009; Zhou and Greenhalgh, 2009, 2011; Djebbi and Alkifeth, 2013). Sensitivity
kernels for the acoustic VTI equation describe the inBuencémarameter perturbations when
the data residuals are smeared along the wavepath between a source and receiver.

In this chapter, | discuss the radiation patterns for the parameterizatiom = {Vimo,",! }.
The patterns are constructed by linearizing the constant-desity pseudoacoustic wave equa-
tion using the single-scattering Born approximation and a lgh-frequency approximation of
the GreenOs function for smooth media. The discussion is focused on the param&tgrs
and " that largely control P-wave ref3ection traveltimes in VTI medh. | also present the
radiation pattern for ! b the parameter used to compensate for inadequate amplitude pbtting
due to the acoustic assumption. This discussion helps justify parameterizing the medium in
terms of Vomo, ", @and! for purposes of RWI (see section 4.4). Finally, | analyze paraater
trade-o!s using rel3ection-type sensitivity kernels, where the wavepath is formed by two seg-
ments: one from the source to a subsurface scatterer and the other from the scatterer to the

receiver.
3.1 Radiation patterns

An overlap of the scattering patterns corresponding to pertbations in dilerent param-
eters indicates the trade-o! between these parameters for this range of angles. Insignibcant
overlap of scattering patterns means that the correspondingapameters can be resolved
by the data. The derivation of radiation patterns is generajl based on the slowness and
polarization vectors obtained by replacing the GreenOs ftinos with their asymptotic rep-
resentation in the Born approximation (Wu and Aki, 1985; Ghami et al., 2013; Alkhalifah
and Plessix, 2014; Kamath and Tsvankin, 2016).

By parameterizing the medium in terms ofV,n, ", and !, the pseudoacoustic wave

equation 2.3 can be written as:
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1 1

P (1+2")&UP! & ud = fP,
e e 3.1
1 q 1 P 1 q q ( l )
| = I =
Vnzmo &{t U . m&xx U . (1 + 2| )&Zzu f .

According to Zhou et al. (2006), Plessix and Cao (2011), and Alklifah and Plessix (2014),

equation 3.1 can be transformed into an equivalent expressiom terms of the parameterp,,

wherep, = u% 1+2!, and its deviation fromuP (p; = uP! p,), leading to:

1 1
| | n —
Vg P! S Prr ) Ty STy =

pr! 2"&x(pn+ pr) =0.

(3.2)

V2

nmo
The radiation patterns are derived from the Born approximatn of equation 3.2 for per-
turbations in the parametersV,mo, ", and!. The perturbed parameters along with the
wavebeld components can be expressed as the sum of backgroungdevédubscript Oo0) and
a perturbation (subscript OdO) in the following way

1 (I+va) . _.

= = + " =1 _+1.
2 2 ’ (0] d» - =0 < ds
Van VO

Pn = Pnot Pnd: Pr = Pro t Pra-
Assuming a purely isotropic background”(, = 0, !, = 0) and neglecting the second-order

(3.3)

terms, the Born approximation of equation 3.2 in the frequency domain is given by (see

Appendix A):
1 1 V2$ %
o (0] n
! ﬁ(ygpnd ! (&XX pnd) =1 O/&ﬁ(vd) Pno ! 2% &xx d(&xx pno) ! (!d&zz Pro + &zz!dpno)-
o [0}
(3.4)
Using the asymptotic GreenOs function, the perturbatiqng can be written as:
&
) 0,
Pna(Xs, Xy, %9 = | 9 f (Xs, %G(XS’X’ /?/?(xr,x, A r ak dv(x), (3.5)
V(x) )

where Xs and x, are the source and receiver locations, respectivel,(x) is the volume

containing all scatterers, and
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") ' )
Vg 1
r=("*: k=( 2n2n% * . (3.6)

5 sX rx2
!d (nsz + nrz)

The elements ofk represent the radiation patterns (Aki and Richards, 1980; Alkalifah and
Plessix, 2014) due to the corresponding perturbed parameters giverrinHere,ng and n, are
the unit slowness vectors for the source and receiver side, respectively, which for a horizontal

relRector can expressed through the scattering andgke

+ H + . %) + k) + - & )
_ Ngx _ Sin _ _ N _ Sin
Ns = N,  COS$ Ar = n, ! cosk (3.7)
Substituting equation 3.7 into equation 3.6, the radiation patterns can be expressed as:
Vd) 1 )
r=0"":; k=(2sit$ . (3.8)
Iy 2cos$

3.2 Anisotropic sensitivity kernels and trade-o! analysis

The sensitivity kernel for a particular model parameter is te response in the model
space to data perturbations for a single source and a singleceiver. Here, | extend the
trade-o! analysis based on radiation patterns by using ref@éon-type sensitivity kernels for
the pseudoacoustic VTl wave equation. In the case of waveforimversion with ref3ected
waves, the sensitivity kernel includes two parts. One is thgource-side kernel, which is the
cross-correlation of the source wavebeld with the adjoisburce wavebeld, and the other is the
receiver-side kernel which represents the cross-correlation of the residual receiver wavebeld
with the adjoint-receiver wavepbeld.

The sensitivity kernel can be computed from the pseudoacousV Tl wave equation 2.5
using the least-squares misbht function and the adjoint state method (Tromp et al., 2005;

Plessix, 2006). The source-side and receiver-side gratbegre described in Appendix C.
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3.3 Numerical Examples

For a perturbation in the NMO velocity the radiation pattern is independent of the
scattering angle and, therefore, has a signibcant trade-o! with bothand! (Figure 3.1). A
perturbation in ! produces most energy at small scattering angles, which implies thiatis
mainly associated with the vertical wavenumber for the souecand receiver wavebelds. At
small scattering angles, as in the case of short-spread rel3ections, a trade-o! exists between
Vimo @nd!. On the other hand, the radiation pattern for" shifted toward large scattering
angles and is associated with the horizontal wavenumber.

Therefore, there is limited coupling between the parameters and " at either small
or large scattering angles. This analysis suggests an hierarchical approach for ref3ection
waveform inversion, wherév,,, is reconstructed prst, followed by . In this case,! serves
as an additional parameter used for amplitude ptting, while density is kept constant. The
amplitudes of the radiation patterns for the parameter§ and! are much smaller than those
for Vamo, SO the inversion gradient has to be properly scaled to enswaecurate updates in'
and!.

To complement the analysis of radiation patterns, | presentefiection-type sensitivity
kernels for the parametersvimo, ", and !. In all three cases, the parameter perturbation
is generated for a monochromatic 12-Hz wavebeld. As expectele tenergy distribution
in the sensitivity kernel for the NMO velocity (Figure 3.1) is elatively uniform. However,
for the perturbations in both " and !, the sensitivity kernels vary with direction of wave
propagation. The energy with! -sensitivity kernel is concentrated mostly near the vertical
direction. In contrast, the sensitivity kernel for" has a higher amplitude for near-horizontal
wave propagation. This analysis conbrms that the NMO velogithas a trade-o! with " near
the horizontal direction and with ! near the vertical direction. If! is known from additional
information (e.g., check shots) and data have a su'ciently wide angular coverage, ref3ection

waveform inversion should be able to estimate bot¥,,, and ".

16



270° 90°

180°

@)

Figure 3.1. Radiation patterns forV,n, (red), " (green), and! (blue) plotted as a function
of the scattering angle$.
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Figure 3.2: Sensitivity kernels for perturbations in (a)Vime, (b) ", and (c) ! for a source
(yellow dot) located x = 1 km, receiver (pink dot) at x = 2 km, and a scatterer (white dot)
at x = 1.5 km and z = 0.4 km.
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CHAPTER 4
REFLECTION WAVEFORM INVERSION

RelRection waveform inversion aims to retrieve long-wavelgth components of the ve-
locity model, mostly in the deeper horizons illuminated prirarily by rel3ections. The key
components of anisotropic RWI are an accurate and e"cient wabeld simulator, proper
medium parameterization, a robust misbt function that prevets cycle skipping, and an ef-
pcient optimization algorithm. In this chapter, | highlight the limitations of conventional
FWI in handling reRections and then discuss RWI for acoustic VTI mdia (the wavebeld
simulators were described in chapter 2). The gradient is comied from the adjoint-state
method (see section 4.6). Synthetic tests illustrate how the inversion results depend on model

assumptions and the choice of the objective function.
4.1 Introduction

When surface seismic data contain intensive diving waves, FWah been successfully used
to employ them in building the long-wavelength componentsfdhe subsurface model. In
FWI, model updates at a subsurface point are governed by the bagirinciples of dilraction
tomography (Devaney, 1982; Miller et al., 1987, Wu and Toksez, 1987). In isotropic media,
the wavenumber vectokk at a potential di'ractor is related to scattering angle$, the velocity
v and the angular frequencyoby

0 -

k= ket kK = V/Ocos g' n, 4.1)

whereks and k; are the source and receiver wave vectors, respectively, ands a unit vector
normal to the rel3ector. Here, the model is assumed to be logatiomogeneous with respect
to the dominant wavelength( at the subsurface di'ractor, and the approximation is based

on a plane-wave representation of the source and receiver wavepbelds. For anisotropic niedia
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is not the midpoint wavenumber vector (as is the case for isotropy), even though the formula
k = ks + k; still holds (Figure 4.1). For 2D Tl media, the wavenumbelk and scattering
angle $ are related by (Sava and Alkhalifah, 2013):

k = ks+ ke = K($)n, (4.2)

where K ($) is a certain function of the scattering angle and is a unit re3ector normal.

If the symmetry axis is perpendicular to the refRector, thiselationship can be simplibed to
% d

k = -—§.COS é
2

n, wherey, is the phase velocity.
Yo

Figure 4.1: Wavenumber vectorks and k, associated with the rays connecting the source
and receiver (respectively) to a subsurface dilractor. The scattering angle is denoted 8y
n is the rel3ector normal.

This relationship between the wavenumber vector and scattering angle shows that for
wide-azimuth acquisition, large scattering angles associated with diving waves facilitatest
reconstruction of low-wavenumber components of the subsurface model. In contrast, for
narrow-azimuth acquisition, small scattering angles associated with ref3ections contribute to

high-wavenumber model updates.
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FWI starts with a smooth initial velocity model free from ref3etions by applying only low-
wavenumber updates to the background model. Because the lasvenumber information
is associated mostly with diving waves, this update is typitly restricted to the shallow
part of the model. In the deeper regions, FWI produces a high-wanumber update due to
the absence of diving waves but fails to properly update the low-wavenumber components.
To improve the resolution at depth, longer-o!set data and lowr frequencies are required.
Unfortunately, for most o!shore surveys the maximum o!set-b-depth ratios are insu“cient
for FWI to recover the deeper segments of the model. To achieveeamingful background
model updates at depth, it is necessary to incorporate re3en data. Hence, it is important
to understand the relationship between the sensitivity kerels of the conventional FWI and

RWI.
4.2 FWI and RWI sensitivity kernels

The sensitivity kernel identibes the model areas that can be updated for a particular
receiver location (Woodward, 1992; Snieder and Lomax, 1996; Dahlen et al., 2000). In the
framework of FWI, dividing the full sensitivity kernel into it s sub-kernels helps in separating
the contributions from diving and ref3ected waves. To understand the performance of both

FWI and RWI, it is convenient to study the sensitivity kernels numerically.

B R

Transmitted ray

Incident ray Reflected ray

Reflector

Figure 4.2: Schematic representation of the experiment. Bothétransmission and ref3ection
wavepaths contribute to the full FWI sensitivity kernel.
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First, | consider the full FWI sensitivity kernel that includes the Fresnel zones associated
with both diving and rel3ected waves (Figure 4.2). FWI starts wit a smooth initial model,
which is updated iteratively by minimizing an objective furction, generally the least-squares

norm of the dilerence between the modeled and recorded seismic data (Tarantola, 1987):

Cyi(m) = %wobs(xs;xr,t)! dca|(Xs,Xr,t)$2, (4.3)

where x5 and x, are the source and receiver location, respectivelgqs(Xs, Xr,t) is the
observed datad.,(Xs, Xr,t) = us(x,z =0,t) is the modeled (calculated) data andn is the

model vector. The modeled wavebelds can be computed from the wave equation:

L(m)us(x, t;xs) = (1) (X! Xs), (4.4)

where L is the pseudoacoustic wave operator (equation 2.7) ah(t) is the source function.
For a single source Xs)-receiver ;) pair, the gradient K corresponding to the objective

function in equation 4.3 can be computed by the adjoint-sta method (Plessix, 2006):

K (X;Xs, Xr) = Us(X,t;Xs) ) ur (X, t;X;), (4.5)

where) denotes the cross-correlation in the time domains(X, t; Xs) is the forward-modeled
wavebeld andu, (x,t;X,) is the adjoint-wavebeld for the receiver. The adjoint wavekeelis
computed by using the data residuals for selected waves (could be direct, diving, reBdct
and/or backscattered waves) as the source term. The adjoint-state method is discussed in
more detail in section 4.6.

The full FWI sensitivity kernel for a homogenous VTI background rodel is shown in
Figure 4.3. The initial model is smooth with no refRections, sthat the data residual con-
tains both diving and ref3ected waves. These data residualeaack-propagated along the
sensitivity-kernel path to update both the low-and high-wavenumber model comporten

The full FWI sensitivity kernel can be written as the sum of the pmary kernel K, and
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Reflector

Figure 4.3: Schematic representation of the full FWI sensitiwt kernel.

secondary kerneK:

K (X;Xs, Xr) = Kp(X;Xs, Xr) + Ks(X; Xs, X ), (4.6)

where

Kp= US(X,t;Xs) ) UL (X, t;X,),
Ks= ki + ky,
ST t (4.7)
Ki = ug(X,t;Xs) Y ur (X, t;X,) + ui(x, t;xs) ) u; (X, t; x;),
ko = ug(X, t;Xs) ) ur (X, t;X;).

Here, u' is the transmitted wavebeld andu’ is the wavebeld generated from the seismic
response of relRectors. The primary kerndl,(x;Xs, X,), formed by the correlation of the
transmitted source and receiver wavepelds, produces the Fresnel zone associated with div-
ing waves and represents the main part of the conventional FWissitivity kernel. The
secondary kerneK (X;Xs, X;) consists of two componentsk; and k,. The componentk;
includes the correlations of the downgoing source-side we&eld and the upgoing scattered
receiver wavebeld and of the upgoing scattered source wavebeld and the downgoing receiver
wavepbeld. The componerk; is formed by the correlation of the scattered source and receiver
wavebelds and usually is negligibly small (Brossier et al.0P5, Chi et al., 2015).

The componentk; produces a wide Fresnel zone (rabbit-ears) between the ref3ector and

the surface and is the dominant part of the RWI sensitivity kemel. Becausek; is formed by
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the correlation of the transmission wavepaths between therace and the ref3ector, it allows
for the reconstruction of long-to-intermediate wavelengths at deep targets. In practice, a
single-scattering Born approximation is used in computinghie RWI gradient to generate the
scattered wavebeld for both the source and receiver sides (Xwual., 2012b; S. Wang et al.,
2013); for more details, see section 4.6.

The contributions of the FWI and RWI sensitivity kernels are ilustrated in Figure 4.4.
The full FWI sensitivity kernel in Figure 4.4(a) can be divided nto three parts. The con-
ventional sensitivity kernel in Figure 4.4(c), largely bas# on diving waves, has the highest
amplitude in the shallow regions. For the deeper regions, tlmain contribution comes from
the migration ellipse (Figure 4.4(b)), which has a higher anmppude than the RWI sensitivity
kernel (Figure 4.4(f)). Therefore, removing the migration lépse from the full sensitivity
kernel highlights the RWI sensitivity kernel (rabbit-ear warepath), which is responsible for

updating the low-wavenumber components in the deeper reg®of the model.
4.3 Two-stage inversion approach

The model parameters in the FWI gradient have dilerent units andmagnitude, which
may prevent FWI from successful convergence. An appropriate ¢be of parameterization
and proper scaling of the gradient accelerates the rate of convergence of the inversion al-
gorithm. Optimal parameterization is supposed to mitigate the trade-ols between model
parameters for a given type of input data. | have analyzed these trade-o!s with the help
of radiation patterns and rel3ection-type sensitivity kernks presented in Chapter 3. Based
on that discussion, the model vector is debned & m{V.mo,",! }, which helps reduce the
trade-o!s and improve model resolution.

The RWI approach introduced here separates the subsurface dab into long-wavelength
components updated via a correlation-based objective furan and short-wavelength com-
ponents estimated by perturbing model parameters. The algthim is designed to estimate
just the NMO velocity and parameter” because typically! is poorly constrained by P-

wave rel3ection data. Stable inversion for cannot be performed without additional (e.qg.,
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Figure 4.4 Sensitivity kernels for the model in Figure 2.1. Ja he full FWI sensitivity kernel
formed by both diving and rel3ected waves. (b) The migration ellipse, which prowed high-
wavenumber updates. (c) The conventional FWI sensitivity keral formed by diving waves.
(d) The source-side refRection sensitivity kernel. (e) The ceiver-side ref3ection sensitivity
kernel. (f) The RWI sensitivity kernel, which provides smodt updates for deep targets.
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borehole) information (Wang and Tsvankin, 2013a,b).

The method operates with P-wave ref3ection data and includéise following steps:

1. At small scattering angles (i.e., for small o!sets), there ia trade-o! betweenV,,, and
I'. Hence, the parametet is perturbed Prst, while keepind/,mo and " bxed. At each
iteration, the reference NMO velocity is updated using a denmgtion process for the! -
perturbation model to generate the simulated data. The main gd of the prst inversion
stage is to eliminate the data residuals at the near o!sets caused by inaccurate initial
values of! and V,m,. Because this procedure is limited to near-o!set data, it sébm

sulers from cycle skipping.

2. According to the analysis of the radiation patterns and sensiity kernels for ", that
parameter is mainly associated with the horizontal wavenumber and there exists a
trade-o! between V,m, and " in near-horizontal directions. Therefore, at the second
stage, the previously updated NMO velocity is used to generathe perturbation model.

At each iteration, " is updated by applying a demigration to theV,mo-perturbation
model to generate the simulated data. The goal of the secondage is to invert for
" by eliminating the data residuals at the far olsets. With su"ciently wide angular

coverage, the two-stage RWI is expected to be able to estimdteth V,n, and ".

A correlation-based objective function, which evaluates thsimilarity between the ob-
served and predicted data, is employed at both stages. The RWltadient is computed from
the adjoint-state method discussed in section 4.6. Employgr in this approach helps com-
pensate (at least, to a certain extent) for inadequate amplitde btting of ref3ection data in
the acoustic approximation. Therefore]! is perturbed at the Prst inversion stage and the
Born approximation for the pseudoacoustic wave equation is used to generate the scattered

wavebeld; this is described in the next section.
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4.4 Born approximation using parameter !

Representing the parametel as the sum of the background valud () and a perturbation
(!4), the wavebelds from equation 2.6 can be expressedidss uP°+ uP andu® = u%°+ u%,
whereuP! and u% are the perturbations andu”® and u® are the wavebelds for the background
medium.

For a small! -perturbation, equation 2.4 can be written in matrix form agsee Appendix B):

&2u°

' | 2 (- 7
L gt , , (4.8)
&-ua°
214 V(=)
&7
/ 2
whereL = ¢ Vier&oc! B Viobe 3

Vnzm 0 &XX Vp20 &Z z I &tt

Here, we refer to the term 24V2, as the ®-image.O The dot product of theé -image with

the squared double-derivative of the g-component of the source wavebeld produces secondary
sources in the model space. The Born-scattered data (i.e., predicted data) are computed by
forward modeling with these secondary sources using eqaati4.9. Next, this!-image is
used as the perturbation model to invert only foV,,, and get an updated NMO-velocity
Peld. This update, based primarily on short-o!set data, comiptes the Pbrst stage of the
inversion. In contrast, existing RWI algorithms obtain the mage from near-o!set least-
squares migration. At the second inversion stage, the estimat®gd,,, is used to generate the

perturbation model and invert for" by eliminating the far-o!set data residuals.
4.5 Correlation objective function

We employ the constant-density pseudoacoustic wave equatjavhich does not properly
model ref3ection amplitudes. In addition, because the actuedf3ectivity cannot be obtained
by cross-correlating the source and receiver wavebelds, ditonde matching of the observed

and predicted data using a least-squares objective function may be problematic. The require-
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ment of amplitude matching can be relaxed by using a normalized cross-correlation objective
function C that evaluates the similarity between the observedd(,s) and Born-modeled ¢ ,)

data (Routh et al., 2011a,b; Choi and Alkhalifah, 2012; Xu et gl 2012a; Liu et al., 2016):

5 5 dm p dobs

=1
c=1 3. % a$d0bs$.

(4.9)

The similarity between the observed and simulated data is maximized in the process of
model updating. The correlation value goes to zero when the observed and predicted data

are completely out of phase, and is equal to unity when their kinematics completely match.
4.6 Adjoint-state method

The adjoint-state method (Tromp et al., 2005; Plessix, 2006) provides an e"cient way of
computing the derivatives of the objective function with respect to the model paramets.
The method operates with the objective function, state equains, and adjoint equations.
The objective function depends on the model parameters thrgh the state equations.

The adjoint-state method involves four main steps:

(i) Computation of the state variables (forward wavebeld) by solving the state equations.
(i) Computation of the adjoint source functions.

(i) Computation of the adjoint-state variable (adjoint wavebeld) by solving the adjoint
equations.

(iv) Computation of the gradient of the objective function.

The problem in hand includes two state equations: the pseudoacoustic wave equatioatth
generates the forward wavebeld and the Born approximation tiat equation for a small
perturbation in a certain model parameter. RWI can be posed dhke following optimization

problem:
minimize  C(m, uP,u9, uP*, u™),
m

(4.10)
subject to F(m,uP,u%) =0& Fy(m,u*,u®™)=0,
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whereuP and u® are the forward-modeled wavebelds ane®* and u% are the Born-scattered
wavebelds. As discussed above, the functiofs and F; are the state equations for the
forward-modeled and Born-simulated data, respectively, dm = {Vimo,",! } is the model
vector.

Using equation 4.9 and 4.10, the Lagrangian can be formulated:

#= C(x,t)'%Lug! f,(,.&!'%u;! lus (u,& (4.12)
dm - dobs . . . . . .
where C(x,t) = ! a Is the correlation-based objective function (equation 4.9)
$dm$ $dobs$

L is the wave operator| is the perturbation model,f is the source termug and u; are the
state variables, and( ,, and (,, are the adjoint variables. The source wavebeld; and the

Born-scattered wavebeldl; are generated by solving the following equations:

Lus! f =0, (4.12)

Lui! lus=0. (4.13)

Next, the adjoint variables for both the source and receiveiides are obtained from:

LT(u! 1w =0, (4.14)
LT(y,! iﬂ;& (@1 880ps) ! Qb%:o. (4.15)
uz $dm$ m m ons ons
Here, 8,, = d—m s = & and the adjoint sources are:
$dm$ $dobs$
1 8, . %
Mg = $d—m$ em(em a’Bobs) I Bops - (4.16)

Equation 4.16 shows that the Born-simulated data are scaled bhe dot product of the ob-

served data and the Born-simulated data. This ties the amplitude matching to theimilarity
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between these two data sets. Finally, the gradient for the meti parametersm is computed
from &#/&m = &J/&m. The expressions for the source- and receiver-side gradgenan be

found in Appendix C.
4.7 SYNTHETIC EXAMPLE

The proposed two-stage inversion approach is applied to tvggidded VTI models. The
forward and adjoint wavebeld extrapolation is carried out with a Pnite dilerence algohim
developed within the framework oMADAGASCAR . For both tests, | use the zero-lag nor-
malized correlation-based objective function (equation 4.9).

Testl

The algorithm is brst tested on the layered VTI model in Figure . The horizontal and
vertical grid spacing is 25 m. The data are excited by 16 source®sitioned at 500 m
intervals on the surface with a maximum source-receiver o!set of 7.5 km. The receivers are
also located on the surface at every grid point. The source signal is a Ricker wavelet with a
central frequency of 5 Hz. The sources and receivers are entetiin a thin isotropic layer

to suppress the shear-wave artifacts produced by the pseudoacoustic wave equation. The
modeled wavebeld is computed for a smooth background medium free from ref3ections, and
the adjoint sources are injected back into the medium to generate the adjoint wavebeld.

The gradients in Figure 4.6 are obtained by perturbing the pameter! and using the
adjoint-state method discussed in section 4.6. Note that thergdient spreads even to the
third layer without applying any illumination compensation. The initial model is isotropic
(! = " =0), with the NMO velocity equal to the velocity in the brst layer. As described
above, the brst stage involves using the-perturbation model to generate the near-o!set
demigrated data, which are inverted foiV,m,. The algorithm was able to recoveiV, o in
the second and the third layers, although the velocity in thedeepest layer is somewhat
overestimated (Figure 4.7).

At the second stage, the demigrated data are obtained by usirtge inverted Vymo to

generate the perturbation model. The algorithm inverts jusfor " by btting the data at the
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far olsets. The estimated" in the Prst layer is accurate because the o!set-to-depth ratio for
its bottom is uncommonly large (x/z = 7), whereas the inverted'-values in the second and
third layer are slightly distorted (Figure 4.8). Even betterestimates of' could be obtained if
the model contained dipping ref3ectors (Tsvankin, 2012). Clearly, the hierarchical inversion
approach makes it possible to handle the nonlinearity of thebjective function and mitigate

the trade-o!s between the parameters/,mo and ".

(@) (b) (©)

Figure 4.5: Parameters (aVomo, (b) ", and! of a layered VTI model.

(@) (b) (©

Figure 4.6: Gradients of the objective function (equation 40) with respect to (b) Vimo,
(¢) ", and (d) ! for the model in Figure 4.5.
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(@) (b) (©)

Figure 4.7: First stage of the inversion: (a) the actuaV,mo-Peld, (b) the initial Vymo, and
(c) the inverted Vymo-

(@) (b) (©)

Figure 4.8: Second stage of the inversion: (a) the actualbeld, (b) the initial ", and (c) the
inverted ".
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Test2

The algorithm was also applied to the VTI Marmousi model with tke acquisition geometry
consisting of 20 shots and 151 receivers. The shots and receivers are distributed evenly in
the horizontal direction at a depth of 30 m. The grid spacing is 10 m in both thg- and

z- directions, and the time step size for the modeling is 1 ms. The syntieedata set is
generated with a a bnite-dilerence pseudoacoustic simutatand a 5-Hz Ricker wavelet. A
water layer is added on top of the model to suppress the shear-wautifact.

The initial model for RWI is elliptic (" = 0) with a linearly increasing NMO velocity in
the vertical direction (Figure 4.9(a)) and a smooth! -beld, which is assumed to be known
(e.g., from check shots). The conventional FWI for this initiamodel is likely to get trapped
in local minima. In contrast, after 25 iterations of RWI, the kackgroundV,mo-Peld (Figure
4.9(c)) converges towards the actual model. Note that the NMOelocity has been updated
even at depth, although the wavepbeld is ref3ection-dominated@his is because at this stage
the algorithm pts the near-o!set data free from cycle-skippg.

Inverting for the "-parameter at the second stage requires btting the far-olsatata
distorted by the inaccurate initial " -values (' = 0). The V,mo perturbation model is obtained
by using the inverted backgroundVv,m, (Figure 4.9 (c)). Despite the initial " = 0 being far
from the actual model, the algorithm was successful in obtaining a smodthupdate (Figure
4.10 (c)) towards the actual background model. However, theceuracy of the update is
reduced by cycle-skipping caused by the low quality of theitral model and the need to bt

the far-olset data.

33



(@)

(b)

(©

Figure 4.9: Test for the VTI Marmousi model. (a) The actualV,no-Peld, (b) the initial
Vomo, @nd (C) Vimoe Obtained after the prst stage of RWI.
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Figure 4.10: (a) Actual"-peld for the Marmousi model and (b) obtained after the second
stage of RWI.
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4.8 Temporal-correlation objective function

To alleviate the problems of cycle-skipping during the inveron for", | use an alternative,
correlation-based objective function that can handle time elays larger than half a period.
A better match between the predicted and observed data can be aeted through a time
shift or an extension in the time domain. A time-lag normalized cross-correlation function

can be debned as (Brossier et al., 2014; Chi et al., 2015):

6
dm(t, h)deps(t + *, h) dt

XCM = S NS St + =, 1)

(4.17)

where * is the time lag, d(t,h) and dgs(t, h) are the predicted and observed data, re-
spectively, recorded at the source-receiver o!sét and time t. The corresponding objective
function can be written as (Leeuwen and Mulder, 2008, Brossier et al., 2014):

5 5 1-

C= 5 X (*.h) . (4.18)

h !

The adjoint sources for the function in equation 4.18 can be deed using the adjoint state

method:

e by dops(t + *, h)

"= IO S TN $Sdana(t + =, )8
! dm(téh)J(*,h) ' ’ (4.19)
$dm(t1 h)$ $dobs(t + *’ h)$
where
5
J(*,h) = dm(t,h) deps(t + *, ). (4.20)

t

The computational cost of inversion stays the same as that rfdhe zero-lag normalized
correlation-based objective function (equation 4.9). Thenly change in the gradient involves

a di'erent adjoint-source term.
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4.9 Application to the Marmousi Model

The goal of this test is to demonstrate that the temporal-correlation objective function
(equation 4.18) helps invert for" by minimizing the inBuence of cycle-skipping at the far
olsets. RWI is applied with the same initial "-model that was used in the previous sec-
tion where the inversion was based on the zero-lag normalized correlation-based objective
function. The addition of the time lag to the objective function leads to a signibcanm-
provement in the background'-update, mostly for the deeper part of the model. Indeed, the
time-lag cross-correlation objective function can properly handle delays greater than half a

period, which relaxes the requirements for the high accuracy e initial model.

(a)

(b)

Figure 4.11: Parametel estimated by RWI with (a) the conventional correlation objetive
function, and (b) the temporal-correlation objective function.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

In this chapter | summarize the thesis results and provide some recommendations for

future work.
5.1 Conclusions

| developed a two-stage RWI (ref3ection waveform inversion)gorithm for VTl media
designed to incorporate P-wave ref3ections into acoustic vederm inversion. To reduce the
nonlinearity of the inverse problem, btting of near-o!set data is performed Prst, followed by
inversion of long-o!set ref3ections. To analyze the trade-glinherent in such multiparameter
inversion, | studied the radiation patterns and rel3ection sensitivity kernels for perturbations
in the VTI parameters Vymo, ", and!.

These trade-o!s are mitigated by the proposed hierarchicahplementation of RWI where
the inversion for the normal-moveout velocity,, is followed by" -estimation, with the co-
e"cient ! used to improve amplitude btting. At the Prst stage of RWI, a -perturbation
model is employed to estimaté/,n, from near-o!set data, which makes the inversion less
sensitive to cycle-skipping. Then the updated NMO velocitysiused to generate a perturba-
tion model, which includes far-o!set velocity information needed to constraih at the second
inversion stage. At both stages, the parameter belds are degmosed into the background
and perturbation models and data are generated by applying Born modeling for the corre-
sponding parameter perturbations. This strategy has provetb be elective in recovering
low-wavenumber model components from ref3ection data.

The employed correlation-based objective function reduces the sensitivity to amplited
errors because it evaluates the general similarity between the observed and Born-modeled
data. Synthetic examples demonstrate that the hierarchicahversion approach mitigates the

multimodal nature of the objective function and the trade-o!sbetween the model parameters.
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Testing for layered VTl media proves that the algorithm can rsolve the interval parameters
Vomo @nd " from P-wave ref3ection waveforms. As is the case in moveout &sas, either
dipping interfaces or large olset-to-depth ratios are requed to estimate " with su"cient
accuracy.

A synthetic test for the more complicated VTI Marmousi model Bows that the back-
ground velocity V,mo can be recovered even when the initial model is relatively simple and
signibcantly deviates from the actual velocity Peld. This is an important advantage ofi¢
developed algorithm that employs d -perturbation model to mitigate cycle-skipping in pbt-
ting the near-o!set data. The recovery of the long-wavelength component bfby ptting the
far-olset data is more sensitive to cycle-skipping problent ithe initial "-model is inaccu-
rate. This issue could be partially addressed by using a temporal correlation-based objective
function designed to handle cycle-skipped data. Overall, the proposed method has shown
the potential to recover the long-wavelength components &, and ", while mitigating the

trade-o!s and nonlinearity-related issues during model upating.
5.2 Recommendations

The conventional pseudoacoustic wave equations become unstablé for0 and for highly
complex, heterogeneous Tl media with varying interface dips and azimuths. Moreovergth
pseudoacoustic approximation produces shear-wave artifeithat contaminate modeled data
and inversion gradients. These artifacts can be eliminated by placing the sources and re-
ceivers in an isotropic or elliptic layer or by using the gemalized pseudospectral methods,
but P-waves may still be converted into shear modes while pragating through complex
media. To incorporate shear-wave information, it is necemy to use the more complicated
elastic wave equation. However, employing elastic wave eqigat is computationally expen-
sive and requires mode separation and development of advaddmaging conditions.

The proposed RWI method inverts ref3ection data fov,,n, and" in two stages to mitigate
the nonlinearity of the inverse problem. Employing scattering-angle Plters to condition the

parameter gradients can also reduce the nonlinearity and address trade-o!-related issues
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(Alkhalifah et al., 2015). Additionally, incorporating information from both diving and
relRected waves into a single objective function to invert fov,n,, and " can increase the
e"ciency of model building. A parameter set that includesvior, ", and #may be worthwhile
to explore in the RWI framework because it does not require andrarchical implementation
(Alkhalifah and Plessix, 2014; Alkhalifah and Wu, 2016). Otheparameter combinations
can also be analyzed for dilerent types of input data using radiation patterns and sensiitiy
kernel analysis (Plessix and Cao, 2011; Gholami et al., 2Q0¥8khalifah and Plessix, 2014).

The e"ciency of RWI implementation and convergence of the optinzation algorithm de-
pends on proper use of core-memory resources available ordera computational platforms.
For example, RWI can be carried out for a few selected frequées (Sirgue and Pratt, 2004)
with a parallelized frequency-domain algorithm that uses a direct matrix solver implemesd
on distributed-memory platforms (S. Wang et al., 2011; 2013).

To incorporate multiply-scattered waves into the RWI optimization scheme, it is neces-
sary to estimate the inverse Hessian matrix via the Gauss-Newvt or exact Newton algo-
rithms. Recent research shows that implementation of the tncated Newton framework can
substantially increase the rate of convergence of waveform inversion (Metivier et al., 2014)
Also, application of preconditioners and regularizationdsed misbt functions can make the
algorithm more robust, while improving its convergence rate.

Finally, extending the proposed RWI technique to 3D is highly leallenging due to its
computational cost, the need to account for 3D parameter variations, and parameter trade-
o!s. Also, application of this method to Peld data will requie careful quality control,

accurate estimation of the initial model, and case-by-casa@aameterization analysis.
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APPENDIX A - —
RADIATION PATTERNS

The constant-density pseudoacoustic wave equation (Duveneck et al., 2008) can be written

in the following way by parameterizing the medium in terms o¥,mo, ", and !:

1 1
uPl (14+2")&,UP! ™ &, ,ud=fP
Vnzmo&[t ( 8o 1+21 Al
1 q 1 P 1 & ud=fd A
udt = & UP ! ut= 4.
Vnzmo&(t 1+2| XX (1+2|) ZZ

According to Zhou et al. (2006), Plessix and Cao (2011), and Alklifah and Plessix (2014),
equation A.1 can be transformed into an equivalent expression terms of p, (wherep, =

ud 1+2!) and its deviation from uP (p, = uP! p,), leading to

1 1

1
| r =
Vg P B ot P Py S P =

1
V2 pr! 2"&x(pn+ pr)=0.

nmo

(A.2)

The radiation patterns are derived from the brst-order Borrapproximation of equation A.2
due to perturbations in the parameters/,me, ", and!. The perturbed parameters along with
the wavebeld components can be expressed as the sum of their background values (subscript
000) and a perturbation (subscript Od0):
1 _ (1+vg)

2 2
Vnmo Vo

Pn= Pnot Pnds Pr= Prot Pra-
Assuming a purely isotropic background”(, = 0, !, = 0) and neglecting the second-order

||:||o+nd’ !:!0+!d

(A.3)

terms, the background valueg,, and p;, in the frequency domain can be found as (Alkhalifah

and Plessix, 2014):
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i
V_go/(? Pro ! (&x Pro + &z Pno) = T, (A.4)

Po =0.

Sincep,, = 0, the scattered wavebeldyy depends only orp,, and can be obtained from:

1
?%? Pra = 2"d(&xx pno) (A-5)

(]

Replacing the parameteip,y in the Born equation yields an equation for the scattered wave-

Peldpng:
1 1 v2® %
2% Prat (& Pra) = 1 96 5 (Va) Pro! 255 & a8 Pro) ! (182 Prot ez o). (A-6)
Equation A.2 can be solved in the frequency domain using thepresentation theorem:
P (X', X;, %9 = &V( ) k(x', % G(x,,x, % dV(x), (A7)
X!

wherek is the force density,V (x') is the volume that includes all sources, an(x,, X, %

is the GreenOs function for the source @t and receiver atx, given by

'V—ZO/&! (& + &7) G(X, X, %9 = I(x! X). (A.8)

o

The background wavebeld componemt,, can be expressed through the force applied at the

source locationxs and the GreenOs function:
Pro(Xs, Xr, %9 = f (Xs, %9 G(X , Xs, 9. (A.9)

Using equations A.9 and A.7 and employing the reciprocity theem, i.e., G(X', Xs, % =

G(xs, X, %9, the scattered wavebelg,q can be expressed as:

&
o
Prd(Xs, X, 9 = ! f (Xs, 29— (Va) G(Xs, X, %9 G(Xr, X, %9 dV ()
g VO Vo
2
! 20"—/; "4 G (Xss X, 99 G (X » X, 99 dV/(X) (A.10)
&V(X)
! La (G(Xs, X, %0 G,z (Xr, X, % + G,,(Xs, X, %0 G(X,, X, 99).
V (x)
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Under a high-frequency approximation, the GreenOs functioinsequation A.10 can be re-

placed by their asymptotic versions (Vavryguk, 2007):

$, n %
G(Xs, X, % = Ksexp iE’ o+ 1%— 4a(xs! Xx) ,
$ 5 h % (A.11)
G(X;, X, %9 = K, exp iE’ o+ i%V—r ax, ! x),
r

whereK is a function of the group velocity and distance along the ray,, is a function of
the Gaussian curvature of the slowness surfaae; and n, are the unit slowness vectors for
the source and receiver side, respectively, ands the phase velocity. Employing the WKBJ

approximation, the derivatives in equation A.10 are computednly for the exponentials in

the GreenOs functions (Aki and Richards, 2002). Equation A.1hdae rewritten as:

&
0 0
Pnd (Xs, Xr, 99 = ! % V(X)f(XSa%G(XS’X’ /(\)/gG(XhX’ A r &k dv(x), (A.12)
where
Vd) 1 )
r=(""; k=0 2n3n% * . (A.13)
!d (ngz + nI?Z

Here, ng and n, for a horizontal ref3ector can be given as functions of the scattering angle

$:
) + . %! + k) + . & )
_ Ng _ sin ] N _ sin
ng = n., ~ cosk n, = N, ! cosk (A.14)

Substituting equation A.14 into equation A.13, the radiationpatterns for the parameteriza-

tion {Vomo,",!} can be found as:

C ) ' )
Vyd 1
r=0""; k=C(2sif$" . (A.15)
g 2cos$
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APPENDIX B - -

BORN APPROXIMATION FOR A PERTURBATION IN !

The coupled system of the pseudoacoustic wave equations for Miiedia can be written as
(equation 2.6):
ug fo

! =0, (B.1)

L ud fd

where uf and ud are the forward-propagated wavebeld variable$? and fJd are the corre-

sponding source terms, and the operatdr is dePned as:

Vh20r Ex ! &t sz 0 &,

. V2o (&x)  ViZo&:! & (B.2)
The adjoint wavebeld can be evaluated by computing the adjoint of equation B.2:
LT" UP#| " df#:o 82
w oo TP |

whereuP and u? are the adjoint wavebeld variablesg and df are the source terms for the

adjoint equations, and the adjoint operatorLT is:

#
LT — (&XX)thor ! &tt (&XX)VanO (B 4)
ERVEN 8 Vi ! & '

The parameter! can be represented as the sum of the background valug { and a pertur-

bation (!4) (see equation A.3):

L= 1o+ g, (B.5)
1+20 =1+21,+214" (L+21)(1+21y). (B.6)

The wavebelds can be expressed @S = uP®+ uP! and ud = u®+ u#, where uf® and u°

are computed for the background medium and?! and u%* are the perturbations. Then the

52



pseudoacoustic wave equation B.1 can be rewritten as:

V2 s
F V2, & ! nimo % !
R S ST 7
: V2 g Sgeum g fTY |
# Vnzmo(&XX) AT I & 3

(L+21)1+21g) "

Because 4 is assumed to be small, we can use a linear Taylor-series expansion:

1! 24 :
nmo— ¥ !
; Vhor o 1 & @a+2') “ g: uf + Ugl % fo %_O (B.8)
: V(! 2g) Cugeup gt |
L V2 (&) nr(nlo—ZI)d o) &
+ -O

Then the Born approximation of the pseudoacoustic wave equation takes the form:

$) | 2| V &Zuqo ;
.# Vhor o | St VPZo&zz %; uql1 %] no&d PO( 2 ) g& (B.9)
nmo(&XX) VPO 72! & Us # ) dVPO(& ugo ﬁ
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APPENDIX C ' m—
RWI GRADIENTS

The source-side gradients fo¥,n,, ", and! can be found from equation 4.11 as:

&& &&
Vi
&5 _ 2UP Vimo(1 +2") UP, dsdt+ 2ug, 72 Ub, dsdt
oo g g &8, (1+21) (C.1)
v .
+ 2UP Vimo U9, dsdt + 2ud, a :”;I ) ud, dsdt,
&&
&s _ 2uP V2 uP dsdt (C.2)
&n SX "nmo ™rx ! -
&& &&
&'JS — q Vnzmo q q Vnzmo o]
The receiver-side gradients fo¥,mo, " and! are:
&& &&
&‘Jl’ — 2 pr " pl ql VﬂmO pl
= U Vimo (1 + 2") up, dsdt+ 2ud - Urz dsdt
v .
+ 2P Vomo U ds dt + 2ud a Jrr‘";' ) ut dsdt,
&&
& 2uPtvz2 2uPl ds dt (C.5)
&u SX nmo rx ’ "
&& &&
&J V2 V2
o = ql nmo ql ql nmo pl
2 I 2u, @+21)2 uy dsdt+ ! 2usz—(1+2!)2 ub; dsdt. (C.6)

Here, the integration for both the source- and receiver-sidgadients is performed over

the sources and time.
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