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ABSTRACT 

 

 Microalgae derived biofuel shows great potential as a replacement to petroleum 

based fuels. However, industrial scale and economical production of fuel from microal-

gae suffer from an expensive dewatering step brought on by the organism’s specific cell 

properties. A retrievable, paramagnetic nanoparticle polyelectrolyte brush (NPPB) has 

been designed as a flocculation agent to provide a low cost method in collecting algal 

biomass in biofuel production. In conjunction with experiment, subsequent theoretical 

investigations have been conducted in order to understand experimental observations 

and inform future design. A strategy has been implemented to provide informative de-

scriptions for the relationship between flocculation agent parameters and dewatering 

efficiency. 

 We studied the effect altering the degree of polymerization and monomer charge 

fraction had on the harvesting efficiency by considering flocculation as the criteria for 

harvesting. As the number of charges on the polymer backbone of the NPPB is in-

creased, less NPPB concentrations are required to achieve equal harvesting efficiencies. 

This is a result of needing less NPPB to completely screen the effective charge on the 

algae surface. However, the Debye length limits the amount of charge on the algae sur-

face one NPPB can screen. Using the free energy calculations for the complete set of 

pair interactions between the NPPB and the algae, we determined how many adsorbed 

NPPB were required in order for the force between coated algae to become attractive at 

some algae surface separation. This corresponded to the NPPB bridging two algae sur-

faces. NPPB with higher monomer charge fractions and degree of polymerizations led 

to a stronger bridging bond and larger bridging gap that could outweigh the algae pair 

repulsion. Optimized structures maximize these effects.   
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CHAPTER 1  

INTRODUCTION 

  

The advantages and disadvantages of microalgal biofuel will be discussed in this 

chapter. An experimental solution to the expensive dewatering step will also be pre-

sented and parallel theoretical studies are proposed to understand experimental 

observations.  

  

1.1. Background 

The exponential growth of the world population has applied a stress on our natu-

ral resources. With a projected 9.6 billion people on the planet by 2050 [1], three 

imminent and major concerns facing humanity are rising energy demands, sufficient 

food production, and the damaging effect these strains play on the environment [2]. One 

proposed solution to these threats is to wane the global dependence of fossil fuels in 

meeting energy demands, which currently supply about 80% of global energy needs 

and negatively impact climate change by contributing to the accumulating carbon diox-

ide in the atmosphere [3]. World leaders instead are encouraging a bioeconomy, which 

would require the replacement of petroleum-based transport fuels with biomass as an 

energy source [4]. However, the syphoning of biomass resources away from food sup-

ply further handicaps the ability of agriculture to keep up with the population demand [5].  

 Instead, biofuel derived from microalgae is gaining attention as an encouraging 

biomass based approach to solving these problems [6,7,8]. Figure 1.1 provides a dia-

gram displaying the current harvesting model for the production of biofuel from 

microalgae. Like other biomass liquid fuels, microalgae biofuel is a renewable and car-

bon neutral alternative to fossil fuels. Furthermore, the end product can be used in 

existing technologies, avoiding the hurdle of overhauling the entire transportation infra-

structure. In addition, the biology of microalgae cells endows to it additional advantages 

over other biodiesel sources, which we outline here. 
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Microalgae are photosynthetic unicellular microorganisms that can grow in either 

fresh or salt water. Different species of microalgae are well adapted to even thrive in 

harsh environments [9]. Therefore the creation of microalgae farms does not compete 

with agriculture biomass for arable land. Microalgae species also have a great propensi-

ty to grow at rates exponentially faster than other forms of biomass, with the ability of 

doubling their biomass 1-3 times per day [9,10]. Also with a high protein content inside 

the cell, Figure 1.1 shows that an offset in the cost of biofuel algaculture are high valued  

 
Figure 1.1. Algae to biodiesel cycle. Taken from [11]. 

derivatives of the protein that can be converted to plastics or biochemicals [6,12]. Finally, 

though not exhaustively, microalgae are more efficient producers of lipids that serve as 

the precursors to liquid fuel. Unlike other biomass organisms, microalgae do not waste 

nutrients or space on large, non-photosynthetic parts such as a stem. This and other 

intrinsic factors allow microalgae to produce more oil per area and mass than other bio-

fuel sources. While a lipid content excess of 80% (by wt.) has been reported for several 

strains of algae [13], 20-50% values are normal for many species [14]. With this in mind, 

corn requires roughly 300 times the land area to produce an equivalent amount of oil as 

microalgae assuming 30% lipid content by weight.  
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 Despite all this potential, algae biodiesel must become cost competitive with pe-

troleum-derived fuels in order to take a significant market share in the transportation fuel 

market. In order for this to happen, a three-fold increase in the scale of production fol-

lowed by a ten-fold decrease in its cost is required [6]. Figure 1.2 outlines the 

challenges facing scientists today in achieving this goal. While commercial sized pro-

duction processes are beginning to garner attention [15,16], a major inhibitor is the cost 

of down-stream processing [17]. More specifically, the dilute nature of microalgae sus-

pensions and the small size of the individual cell create a costly, energy intensive barrier 

for dewatering and subsequent harvesting of lipid content [18,19,20]. Hence large 

amounts of water are needed to be pumped in the production process in order to create 

enough biomass material for industrial scale energy production. Simple dewatering 

techniques such as screening and filtration are also unfeasible. Instead, to simplify the 

dewatering process microalgae cultures must be concentrated by a factor of 100 times 

(see Figure 1.3) to an algae slurry. Flocculation is a popular technique to achieve this 

required pre-concentration.  

 

 
Figure 1.2. Breakdown of the current challenges facing the microalgae biodiesel indus-
try from being cost competitive with petroleum fuels. In bold is the section that garners 
our attention. Adapted from [6]. 
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Biofuel Production 
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Optimizing 
Production Process 

Lower Energy Cost 

Increase Biomass 
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Competing Processes 
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$1.7 Billion Market 
Volume 
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 Flocculation is defined as the process of forming larger aggregates from dilute 

cultures and provides several advantages over other conventional dewatering schemes. 

Flocculation is both quick and efficient, and is free of energy intensive steps during the 

concentration process. Furthermore, flocculation agents can be synthesized from inex-

pensive and readily available material. Schlesinger and coworkers [21] have shown that 

the amount of agent needed is logarithmically proportional to the number of algae cells 

and that for denser cultures the cost of flocculant should be able to reach values of less 

than a $1.00 per ton of algae. However, detractors of flocculation emphasize that the 

process requires endless material costs, energy intensive separation of buoyant algal 

flocculant and possible downstream contamination of the product. Researchers have 

investigated a wide variety of flocculation methods to solve these problems. Many of 

these solutions involve flocculants that are designed to screen the like-charge repulsion 

between microalgae surfaces that deter the cells from forming aggregates [22].  

 

 
Figure 1.3. The concentration of microalgae cultures prior to lipid ex-traction. %TSS 
stands for total suspended solid. Pictured at bottom from left to right is the original algae 
effluent, followed by the algae slurry and then algal cake. Adapted from [18]. 
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In the context of these attempts, our experimental collaborators have chosen to 

study the efficacy of using a nanoparticle cationic polymer brush [23]. We hypothesize 

that the cationic charge along the polymer backbone serves to screen algal surface like-

charge repulsion, allowing flocculation, while the solid nanoparticulate core provides 

low-cost opportunities to retrieve and reuse the agent in a closed loop process. The de-

sign of such an agent must follow from these requirements and include low cost 

materials and synthetic methods.  

Figure 1.4 shows the three-component design of the flocculation agent. Para-

magnetic iron oxide nano-crystals form the solid core. These nano-crystals are readily 

prepared at large scales [24] and provide an easily scaled process for retrieval via mag-

nets.  

 

(a) 

 

(b) 

 
(c) 

 
Figure 1.4. The flocculation agent. (a) Three-component design of the flocculation agent. 
From inside to out: paramagnetic iron oxide nanoparticle, silica coat, and cationic poly-
mer. (b) Chemical structure of the agent: Fe3O4@SiO2@P4MVP. (c) TEM image of a 
cross section of the nanoparticle flocculant.  
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The silica layer prevents the iron oxide core from leaching while exploiting well-studied 

silane-polymer chemistry for the grafting of the cationic polymer to the core. The cationic 

polymer, poly(4-vinyl-N-methylpyridine iodide) (P4MVP), is grafted to the silica layer via 

the “graft to” approach where the polymers are first grown individually and then an end-

functionalized chain attaches onto an active site on the surface. The activity of the cati-

onic charge on P4MVP is pH dependent, which allows reversible binding to a negatively 

charged algae surface.   

 
Figure 1.5. Experimental testing of the flocculation agent [23]. The set up involves 
Chlamydomonas algae and flocculation agent in a capped vial placed next to a magnet. 
At time 0 seconds the flocculation agent is added.  

This design successfully fulfills the desired requirements and is both effective and 

efficient. Figure 1.5 shows a lab scale test of the flocculation agent and displays the ef-

fectiveness of the flocculation agent in concentrating algae. In less than two minutes, 

almost all the algae are precipitated out of solution. Since only the nanoparticle is mag-

netic, algae-agent binding must have occurred. In another experiment, our experimental 

collaborators measured the concentration of algal cells before and after harvesting by 

the flocculation agent using a Z2 Coulter cell and particle counter. Over 99.5% of the 

cells were dewatered using a mass ratio of 24:1 algae to flocculation agent, showing the 

efficiency of the process. While these measurements were made in lab-scale, the de-
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sign has facile scale up potential. A proposed model involves a continuous cycle where 

the nanoparticle polyelectrolyte brush is mixed into a flow of algal cultures and allowed 

to attach to the algal cells. The clusters of flocculant-algae are then precipitated out via 

an external magnetic field and recovered by controlling the pH.  

Due to the tailorable properties of the polymer brush, it serves as an excellent 

candidate to study how changing different experimental parameters affects the harvest-

ing efficiency of algal cells (see Section 1.3 for a brief review on polymer brushes). We 

can then use what we learn from these experiments to optimize the process. Experi-

mentalists are able to control the chemical composition of the monomer units along the 

chain, molecular weight, grafting density, polymer length, branching, and bridging. All 

these parameters can be tuned to give the brush distinct and well-controlled functionali-

ties.  

Figure 1.6 summarizes experimental results where different structural parameters 

of the flocculation agent were altered. We see in Figure 1.6a that as the degree of 

polymerization is increased, the optimal dosage required to reach almost 100% harvest-

ing efficiency is lowered. Once the degree of polymerization is greater than 200, this 

trend plateaus. There must be some requirement with a cutoff around that value to 

cause little change in the harvesting efficiency once the degree of polymerization goes 

from 198 to 245. In other words, once a degree of polymerization reaches approximately 

200, adding more repeating units onto chains results in little difference in being able to 

harvest algae cells. Furthermore, from the controls we see that higher harvesting effi-

ciencies require the brush structure and not just free polymer or the nanoparticle core. 

Experimental observation of increased harvesting efficiencies must be due to changing 

the structure of the brush. A similar phenomenon is seen when varying the monomer 

charge fraction at constant degree of polymerization in Figure 1.6b. Increasing the 

charge fraction results in higher harvesting efficiencies at lower flocculation/coagulation 

agent doses. A plateau is reached once the monomer charge percent reaches 75% 

since there is little difference in the experimental results between 75% and 100%. Any 

further analysis that attempts to explain experiment should be able to explain the results 

presented in Figure 1.6. This requires providing reasoning for the differences in the op-
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timal dosage required for higher harvesting efficiencies close to 100% when the brush 

degree of polymerization and charge fraction is changed and the plateauing observed at 

certain values. 

 

(a) 

 

 

(b) 

 

 

Figure 1.6. Experimental measurements of harvesting efficiency [23]. (a) Harvesting ef-
ficiency as a product of varying the degree of polymerization. (b) Monomer charge 
fraction effect on harvesting efficiency. Percent values represent the percent of mono-
mers charged per chain. 

1.2. Goals and Approach  

 In conjunction with experiment, theoretical models were developed and imple-

mented to understand microalgae dewatering directed by a nanoparticle polyelectrolyte 

polymer brush (NPPB). More specifically, the main goal of this theoretical work was to 

elucidate possible relationships between structural parameters of the NPPB (degree of 

polymerization, fraction of monomers charged, size of NP core, etc.) and the harvesting 

efficiency of algae cells by NPPBs. These theoretical models will allow us to conduct a 

more informed discussion of experimental observations. In addition, they will give us the 

tools to not only discuss but also understand these observations through the scope of 

the fundamental physics of the system. Finally, and most significantly, this parallel theo-
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retical treatment will provide information and prediction useful to the optimization of the 

experimental process. These benefits all advance the ultimate project goal of achieving 

highly efficient dewatering of microalgae at a low cost. In a more general scope, our 

findings can provide a framework for the extension of this brush into other research are-

as that currently exploit the polymer brushes’ adaptability to suit a wide variety of 

functions and environments such as the development of bioelectronics [25] or health 

sciences [26,27,28]. 

  

 
Figure 1.7. The relevant molecular bodies in our system and their possible interactions 
with each other. Note that the schematics are not shown to scale.  

 To complete these goals, we devised a strategy that breaks the task down into 

two subtasks. The first subtask was to analyze the interaction potentials between the 

relevant bodies (Figure 1.7). The second subtask was to find a relationship between 

these potentials and the harvesting efficiency. Consequentially, our model must allow us 

to complete these tasks in the scope of our main goals outlined above and explain the 

results in Figure 1.6. The method and calculation of interaction potentials for the algal 

self interactions are explained in Chapter 2, while methods and calculations for interac-

tions involving polymer brushes are elucidated in Chapter 3. Chapter 4 uses these pair 

interaction results to determine multi-body interaction potentials and give quantitative 

predictions of harvesting efficiencies. A direct comparison between theoretical and ex-
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perimental observations is conducted in this chapter as well. Finally, a summary of the 

general conclusions, recommendations to experiment, and future work is outlined in 

Chapter 5. Before we continue on these investigations, a brief review on polymer brush-

es is provided to give background to future discussions in Chapters 3 and 4.  

 

1.3. Introduction to Polymer Brushes 

The design and synthesis of polymer brushes has become more accessible to a 

wide range of scientific fields. Consequentially, the tailorability of polymer brushes has 

garnered interest as an intuitive approach to bottom up design in the development of 

nanoscale materials. The development of polyelectrolyte brushes, polymer brushes with 

charged chains, is especially attractive since it gives scientists an extra parameter to 

tune and an interface for electrical systems. As is such, theoretical methods surrounding 

these brush architectures have been used to understand experimental observations and 

to inform future design of brushes with novel functionalities. In this review, the diversity 

of polymer brush applications will be introduced and the concepts and utility of the Flory 

argument for understanding polymer brushes, particularly polyelectrolyte brushes, will 

be covered. 

 

1.3.1. The Polymer Brush, an Introduction 

As novel polymer synthesis techniques have been developed that allow more 

widely accessible approaches to designing polymers, the field of pure polymer chemis-

try has started to give way to a multidisciplinary interest in polymer science. Such fields 

as material science and engineering have adopted the special chemistry and physics of 

polymers into their tool belts. The ability to control each piece of a polymer substance 

via the monomer unit has made polymer science an intuitive and attractive approach to 

bottom up designing of materials with desired properties.  

 The development and production of nanomaterials is an area where polymer sci-

ence has been central in problem solving. In particular, polymer brushes have incurred 

great interest in their ability to bridge different types of chemistry, such as in the cou-

pling of inorganic and organic materials.  
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 Polymer brushes are characterized by the incorporation of polymers onto a sub-

strate at a high enough density such that the chains extend outwards from the surface. 

In general, the flexible polymer chain takes on a random walk conformation that mini-

mizes its free energy [29]. The distinction then with the polymer brush is that the grafting 

density, i.e. the distance between two adjacent polymer chains, is constrained such that 

this dimension is much smaller than the linear dimension of the random walk. These 

polymer chains are constrained to the solid surface either through covalent linkage or 

adsorption [30].  

 As mentioned above, an intrinsic value of polymer brushes in nanoscale design 

is their ability to integrate different chemistries. The tethering of polymer brushes to gold 

and silicon are well studied and served as the pioneering solid substrates for brush syn-

thesis. Since these initial studies, a wide diversity of organic, inorganic and even 

polymer substrates have been linked to polymer chains to create brush architecture. 

The list includes but is not limited to cellulose [31], poly(vinyl chloride) [32], carbon 

nanostructures, and steel [33].   

 Not only are a wide variety of substrates usable, probably the most notable mer-

its of polymer brushes are the tailorable properties of the polymer layers themselves. 

Scientists are able to control the chemical composition of the monomer units along the 

chain, molecular weight, grafting density, polymer length, branching, and bridging. All 

these parameters can be tuned to give the brush distinct and well-controlled functionali-

ties.  

 

1.3.2. Applications 

Original applications of polymer brushes focused on either steric or electrostatic 

stabilization of colloid solutions by polymers [29]. While this field is still relevant today, 

the uses of polymer brushes have diverged greatly.  

One example is the current subject of this thesis investigation. In the effort to 

make the production process of the conversion of microalgae lipids to biofuel more 

scalable and inexpensive, a nanoparticle polyelectrolyte polymer brush (NPPB) that is 

pH insensitive and magnetic has been designed to induce the flocculation of dilute algae 
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solutions [23]. Upon addition of the NPPB, the stable solution of microalgae begins to 

flocculate around the brushes and the aggregate is irreversible around processing tem-

perature. This concentrated mixture can then be transported via magnet and the NPPB 

can sequentially be desorbed and retrieved from the microalgae by altering the pH, cre-

ating a closed looped harvesting system.  

In the development of bioelectronics, the technology requires the creation of an 

electrical signal from biochemical stimuli. Polymer brushes can serve as a go between 

for biological material (such as enzymes) and inorganic electronic material. In one in-

stance, poly(4-vinyl pyridine) (P4VP) brushes were functionalized with an inorganic 

redox group that was active only in the presence of a specific combination of enzymes 

[25]. The active P4VP brush was able to oxidize NADH. Hence, the oxidation of NADH 

was controlled by biochemical stimuli, utilizing an inorganic oxidizing agent coupled to a 

polymer brush.  

 In another case, a polymer brush inside the human body was extensively studied 

to understand how defects of the mucus clearance pathway inside the human body lead 

to certain lung diseases [26]. The role of the pericilliary layer (PCL), comprised of long 

polysaccharides, was viewed in the context of a polymer brush in presenting a model of 

the airway surface. 

The health sciences have found a particular niche for polymer brushes in drug 

delivery, biosignaling, and bioimaging. In the instance of bioimaging, polymer brushes 

were used for in vivo imaging and tracking of tumor cells in mice [24]. The researchers 

grafted poly(ethylene glycol) to conjugated polyelectrolytes and then complexed the 

molecule with the anticancer agent, cisplatin. These nanoparticles could then locate and 

attach themselves to cancerous cell and be imaged in vivo using a fluorescent imaging 

probe, in addition to being used as drug delivery systems. Another bioimaging example 

can be found in the production of “smart” microgels. Microgels with gold nanocrystal 

cores were synthesized using poly(N-isopropylacrylamide) grafted to the surface of the 

gold with a high degree of inter-chain bridging [28]. This thick brush (or microgel) was 

temperature sensitive in that it would stretch or shrink given a change in the thermal en-

vironment. This allowed for a tunable spacing between gold nanocrystals, creating a 
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“smart” microgel that exhibited tailorable surface plasmon resonance between the gold 

nanocrystals.  

 

1.3.3. Flory Argument 

 Of particular interest to us are polyelectrolyte brushes where the anchored poly-

mer chains are charged. Polyelectrolyte brushes, as seen in examples from Section 

1.3.2 are useful in biology where cells surfaces are typically equipped with densely 

packed macromolecules containing ionizable groups. In addition, ionizable groups on 

the polyelectrolyte chains allow the brush to have functionalities that are pH sensitive. 

Finally, the electrostatic interactions inside the brush layer allow scientists to have an-

other intermolecular force to exploit.  

In order to understand the properties of these polyelectrolyte brushes, the Flory 

argument will first be examined. Results for charged structures will be compared with 

those for neutral brushes. These particular models are useful in explaining properties 

relying only on the brush height. However, scaling concepts do not inform us about the 

system inside the brush. Self-consistent field theory (SCFT) for polymers serves as a 

theoretical device for filling this gap. Chapter 3 introduces SCFT in more depth and rig-

orously outlines the theoretical derivation. For now, we will simply investigate the 

behavior of polyelectrolyte polymer brushes using the Flory argument.  

The physics of a polymer chain can be well understood in the context of a bal-

ancing act of its free energy. Here, the consolidation of the celebrated scaling theories 

of Alexander and de Gennes given by Milner [29] and Pincus [34] for a neutral brush will 

be presented. First consider a flexible polymer chain of degree of polymerization N, 

monomer units measured by the statistical length b, and surface coverage density σ 

with a brush height Lp from the surface. If one were to walk along the chain backbone, 

he/she would see the chain attempt to configure itself in a random walk conformation in 

order to maximize its configurational entropy. The typical linear dimension for such a 

walk is given by the radius of gyration, Rg, and results in chains that are densely packed 

around the surface. The elastic nature of the polymer chain can be quantified by the 
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spring constant k = kBT/Rg
2 (i.e. doubling the thermal energy increases the linear di-

mension four fold).  

Counter to the configurational entropy are the maximization of favorable interac-

tions with the solvent and the minimization of unfavorable contacts between chains. 

These two free energy arguments are contained within an excluded volume term v. For 

solvents that form favorable contacts with the chain, v is negative and stretching of the 

chain backbone results. For poor solvents, v is positive and the chain begins to favor 

monomer-monomer interactions over solvent contacts, resulting in contraction. The term 

theta solvents arise when v is zero.  

The Flory free-energy cost per chain follows (tilde represents missing constants 

of order unity): 
 

∆𝐹~𝑘!𝑇
3𝐿!!

2𝑁𝑏! + 𝑣𝑁
𝑁𝜎
𝐿!

 ( 1.1 ) 
 

Eq. ( 1.1 ) above can be thought of as the energy cost required to add another chain to 

the system. The first term considers the random walk configuration, while the second 

term accounts for the maximization of favorable contacts along the backbone. Minimiza-

tion of Eq. ( 1.1 ) with respect to Lp gives the following scaling relation: 
 

𝐿!~𝑁 𝑣𝜎𝑏! !/! ( 1.2 ) 
 

We can compare this linear dimension of the brush with the linear dimension for a free 

polymer chain Rg, which scales as N1/2. The brush length scales N2 times greater than 

its random walk confirmation. As pointed out by Milner, this signifies that the properties 

of the polymer brush are expected to have different properties from its untethered coun-

terpart. 

 Now consider a polyelectrolyte brush with f fraction of monomer units charged 

along the backbone [35]. Pincus [34] shows that the increased stretching of the chain 

mainly arises from the entropic cost to confine the counter ions inside the brush layer 

rather than the self-avoiding nature of the electrostatic interactions along the backbone. 

In order to stabilize the strong electrical charges along the chain, the counter ions will 
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remain inside the brush layer and hence create an osmotic pressure counter to the sub-

strate surface. The electrostatic contribution to the free energy cost in Eq. ( 1.1 ) then is: 
 

∆𝐹!"~𝑘!𝑇(𝑓∅ ln∅)   ( 1.3 ) 
 

where ∅ ≡ 𝑁𝑏!/𝐿!𝜎. In the case where the electrostatic contribution outweighs the ex-

cluded volume effects, the brush height arises from a balance between the elastic and 

electrostatic properties. In this regime Lp retains its linear relation to N, but with an addi-

tional constant: 
 

𝐿!"~𝑓!/!𝑁𝑏 ( 1.4 ) 
 

For small f and large v, the scaling of Lpb reverts to Eq. ( 1.2 ). Dividing Eq. ( 1.4 ) by Eq. 

( 1.2 ) gives the relationship of a polyelectrolyte brush length with its neutral counterpart: 
 𝐿!"

𝐿!
~
𝑓!/!𝑏!/!

𝑣𝜎 !/!  ( 1.5 ) 
 

When the monomer dimension and the surface coverage density are on the same order 

(which is typically the case), it is evident that the electric charges along the chain result 

in the stretching of the brush. However 0 < f < 1, such that in the case where excluded 

volume interactions dominate the height of the polyelectrolyte brush is much more likely 

to scale according to Eq. ( 1.2 ).  

 It is important to note that the properties of the polyelectrolyte brush were con-

sidered in salt-free conditions. Upon the addition of salt, the electrostatic interactions 

inside the layer are screened and the brush loses its polyelectrolyte character. This al-

lows scientists to have a switchable parameter in controlling the behavior of 

polyelectrolyte brushes, but must be considered in environments with high ionic strength 

when using theory to describe experimental results.  
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CHAPTER 2  

DETERMINING THE INTERACTION POTENTIAL FOR ALGAE CELLS 

 

 Determination of the algal pair interactions will lead to greater understanding of 

why cultures form stable suspensions in solution. From this insight we can hypothesize 

why the designed flocculation agent induces aggregation of the cells. The mechanism to 

perform this analysis will be presented in this chapter.   

 

2.1. Setting up the Problem 

 The determination of biological interactions is a complicated procedure due to the 

dynamic behavior of organisms [36]. As an example, consider the system we wish to 

model in Figure 2.1a. Microalgae in this diagram are anisotropic and not all of the same 

exact size. Some of the cells actually consist of two cells surrounded by an outer cell 

wall. A balance must be made between exact description of each of the discrepancies 

and performing feasible calculations of the system. In an effort to model most algae – 

algae interactions in our system we will consider an interaction between two average 

algae cells. Thus, certain approximations are required in providing meaningful calcula-

tions to quantify these interactions. To develop a useful model we must first strive to 

understand this “average interaction” between algae.  

 The most prevalent forces describing interactions between biological cells can be 

divided into six categories: van der Waal, electrostatic, steric, depletion, hydrogen bond-

ing, and hydrophobic. For algae cells, there is no hydrogen bonding. Furthermore if the 

algae surfaces were hydrophobic they would precipitate out of solution in order to mini-

mize water contact. There has been no evidence of this phenomenon occurring and 

thus we can eliminate any hydrophobic influence in modeling an algae – algae interac-

tion. Attractive depletion forces are entropic in origin and hence depend on temperature 

and local mixture concentrations. The depletion force in microalgae suspensions arises 

when smaller, nonadsorbing particles (such as a polymer) are introduced into the sys-
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tem causing the large cells to sterically avoid them [37]. However, there is no significant 

source of depletants in a solution of algae that would cause aggregation on a macro-

scopic scale. With steric repulsion, the typical range of force is governed by the 

thickness of the adlayer on the microorganism surface. Generally, this extracellular 

mesh of proteins and polysaccharides generally extends between 1-10 nm from the sur-

face [38]. Relative to the size of the algae (8 – 10 µm in diameter), this length scale is 

quite insignificant. We choose to ignore this force since the typical cell concentrations 

(see Figure 1.3 in Section 1.1) required for cell harvesting still do not approach this 

small of length scales. The van der Waal force measures the interaction between fluctu-

ating microscopic dipoles and scales as the inverse of the separation between the two 

dipoles to some power depending on the relative distance. For our macroscopic cells, 

we will consider the van der Waal forces from all the microscopic dipoles. 

(a) 

 

(b) 

 

Figure 2.1. (a) Microscope image of Chlamydomonas reinhardtii [23]. (b) Electric Double 
Layer formation (modified from [39]).  

Finally, we set out to understand the electrostatic interactions. Most microalgae 

are negatively charged in solution due to dissociation of carboxylic acid groups at the 

surface at pH’s above 4-5 [40]. In order to stabilize this charge in solution, an adsorbing 

plane of oppositely charged counter ions form along the surface (see Figure 2.1b). This 

is known as the Stern Layer. Outside of this Stern layer a mobile layer of ions form that 
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are electro-osmotically active due to the electric field from the surface. As a result, an 

electrostatic double layer forms around the macroscopic particle. The effective electro-

static potential emanating from the surface is screened exponentially. The zeta potential 

at the slipping plane can be experimentally measured. For two similarly charged bodies, 

this electrostatic double layer force is repulsive.  

We are left with two types of forces that govern the physical nature of the interac-

tions between two microalgae: van der Waals and electrostatic. If we approximate our 

microalgae as uniform spheres with radius R of 4µm, the DLVO theory on the stability of 

charged colloids serves as an appropriate theoretical framework to describe our system. 

Figure 2.2. DLVO Interaction Potential Curve for two similarly charged species. The 
DLVO potential is an additive combination of van der Waals attraction and electrostatic 
repulsion.  

2.2. DLVO Theory on the Stability of Colloids 

Developed by Derjaguin and Landau [41], and Verwey and Overbeek [42], DLVO 

theory accounts for the combined effect of the attractive van der Waals and repulsive 

electrostatic double layer forces and treats them as additive (Figure 2.2). At longer 

ranges the electrostatic repulsions between similarly charged surfaces dominate over 
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attractive van der Waals forces. At shorter surface separations, a primary minimum be-

gins to form when van der Waals forces substantially increase and colloids form 

irreversible aggregates. An overall energy barrier forms as a result. The scale of this 

barrier relative to the thermal energy available to a system kBT dictates the stability of 

colloids in solution. For EBarrier >> kBT a stable suspension forms. Since algae do not 

spontaneously aggregate, we expect this energy barrier to be much larger than kBT. 

This prevents statistically significant groupings of algae cells that are able to exist in the 

primary minimum region of the DLVO interaction curve. We will test this hypothesis. 

The DLVO framework gives us the ability to calculate a pair interaction potential, 

predicts how tuning of this potential via experimental parameters influences the interac-

tion, and provides quantitative results to strengthen our understanding of why algae 

form a stable mixture in water (i.e. do not flocculate). Deviations between the DLVO re-

sults and experimental observations do not fault DLVO, but rather underline the 

importance of non-DLVO forces [43]. The influence of these other forces has already 

been discussed and their contribution to the interaction has been ignored. The two pro-

posed forms of the van der Waals and electrostatic energy are outlined below. 

 

2.2.1. van der Waals (VDW) Potential 

 Starting from the attractive energy of interaction between two similar particles 

each containing q atoms per cm3:   
 

𝐹!"# = − 𝑑𝑣!
!!

𝑑𝑣!
!!

𝑞!𝜆
𝑟!  

 
( 2.1 ) 

 
Hamaker [44] derived the general equation for the nonretarded VDW potential between 

two spheres of equal radius R at a separation D: 
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( 2.2 ) 

 
In Eq. ( 2.1 ) 𝑉! and 𝑉! are the total volumes of the macroscopic bodies, 𝑟 is the dis-

tance between the two volume elements 𝑑𝑣, and 𝜆 is the London – van der Waals 

constant specific for the interaction. 𝐴! ≡ 𝜋!𝜆𝑞! is the Hamaker constant that accounts 
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for the polarizabilities of all media involved. For metals and hydrocarbons in water typi-

cal values of 𝐴! are of order 10-21 and 10-19, respectively [45]. Figure 2.3 demonstrates 

that Eq. ( 2.2 ) shares the same asymptotic behavior of a more familiar form of the VDW 

energy for two similar spheres, −𝐴!𝑅/12𝐷, as D/R à 0. These are the precise condi-

tions that the latter expression holds true [43]. For values of D ≈ R the deviation 

between the two expressions increases and Eq. ( 2.2 ) predicts the correct relationship 

with surface separation. 

 

 
Figure 2.3. VDW Interaction Energy versus D/R. Inset: Enlarged area for D/R ∈ [0, 0.1] 

It is important to note that in the determination of Eq. ( 2.2 ) from Eq. ( 2.1 ) the 

assumption of pairwise additivity between any two volume elements is made. The effect 

of neighboring atoms on the polarizability between these two volume elements is ig-

nored. This is partially corrected through the use of the Lifshitz continuum theory in the 

determination of 𝐴!. For macroscopic bodies composed of an anisotropic collection of 

atoms, Lifshitz and coworkers [46,47] proposed a solution to the many body interaction 

potential of the bodies in a medium based on macroscopic properties. Since VDW inter-

actions are electrostatic in nature, the derivation of the potential starts from the 

fundamental principles provided by Maxwell’s equations. The complexity of the deriva-
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tion and the use of quantum field theory to arrive at the final result are beyond the scope 

of this discussion, but Isrealachvili [43] provides an estimate for the Hamaker constant 

using a modified form of the Lifshitz theory: 
 

𝐴! =
3
2 𝑘!𝑇

𝜀! − 𝜀!
𝜀! + 𝜀!

!
+
3ℎ𝑣!
16 2

𝑛!! − 𝑛!! !

𝑛!! + 𝑛!! !/! 
 

( 2.3 ) 
 

where two identical phases 1 are interacting in a continuous medium 2, 𝜀 is the dielec-

tric permittivity, ℎ is Planck’s constant, 𝑛 is the refractive index, 𝑣! is the main electronic 

absorption frequency in the UV. For water at room temperature, Israelachvili gives 𝜀! = 

80, 𝑛! = 1.333, and 𝑣! = 3.0 × 1015 s-1.  

 For microalgae cells, electric properties are harder to determine and are widely 

varied. We can estimate its dielectric permittivity 𝜀! through its relation with the capaci-

tance. Since the cell membrane acts as a barrier of charge, the outside surface can be 

thought of as a capacitor. The capacitance C of a membrane is a measurable quantity 

and is related to its dielectric permittivity constant: 
 

𝐶 =
𝜀!𝜀!
𝑑  

 
( 2.4 ) 

 
where 𝑑 is the thickness of the insulator between the two conducting plates (the cell 

membrane). Chlamydomonas reinhardtii’s cell wall is typically 40nm thick [48]. The ca-

pacitance of a eukaryotic cell membrane is approximately 1.0 µF/cm2 [49,50]. The 

specific dielectric constant for microalgae is estimated below:  
 

𝜀! =
𝐶𝑑
𝜀!

=
1.0  ×  10!!  𝐹/𝑚! 4  ×  10!!  𝑚

8.8542  ×  10!!"  𝐹  𝑚!! = 50 
 

( 2.5 ) 
 

The refractive index of biofuel producing Chlamydomonas reinhardtii was measured 

over the range of visible light with a range of values of 1.35-1.37 [51]. For measure-

ments, we will use 1.36 for future calculations.  

 Using Eq. ( 2.3 ) 𝐴! was found to be 5 × 10-22 J at 298 K. From Eq. ( 2.3 ) it is ev-

ident that lower value of 𝐴!  result from similarities between the electric properties 

between the cell surface and water. Water is polarized by a phase of algae much in the 
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same way another phase of algae would be polarized. Thus water serves to dampen the 

dispersion forces of the van der Waal interactions between two algae.  

 

2.2.2. Electrostatic Double Layer Potential 

 We are now interested in determining the electrostatic double layer (EDL) inter-

action potential between two algae cells. Recall Figure 2.1b, which illustrates the 

formation of the EDL around the negatively charged algae surfaces. The dissociation of 

functional groups along the surface results in a net negative charge. The electric field of 

this net negative charge pulls counter ions towards the surface in either a tightly bound 

Stern layer or a loose double layer. This EDL does not completely screen the charge 

repulsion as two similarly charged surfaces approach each other. The form of this inter-

action is exponential with respect to the surface separation: 𝐹!"# 𝐷 ∝ 𝑒!!" where 1/𝜅, 

the Debye length, measures the range of the electrostatic effect of some charged body. 

Its form is only dependent on solution properties, i.e. the ionic strength and the permit-

tivity of the solvent, 𝜀!𝜀!: 
 

𝜅! =
1

𝜀!𝜀!𝑘!𝑇
𝜌!! 𝑒𝜐! !

!

,    in  𝑚!! 
 

( 2.6 ) 
 

where 𝜌!! is the concentration of ions i with valency 𝜐! in bulk where the reference elec-

trostatic potential is defined as zero and 𝑒 is the elementary charge. It is suggested by 

Denton [52] that a correction to Eq. ( 2.6 ) be made to take into account the fact that the 

volume of the macroscopic polyions (algae) is unavailable to the ions in solution. How-

ever colloidal suspensions of algae are generally dilute and we can ignore this 

correction. Figure 2.4 shows the Debye length varying the bulk 1:1 monovalent salt con-

centration present in water. For concentrations more than 10-4 M the Debye length 

begins to drop off to zero. For a charged body in the presence of weak salt, the effective 

range of the electrostatic interaction rises exponentially. As a reference 1/𝜅 for neutral 

water is marked.  

When considering the interaction between two macroscopic polyions, it is typical 

to treat the medium as a continuous phase and ignore the size of the counter ions. Me-

dina-Noyola and McQuarrie [53] continue this approximation while using a truncated 



 23 

form of the linearized Poisson-Boltzmann equation for the first three terms of the series 

to solve for the interaction energy:  

 
Figure 2.4. The Debye length for varying ionic strengths (M = moles/L) in water. Param-
eters: 298 K, 1:1 monovalent salt. Marked region represents Debye length = 971 nm for 
water at pH 7. 

 
𝐹!"# 𝐷 =

𝑄!

4𝜋𝜀!𝜀! 𝐷 + 2𝑅
𝑒!!"

1+ 𝜅𝑅 !   ,        𝐷 ≥ 0 
 

( 2.7 ) 
 

where 𝑄 is the uniform surface charge. To calculate 𝑄 we require the value of the sur-

face charge density 𝜎!. However, as briefly mentioned above, it is more convenient to 

measure electrostatic potential. The Grahame equation serves as an intermediary be-

tween the two quantities: 
 

𝜎! = 𝜀!𝜀!𝜅𝜓 0  
 

( 2.8 ) 
 

where 𝜓 0  is the electrostatic potential at the surface. Experimentally we can measure 

the zeta potential at the slipping plane of the EDL (see Figure 2.1b) using dynamic light 

scattering to calculate the electrophoretic mobility of a colloid in the presence of an ap-

plied field. 𝜓 0  can be discovered from the zeta potential using Gouy-Chapman theory 

where (for small potentials, approx. ≤ 25 mV):  
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𝜓!"#$ = 𝜓 0 𝑒!!" ( 2.9 ) 

 
where x is the thickness of the EDL.  

 Experimental measurements of the zeta potential for Chlamydomonas reinhardtii 

were made for algae in growth medium varying growth times and different pH (Figure 

2.5). After approximately three days of growth time the average zeta potential begins to 

level out around -18 mV as the algae sizes and surface properties reach a steady state.  

(a) 

 

(b) 

 
Figure 2.5. Zeta potential for experimental strain of algae in growth medium [23]. (a) De-
termination of the zeta potential varying the growth time (pH 8.3). (b) Zeta potential 
varying the pH of the solution after algae growth has reached a steady state. 

When we increase the pH, acidic functional groups begin to completely dissociate along 

the surface and once again the zeta potential levels out around -18 mV. 

To derive the surface potential from the zeta potential we now must calculate 𝜅 in 

Eq. ( 2.9 ). We can make an assumption that avoids considering the complex behavior 

of the buffer solution and thickness of the EDL at first for different pH if we consider the 

ELD thickness ≈ 1 𝜅. Recall that 1 𝜅 represents the characteristic range of decay for 

some charge in an electrolyte solution. This range also determines the farthest distance 

from the surface where ions in solution feel the effects of the electric field. These ions 

make up the outer, electro-osmotically active diffuse layer. As an example, using Eq. 

( 2.9 ) and Figure 2.5 we see that for pH 7 the surface potential 𝜓 0 ≈ -45 mV.  

To determine the surface charge we can no longer use this assumption. From 

Eqs. ( 2.8 ) and ( 2.6 ) it is evident that we require an understanding of the composition 
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of the growth medium, which is typically a complicated mixture of buffer and other salts. 

Furthermore, the concentration can change as a result of nutrients (including ions) being 

absorbed by the algae cells. The most common growth medium for Chlamydomonas 

uses a tris-acetate buffer of 0.02 M (pH 7.2) in addition to 0.001 M (pH 7.0) potassium 

phosphate buffer, as well as a host of other trace salts [54,38]. The predominant contri-

bution to the ionic strength comes from the dissociation of NH4Cl, K2HPO4, and KH2PO4 

with final medium concentrations (before nutrient uptake) of 7.0 × 10-3 M, 1.6 × 10-3 M, 

and 1.1 × 10-3 M, respectively. Therefore, for neutral pH, the ionic strength is on the or-

der of 10-2 M. We understand that after considering the contribution of all the salts and 

acid/base species using a numerical approach such as [55] that this ionic strength may 

be underestimated for the final solution. However we choose to round down since the 

final solution concentrations do not include nutrient uptake by the cells that would lower 

the overall salt concentration. Nonetheless, at room temperature this ionic strength 

translates to a Debye length on the order of 10-8 m. From Eq. ( 2.8 ) we find that our al-

gae should have a surface charge density 𝜎! on the order of -10-3 C/m2 under these 

conditions. When placed in a solution of mostly water with the same pH and tempera-

ture, the algae surface should maintain this charge.  

 

2.3. Testing the Model by Varying the Ionic Strength 

 To test the validity of our model for calculating algae pair interaction potentials we 

hope to compare theoretical calculations with experimental observations of algae floccu-

lation varying some experimental parameter. One approach would be to change the 

ionic strength of the algae medium. The experimental setup would begin by placing the 

algae cells in neutral water (ionic strength, I, of 10-7 M). The ionic strength of the solu-

tion can be increased by adding salt, mixing, and allowing the algae to settle. When the 

EDL repulsion is screened by the salt at some critical ionic strength such that the energy 

barrier ~ kBT, the algae pairs can exist in the primary minimum DLVO range (see Figure 

2.2) and form irreversible aggregates.   



 26 

 
Figure 2.6. Logarithmically scaled DLVO free energy of interaction (F) for ionic strength I 
= 10-3 moles/L (M), 10-5 M, 10-7 M with 1/κ = 9.711 nm, 97.11 nm, and 971.1 nm, re-
spectively. Vertical lines represent asymptotes log[x] →0. Parameters: R = 4 µm, AH = 
5×10-22 J, T = 298 K, water medium, 𝝈𝒄 = -10-3 C/m2.  

 
Figure 2.7. DLVO free energy of interaction (F) for ionic strength I = 10-1 moles/L (M), 
10-2 M, 10-3 M with 1/κ = 0.971 nm, 3.07 nm, and 9.71 nm, respectively. Parameters 
same as in Figure 2.6.  
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This critical ionic strength can be visually observed and compared with theoreti-

cal calculations of the DLVO potential as in Figure 2.6 and Figure 2.7. In Figure 2.6 the 

normalized free energies are plotted logarithmically for comparison purposes. Vertical 

lines represent where the DLVO curves asymptotically approaches zero as F/kBT ap-

proaches one. Their intersection with the x-axis signifies where the free energy 

becomes negative. For clarity we decided not to plot absolute values. It is evident from 

Figure 2.6 that as we increase the ionic strength the EDL repulsion is screened by add-

ed salt. As I → 10-3 M the ionic strength approaches a critical value where free energy 

of interaction is on the order of kBT at surface separations less than 100 nm. For neutral 

water, an algae cell feels the electrostatic repulsion from a neighboring algae cell up to 

15 µm. Figure 2.7 shows the transition for the critical ionic strength. The energy barrier 

for I = 10-2 M is approximately 50 kBT. This corresponds to physical observations of 

Chlamydomonas algae, where even in growth medium (I = 10-2 M) the microalgae do 

not flocculate at room temperature. For I = 10-1 M the DLVO potential indicates that the 

pair interaction is completely attractive. In our proposed experimental setup this sug-

gests that at this ionic strength we should begin to see aggregation between algae 

colloids.  

 

2.4. Algae DLVO Interaction Energies in Neutral Water and Growth Medium 

 In order to harvest algae, cells must be separated from their growth medium and 

then dewatered and dried. Therefore, the two most important conditions for our investi-

gation center on algae in their high salt growth medium and in neutral water where most 

of the growth medium salt has been removed or diluted. Furthermore, these two sys-

tems characterize the behavior of our algae at both extremes of the salt concentration 

spectrum for the experimental setup.  

 

2.4.1. Neutral Water 

 For water with pH = 7 the medium is of low ionic strength and the characteristic 

range of decay 1/𝜅 for the electrostatic repulsions between two algae cells is almost 

1000 nm. As a result, neighboring algae cells electrostatically repel one another at far-
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ther surface separations, D. To lower this expected DLVO energy barrier the VDW en-

ergy must be on the order of EDL repulsion. In contrast, Figure 2.8 shows that the EDL 

energy dominates at all relevant surface separations so that its value is coincident with 

the overall DLVO potential. In order to “overcome” this energy barrier and remain in a 

flocculated state, a pair of algae cells would need to be coupled to an energy source of 

approximately 5 × 106 kBT, or 2 × 10-14 J.  

 
Figure 2.8. Free energy of interaction (F) for VDW, EDL, and DLVO potential in neutral 
water. All other parameters same as in Figure 2.6.  

This repulsion is purely electrostatic. To understand the scale of this interaction, 

consider two negative point charges in water at room temperature interacting at some 

distance d on the order of hundreds of nanometers whose potential energy is given by 

𝑒! 4𝜋𝜀𝑑   ≈   0.007  𝑘!𝑇. In comparison, the number of charges on the algae surface with 

𝜎! = -10-3 C/m2 is 4𝜋𝑅!𝜎! 𝑒 ≈ 1.3  ×  10! charges. If we replace the second negative 

point with half of an algae surface and consider the charge located all at one position 

some distance d on the order of hundreds of nanometers away, the new potential ener-

gy would increase by a factor of 0.6  ×  10!, or be approximately 5000 𝑘!𝑇. In a similar 

way, for the interaction of two algae cells a single point charge on one surface is inter-

acting with every point charge on the other surface. Though the approximation of each 
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of those charges being the same distance away does not hold up, one can now imagine 

how an interaction energy between two surfaces each carrying a scale of one million 

charges can have an interaction energy on the order of 106 𝑘!𝑇 in a medium of low ionic 

strength.  

  

 
Figure 2.9. Free energy of interaction (F) for VDW, EDL, and DLVO potential in water 
with I = 10-2 M. All other parameters same as in Figure 2.6. 

2.4.2. Growth Medium 

 We estimated that the ionic strength of the experimental growth medium is on the 

order of 10-2 M ionic strength (see 2.2.2.). The Debye length is now on the order of sev-

eral nanometers and the characteristic decay of the EDL repulsion is greatly reduced as 

compared to water with pH = 7. Figure 2.9 demonstrates this hypothesis. The VDW en-

ergy is now on the order of the EDL repulsion and a primary minimum occurs in the 

DLVO curve for κD   <   1 (corresponding to a surface separation ≈ 3 nm). This is a result 

of the high ionic strength of the medium being able to screen the effective charge on an 

algae surface, lowering the coulombic repulsion between like charged bodies. Also, a 

secondary minimum on the order of 𝑘!𝑇 is observed for 𝜅𝐷 ≈ 5 where the algae can 

form reversible aggregates. However, the energy barrier is still multiple times 𝑘!𝑇 and 
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the algae do not permanently flocculate in the growth medium solution, which is experi-

mentally observed. Therefore, a method is needed that can allow algae to form stable 

aggregates so that they can be efficiently and cheaply dewatered and harvested for 

downstream processing.  

 

2.5. Examining the Effective Charge Between Cells 

 Before we begin to investigate the experimental solution to the problem of har-

vesting by using charged polymer brushes, we can employ DLVO theory to gain some 

insight on how the charged polymer brushes may lead to spontaneous aggregation of 

the microorganisms. Much like in the case of adding salt, we hypothesize that the addi-

tion of the polymer brush screens the EDL repulsion. Introduction of the brush means 

adding cationic (charged monomers) and anionic (monomer counter ions) species to the 

system. The cationic units along the polymer backbone serve to screen the EDL repul-

sion between two algae by reducing the effective electric field between them.  

 

2.5.1. Neutral Water 

The anionic surface may attract the brush, possibly even causing the polymer to 

adsorb to its surface. This adsorption has been shown to cause the release of counter 

ions from the brush layers, which is entropically favorable [34]. If we hypothesize that 

the introduction of the brush screens the EDL repulsion by reducing the electric field 

each algae feels from another due to the effective charge, 𝜎!, we can use DLVO to qual-

itatively describe this phenomena. In Figure 2.10 we plot the logarithmic value of the 

unitless free energy of interaction between two algae cells in neutral water once again 

for comparison purposes. As before, for clarity purposes we chose not to represent the 

absolute value of the free energies that would have included negative values of the 

DLVO curve. Rather, we represent these areas of transition from positive to negative 

with vertical lines at the asymptotes as the value of the logarithm approaches zero. Fig-

ure 2.11 depicts the algae pair free energy of interaction for two cells in water with an 

ionic strength (I) of 10-2 M. We chose these two regions again to mimic the most com-

mon environments of the algae system (water and growth medium).  
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Figure 2.10. Logarithmically scaled DLVO free energy of interaction (F) for varying ef-
fective charge 𝝈𝒄 in neutral water. Vertical lines represent asymptotes log[x] →0. All 
other parameters same as in Figure 2.6. 

 

Figure 2.11. DLVO free energy of interaction (F) for varying effective charge 𝝈𝒄 in water 
with I = 10-2 M. All other parameters same as in Figure 2.6. 
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For the case of neutral water, we see that the DLVO energy barrier is much 

greater than 𝑘!𝑇 for most effective charge values. It is not until we reach 𝜎!   = -10-6 C/m2 

when the energy barrier begins to become on the order of the thermal energy. Recall 

that for water pH = 7 the Debye length is approximately 1000 nm. Therefore the dis-

tance at this effective charge where the DLVO curve would signify an attractive force 

(when the EDL repulsion will begin to compare to the VDW energy) is around 3000 nm, 

equivalent to the radius of an algae sphere. If we once again picture the algae surface 

as a grouping of point charges we can see the equivalent number of charges that must 

be screened for 𝜎!   = -10-6 C/m2 by taking the difference with the initial state where 𝜎!   = 

10-3 C/m2. The percent of charges on the surface we must quench is given by (10-3 –  

10-6)/10-3 = 99.9%. Therefore, even after we have screened almost all of the charges, 

we still observe an energetic barrier for the pair interaction between two cells. We must 

screen most of the remaining 0.1% of charges (≈ 1000) before algae pairs can begin to 

form in the primary minimum.  

 

2.5.2. Growth Medium 

 In contrast we see that only small decreases in the effective charge lead to a 

state where the EDL repulsion is screened sufficiently enough so that the DLVO interac-

tion is attractive at all surface separations (when 𝜎! = −10!!.!). As a comparison with 

neutral water, this requires that only (10-3.1 - 10-3.5)/10-3.1 = 60% of the charges be 

screened by the cationic brush. The difference in values between neutral water and 

growth medium signify the ability of the high ionic strength salt to already screen most of 

the effective charge between two algae cells.  

 

2.6. Conclusions 

 The DLVO theoretical framework predicts that the pair interaction between two 

algae species is repulsive for the two most common environments of our system: growth 

medium and neutral water. In both cases, the EDL energy dominates the VDW energy 

at almost all surface separations greater than 10 nm. Physically this means that algae 
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do not spontaneously flocculate due to the similar charge coulombic repulsion between 

the surfaces.  

In the case of low ionic strength solutions, such as neutral water, this energy bar-

rier that prevents flocculation is more pronounced and much higher than the thermal 

energy available to the cells. Even when over 99% of the charges are quenched, the 

energy barrier is still several orders of magnitude higher than 𝑘!𝑇.  

For high ionic strength solutions the EDL repulsion is screened by the added 

salts and the energy barrier begins to be on the order of magnitude of the thermal ener-

gy and the VDW energy for distances below 100 nm. In some cases, this results in the 

formation of a secondary minimum where an energy barrier still exists but a minimum in 

the DLVO curve at surface separations before the primary minimum physically allows 

for reversible flocculation. At higher ionic strength, about half the charges need to be 

quenched before the effective charge is low enough so that the pair interaction is attrac-

tive at all separations.  

For the experimental solution to the low-cost efficient method for algae dewater-

ing and harvesting, we hypothesize that the cationic polymer brushes serve to screen 

the EDL repulsive force between algae cells. When the brushes do not adsorb, they 

serve to increase the ionic strength much like in the case of adding salt. If adsorption 

occurs, the brush quenches negative charges on the surface of the algae, reducing the 

effective charge and lowering the energy barrier. More brushes are needed for low ionic 

strength solutions than higher ones. This transition between high and low ionic strength 

solutions occurs when the energy barrier is on the order of the thermal energy at a criti-

cal value around 10-2 and 10-3 M.  
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CHAPTER 3  

CHARGED POLYMER BRUSH AND ALGAE INTERACTIONS 

 

 The flocculation agent involves a polymer brush grafted to a nanoparticle core. If 

we are to understand the interactions in our system we require a method for modeling 

the polymer brush behavior in different environments. In this chapter, we explain the 

theoretical framework used to perform this piece of the project and provide explicit cal-

culations.  
 

3.1. Introduction to Modeling Polymer Brush Systems 

 We now must calculate the energy between the remaining pair interactions in our 

system: algae – polymer brush and brush – brush. Since both require consideration of 

the dynamic behavior of the polymer in response to changing stimuli, we use Self-

Consistent Field Theory (SCFT) for polymers to model the system. Unlike DLVO, SCFT 

provides much greater structural information about brush density distributions and al-

lows models to consider multi-component effects inside the brush in much greater detail. 

Initially formulated by Edwards and Dolan [56], SCFT attempts to find a simplified de-

scription of interacting chains through a mean field approach. Rather than taking into 

account all interactions between bodies in the system, it only considers the conforma-

tional fluctuations of any given polymer chain in the averaged environment (mean field) 

due to the presence of all other species (see Figure 3.1). A self-consistent calculation is 

then established between the local monomer concentration profile and the position de-

pendent mean field potential around the concentration profile. Upon convergence, 

thermodynamic properties of the system can be computed. Here we will outline the ex-

tension of the Scheutjens and Fleer lattice SCFT for a multicomponent mixture [57,59] 

and extend it for a charged system.  
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3.2. A Lattice Model for Polymer Systems 

Consider discretizing a space into a three dimensional lattice. We can fill this lat-

tice with a multicomponent mixture of molecules. Let 𝑟!" be the number of segments of 

type A belonging to a particular molecule of type i. If 𝑟! is the total number of segments 

belonging to a molecule of type i, 𝑟!" = 𝑟!! . We can arbitrarily pick a space coordinate 

to label our three dimensional lattice. Consider the cross sectional slices defined by the 

direction x and y with number of sites L. Starting from one of the boundaries of our sys-

tem, we can label these slices along the z axis as 1, 2, … M. If we adopt a mean-field 

approximation in the steps of Scheutjens and Fleer [57] we can consider the segments of 
a given molecule to be randomly distributed over the L lattice sites in layer z. Therefore 

we most only consider the density fluctuations along z. The number of segments of type 

A belonging to molecule i in a given slice (or layer) is given as 𝑟!"(𝑧). 

 

 
Figure 3.1. SCFT simplifies a many body problem using a position dependent mean 
field potential. System involves a polymer brush with cationic monomers along the 
backbone and anionic counter ions.  

 It now makes sense to define a particular conformation of a molecule by the layer 
labels of each of its segments. For instance the chain molecule in Figure 3.2 has a con-

formation given by (a,2), (b,2), (c,3), (d,4). The conformation of every molecule in the 

multicomponent mixture is completely defined by the z coordinates of its segments. We 

can now introduce another identifier to our notation for our molecules in the system con-
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sidering a specific conformation of the molecules. Let 𝑟!"!  be the number of segments of 

type A belonging to a molecule of type i in a specific conformation c. The total number of 

segments for a given conformation is the same as before: 𝑟!"! = 𝑟!! = 𝑟!! . The number 

of molecules of type i with the same conformation is denoted by 𝑛!!. The total number of 

molecules of type i in the system is given as a sum over all the different conformations: 

𝑛! =    𝑛!!! . If we constrain our lattice to be incompressible (completely filled), the total 

number of segments 𝑛!𝑟!!  must equal the total number of lattice sites ML.  
 

 
Figure 3.2. A particular conformation of a molecule on a lattice. Here space is shown 
only in two dimensions with fluctuations along the layers z characterizing the system. 
For this two dimensional system, L = 5. 

3.3. Determining the Partition Function  

  Imagine our multicomponent mixture is in thermal equilibrium with both a particle 

and temperature reservoir. The grand canonical partition function for such a system is 

given by: 
 

Ξ = 𝑒!! !!!!!!

!""  !"#"$!

!

 ( 3.1 ) 
 

The possible states of the system are simply all the possible concentration profile varia-
tions along z for all the molecules. The definition of a state follows from the idea that a 

given concentration gradient is defined by the set of conformations for all the molecules 
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in the system, 𝑛!! . Any given 𝑛!!  completely fills all the lattice sites. It is customary to 

decompose the grand partition function using the canonical partition function: 
 Ξ 𝜇! ,𝑀, 𝐿,𝑇 = 𝑒!!! !!

!

!!
!

𝑒 !!!!!!  

                                                          = 𝑄 𝑛!! ,𝑀, 𝐿,𝑇
!!
!

𝑒 !!!!!!  ( 3.2 ) 
 

where it is important to remember we are summing over all possible fluctuations of the 

molecular densities in the layers. Note that the variables are the set of chemical poten-

tials of the molecules, the volume, and the temperature. If the system is internally 

constrained such that one of these variables is varied while the others are held constant, 

the value of this parameter at equilibrium maximizes the entropy and minimizes the 

grand free energy.   

 Each individual Q in Eq. ( 3.2 ) is defined by the same number and type of mole-

cules in each layer. Under the mean field approximation each possible realization of 𝑛!!  

has the same total energy U since the same number and type of interactions remains 

constant. Q becomes Ω𝑒!!" where Ω is the degeneracy (multiplicity) of 𝑛!! . Since it is 

differences in energies that are important, it is useful to express Q in terms of a reference 

state. Let 𝑄!∗ = Ω!∗𝑒!!!!
∗ be the partition function for 𝑛! molecules in homogenous bulk 

phase. The total energy 𝑈∗ = 𝑈!∗!  and the partition function decomposes into a product: 

𝑄∗ = 𝑄!! . The canonical partition function becomes 
 

𝑄 = 𝑄∗
Ω
Ω∗ 𝑒

!! !!!∗  
 

( 3.3 ) 
 

where Ω∗ is the product of individual multiplicities Ω!∗ and counts all the possible ways of 

distributing 𝑛! molecules in the bulk phase with a given conformation c.  

 To determine Ω!∗, let us consider a lattice construction of bulk phase. Unlike for our 

system, each of the layers is identical and defining a conformation by a layer number is 

meaningless. The total number of sites occupied by a species of type i is given by the 

product of the total number of molecules of type i (𝑛!) and the number of segments 

belonging to the molecule (𝑟!). It is clear then that for the placement of the first segment 
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on a molecule of type i there are 𝑛!𝑟! possibilities. If each lattice site has Z neighbors, the 

placement of the second segment is limited to Z options since it is attached to the first. 

However, we must take into account the probability that any of the neighboring sites are 

already filled. Under the mean-field approximation of random mixing in each layer all 

sites in a given layer have the same likelihood of being vacant, given by 1 – p(filled) 

where p(filled) for indistinguishable layers in bulk is the probability that any of the 

possible sites available to a segment belonging to a molecule of type i is already filled. 

For the second segment, the number of possible configurations is now limited to Z(1 – 

p(filled)) = 𝑍(1− 1 ⁄ (𝑛!   𝑟!)) = 𝑍(𝑛!   𝑟! − 1) ⁄ (𝑛!   𝑟!   ). For the jth segment this expression 

can be generalized to 𝑍(𝑛!   𝑟! − 𝑗) ⁄ (𝑛!   𝑟!). Therefore the overall configuration multiplicity 

for the first molecule of species i is given as: 
 

Ω!∗ =
𝑍
𝑛!𝑟!

!!!!

  (𝑛!𝑟!) 𝑛!𝑟! − 1 𝑛!𝑟! − 2 … 𝑛!𝑟! − 𝑟!  
 

( 3.4 ) 
 

The configurational multiplicity of the kth molecule of species i can be determined using 

the same logical methology. The placement of the first segment has 𝑛!𝑟! − 𝑘 − 1 𝑟! pos-

sibilities. The number of ways of placing each successive segment is still Z(1 – p(filled)). 

The form of the overall configuration multiplicity is identical to Eq. ( 3.4 ) with the 

exeception of the shift taking into account the previous placement of k – 1 molecules: 
 

Ω!∗ =
𝑍
𝑛!𝑟!

!!!!

(𝑛!𝑟! − 𝑘 − 1 𝑟!) 𝑛!𝑟! − 𝑘 − 1 𝑟! − 1 … 𝑛!𝑟! − 𝑘 − 1 𝑟! − 𝑟!  
 

( 3.5 ) 
 

The overall multiplicity is simply a product of each of the individual molecule expressions, 

e.g. Eqs. ( 3.4 ) and ( 3.5 ). After positioning all 𝑛! molecules, an expression for Ω!∗ 

identical to the combinatory factor derived by Flory [58] follows:  
 

Ω!∗ =
𝑛!𝑟! !
𝑛!!

𝑍
𝑛!𝑟!

!!!! !!
   

 
( 3.6 ) 

 
where 1/𝑛!! accounts for the indistinguishability of molecules i.   

 Determining Ω is a little more complicated due to the distinguishability of layers in 

the system. Recall that L is the number of lattice sites per layer, Z is the number of 

neighbors per lattice site and the set 𝑛!!  is completely defined by the specific layer 
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number sequence belonging to all types of molecules i present in the system. Consider 

the conformation of a given molecule i where 𝑛!! is the number of molecules i with the 

same configuration. The first segment of the molecule can be distributed at any of the L 

sites in its layer if each site is empty. As before, we can take into account the possibility 

that part of the layer is already filled by considering the fraction of empty sites within the 

layer equal to 1−   𝑣! 𝐿 = 𝐿 − 𝑣! /𝐿 where 𝑣! is the occupation number of the layer z 

(for the first segment 𝑣! = 0).  

 Before we discuss the possible configurations for the additional segment we must 
briefly introduce some notation. Consider the conformation of the molecule in Figure 3.2 

(a,2), (b,2), (c,3), (d,4) [figure on lattice polymer]. If k is the label attributed to layer “2”, 

the second segment is in layer k, the third in layer k + 1, and the fourth in k + 2. The first 

segment a has Z neighbors, 2𝜆!𝑍 in the two adjacent layers and 𝜆!𝑍 in the same layer. 

Segment b is in the same layer as segment a. Therefore there are 𝜆!𝑍 possible sites for 

segment b. Segment c is in an adjacent layer to segment b and has 𝜆!𝑍 possible configu-

rations. The same can be said for segment d. For the entire molecule in its current 

conformation there are 𝐿 − 𝑣! 𝑍 𝐿 ! 𝜆!(𝐿 − 𝑣! − 1) 𝜆!(𝐿 − 𝑣!) 𝜆!(𝐿 − 𝑣!)  ways of 
placing it on the lattice. Following the work of Evers et al. [59] it proves convenient to de-

fine the following variable: 
 

𝜆! = 𝜆! 𝑠|𝑠 − 1
!!

!!!

 
 

( 3.7 ) 
 

where 𝜆! 𝑠|𝑠 − 1  is equal to 𝜆! if the sth segment is in the same layer as the s-1th or 𝜆!if 

they are in adjacent layers. The superscript denotes the particular conformation.  

 The number of different ways of placing a molecule i in a unique conformation c 

can now be expressed as: 
 

Ω!! =
𝑍
𝐿

!!!!

𝜆! 𝐿 − 𝑣!(!,!)

!!

!!!

 
 

( 3.8 ) 
 

The product in Eq. ( 3.8 ) can be simplified by replacing it with a product over the lattice 

layers. Consider that the molecule i in configuration c contributes 𝑟!!(𝑧) molecules to the 

lattice layer z. For the first segment being placed in an empty lattice in layer z, 𝑟!!(𝑧) = 1 
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and 𝑣! = 0. For the second segment 𝑟!!(𝑧) = 2 and 𝑣! = 1, … ending with 𝑣! = 𝑟!!(𝑧)− 1. 

The product can now be expressed as 𝐿 − 𝑣!
!!
! ! !!
!!!!

!
!!! . Instead of keeping track of 

the placement of every previous segment when evaluating the product in Eq. ( 3.8 ), we 

only have to know 𝑟!!(𝑧). For 𝑛!! molecules, the first two terms in Ω!!  are multiplied 𝑛!! 

times while the product over 𝑣! now extends to 𝑛!!𝑟!! 𝑧 − 1 (if 𝑛!! = 3, on the third chain 

with the same configuration we have already placed 2𝑟!! segments in that layer). For 

𝑛! = 𝑛!!!  molecules, we can express Ω!:  
 

Ω! =
𝑍
𝐿

(!!!!)!!  

𝜆!!!

!

𝐿 − 𝑣!

!!!!(!)!!

!!!!

!

!!!

𝑛!!! 
 

( 3.9 ) 
 

where 𝑟! 𝑧 =    𝑟!!(𝑧)!   and the factorial accounts for indistinguishability of the molecules 

in the same confirmation. The first term in Ω!!  is independent of configuration and is now 

repeated 𝑛! times in Eq. ( 3.9 ). However, 𝜆! is unique for each configuration and requires 

us to take the product.  

 If we completely fill all ML lattice sites with the remaining species of molecules, 

the incompressibility requirement requires that the product 𝐿 − 𝑣!
!!!!(!)!!
!!!! = 𝐿! since 

every site in the layer z is completely filled. The rest of the terms in Ω! are identical for 

every i and simply become a product overall all species. We arrive at an expression for Ω 

similar to Ω∗: 
 

Ω = 𝐿! !
𝑍
𝐿

(!!!!)!!  

𝜆!!!

!

𝑛!!!
!

 
 

( 3.10 ) 
 

The only difference in our derivation of Eq. ( 3.10 ) and Ω∗ = Ω!∗!  for Ω!∗ in Eq. ( 3.6 ) is 

the distinguishability of the layers. The logartithm of both terms is closely related to the 

entropy through Boltzmann’s famous equation for the entropy in the microcanonical 

ensemble 𝑆 ∝    lnΩ. Taking the logarithm of both terms also allow us to qualitatively 

determine the difference in entropy that occurs when we take the molecules from bulk 

and position them in our system. When determining the difference between the two 

logarithms many terms cancel: 
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ln
Ω
Ω∗ = 𝑛!! ln

𝐿𝜆!

𝑟!𝑛!!!,!

 
 

( 3.11 ) 
 

where we have made use of Stirling’s Appromixation for ln𝑛! = 𝑛 ln𝑛 − 𝑛 and the in-

compressibility of our system where 𝑟!𝑛!! = 𝑀𝐿 . Recall 𝜆!  in Eq. ( 3.7 ) is a 

consequence of labeling the layers in the system as opposed to the indistinguishability of 
layers in bulk. With L being the cross sectional area of the lattice and 𝑟!𝑛!! representing 

the space available to a particular conformation of molecule i, we can consider 𝐿 𝑟!𝑛!! a 

constant (if we double our system size, the lateral density fluctuations with respect to z 

should remain constant and 𝑛!! is also doubled). Therefore lnΩ Ω∗ ∝ 𝑛!! ln 𝜆!!,! . It is 

clear now that the difference in the entropy between bulk phase and the system is direct-
ly a consequence of numbering the layers in the system. As an example let us consider 

two extremes. First, if we have only one molecule in our system and its segments are all 

in the same layer then 𝜆! = 𝑟!𝜆!and   lnΩ Ω∗ ∝ − ln 1 𝑟!𝜆! = − ln 1.5 𝑟! for a cubic lattice. 

Now if we change the conformation of the molecule so that each segment is placed in a 

different layer from its previous segment instead then 𝜆! = 𝑟!𝜆!  and 

lnΩ Ω∗ ∝ − ln 1 𝑟!𝜆! = − ln 6 𝑟!. It is clear that in the latter case increasing the random-

ness of the molecule’s configuration increases the entropy difference between the bulk 

phase and the system. If each layer was given the same label (indistinguishable), the lat-

ter case would be identical to the former where all the segments were in the same layer 
and the difference between the two would vanish (signifying no difference between 

Ω  and  Ω∗). 

 Eq. ( 3.11 ) naturally leads to the expression of the canonical partition function in 

its logarithmic form: 
 

ln𝑄 = 𝑛!! ln
𝐿𝜆!

𝑟!𝑛!!!,!

−
𝑈 − 𝑈∗

𝑘!𝑇
+ ln𝑄∗ 

 
( 3.12 ) 

 
 

3.4. Equilibrium Statistics  

 Now that we have some construct for the canonical partition function in Eq. ( 3.2 ) 

we must determine the equilibrium form of the grand canonical partition function in order 
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to calculate important thermodynamic properties of the system. At equilibrium Ξ minimiz-

es the grand free energy Φ  through the statistical thermodynamics relationship 

Φ = −𝑘!𝑇 lnΞ. Therefore there is an equilibrium set of 𝑛!!  that maximizes lnΞ subject to 

the constraint that each layer is completely filled. The Langrange method of undeter-

mined multipliers is a useful tool to determine 𝑛!!  subject to any constraint. First we 

define the following function:  
 

ℒ = ln𝑄 +
𝜇!𝑛!
𝑘!𝑇!

− 𝜖 𝑧 𝐿 − 𝑛!!𝑟!! 𝑧
!,!

!

!

 
 

( 3.13 ) 
 

When the lattice is completely filled, ℒ  and lnΞ are maximized by the same equilibrium 

set of 𝑛!! .  

 Taking the partial derivative of ℒ with respect to 𝑛!!  in order to find the extremum 

involves solving the set of equations below: 
 𝜕ℒ

𝜕𝑛!! !.!,!,!!
!!!!

!

= 0 

                                                                    =
𝜕 ln𝑄
𝜕𝑛!!

+
𝜇!
𝑘!𝑇

+ 𝜖 𝑧 𝑟!! 𝑧
!

!

        for  all  𝑛!! ∈ 𝑛!!  

        and 
 

      
𝜕ℒ
𝜕𝜖 𝑧 = 0, 𝑧 = 1, 2,…𝑀         

 
( 3.14 ) 

 

The first term can be solved for using Eq. ( 3.10 ): 
 𝜕 ln𝑄

𝜕𝑛!!
= ln

𝐿𝜆!

𝑟!𝑛!!
− 1−

𝜕 𝑈 − 𝑈∗ 𝑘!𝑇
𝜕𝑛!!

−
𝜇!∗

𝑘!𝑇
 

 
( 3.15 ) 

 
where we have made use of the total differential of the free energy 𝑑𝐹 = 𝑑 −𝑘!𝑇 ln𝑄  for 
constant temperature and volume to derive 𝜇!∗, the chemical potential of species j in bulk 

phase. It proves convenient to introduce a factor of 𝑟!! in the third term of Eq. ( 3.15 ). We 

can use the definition of the volume fraction of a particular segment of species i, 

𝜙! 𝑧 = 𝑛!!𝑟!"! 𝑧 𝐿, to do so: 
 𝜕 𝑈 − 𝑈∗ 𝑘!𝑇

𝜕𝑛!!
=
𝜕 𝑈 − 𝑈∗ 𝑘!𝑇

𝜕𝑛!!
  
𝜕 𝐿𝜙! 𝑧!,!

𝜕 𝐿𝜙! 𝑧!,!
 

 
 



 43 

 

                                                                =
𝜕 𝑈 − 𝑈∗ 𝐿𝑘!𝑇

𝜕𝜙! 𝑧
  
𝜕𝐿𝜙!(𝑧)
𝜕𝑛!!!,!

 

 

( 3.16 ) 
 

This particular notation also proves useful since it allows us to decompose 𝑈 into contri-

butions of segments in order to evaluate the derivative with respect to the volume 

fraction, as we will show later.  

 By substituting Eqs. ( 3.15 ) and ( 3.16 ) into ( 3.14 ) and rearranging we obtain:  
 

ln
𝐿𝜆!

𝑟!𝑛!!
− 1+

𝜇! − 𝜇!∗

𝑘!𝑇
− 𝑟!"! 𝑧

𝜕 𝑈 − 𝑈∗ 𝐿𝑘!𝑇
𝜕𝜙! 𝑧

− 𝜖 𝑧 = 0
!

!,!

   

for  all  𝑛!! ∈ 𝑛!!  

𝐿 − 𝑛!!𝑟!! 𝑧
!,!

= 0,        𝑧 = 1, 2,…𝑀 

 
( 3.17 ) 

 

Eq. ( 3.17 ) gives an expression for every 𝑛!! ∈ 𝑛!!  through the first term. If the bulk ref-

erence state is large enough to fix the chemical potential inside the system, the third term 

vanishes. Knowing the equilibrium distribution of the system allows us to derive all ther-

modynamic properties of interest.  
 

3.5. Determining Volume Fractions 

An explicit picture of the system is a useful piece of information that Eq. ( 3.17 ) al-

lows us to uncover. We can precisely diagram the system by determining the volume 

fractions of each species present in each layer. However we must find a link between the 

segment volume fractions and the overall equilibrium configuration. This is provided by 

determining the probabilistic weight some segment has at being at a lattice site in layer z. 

These weights are usually related to the energetic potential of the segment being present 
at that location. We begin by finding a form of the potential.  

The derivative in square brackets in Eq. ( 3.17 ) quantifies the change in the total 

energy per layer that occurs when we change the volume fraction of a given segment 
with respect to a reference state in bulk. We can interpret this as the energy difference 

when we take some volume fraction of A and place it at some lattice point within the layer 
z, divided by the thermal energy. We can define this segment potential: 
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𝑢! 𝑧 =

𝜕 𝑈 − 𝑈∗ 𝐿
𝜕𝜙! 𝑧

− 𝑘!𝑇𝜖 𝑧  
 

( 3.18 ) 
 

The last term is the potential required to prevent layer z from being under or overfilled. 

To determine a connection between the segment potential and the segment vol-
ume fraction, recall the definition 𝜙! 𝑧 = 𝑛!!𝑟!"! 𝑧 𝐿. In Eq. ( 3.17 ) we can isolate 𝑛!! 𝐿. 

After substituting in Eq. ( 3.18 ) we obtain: 
 𝑛!!

𝐿 = 𝐶!𝜆! 𝐺! 𝑧 !!"
! !

!,!

 
 

( 3.19 ) 
 

where the constant in front does not depend on segment type or configuration: 
 

ln𝐶! =
𝜇! − 𝜇!∗

𝑘!𝑇
− 1− ln 𝑟! 

 
( 3.20 ) 

 
and 𝐺! 𝑧 = 𝑒!!!/!!! is a Boltzmann weighting factor for segment A to be in layer z as 

opposed to bulk. Multiplying both sides of Eq. ( 3.19 ) by 𝑟!"! 𝑧  recovers the volume frac-

tion of segment A in layer z belonging to a particular configuration of molecule i. If we 

sum over all possible conformations we obtain the volume fraction of all segment A’s be-

longing to molecules i. After summing over A we obtain the volume fraction for all species 

i: 
 

𝜙! 𝑧 =
𝑛!!𝑟!! 𝑧

𝐿
!

= 𝐶! 𝜆!𝐺!!𝑟!! 𝑧
!

 
 

( 3.21 ) 
 

where 𝐺!! is the abbreviation for the product in Eq. ( 3.19 ). The significance of 𝜆!𝐺!! and 

𝐶! are perhaps more clear now from Eq. ( 3.21 ). If a molecule has 𝑟!! 𝑧  segments in a 

particular layer, 𝜆!𝐺!! represents the statistical weight associated to these segments in 

that layer based on the freely jointed walk of that molecule on the lattice and the local 
segment potential those segments feel at that site. Collectively these resemble a “walk” 

weighting factor. 𝐶! serves to normalize the distribution to volume fractions.  

 However we have no knowledge of 𝑛!!   or  𝑟!! beforehand so we still require a meth-

od for determining the volume fractions. Both the continuum theory [56] and the discrete 

formulation [57] draw a parallel between the conformation of the chained molecules in 
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the system and the semi-random walk of the molecules under the influence of some po-

tential. In the latter case, determining the equilibrium configuration of the system is 

similar to filling the lattice with individual molecules by placing the first segment at any 

position and allowing the rest of the segments to walk across the lattice sites subject to 

bond restrictions and the local mean field potential. Of important note, Iakovlev [60] has 

shown that the resulting diffusion equation used to solve for the weighting functions in 

the continuum case decomposes into a propagator equation/recurrence relations on a 

lattice, which we derive here. 

In the footsteps of Evers and coworkers [59] we define a “chain end distribution 

function” 𝐺! 𝑧, 𝑠|1  which gives the combined weight of all possible walks starting with 

segment s=1 and ending at s in layer z. Consequentially 𝐺! 𝑧, 𝑟!|1  is the statistical 

weight of all complete walks of a molecule ending at layer z. Summation over all layers 

gives the complete distribution function of the molecule over the entire system. This term 

is equivalent to 𝜆!𝐺!!! , as Evers and co. note: 
 

𝐺! 𝑟!|1 ≡ 𝐺! 𝑧, 𝑟!|1
!

= 𝜆!𝐺!!

!

=
𝑛!
𝐶!𝐿

 
 

( 3.22 ) 
 

Therefore, 𝐺! 𝑧, 𝑟!|1  is simply equal to 𝜆!𝐺!! when the conformation c results in the last 

segment 𝑟! being placed in layer z.  

 From this equality it is possible to derive a recurrence relation for each of the 

chain end distribution functions. Let us define 𝐺! 𝑧, 𝑠  as the segment weighting factor 

equivalent to 𝐺! 𝑧  when s belonging to molecule i is of type A. When we express 

𝐺! 𝑧, 𝑟!|1  in terms of 𝐺! 𝑧, 𝑟! − 1|1 , we realize that a factor of 𝐺! 𝑧, 𝑟!  is pulled out in 

front and 𝑟!"! 𝑧  diminishes by one when z’ = z. A single bond weighting factor also arises 

(ref. Eq. ( 3.7 )).  
 𝐺! 𝑧, 𝑟!|1 = 𝜆! 𝐺! 𝑧′ !!"

! !!

!!,!! !!  at  !

                                 

                                                                                                    

= 𝐺! 𝑧, 𝑟! 𝜆! 𝑟!|𝑟! − 1 𝜆!,!!!!
! 𝐺! 𝑧′ !!"

! !!

!!,!! !!  at  !

 

 

( 3.23 ) 
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                                                                        = 𝐺! 𝑧, 𝑟! 𝜆! 𝑟!|𝑟! − 1 𝐺! 𝑧, 𝑟! − 1|1
! !!  at  !

 

Considering in Eq. ( 3.23 ) the sum is only over the conformations where 𝑠 = 𝑟! is in z, 

segment 𝑠 = 𝑟! − 1 can only be in one of three layers: z-1, z, or z+1. Defining the nota-

tion: 
 

𝑓 𝑥,𝑦 = 𝜆!𝑓 𝑥 − 1,𝑦 + 𝜆!𝑓 𝑥,𝑦 + 𝜆!𝑓 𝑥 + 1,𝑦  
 

( 3.24 ) 
 

we can express a consolidated form for the end distribution function: 
 

𝐺! 𝑧, 𝑟!|1 = 𝐺! 𝑧, 𝑟! 𝐺! 𝑧, 𝑟! − 1|1  
 

( 3.25 ) 
 

Note that there is nothing special about 𝑠 = 𝑟!. We very well could have had s equal any 

one of the segments and consider that the end of our chain. We also could have started 

our walk along the chain at 𝑠 = 𝑟! as well. Therefore we arrive at a general recurrence 

relation for each of the endpoint distribution functions: 
 

𝐺! 𝑧, 𝑠|1 = 𝐺! 𝑧, 𝑠 𝐺! 𝑧, 𝑠 − 1|1  
𝐺! 𝑧, 𝑠|𝑟! = 𝐺! 𝑧, 𝑠 𝐺! 𝑧, 𝑠 + 1|𝑟!  

 
( 3.26 ) 

 
The placement of the first segment is not dependent on any prior positioning of the chain 

and its distribution function is simply the weighting factor 𝐺! 𝑧, 𝑠 . Thus, our boundary 

conditions for a free molecule are: 𝐺! 𝑧, 1|1 = 𝐺! 𝑧, 1  and 𝐺! 𝑧, 𝑟!|𝑟! = 𝐺! 𝑧, 𝑟! . For an 

end tethered to a surface the segment, e.g. s = 1, is localized to a single layer adjacent to 

the surface, e.g. z = 1, such that 𝐺! 𝑧, 1|1 =   𝛿!,! where 𝛿!,! is one if z equal one and ze-

ro otherwise.   

Eq. ( 3.26 ) gives the weight of segment s being in layer z taking into account all 

the possible walks beginning at either the 𝑠 = 1  or  𝑟!. When considering this weight for a 

chain molecule we must remember that segment s being placed in layer z is the result of 
a walk starting on both sides of the chain. Therefore the actual weight for segment s is 

the product of both recurrence relations in Eq. ( 3.26 ): 𝐺! 𝑧, 𝑠|1 𝐺! 𝑧, 𝑠|𝑟! /𝐺! 𝑧, 𝑠 . Divid-

ing by 𝐺! 𝑧, 𝑠  avoids double counting. To derive the volume fractions, recall that the layer 

volume fraction of molecule i is proportional to the overall weighting factor of its possible 
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conformations in Eq. ( 3.21 ). The weight for segment s above also is a complete 

weighting factor, considering all the possible conformations resulting in segment s being 

in layer c. Therefore we can express the volume fraction of segment s belonging to mol-

ecule i as: 
 

𝜙! 𝑧, 𝑠 = 𝐶!
𝐺! 𝑧, 𝑠|1 𝐺! 𝑧, 𝑠|𝑟!

𝐺! 𝑧, 𝑠
 

 
( 3.27 ) 

 
Calculating 𝜙! 𝑧  simply requires summing over s, while 𝜙!" 𝑧  changes the sum to only 

over segments of type A. For the relationship between Eqs. ( 3.21 ) and ( 3.27 ), it is 
perhaps more clear to see that 𝜙! 𝑧  𝑟!! 𝑧  is replaced by a sum over s. Therefore for 

segments in the same layer and of the same type, the sum will have 𝑟!! 𝑧  identical 

terms.  

 The normalization constant 𝐶! can be determined from Eq. ( 3.20 ) if the chemical 

potential of  the species in the system and in bulk are known. Alternatively, if the num-

ber of molecules in the system are known Eq. ( 3.22 ) gives: 
 

𝐶! =
𝑛!

𝐿𝐺! 𝑟!|1
=

𝜃!
𝑟!𝐺! 𝑟!|1

 
 

( 3.28 ) 
 

where 𝜃! ≡ 𝜙! 𝑧 = 𝑛!𝑟! 𝐿! . Finally, we can choose a reference potential such that all 

𝐺! 𝑧, 𝑠 ’s are unity when species i is in bulk solution. From Eq. ( 3.27 ) we find 𝜙!! = 𝑟!𝐶! 

after summing over all s. 

 It is typical to characterize the brush structure using the first moment of Eq. 

( 3.27 ) to describe the chain length. For a lattice where L is constant for each layer, the 

characteristic chain length is given as: 
 

ℎ! =
𝑧 − 𝑧∗ 𝜙! 𝑧, 𝑟!!

𝜙! 𝑧, 𝑟!!
 

 
( 3.29 ) 

 
where 𝑧∗ is the position of the first segment of the chain. 
 

3.6. Segment Potentials 

 Eq. ( 3.27 ) can be completely solved once the form of the segment potential in Eq. 

( 3.18 ) is known. This requires an expression for 𝑈 − 𝑈∗ in terms of the segment volume 
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fractions 𝜙! 𝑧 . For most systems of interest quantifying the energy from mixing and 

electrostatics is sufficient to characterizing the total energy.  
 

3.6.1. Energy of Mixing 

To calculate the contribution of mixing the multiple species to the total energy we 

can use the well-known Flory Huggins parameter 𝜒!". 𝜒!" is a dimensionless quantity 

that quantifies the interaction energy that results from species A interacting with species 

B compared to a pure solution of both. In mean field theory we ignore long range correla-

tions from the energy of mixing and only consider nearest neighbor contacts. More 

explicitly, for a binary interaction, 𝑘!𝑇𝜒!" =   0.5 2𝐸!" − 𝐸!! − 𝐸!!  where 𝐸!!  and 𝐸!! 

are the interaction energies of the species in pure solution and 0.5 corrects for double 

counting of interactions. As an example, consider a case where the energy of species A 

and B in their respective pure states are equal. If mixing the two species together results 

in a more favorable state, 𝜒!" is negative.  

Now consider a certain volume fraction of segment A in some layer z. Recall Z is 

the number neighboring sites for a lattice point. The average number of contacts that a 

segment A will have with segment B in layer z is given by 𝑍 𝜙! 𝑧 , where we have used 

the condensed bracket notation from Eq. ( 3.24 ). The total contribution of the mixing en-

ergy to the total energy with respect to bulk follows:  
 

𝑈!"# − 𝑈!"#∗ = 0.5𝑘!𝑇𝐿 𝜙! 𝑧 𝜒!" 𝜙! 𝑧 − 𝜙!!
!,!,!

 
 

( 3.30 ) 
 

where the term 0.5𝜙! 𝑧 𝜒!"𝜙!!  is the energy of mixing when one places 𝐿𝜙! 𝑧  seg-

ments A in the homogenous bulk phase. It also requires that 𝑈!"# − 𝑈!"#∗ = 0 when 

𝜙! 𝑧  is in bulk.  
 

3.6.2. Electrostatic Energy 

 For a charged system, we must also consider the electrostatic contribution to the 

total energy. The impact of a segment of type A to the total electrostatic energy in a layer 

with respect to bulk is given as: 
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𝑈!,!" 𝑧 − 𝑈!,!"∗ = 0.5𝐿𝜙! 𝑧   𝑒𝜐! 𝜓 𝑧 − 𝜓!  

 
( 3.31 ) 

 
where 𝑒 is the elementary charge, 𝜐! is the valency of segment A, 𝜓 𝑧  is the electrostat-

ic potential in layer z and 𝜓! is the electrostatic potential in bulk and ensures Eq. ( 3.31 ) 

is zero if the segments are in bulk phase. Determining the overall electrostatic energy of 

the system with respect to bulk involves summing over all the species in the layer and 

over all layers: 
 

𝑈!" − 𝑈!"∗ = 0.5𝐿 𝜙! 𝑧   𝑒𝜐! 𝜓 𝑧 − 𝜓!

!,!

 
 

( 3.32 ) 
 

If we require that the bulk solution remains electroneutral, the final term vanishes. 

There are two methods for determining the electrostatic potential in a given layer. 

The first involves solving the well-known Poisson Equation: ∇!𝜓 = −𝜌 𝜀, where 𝜌 is the 

excess charge density and 𝜀 is the dielectric permittivity. In one dimension 𝜌 𝑧  is the ex-

cess charge density in layer z and is derived from the volume percent of the species in 

that layer: 𝜌 𝑧 = 𝑒 𝜐!𝜙! 𝑧! 𝑏!, where 𝑏! is the volume of a lattice cell. The dielectric 

permittivity in a layer can be calculated by taking a linear combination of the permittivities 

of each of the individual molecules. It is also possible to assume that the permittivity is 

dominated by the contribution of the medium and is the same throughout, e.g. in water 

𝜀 = 𝜀!𝜀!!!. This is true for systems consisting mainly of medium.  

We can use the geometry of the lattice to our advantage in solving the Poisson 

Equation for 𝜓. Its discrete form is expressed here: 
 

𝜓 𝑧 + 1 − 2𝜓 𝑧 + 𝜓 𝑧 − 1
𝑏! = −

𝜌 𝑧
𝜀  

 
( 3.33 ) 

 
Thus we can solve for the electrostatic potential in one layer knowing the potential in the 

two adjacent layers and the volume fraction profile of the species. The boundary condi-

tions of the system can be derived from the electroneutrality constraint, 𝑣!!,! 𝜙! 𝑧 = 0. 

Gauss’s law dictates that the field strength at the boundaries should be zeros such that 

𝜓 0 = 𝜓 1 ,𝜓 𝑀 = 𝜓 𝑀 + 1 .  
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 An alternative method to determining the electrostatic potential involves the inte-

gration of the coulombic force to determine the work required to bring a charge from 

some reference point to a particular position in the system. The scalar quantity that re-

sults is defined as the electrostatic potential. From this treatment, the electrostatic 

potential felt by a discrete charge in layer z is given as: 
 

𝜓 𝑧 =   
1
4𝜋𝜀

all  layers

!!!!

𝑞!!
𝑟!,!!

 
 

( 3.34 ) 
 

where 𝑞!! = 𝑒 𝜐!𝜙! 𝑧′!  and 𝑟!,!! is the absolute distance between the two layers. The 

boundary conditions are dictated by specific knowledge of the system’s surroundings. As 

an example, consider Figure 3.3. An excess of negative charge is present at one side of  

 
Figure 3.3. A system with left biased negative charge. q is the excess charge.  

the system while the charges on the other side cancel each other out such that it applies 

no electrostatic bias. Implementing a boundary condition requires adding a constant to 

Eq. ( 3.34 ) that inversely decays with the distance from the negative excess charge and 

is proportional to the negative magnitude of the excess charge, i.e. −𝑎 𝑟!,!!. Utilization 

of Eq. ( 3.34 ) does not require the constraint of electroneutrality but does entail prereq-

uisite knowledge of the system to apply boundary conditions. Eq. ( 3.33 ) should be used 

for systems were the electroneutrality condition exists.   
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3.6.3. Determining the Explicit Form of the Segment Potentials 

Eqs. ( 3.30 ) and ( 3.32 ) generally cover most type of systems and the sum of 

these two terms constitutes 𝑈 − 𝑈∗ in Eq. ( 3.18 ), summarized here: 

𝑈 − 𝑈∗ = 0.5𝑘!𝑇𝐿 𝜙! 𝑧 𝜒!" 𝜙! 𝑧 − 𝜙!!

!,!,!

+ 0.5𝐿 𝜙! 𝑧   𝑒𝜐! 𝜓 𝑧 − 𝜓!
!,!

 
 

( 3.35 ) 
 

Dividing by L and applying the derivative causes all terms except those containing 𝜙! 𝑧  

to vanish. The result for the segment potentials is 
 𝑢! 𝑧

𝑘!𝑇
= 𝑢! 𝑧 + 𝜒!"

!

𝜙! 𝑧 − 𝜙!! +
𝑒𝑣! 𝜓 𝑧 − 𝜓!

𝑘!𝑇
 

 
( 3.36 ) 

 
where 𝑢! 𝑧 ≡ −𝜖 𝑧  is the unitless potential that requires the layer be filled. If the seg-

ment is uncharged 𝑣! = 0 and there is no electrostatic contribution.  

Eqs. ( 3.27 ) and ( 3.36 ) form a self-consistent loop. Knowledge of the segment 

potentials requires understanding of the segment volume fractions and vice versa.  
 

3.7. Numerical Scheme 

 This set of implicit equations formed by the self-consistent field must be solved 

numerically. First we define our iteration variables as the set of segment potentials 

𝑢! 𝑧 . As an initial guess all values are set to zero except for at 𝑧 = 0,𝑀 where a nega-

tive potential is supplied, as suggested by [59]. We choose values of approximately 

−𝑘!𝑇/5. Then the segment profiles are found and the electrostatic potentials are calcu-

lated either from Eq. ( 3.33 ) or ( 3.34 ).   

 We then solve for 𝑢! 𝑧  via Eq. ( 3.36 ) using the current iteration variables used to 

calculate the current 𝜙! . During the iterations 𝑢! 𝑧  may vary with the segment type. To 

ensure that the Lagrange Multipliers are only dependent of the layer number we define 

the following variable: 
 

𝑢!! 𝑧 =
𝑢! 𝑧
𝑘!𝑇

− 𝜒!"
!

𝜙! 𝑧 − 𝜙!! −
𝑒𝑣! 𝜓 𝑧 − 𝜓!

𝑘!𝑇
 

 
( 3.37 ) 

 
where 𝑢! 𝑧  is redefined as the average value of the set of 𝑢!! 𝑧  in layer z. With this in 

mind, we can define the set of functions: 
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𝑓! 𝑧 = 1−

1
𝜙! 𝑧!

+ 𝑢! 𝑧 − 𝑢!! 𝑧  
 

( 3.38 ) 
 

which equal zero only when the incompressibility constraint is reached and the potential 
is consistent with the segment profiles, guaranteed through Eq. ( 3.37 ) when 𝑢! 𝑧 =

𝑢!! 𝑧  for every A. The iteration algorithm is stopped when the maximum norm of 𝑓!  is 

less than the tolerance 𝜂 = 10!!. When this steady state is reached, the equilibrium 

segment profiles are found.  

 Newton type iterative methods come in handy when dealing this type of problem. 

As we noted above, the iteration variables are the set of segment potentials. The goal is 

to solve the set of equations 𝑓!  where the vector f is a function of the vector u for any A: 
 

𝒖 =    𝑢 1 ,𝑢 2 ,…𝑢 𝑀  
              𝒇 𝒖 =    𝑓 1,𝒖 , 𝑓 2,𝒖 ,… 𝑓 𝑀,𝒖  

 
( 3.39 ) 

 
The variable u is updated via Newton’s Method where the n+1th iteration is related to the 

nth iteration by the following expression: 
 

𝒖𝒏!𝟏 = 𝒖𝒏 −   
𝒇 𝒖𝒏
𝒇! 𝒖𝒏

 
 

( 3.40 ) 
 

For matrix first order derivatives 𝒇! 𝒖𝒏  is replaced by the Jacobian, 𝐽. Computing the Ja-

cobian directly for large systems is computationally intensive, and a number of methods 

have been developed to provide and estimate to 𝐽!!. One example is the Jacobian-free 

Newton-Krylov method, which enjoys the nonlinear convergence of other Newton meth-

ods but avoids explicit calculation of the Jacobian [61].  

 While the nonlinear convergence of Newton methods allow for fast calculations, 
their stability is dependent on the accuracy of the initial guess [62]. As an alternative, 

mixing schemes provide a more stable convergence path that is less dependent on the 

initial guess of the iteration variables. As a result the convergence zone is larger, but the 

overall process requires more iterative steps to reach the steady state due to smaller 

steps and is usually slower. The general scheme involves defining a residual vector be-

tween the input iteration variables 𝑢! 𝑧  and the output vectors 𝑓! 𝑧  of the same 

dimensions. For any A this looks like: 
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𝑭𝒏 = 𝒇𝒏 − 𝒖𝒏 

 
( 3.41 ) 

 
The new variables are linearly mixed with the previous set via the following relation: 
 

𝒖!!! = 𝒖! +   𝛼!𝑭! 
 

( 3.42 ) 
 

where 𝛼! is the mixing ratio and is usually constant for each iteration n. The convergence 

of the self-consistent calculation is now dependent on the mixing ratio. Generally lower 

values of 𝛼! result in more stable iterations. Values closer to one result in updating the 

new input variables almost entirely with the previous output vectors. Anderson mixing is 

a particularly powerful mixing scheme that is a bit more complicated than the general 
mixing idea outlined above. Rather, it considers previous iteration vectors into each itera-

tive calculation in an efficient way that leads to faster convergence [63].  
 We employ both methods in our numerical solution to the self-consistent field. To 

guarantee convergence for most situations we use Anderson mixing to a tolerance 

𝜂 = 10!!. The output set of 𝑢! 𝑧  then form the initial guess for the Newton-Krylov 

scheme until a tolerance 𝜂 = 10!! is reached. Therefore our scheme has a wide zone of 

convergence with relatively quick calculation times.  
 

3.8. Computational Aspects 

 When dealing with high-density molecular systems, i.e. grafted polymer chains 

with high grafting density and strongly charged polyelectrolytes, the individual 𝑢! for the-

se segments can become quite large. As a result, the polymer chains are strongly 

stretched and the weighting factor 𝐺! 𝑧, 𝑠  when segment s is of type A can become quite 

large. As Eq. ( 3.26 ) is recursively applied in the determination of the segment profiles, 

values can exceed the numerical range available to a computer. There are two common 

approaches to solve this problem. 

The first is scaling the potential prior to application of Eq. ( 3.26 ) such that a new 

zero reference potential is appointed. The maximum 𝑢! is chosen as the reference po-

tential so that all values are negative. While this solves the problem of exceeding the 
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numerical range overflow in one direction, there is the possibility that this method will 

scale the potential too much in the other direction such that 𝐺!’s become much greater 

than unity. Now as Eq. ( 3.26 ) is applied, the numerical range is overshot on the high 

end. 

The second method leaves the reference of the potentials alone but scales Eq. 

( 3.26 ) for each column s. Wijmans and coworkers [64] have suggested a method that 
performs this scaling. They define the scaled version of Eq. ( 3.26 ) (denoted by tildes) 

as: 
 

𝐺! 𝑧, 𝑠|1 = 𝐺! 𝑧, 𝑠 𝐺! 𝑧, 𝑠 − 1|1 𝑐 𝑠|1  
  𝐺! 𝑧, 𝑠|𝑟! = 𝐺! 𝑧, 𝑠 𝐺! 𝑧, 𝑠 + 1|𝑟! 𝑐 𝑠|𝑟!  

 
( 3.43 ) 

 
where 𝑐 𝑠|1  and 𝑐 𝑠|𝑟!  are constants chosen to keep the values of the end chain distri-
bution functions close to unity. Unlike [64], we choose 𝑐 𝑠|𝑗  to be unity for 𝑠 = 1, 𝑟! and 

the maximum value of the current column 𝐺 𝑧, 𝑠|𝑗  for all other s. This guarantees that 

each column is closer to unity since the scaling factor is based on the current column ra-
ther than the previous.  

The reduced segment volume fraction 𝜙 is then found using the set of reduced 

propagator from Eq. ( 3.43 ) in Eq. ( 3.27 ). To obtain the actual segment volume frac-

tions we normalize the result using the equation below: 
 

𝜙 𝑧, 𝑠 = 𝜎
𝜙 𝑧, 𝑠
𝜙 𝑧, 𝑠!

 
 

( 3.44 ) 
 

where 𝜎 is the grafting density for tethered chains.  

 
3.9. Free Energy of Interaction 

 For our purpose, we are interested in determining the free energy for interacting 

systems involving grafted polymer chains. Recall both the temperature and chemical po-

tential of our system is fixed by a surrounding reservoir. In this case the characteristic 

free energy is given by statistical thermodynamics as: 
 Φ = 𝐹 − 𝜇!𝑛!

!

 ( 3.45 ) 
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The free energy F follows from the logarithm of the partition function in Eq. ( 3.12 ) as 

– 𝑘!𝑇 ln𝑄 𝑄∗. Using Eq. ( 3.19 ) to replace the first term in Eq. ( 3.12 ) so that the energy 

is in terms of the calculated variables for the segment potentials and profiles gives: 
 

𝑛!! ln
𝐿𝜆!

𝑟!𝑛!!!,!

= −𝐿
𝜃!
𝑟!
ln 𝑟!𝐶!

!

+ 𝐿 𝜙! 𝑧
!,!

𝑢! 𝑧
𝑘!𝑇

 
 

( 3.46 ) 
 

where we have used the definition of the segment volume fractions in Eq. ( 3.21 ). Sub-

stituting the result from Eq. ( 3.35 ) into F gives: 
 𝐹

𝐿𝑘!𝑇
=

𝜃!
𝑟!
ln

𝜃!
𝐺! 𝑟!|1!

− 𝜙! 𝑧
!,!

𝑢! 𝑧
𝑘!𝑇

+ 

0.5 𝜙! 𝑧 𝜒!" 𝜙! 𝑧 − 𝜙!!
!,!,!

+ 0.5 𝜙! 𝑧   
𝑒𝜐! 𝜓 𝑧 − 𝜓!

𝑘!𝑇!,!

 

 
( 3.47 ) 

 

 For interacting systems at some characteristic separation M, the energy of inter-

action is given as the difference between F at that distance and the systems in isolation: 
 

Φ!"# = 𝐹!"# = 𝐹 𝑀 − 𝐹 ∞  
 

( 3.48 ) 
 

where the separation ∞ indicates a distance apart where the systems can be considered 

independent from each other. Notice that we avoid the calculation of chemical potentials 

in Eq. ( 3.45 ). Furthermore, the choice of the reference state is arbitrary since it also 

cancels out in Eq. ( 2.1 ). For those interested in the determination of the chemical poten-

tials, see [60] for the equations of 𝜇! for mobile and grafted molecules. Eq. ( 2.1 ) suffices 

as a prerequisite for the calculation of other thermodynamic properties. However, it will 

be our main characterization for systems we investigate.  
 

3.10. Determining the Free Energy of Interaction for Polymer Brush – Algae Pair 

 Eq. ( 2.1 ) grants us the ability to calculate the free energy of interaction between 

the anionic algae surface and the cationic polymer brush grafted to the paramagnetic 

iron oxide core. Before we calculate the energies at varying surface separations to ob-

tain an overall interaction profile like the DLVO interaction curve for algae – algae 

interactions, we can make several approximations. First, we make the assumption that 
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our interaction is mainly electrostatic. Experimentally it was shown that the nanoparticle 

without the polymer were unable to induce flocculation among algae (see Section 1.1). 

Figure 6 from Section 1.1 also shows that the harvesting efficiency is a function of the 

charge of the system. Therefore we will only consider electrostatic contributions to the 

mean field potential in Eq. ( 3.36 ). All 𝜒!" are set to zero. Physically this signifies that 

all segment A’s energetically have no preference to be in a pure phase A or in a mixture 

with B. As a consequence, our brush is in the polyelectrolyte regime given by Pincus 

[34]. Pincus gives the characteristic length Lp of the brush in this regime as 𝐿!  ~𝑓!/!𝑁𝑏 

where 𝑓𝑁 is the number of monomers charged along the polymer backbone and 𝑏 is the 
Kuhn length of a monomer. If 𝑅! = 4 µm is the radius of curvature for the algae and 𝑅!" 

= 150 nm is the radius of curvature for the paramagnetic core, for all 𝑁 we consider 
𝐿! < 𝑅!" ≪ 𝑅! (see Figure 3.4). We can then simplify the model by considering the two 

surfaces locally flat. Since we are mainly interested with surface separations much 

smaller than 𝑅!, this simplification does not cause significant error. Finally, we can ex-

ploit the symmetry of our system to only consider fluctuations perpendicular to the 

surface.  

 

 
Figure 3.4. Pair interaction between the polymer brush and the algae surface shown 
roughly to scale. 

With these simplifications in mind, for the SCFT calculation we place the two sur-

faces on either side of the boundaries of the lattice (see Figure 3.5). The space between 



 57 

the two surfaces is divided into M layers where the layer number 𝑧 is related to the dis-

tance from the surface through the Kuhn length 𝑏, e.g. 𝐷 = 𝑀𝑏. A negative charge is 

applied to both surfaces as determined by the zeta potentials (see Section 2.2.2.). For 

the silica-coated iron oxide grafting surface, the zeta potential was experimentally 

measured in deionized water to be -38.24 mV. We use a cubic lattice, where 𝜆! = 2/3 

and 𝜆! = 1/6. The area of the interaction, given as the number of lattice sites in each 

layer L, is limited by the cross sectional area of the polymer brush, which in turn is de-

termined by the radius of the core and given as 4𝜋𝑅!"! /𝑏!. 

 
Figure 3.5. Diagram of the system divided into M layers between the two surfaces.  

3.10.1. Free Energy for Constant Degree of Polymerization, N, Varying the Charge 

 First we investigate the effect varying the monomer charge fraction f has on the 

free energy of interaction between the nanoparticle polymer polyelectrolyte brush 

(NPPB) and the algae. Recall that we are not arbitrarily choosing which monomers 

along a polymer backbone are charged. Rather, each is given the exact same fractional 

charge. For instance, for a monomer charge fraction of 0.75, each monomer unit has a 

charge of +0.75e C. Experimentally harvesting efficiency was measured for N = 245 

where f = 0.25, 0.5, 0.75, and 1 (see Section 1.1). We choose theoretical parameters of 

degree of polymerization (N = 250) and the charge fraction, f to mimic experiment.  
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Figure 3.6. Free energy of interaction F per unit area L versus surface separation D. 
Points mark sampled D, while the line is interpolated using a smooth curve fit. N = 250.  

 Figure 3.6 provides a graphical representation of the SCFT results for the free 

energy of interaction for varying monomer charge fractions. As the algae surface ap-

proaches the free end of the polymer brush an energy well begins to form. Figure 3.7 

gives D at contact as well as the brush height determined by the first moment in Eq. 

( 3.30 ). From Figure 3.7 it is evident that the adsorption of the brush onto the surface 

coincides with the formation of the well. This is a result of minimizing the electrostatic 

contribution to the free energy in Eq. ( 3.47 ) as oppositely charged bodies come in con-

tact, lowering the excess charge in a layer. This adsorption process becomes repulsive 

when the height is constrained significantly such that entropic spring nature of the brush 

starts to resist further compression from its equilibrium position (i.e. no algae wall). Also, 

as the monomers are forced together like-charge repulsion between the repeating units 

increases. The energy well depth for charge fraction equal to 0.25 is much smaller than 

the higher charge fractions due to the fact that characteristic brush height is much 

smaller. Therefore when the algae wall comes in contact with the free end of the poly-

mer brush, the brush does not have as much volume to compress before the interaction 

becomes repulsive. For higher charge fractions, this interaction becomes repulsive 
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when the brush is approximately 90% of its reference height (D à ∞) whereas for 

charge fraction equals 0.25 this occurs at approximately 96%. 

 
Figure 3.7. Brush height versus surface separation D. Triangles denote when the brush 
first comes in contact with the algae surface. For f = 1, a linear extrapolation of the data 
is given for comparison purposes as D goes to 80 nm. The equation of the fit is given in 
terms of the brush height (h) and D.  

Unlike the brush height, the length of the brush is not weighted by the segment 

volume fractions and determines the point of brush – algae contact depicted in Figure 

3.7. Figure 3.8 gives the polymer brush profile from the grafting surface when the mole-

cule is isolated (i.e. D à ∞). The remaining volume fraction consists of mostly solvent, 

with relatively small traces of salt ions. This gives a more explicit picture of the polymer 

profiles given by the brush heights. When the monomers have a valency of +1, the simi-

lar charge repulsion along the backbone stretches the polymer farther away from the 

surface compared to lower charge fractions. This leads to lower volume fractions in the 

interior of the brush. More cationic charges are able to adsorb onto the surface as D is 

decreased before the energy minimum is reached. Figure 3.9 depicts the brush profile 

for each charge fraction that corresponds to the minimum of the free energy curves in 
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Figure 3.6. The peak at the free end indicates the preferential adsorption of the cationic 

polymer units to the negatively charged algae surface. Stronger charged monomers 

demonstrate a stronger peak due to the increased electrostatic attraction. As a result, 

monomers with valency of +0.25 weakly interact with the surface leading to profile be-

havior similar to that in Figure 3.8. 

 
Figure 3.8. Polymer brush profile at D à ∞ for varying monomer charge fractions.  

On a per unit area basis, we can conclude that as the charge fraction is in-

creased, the pair interaction potential is more energetically favorable. This is not an 

obvious result. Recall that the surface charge density of the algae surface is 10-3 C/m2. 

This translates to 160 nm2 per negative charge. For a chain with N = 250 and the 

charge fractiony at one, the chain would have to adsorb onto an area of 40,000 nm2 for 

all of it’s charges to be spatially matched with a counter ion on the algae surface. While 

this amount to only 0.06% of the algae surface area, this is an immense space to cover 

for a single tethered chain. In comparison, the radius of gyration Rg for a free polymer in 

a theta solvent is given as Rg
2 = Nb2/6, or roughly 1% of 40,000 nm2. Therefore the min-

imums in the free energy curve are a result of a slight minimization of the electrostatic 

energy compared to reference when the two surfaces are infinitely apart. 
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Figure 3.9. Polymer brush profile at free energy minimum in Figure 3.6. The polymer 
chain is compressed by the adsorbing boundary conditions caused by the presence of 
an algae wall at a distance D when the monomer volume fraction drops to zero. 

 While on a per unit area basis there may be significant differences between the 

pair interactions, as a whole entity there is no significant variance. For the former case, 

these free energy of interaction adsorption wells are on the order of the thermal energy. 

For the complete adsorption between our two spheres, the area of the polymer brush 

limits the area of interaction. If approximately half the polymer brush surface interaction 

with the algae cell wall, L ≈ 2πRpb
2 = 141,372 nm2. This does not include the range of 

the electrostatic forces, given by the Debye length in the medium. Thus the adsorption 

well depth is at least 106kBT for any of the charge fractions. The energy depth is so 

much greater than the thermal energy that the adsorption is irreversible once any of the 

NPPB’s come in close proximity to an algae cell. There is no specificity in the pair inter-

actions between different charge fractions and algae that would explain the 

experimental harvesting efficiencies varying the charge in Section 1.1. Thus, a missing 

piece of information and analysis is required to explain experimental results. However, 

we now have calculated the free energy of interactions varying the charge along the 

polymer backbone for constant degree of polymerization.  
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3.10.2. Free Energy for Constant Monomer Charge Fraction, varying N 

 In determination of the optimal brush structure for the system, the degree of 

polymerization is an experimentally controlled parameter that can be optimized in addi-

tion to the monomer charge fraction. Experimental results in Section 1.1 indicate that 

increasing N causes higher harvesting efficiencies to be reached at lower NPPB con-

centrations. This escalation trails off once N > 200 as little difference is improvement is 

seen between N = 198 and N = 250. To model the ranges of N in our experimental sys-

tem and to compare to experimental observations we set a low value for N at 50, an 

intermediate value at 100, and two at the aforementioned transition where little change 

in the harvesting efficiency is observed at 200 and 250. The monomer charge fraction is 

constant at 0.75 for all results in this section.  

 
Figure 3.10. Free energy of interaction F per unit area L versus surface separation D. 
Points mark sampled D, while the line is interpolated using a smooth curve fit. Monomer 
charge fraction, f = 0.75. 

 The free energies of interaction for the range of studied N is given in Figure 3.10. 

As was the case in Section 3.10.1, the per unit area pair interactions between the 

charged polymer chain and the algae surface form energy wells on the order of the 

thermal energy of the system. The formation of this energetically favorable bond once 
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again coincides with the adsorption of the NPPB on the algae surface. The point of con-

tact between the two is marked in Figure 3.11, where we have divided D by N due to the 

disparity in sizes between the different N. Since the polyelectrolyte brush length scales 

linearly with N, it is expected that the point of contact is at the same D/N for each N. 

Doubling the number of monomers doubles the length, with doubles D as well.  

 
Figure 3.11. Brush height versus the ration of surface separation D and N. Triangles 
denote when the brush first comes in contact with the algae surface.  

Furthermore, Figure 3.10 demonstrates that the addition of more monomeric 

units along the chain backbone results in larger binding energies (deeper adsorption 

wells). Unlike the free energies for varying charge fractions in Figure 3.6, the binding 

energy scales linearly with the variable N. For instance, doubling the degree of polymer-

ization from 50 to 100 increases the energy well depth by the same factor as when we 

double the degree of polymerization from 100 to 200. We suspect that the brush length, 

which for constant monomer charge scales linearly with N as well, leads to the differ-

ences in binding energy. 

Figure 3.12 shows the polymer profile at infinite separation for varying N while 

Figure 3.13 gives the profile at their respective free energy minimums. The brush for 
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each N compresses by roughly the same factor of one quarter from its reference state 

(Figure 3.12) to its length at the free energy minimum (Figure 3.13). The difference is 

that one fourth of the brush with N = 250 is five times greater than one fourth of the 

brush with N = 50, for example. Therefore after original contact brushes with higher N 

can compress over a longer range, exposing more of the positive monomer units to the 

anionic algae surface before the elastic pressure of the brush causes the interaction to 

be repulsive. The peaks at the free end of the brush in Figure 3.13 are further proof of 

adsorption as the cationic monomers favorable stick to the algae surface. As we in-

crease N this trend should continue.  

 

 
Figure 3.12. Polymer brush profile at D à ∞ varying the degree of polymerization, N.  
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Figure 3.13. Polymer brush profile at free energy minimum in Figure 3.10. The polymer 
chain is compressed by the adsorbing boundary conditions caused by the presence of 
an algae wall at a distance D when the monomer volume fraction drops to zero.  

 However, once again we are faced with the shortcomings of the pair interaction 

to provide any specificity between the brush structure and the harvesting efficiency. As 

we mentioned above, the overall interaction between the algae and the brush is on the 

order of 106kBT. The binding energies in Figure 3.10 are irreversible. Once any of the 

brushes come in contact with an algae surface, they will stick. There is no difference for 

any of the N when it comes to the ability to bind to algae. Further analysis is required to 

determine how N influences the harvesting efficiency.  

 

3.11. Polymer Brush – Brush Interactions 

 To understand a typical NPPB – NPPB interaction we must first analyze the typi-

cal surface separations where the pair interactions occur. To do this, we can use the 

experimental harvesting results depicted in Section 1.1 to estimate the number of NPPB 

per algae surface. Between similarly charged species, minimization of the free energy of 
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interaction would result in an equilibrium distribution where the NPPB distribute them-

selves evenly along the algae surface such that their surface separation is maximized. If 

we assume this distribution, knowing the number of NPPBs per algae will lead us to the 

average surface separation of a pair interaction.  

 To get a range of the typical surface separations, we analyze the number NPPB 

per algae for the lowest and highest NPPB concentration for our brush structures in 

Section 3.10 close to 100% harvesting efficiency when the number of NPPB is the high-

est. These two extremum correspond to when the degree of polymerization is 250 and 

50, respectively. For the degree of polymerization at 50 we can approximate it with the 

experimental results for 65. For degree of polymerization 250 the concentration is ap-

proximately 0.1 mg/mL when the harvesting efficiency is almost 100%. For 65, the 

concentration is approximately 0.45 mg/mL. The majority of the weight arises from the 

paramagnetic Fe3O4 core. At RT, the density of magnetite is 5.1 g/mL [65]. With a radius 

of 150 nm, each NPPB weighs approximately 7.21x10-11
 mg. The number density for the 

two extremum follows directly from this value. Experimentally there are 25x106 algae per 

mL [23]. Therefore for a NPPB with degree of polymerization 250 or 65 the NPPB per 

algae is about 55 or 250, respectively.  

 Now that we know the approximate coverage of the NPPB on the algae surface 

we can determine the range of surface separations for a pair interaction. For our algae 

with a radius of 4 µm, the surface area is 201 ≈ 200 µm2. If we assume that the NPPBs 

distribute themselves evenly across the surface, there should be one for every 3.6 µm2 

for the larger NPPB and 0.8 µm2 for the smaller NPPB. Consequentially, our surface 

separations for our pair interaction on an algae particle range from 600 nm for degree of 

polymerization at 65 and 1600 nm for 250. Given the brush lengths in Figure 3.12, it is 

evident that we do not have to worry about brush-brush physical contact when calculat-

ing pair potentials for typical interactions in our system when considering NPPB on the 

same algae. Furthermore, if two algae have the same surface coverage of NPPB we 

can assume that as the two approach each other they will rotate to minimize their free 

energy by maximizing separations between each other’s NPPBs as well (Figure 3.14). 

The range of surface separations on a single algae surface leaves enough space be-
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tween each NPPB such that the approaching algae’s NPPBs are not forced to come into 

contact with another NPPB at any algae surface separation. If they are not forced to 

come in contact, the configuration at equilibrium will minimize the free energy such that 

none come in contact.  

 Therefore, for determining the pair interactions we can ignore any surface sepa-

rations less than two times the brush length of the NPPB. This allows us to simplify our 

approach for explicitly calculating free energies of interaction for a wide range of surface 

separations possible between two NPPB. Using SCFT, which allowed us to model the 

elastic behavior of a brush as it comes in contact with a wall, for this wide range of sep-

arations is computationally expensive. We can instead treat the NPPB as colloids with a 

charge given by the number of charged monomers tethered to the surface. In order to 

avoid severe bias of the charge placement, we situate the simulated surface of the 

NPPB colloid (where all the charge is concentrated) at the brush height h, the first mo-

ment of the distribution of the monomers. The charge on the grafting surface is 

negligible compared to the polymer charge, and we will ignore it. We will also ignore the 

van der Waals interactions since they only come into effect at close surface separations. 

All interactions occur in water with pH = 7 at RT.  

 
Figure 3.14. Two NPPB covered algae approaching each other with a configuration that 
avoids NPPB pair contact. 

 How the NPPB – NPPB interactions will be explicitly calculated depend on how 

we model the harvest efficiency. Therefore we will discuss how we go about exactly cal-
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culating the value of the pair interactions in Chapter 4, when we model the harvesting 

efficiencies. The nature of the NPPB self-interactions discussed here will be useful then.  

 

3.12. Conclusions 

 With the knowledge gained here on the interactions involving the polymer brush, 

we can now move forward in determining a method to model the experimental results of 

the harvesting efficiency for different brush structures. The magnitude of the NPPB – 

algae adsorption energies suggest that adding NPPB will immediately cause the algae 

cells to be coated with these particles. We now must find a way to determine how many 

NPPB must coat the algae cells before they can be harvested. From these observations 

we hope to be able to explain experimental data and suggest how the structure of the 

brush influences the harvesting efficiency of the experimental set up.  
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CHAPTER 4  

DETERMINING THEORETICAL HARVESTING EFFICIENCY 

  

 So far we have only examined the pair interactions between the relevant bodies 

in our system. However, our main goal was to explain how the brush parameters influ-

ence the harvesting efficiency. In this chapter we will describe how we can make this 

connection. 

 

4.1. Introduction  

 From what we have learned so far, we know that microalgae repel each other 

strongly due to the like-charges present on their surface. Also, when the nanoparticle 

polyelectrolyte polymer brush (NPPB) adsorbs onto the algae surface, the depth of the 

free energy well for attraction between microalgae and the brush is many times greater 

than kBT. This suggests an irreversible binding event once a polymer brush comes in 

contact with an algae surface in solution. However, both of these results do not tell us 

how brush structural parameters determine harvesting efficiency.  

 In the lab setup, harvesting efficiency is determined by the number of cells that 

can be removed from solution relative to the original amount. A cell is removed from so-

lution if: 1. It forms in a cluster with other algae and 2. If the number of magnetic NPPBs 

in that cluster is large enough such that the magnetophoretic force of the cluster out-

weighs the random Brownian forces dispersing it. For now, let us assume that the 

number of NPPBs required to form any cluster of algae is sufficiently large enough to be 

drawn in by the magnet.  

Now harvesting efficiency is solely dependent on the ability of the cells to form 

clusters (flocculate). To look at the dependency of flocculation versus different brush pa-

rameters for a many body system, we take two approaches. The first involves 

considering when the effective charge of an algae surface is completely screened by the 

NPPBs. The second involves taking two bare algae as a reference system, then coating 
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the surfaces with a uniform density of NPPBs and determining when the net force be-

tween these two bodies becomes negative (attractive). We outline the two approaches 

and give results here.  

 

4.2. Harvesting Efficiency as a Variable of the Effective Algae Charge  

Each NPPB carries a given amount of cationic charge along the polymer back-

bone. Coating the anionic algae surface with NPPB reduces the effective charge. As the 

effective charge of the algae approaches zero, coulombic repulsion between algae van-

ishes and the algae can aggregate. We saw in Section 2.5.1 that for algae in water the 

effective charge must go close to zero before they can form pair aggregates in the pri-

mary minimum of the DLVO curve. We can then determine the amount of cationic 

charge needed to reduce the effective charge of the algae to zero and back out the min-

imum required degree of polymerization, grafting, and charge fraction of the polymer 

chains on the NPPB.  

We realize the limitations of this model will cause the predicted NPPB required to 

screen the effective charge on algae to be severely underestimated due to the range of 

electrostatic interactions in a medium. Inherently assumed in this theoretical model is 

that the positive charges belonging to the NPPB are unrestricted mobile entities. Stated 

differently, when we add one NPPB brush to the system, we are “allowing” each charge 

on that brush to pair with a negative charge anywhere on the algae surface. However, 

the effective interaction range of the positively charged monomer attached to the NPPB 

is set by the characteristic decay of the electrostatic field of the charge given by the De-

bye length. Thus we consider that the NPPB has an effective charge radius. Beyond this 

effective charge radius the positive charges of the brush are not felt. The NPPB brush is 

only “screening” a fraction of the equivalent number of negative charges on the algae 

surface. “Screening” here refers to changing the interaction with another algae from re-

pulsive to attractive on the length scale of a Debye length or shorter. 

To get an idea of the order of magnitude the number of NPPB per algae required 

to screen the effective charge is underestimated by, we must determine this effective 

charge radius around the NPPB and the number of charges along the algae surface it 
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can screen. As we discussed in Section 3.11, let us assume that the charge is localized 

to the imaginary surface given by the first moment of the polymer brush profile at equi-

librium, or the brush height. From the brush height results in Figure 3.7 and Figure 3.11 

we obtain that this number is on the order of 100 nm. The end-to-end diameter of the 

polymer brush is then approximately 400 – 500 nm. For pH = 7 water, we have already 

shown that the Debye length is 973 nm. Therefore the effective charge radius, which is 

the sum of the radius of the polymer brush (200 – 300 nm) and the Debye length, is be-

tween 1200 – 1300 nm. If we estimate the algae surface as locally flat, then the effective 

charge surface screening area of the brush on the algae surface is equal to π(effective 

charge radius)2 ≈ 5 µm2. The actual number of algae charges that are screened by this 

effective charge disc can be gleaned from the number of charges in this area. With e 

being the elementary charge of an electron, there are about (-103 m2/C)(1018 nm2/m2)(e) 

= 160 nm2 per charge on the algae surface. Therefore the NPPB effective charge area 

covers 3×104 negative charges on the algae surface. The number of charges on the 

NPPB with degree of polymerization N and monomer charge fraction f is given as: 
 

0.41  chains
nm2 ∗

4𝜋𝑅!""#!

1  NPPB ∗
N  monomers

chain ∗
  𝑓  charge
monomer = 1.2×10!  𝑁  𝑓 

 
( 4.1 ) 

 
where for our NPPB the graft density is 0.41 chains/nm2 on the surface and 𝑅!""# = 150 

nm. With N and f on the order of 100 and 1, respectively, the number of NPPB charges 

is about 1×107. The NPPB is sequestering only a fraction equal to 3×104/1×107 = 0.003 

or 0.3% of the charges it could screen if its positively charged monomers were com-

pletely mobile. We will be under-counting the number of NPPB per algae required to 

screen the charge by an order of 103. With this in mind, we will continue on with the 

model but tread carefully when making conclusions on the NPPB per algae data. 

We can also determine from this information the number of possible binding 

spots where the NPPB can adsorb to the algae surface and not feel the effect of any 

other NPPB. With a radius of 4 µm, the algae has a surface area of 200 µm2. The num-

ber of these binding sites then is about 40. Since the number of NPPB charges in the 

effective charge area (determined by the effective charge radius) is much greater than 

the number of algae charges in that area, only one NPPB is required at each of these 
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binding sites before the effective charge is screened using our model. This is true for 

any NPPB structure studied here. Thus we go forward realizing the deficiencies of this 

model to accurately predict the actual number of NPPB per algae and mainly examine 

the scaling of the results with N and/or f.  

 

4.2.1. Matching the Number of Positive and Negative charges 

We found that each algae cell has a surface charge density on the order of –10-3 

C/m2 (Section 2.2.2). Therefore the number of charges on each cell is given as: 
 

−
10!!C
m2 ∗

4  𝜋  𝑅!"#!

1  algae ∗
1  charge

−1.6019×10!!"C = 1.3×10! 
 

( 4.2 ) 
 

where  𝑅!"# = 4 µm and we have carried the number of charges to an extra significant 

figure since this is a crude model.  

The charges on the algae are completely screened when the following equality 

holds true: 
 𝑛!""#

𝑛!"#
=
10
𝑁𝑓 

 
( 4.3 ) 

 
If the number of algae, 𝑛!"#, and N and f are all specified the number of NPPB required 

for Eq. ( 4.3 ) to be true, 𝑛!""#, can be determined. When Eq. ( 4.3 ) is not satisfied, the 

remaining effective charge of the algae can also be interpreted as a harvesting efficien-

cy. As an example consider when 0.25 of the effective algae charge is screened. At two 

simplified extremes, this can be interpreted as either 25% of the charge on each algae 

is screened or 25% of the algae have their charge completely screened. Since we are 

treating flocculation as the sole criteria for algae to be harvested, this latter number 

suggests 25% of the algae can flocculate and thus be harvested.   

Eq. ( 4.3 ) also demonstrates that the number of NPPB per algae should be on 

the order of 0.1. With the correction factor discussed earlier, we expect experimentally 

this number should actually be on the order of 100. To reinforce the point that the 

charges on the NPPB are limited by the range of the electrostatic force in medium, with 

a characteristic decay length given by the Debye length, let us imagine what the former 
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case would physically signify. If only 0.1 NPPB were needed per algae, then 1 NPPB 

could aggregate 10 algae. However, when a NPPB bridges the gap between two algae 

surfaces, the diameter of the effective charge volume is smaller than the diameter of the 

algae. Therefore, this effective charge volume does not extend past these two algae 

and the NPPB cannot screen any other algae.  

 Figure 4.1 and Figure 4.2 show the number of NPPB per algae varying the mon-

omer charge fraction and degree of polymerization, respectively. For convenience, the 

experimental results originally depicted and discussed in Section 1.1 are reproduced 

alongside the relevant theoretical calculations. For varying degree of polymerization at 

constant charge fraction, experimental harvesting efficiencies were normalized to the 

number of NPPB per mL of solution using the average weight of a NPPB to avoid dis-

crepancies in the different molecular weights of the chain. As we expect from Eq. (4.3), 

𝑛!""# when all of the algae charges are screened varies linearly with both N and f in the 

theoretical calculations. As an example, doubling either N or f decreases the NPPB per 

algae required by one half.  

(a) 

 

(b) 

 
Figure 4.1. Theoretical and experimental results for constant N = 250 varying the mon-
omer charge fraction (f). (a) Number of NPPB per algae versus percentage of algae 
charge screened varying f. (b) Experimental calculations of harvesting efficiency varying 
the monomer charge fraction (given by the percentages). 

However, as we see from the experimental results the response is not linear with 

respect to either. For varying charge fraction, f, increased by a factor of 1.9 from 26.05% 

to 49.8%, the coagulation agent concentration when 100% of the algae is harvested (in 
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our theoretical case this corresponds to when the effective charge is completely 

screened) is decreased by a factor of 0.56 (NPPB concentration at f = 49.8% divided by 

concentration at f = 26.05% at equal harvesting efficiency at 100%). Theoretically this 

ratio is 0.5. When f is increased by a factor of 1.5 from 49.8% to 74.8%, the coagulation 

agent concentration when 100% of the algae is harvested is decreased by a factor of 

0.75. Theoretically this ratio is 0.67. Finally, while theoretically we predict that the co-

agulation concentration at complete harvesting efficiency changing from f = 0.75 to f = 1 

should diminish by a factor of 0.75, the experimental results for f = 0.75 and 1 are prac-

tically identical. We can see experimentally that as we increase the charge, the 

response in the harvesting efficiency versus NPPB concentration is not linear in f. Note 

that each of the NPPB should have the same weight so any change in the units along 

the concentration of coagulant should not change the experimental ratios. As a conse-

quence, if the algae concentration is held constant, this applies to converting mg/mL of 

agent to NPPB/algae as well.  

(a) 

 

(b) 

 
Figure 4.2. Theoretical and experimental results for constant f = 0.75 varying the N. (a) 
Number of NPPB per algae versus percentage of algae charge screened varying N. (b) 
Experimental calculations of harvesting efficiency varying N.  

For varying degree of polymerization, when N is increased by a factor of 1.9 from 

65 to 124, the coagulation agent concentration at equal harvesting efficiencies is ap-

proximately decreased by a factor of 0.67. Theoretically we predict that this value 

should be closer to one half. In comparison, doubling the degree of polymerization again 

from 124 to 245 in experiment results reduces the NPPB concentration at equal harvest-
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ing efficiencies by 0.42. We can also compare directly the change in degree of polymer-

ization from 198 to 245. Experimentally we see no discernible variation between the 

NPPB concentrations at equal harvesting efficiencies. Theoretically we predict that the 

NPPB concentrations should vary by a factor of 0.81 as the number of monomers is 

augmented from 198 to 245. Therefore, experimental results are nonlinear in N as well.  

While the theoretical prediction of linear behavior does not match the experi-

mental data, the predictions of the NPPB per algae and the scaling of the NPPB 

concentrations varying N or f are well within the error margin of the model. To get an 

idea about the order of magnitude for this error, we realize that we determined in Sec-

tion 2.2.2 that the algae surface charge density is on the order of -10-3 C/m2. Our range 

for the possible values of the charge density is approximately -5 ± 4 × 10-3 C/m2. There-

fore, the measure of uncertainty in the algae surface charge density is on the order of ± 

10-3 C/m2 and we can include the order of the uncertainty in Eq. (4.3): 
 𝑛!""#

𝑛!"#
=
10
𝑁𝑓 ± 𝑂(0.1) 

( 4.4 ) 
 

Recall that we also discussed how the theoretical NPPB per algae will underestimate 

the experimental data by an order of 103 since we inherently do not consider the charg-

es localized to a single brush. Also remember that in Section 3.11 we calculated the 

experimental range of NPPB per algae at 100% harvesting efficiency to be between 65 

and 250. Adding 103 to Eq. ( 4.4 ) places the theoretically determined NPPB per algae 

in Figure 4.2a at 100% harvesting efficiency within this range.  

 We can also resolve the order of the margin of error in the NPPB per algae ratios 

versus N and f. Let xi be the NPPB per algae for brush structure i. The error in the ratio 

xi /xj = y is then given as the differential of y with respect to the error. The order of the 

margin of error between two NPPB per algae ratios at equal harvesting efficiencies fol-

lows as: 
 

𝜖 =
1
𝑥!
𝑂 0.1 −

𝑥!
𝑥!!
𝑂 0.1  ( 4.5 ) 

 

where we have used the total differential for the error between For constant N and vary-

ing f the uncertainties, 𝜖, are ± 0.3 varying f from 0.25 to 0.5 and ± 0.4 varying f from 0.5 
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to 0.75 and from 0.75 to 1. For constant f and varying N, the uncertainties are ± 0.2 var-

ying N from 50 to 100 and ± 0.3 varying N from 100 to 200 or 200 to 250. The ratios are 

also in the range of error.  

 While we realize that this model serves as a straw man argument, the similarities 

to experimental data are suggestive. Qualitative comparisons can be made to under-

stand the relationship between the harvesting efficiency and brush structure. If 

flocculation is the sole criteria for harvesting efficiency, theoretical results show that 

adding more charge per brush to the system leads to fewer NPPBs required for equal 

harvesting efficiencies. This is a result of screening the effective charge on the algae at 

a faster rate per NPPB added. Therefore, the experimental observations of harvesting 

efficiency possess a close dependence on the amount of algae surface charge 

screened per addition of an NPPB. This is supported by the results in Chapter 2 where 

we saw that the flocculation behavior of the algae should be electrostatic in origin.  

 We also observe that experimental plots in Figure 4.1 and Figure 4.2 have a 

close resemblance to the theoretical plots of harvesting efficiency. While experimental 

scaling of the NPPB concentration versus f and N is nonlinear, its behavior is not distant 

from the linear behavior predicted theoretically. This suggests that a modification in the 

theoretical assumptions of this model could lead to better agreement with experimental 

observations. If we included the effective range of the field emanating from the positively 

charged NPPB into the calculations, it is possible that this may lead to nonlinear behav-

ior due to the scaling of the brush height. Recall that we determined the effective charge 

radius of a brush from the first moment of the polymer profile, or brush height, where all 

the charge was located at this position. This brush height is related to the brush length 

that scales in the polyelectrolyte regime as ~f ½ N. So as f is increased, the brush height 

and effective charge radius increases as well. This may explain the experimental obser-

vation that the harvesting efficiency for f = 0.75 resembles the results for f = 1 much 

more than for f = 0.5 even though the difference in charge is equal. As evident in Figure 

3.7 and Figure 3.8 the change in the brush height and length is greater when increasing 

the charge fraction from 0.5 to 0.75 than from 0.75 to 1. Therefore the change in the 

NPPB effective charge radius would be less pronounced for the latter as compared to 
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the former. While the change in the amount of charge may be the same, the screening 

range at which this charge can be effective scales nonlinearly and by a lesser factor.  

 Yet this explanation is incomplete in that even for the longest brush structure, 

when N = 250 and f = 1, the effective charge radius of the NPPB is still much smaller 

than the radius of the algae. When the algae are flocculated, which physically signifies 

the formation of algae clusters, one brush can at most be felt by two algae. This sug-

gests that making a NPPB such that its effective charge radius is on the scale of or 

greater than the algae radius could lead to larger harvesting efficiencies at equal NPPB 

number densities. Maximizing the charge fraction and diameter of the NPPB can do this. 

The charge fraction can be optimized by setting f = 1 and/or increasing the grafting den-

sity. Increasing the size of the nanoparticle core and/or the length of the brush by 

adding more monomers and/or increasing the charge fraction can increase the diameter 

of the NPPB. However, until the sum of the NPPB radius and the Debye length is on the 

order of 4 µm, at most one NPPB can only flocculate two algae.  

 

4.2.2. Incorporating a NPPB Distribution of Coverage When Matching Charges 

 From Figure 4.1b and Figure 4.2b we observe that rate of change for higher ex-

perimental harvesting efficiencies begins to trail off as the coagulation agent 

concentration increases. This effect is more noticeable as f and N approach their mini-

mum value. We hypothesize that this is a result of our assumption earlier where the 

algae were either coated evenly or that only a few algae were coated at a time. We can 

incorporate into our model in Section 4.2.1 a distribution function that more accurately 

depicts the probabilistic nature of an NPPB coating an algae surface. The decay in the 

rate of the change in harvesting efficiency versus the change in NPPB at higher harvest-

ing efficiencies would be a result of the probabilistic nature of the distribution of the 

NPPB coated algae. From Section 4.2.1 we calculated a cutoff for the NPPB per algae 

required to induce flocculation. Since this distribution is not uniform, increasing the 

number of NPPB added to the system shifts the distribution so that more cells have an 

NPPB per algae value greater than the calculated cutoff threshold. Once higher harvest-

ing efficiencies are reached, most of the cells already have reached this threshold and 
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the rate at which the number of algae pass this critical concentration as more agents are 

added decreases. This would help explain experimental results. 

 To test this hypothesis, we must derive the form of the probability distribution. We 

imagine an array of M algae cells. After adding an NPPB to the system, an algae cell 

has a probability of p = 1/M to have the NPPB adsorb to its surface and a 1 – p probabil-

ity of it adsorbing to another algae. We assume that each addition of NPPB is 

independent. After adding A NPPB, the probability that k ≤ A are adsorbed onto a par-

ticular algae surface is given by the Bernoulli distribution:  
 

𝑃! 𝑘 = 𝐴
𝑘 𝑝! 1− 𝑝 !!! ( 4.6 ) 

 

If we take M to the thermodynamic limit the required A and p are extensive variables 

and scale to this limit as well, such that A becomes infinitely large and p becomes infi-

nitely small. Eq. ( 4.6 ) is reduced to the Poisson Distribution:  
 

𝑃! 𝑘 =
𝐴𝑝 !

𝑘! 𝑒!!" ( 4.7 ) 
 

Integrating Eq. ( 4.7 ) with respect to k from the cut off k* to infinity and normalizing it by 

the total area gives the percent of algae that have enough NPPB to flocculate and be 

harvested.  

Figure 4.3 illustrates the theoretical model. When Ap is small, the majority of the 

algae have less NPPB adsorbed to their surface than the threshold required for floccula-

tion, k*. The shaded region under the curve relative to the total area represents the 

percent harvesting efficiency. As more NPPB are added to the system, the threshold 

remains constant but the distribution shifts such that a greater percentage of the algae 

can be harvested. When the relative number of NPPB becomes 50,000 times greater, 

the majority of algae pass over k* and the harvesting efficiency reaches 100%. Note that 

the slope at k* decays as Ap increases. As this slope approaches zero, the change in 

the percentage of algae that are harvested trails off to unity as the number of NPPB rel-

ative to the number of algae swells.  

We can apply this model for the brush structure varying f or N and plot the har-

vesting efficiency versus the NPPB concentrations. In Figure 4.4 we calculate these 
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harvesting efficiencies varying the monomer charge fraction at constant N = 250. Figure 

4.4a depicts the unscaled calculations for f = 0.25. It is evident from the curve that as 

harvesting efficiencies approach 100%, the rate of change of the percent of algae that 

are over the threshold diminishes rapidly. Figure 4.4b shows a semilog plot of the num-

ber of NPPB per algae for all the different charge fractions. The relationship between 

the different charge fractions and their NPPB concentration at equal harvesting efficien-

cies is maintained.  

 

 
Figure 4.3. The Poisson distribution for the number of NPPB per algae varying the rela-
tive amount of NPPB added (Ap). The shaded area represents values for the given Ap 
that are above the flocculation threshold, k*.  

However, the rate at which this scaling behavior changes for a given monomer 

charge fraction varies. For each f the rate increases as the maximum value of the Pois-

son distribution for a given Ap approaches k* for the different structures (0.043 for f = 1, 

0.058 for f = 0.75, 0.086 for f = 0.5, and 0.172 for f = 0.25; see Figure 4.1). The rate 

then begins to tail off as the distribution becomes more spread out as the algae are sat-

urated (see Figure 4.3). This results in a smaller percentage of algae that pass over the 

respective k* for each increment in Ap. When this transition occurs, higher charge frac-  
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(a) 

 
(b) 

 
Figure 4.4. Harvesting efficiency as a percent versus the number NPPB added to the 
system divided by the total number of algae. Points represent results and line is a 
smooth curve fit to compare to experimental data representation. (a) Calculations for 
charge fraction = 0.25. (b) Calculations for all the charge fractions.  
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tions already have harvesting efficiencies close to 100%. At lower charge fractions, k* is 

smaller and higher NPPB concentrations are required to achieve equal harvesting effi-

ciencies. Therefore while the rate for the change in harvesting efficiency with respect to 

the NPPC concentration for each f diminishes, lower charge fractions have a greater 

percentage of algae still not flocculated at this transition. A similar observation is seen in 

experimental results in Figure 4.1a, where these rates fall off for the different f at a simi-

lar NPPB concentration. 

Since N also scales linearly with the harvesting efficiency, similar behavior to 

Figure 4.4 should be observed. A simple inclusion of an NPPB probability distribution 

may serve to explain the experimentally observed tailing off of the harvesting efficiency 

phenomenon seen in both Figure 4.1b and Figure 4.2b. As the number of NPPB relative 

to the number of algae increases, the probability distribution approaches a more uniform  

spread and the rate of algae that pass over the threshold for the number of NPPB per 

algae required to induce flocculation and be harvested at the boundaries decays. For 

larger N and f, the harvesting efficiencies are already close to 100% and the trail off 

phenomenon is not as persistent. However, it should be noted that the scaling behavior 

between the NPPB concentrations at equal harvesting efficiencies for the different f is 

no longer linear as in Section 4.2.1. Increasing f by a factor of 2 does not decrease the 

required NPPB for an equal harvesting efficiency by a factor of one half. This is a result 

of the non-uniform distribution of the NPPB on the algae surfaces.  

While matching the number of charges led to some qualitative explanations of 

experimental behavior, we can improve on this model by considering the actual struc-

ture of the brush. Using the free energies of interaction determined by SCFT, the 

charges are physically localized along the polymer chain. Furthermore, we did not de-

termine how the brush structure is able to form a floc of algae other than in terms of the 

effective charge on the algae surface. Yet we saw that the range of the electrostatic 

charges limit the interaction between the NPPB and other algae. In the next model, we 

include these physical behaviors.  
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4.3. Determining Harvesting Efficiency Using the Free Energies 

 A multi-body interaction potential follows directly once all the pair potentials are 

calculated. It is evident from our preliminary studies that once a NPPB comes in close 

proximity to the algal surface an irreversible, energetically favorable complex forms be-

tween the two species. Our main interest though is the NPPB mediated aggregation of 

microalgae. Our hypothesis stated that the flocculation of algae mediated by the NPPB 

resulted from a screening of the repulsive double layer between the two algae surfaces. 

Therefore, the energy barrier preventing two algae from aggregating is lowered.  

If we take two bare algae as a reference system, we can then coat each algae 

surface with a uniform density of NPPBs (see Figure 4.5). The force between the two 

bodies is then given as the sum of the force between the two algae, the two NPPB lay-

ers, and the NPPB layers with each of the algae. The force of each of the interactions 

can be determined from the free energies, F, of each of the interaction. The relationship 

is given as Force = -∂F/∂D. When the force becomes attractive (negative), the algae are 

able to flocculate. As we have already mentioned, if we assume any aggregation of al-

gae is large enough to be pulled by the magnet, then the ability of algae to flocculate 

determines the harvesting efficiency. In this case, we are assuming each algae is coat-

ed evenly and with the same amount of NPPB.  

Since we are mainly concerned with D << R, where R is the radius of either the 

inner algae or the outer NPPB body, we can use the Derjaguin approximation to convert 

the energy per unit area W(D) to the force between two spheres of radius R1 and R2: 
 

𝐹𝑜𝑟𝑐𝑒 = 2𝜋
𝑅!𝑅!
𝑅! + 𝑅!

𝑊(𝐷) 
 

( 4.8 ) 
 

Eq. ( 4.8 ) allows us to readily convert the algae – NPPB  free energies of interaction to 

forces. These free energies are given in Section 3.10.  

For the algae – algae interactions, the force can be found from the derivatives of 

the free energy expressions in Section 2.2 with respect to D. For the interaction be-

tween the NPPB layers, we place all the charge of the polymer on the interacting 

surface. This surface is defined as having a radius equal to the distance between the 

center of an adsorbed NPPB brush and the middle of the algae cell. Therefore it is the 
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sum of the algae and NPPB radius, and the surface separation D where the free energy 

of the adsorption interaction between an NPPB and algae is at a minimum (determined 

in Section 3.10). We will mainly be interested in the case of flocculation, i.e. distances 

where the surface separation between the two NPPB layers, DPB-PB, is much less than 

the radius of curvature, RPB of the layer surface. The force between the two surfaces is 

given as [66]: 
 

𝐹𝑜𝑟𝑐𝑒 = 0.5𝜅𝑅!"𝑍𝑒!!" 
 

( 4.9 ) 
 

where 𝑍 = 64𝜋𝜀 𝑘!𝑇 𝑒 ! tanh!(𝑒𝜎! 4𝑘!𝑇𝜅𝜀) and 𝜎! is the surface charge density of the 

NPPB.  

We can now determine the overall force of the interaction. For forces involving 

the uniform NPPB density coat, we multiply W(D) in Eq. ( 4.8 ) by a scalar n that gives 

the relative coverage of the NPPB. For instance, a value of n = 0.1 suggests that it is as 

if 10% of the algae surface is covered with NPPB, or more accurately that the number of 

NPPB about an infinitesimal algae surface area dA is 0.1. Therefore we can readily 

convert n to the number of NPPB per algae by asking the question, how many NPPB fit 

into a surface area equal to n × 100% of the algae surface area?  

 
Figure 4.5. Coating two algae surfaces with NPPB. 

Let us consider now when the two bodies depicted in Figure 4.5 are first able to 

flocculate, and therefore be harvested. We can imagine our bare algae cells as a refer-

ence. When the NPPB concentration is lower than the critical concentration required to 

induce flocculation, any amount of stirring would not cause two cells to “stick” to one 

another since the bridging between the NPPB layer on one algae with the surface of the 

other is not strong enough to outweigh the repulsion between the two algae cells and 
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NPPB layers. When the critical concentration is reached, there is enough NPPB such 

that the NPPB – algae force holding the two cells together offsets the repulsive forces 

pulling them apart. This occurs when the overall force of the NPPB – algae interaction 

first becomes attractive at some D. As we increase n, we can track the overall force for 

varying degree of polymerization N and monomer charge fraction f and determine when 

the interaction starts to become attractive. 

 

 4.3.1. Results for Varying Monomer Charge Density at Constant N = 250 

 First we will examine how the overall force changes for different brush structures 

as more charge is added for constant degree of polymerization, N. In Figure 4.6 we plot 

the lowest value of the total force between two coated algae cells (see Figure 4.5) to de-

termine when the force becomes attractive for any of the possible D at a given n. This 

minimum happens to correspond to the lowest value of the free energy of interaction be-

tween an algae and an NPPB particle (see Section 3.10). At the edge of the plot when 

there is only one NPPB per algae cell, the repulsion between the similarly charged al-

gae cells dominate the force. The slight variation of the value of the force for the 

different charge fractions arises from the different algae – algae separations determined 

by the D at which the force is at a minimum. As n approaches one, the NPPB begins to 

completely coat the surface and the minimum force starts to transition to the attractive 

regime.  

The theoretically predicted NPPB per algae when this shift occurs is given in Fig-

ure 4.6, as well. They are on the order of the estimated experimental values. For 

instance, consider that in Section 3.11 we calculated that there should be approximately 

55 NPPB per algae cell when the degree of polymerization experimentally was 250 

when all the monomers were charged. This is in close agreement with the theoretically 

predicted value of 38. It is most likely that the latter underestimates the former consider-

ing that we are plotting when the interaction first becomes attractive at only one D. 

Several more NPPB must attach to the algae before the entire force becomes attractive. 

It should be mentioned, however, that the theoretically predicted value of NPPB per al-

gae at the transition for monomer charge fraction equal to 0.25 overestimates the 
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experimental value. Recall that we estimated the mass of each NPPB to be around 

7.21x10-11
 mg. When close to 100% of the algae are harvested, the experimental NPPB 

concentration is about 0.30 mg/mL (see Figure 4.1b). Thus, experiment concludes that 

there should be about 166 NPPB per algae for monomer charge fraction equal to 0.25 

at degree of polymerization around 250. The large deviation between the experimental 

and theoretical value results from underestimating the NPPB – algae interaction for the 

given brush structure. As the monomer charge fraction decreases, theoretical results 

begin to overestimate experimental results by a greater factor. We propose this situation 

arises from an approximation in the theoretical framework where the charge is spread 

out evenly among the monomeric units. Rather than a fraction of the monomers along a 

single chain backbone having a full charge, each monomer was given a fraction of a full 

charge. Since only a small fraction of the monomers adsorb to the algae surface, the 

adsorption well may have been underestimated.  

 
Figure 4.6. The minimum force in nano-Newtons versus the NPPB per algae varying the 
monomer charge fraction. The NPPB/algae are logarithmically plotted for comparison 
purposes. The numbers outlined by a box denote the un-scaled value for NPPB/algae 
when the force becomes attractive. The degree of polymerization is held constant at N = 
250. 
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Nevertheless, taking into account the shape of the charge distribution along the 

polymer backbone as opposed to just considering the number of charges led to results 

more closely aligned with experimental data. Furthermore, the nonlinearity in the scaling 

of the NPPB per algae required with the charge fraction seen in experimental results 

(Figure 4.1b) is also evident in the theoretical findings. For instance, when the charge 

fraction is doubled from 0.25 to 0.5, the NPPB concentration required to reach an attrac-

tive minimum force is decreased by a factor of 0.059. When we double it again from 0.5 

to 1, this factor is now 0.22. We see that as we approach a monomer charge fraction of 

one, the change in the NPPB required begins to diminish disproportionally to the charge 

fraction. Though not as pronounced as experimental data, a plateauing in the NPPB 

concentration is occurring between the different charge fractions as f approaches unity. 

In the previous discussion the interaction between two coated algae was either 

attractive or repulsive and served as a microcosm to the entire system. Since all the 

cells were coated evenly, either flocculation occurred between all the cells and there 

was 100% harvesting efficiency or the interaction was completely repulsive and none of 

the cells could be harvested. This gap in harvesting efficiency values can be filled in if 

we do not make the approximation that each algae always has the same number of 

NPPB. For example, putting in the first 1000 NPPB may go only to the first three algae 

cells they come across, and these cells can flocculate while the rest remain bare. From 

Figure 4.6 we know it takes 38 NPPB per algae for the minimum force to become nega-

tive for monomer charge fraction (f) equal to 1, 62 NPPB/algae for f = 0.75, 173 for f = 

0.5, and 2945 for f = 0.25. Let us assume that as soon as the minimum of the force is 

attractive, the algae can aggregate. Then if we have four separate containers comprised 

of the same amount of algae and place 1000 NPPB for each of the f in the different con-

tainer, we should see 26 flocculated cells for f = 1, 16 for f = 0.75, 5 for f = 0.5, and none 

for f = 0.25. If only flocs can be harvested, then the harvesting efficiency is simply the 

number of flocculated algae divided by the total number that are present in each of the-

se containers. We can put together a harvesting picture that will closely mimic 

experimental results. Figure 4.7 demonstrates what this would look like for a container 

with 25×106 algae cells (the same number in one mL of solution in lab set up). Since the 
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NPPB required per algae for f = 1 and 0.75 are on the magnitude, their harvesting effi-

ciency profiles are similar. 

Now that we have shown the behavior and scale of our theoretical predictions of 

the NPPB concentration and the harvesting efficiency for different monomer charge 

fractions has a resemblance to experimental data, we are in a position to explain how 

the brush structure influences that harvesting efficiency. The number of NPPB per algae 

required before the minimum of the total force becomes attractive is mainly dependent 

on the value of the algae pair interaction and the algae – NPPB interaction forces at the 

equivalent D where this minimum occurs (it is not till too many NPPB are added when 

the NPPB – NPPB force has a roll). The values of these relevant parameters are sum-

marized in Table 4.1.  

 
Figure 4.7. Theoretical harvesting efficiency versus the number of NPPB. Total number 
of algae cells = 25×106. Inset used to show entire range of harvesting efficiency versus 
number of NPPB.  

Table 4.1 gives us more insight to the results in Figure 4.6 and Figure 4.7. Much 

more NPPB are required to induce flocculation between coated algae cells for f = 0.25 

since the algae – NPPB force is much smaller compared to the other charge fractions. 
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This observation is compounded by the fact that the force between the two algae cells is 

greater for this charge fraction since the algae surface separation is much smaller. It is 

also clearer why the NPPB required for equal harvesting efficiencies for f = 0.75 is clos-

er to the results for f = 1 than to f = 0.5. The relevant forces for f = 0.75 resemble the 

former more than the latter. Furthermore, if we used a collinear model where there is 

only one NPPB adsorbed between two algae, we observe from Table 4.1 that for f 

greater than or equal to 0.5 the force from a bridging NPPB is enough to outweigh the 

algae repulsion force.  

Table 4.1. Theoretical values when the total force of the interaction between coated 
NPPB is at a minimum for constant N = 250 varying the monomer charge fraction.  

f 0.25 0.5 0.75 1 
Algae Surface Separation (nm) 475 496 531 538 

Algae – Algae Force (nN) 23.01 22.88 22.72 22.68 
Algae – NPPB Force (nN) -2.90 -44.54 -107.21 -158.05 

The foundation to these observations can be uncovered in the behavior of the 

brush length. Recall that the characteristic length of the brush in the polyelectrolyte re-

gime scales as ~ f½ and therefore changes at a rate proportional to 0.5f-½. As f 

increases from 0.5 to 0.75, the characteristic length increases at a greater rate than 

when f goes from 0.75 to 1. The effect is two-fold.  

First, it has an effect on the adsorption well depth that determines the minimum 

algae – NPPB force via Eq. ( 4.8 ). Remember that the brush acts much like a spring 

(Section 1.3). The length of the polymer spring for f = 0.75 is closer to the length of the 

spring for f = 1 than for f = 0.5. However, the chain for f = 0.75 has less charge along 

the backbone than the chain for f = 1 meaning less coulombic repulsion between the 

monomer units and less osmotic pressure from the confined counter ions as the brush 

constricts. Therefore, the polymer brush can compress to a greater percentage of its 

original length before the elasticity of the chain begins to cause the interaction to be re-

pulsive as compared to f = 1 (this is evident in Figure 9 from Section 3.10.1). This allows 

the chain for f = 0.75 to compensate for its lower charge fraction than f = 1 by being able 

to expose a greater percentage of its charge to the algae surface. While this compensa-
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tion is not enough for the algae – NPPB force between the two structures to be equal, it 

causes the results to be more closely related. For f = 0.25, the chain is only able to 

compress to roughly 10% of its original height before the minimum force is reached, 

much less than the other structures. This causes the depth of the algae – NPPB interac-

tion adsorption well to be far less since its charge fraction is also lower.  

Secondly, the brush length also affects the algae – algae separation. This sepa-

ration is equal to the bridging length of an NPPB adsorbed onto both surfaces. As this 

gap approaches the Debye length, the repulsion between the two algae begins to dimin-

ish exponentially. The longer the brush, the closer this separation is to the Debye length. 

Once again, the value of the separation for f = 0.75 is closer to the value for f = 1 than 

for f = 0.5 even though the difference in charge is the same because its brush length 

(and therefore bridging gap) is closer to the former.  

 

4.3.2. Results for Varying N at Constant Monomer Charge Fraction = 0.75 

 We can also examine how adding more monomers under constant charge frac-

tion influences the total force between two coated algae cells. Figure 4.8 displays the 

value of the minimum total force at different values of NPPB per algae. When there are 

few NPPB on the algae surface, the repulsive force between the identically charged al-

gae cells causes the total force to be repulsive as well. As more NPPB coat the surface, 

the adsorption of the NPPB layer onto the adjacent algae wall becomes stronger, 

prompting the value of the minimum of the total force for some D to be attractive.  

 Figure 4.8 also provides the number of NPPB required to coat the algae surface 

when this transition occurs. Since we are dealing with a higher charge fraction where 

each monomer has a valency of 0.75, we do not expect the overestimation of the NPPB 

concentration required for this critical shift of the total force as described earlier for the 

case where f = 0.25. Instead, it is more probable that this concentration is slightly un-

derestimated since the NPPB number per algae when this transition occurs signifies 

when the very minimum of the total force first becomes attractive. From Figure 4.1b we 

observe that the NPPB per algae for N = 250 and f = 0.75 should have an analogous 

value to the ratio for N = 250 and f = 1, which we approximated as 55 NPPB per algae. 



 90 

This number is in close proximity to the theoretical prediction of 62 NPPB per algae for 

the minimum force to become negative. However, as N is decreased this correlation be-

tween experimental and theoretical data starts to fade. For instance, Figure 4.2b shows 

that the nanoparticle concentration for close to 100% harvesting efficiency when N = 65 

should be around 2.1×1010 No./mL. If we take the algae density again to be around 

25×106 No./mL, the NPPB required per algae is about 840. Since experimentally and 

theoretically the NPPB concentration for equal harvesting is inversely related to the de-

gree of polymerization, we expect that as N approaches 50 the NPPB per algae should 

approach and exceed 840. While the NPPB per algae as N approaches 50 are around 

the same order of magnitude, the number underestimates experimental data by a factor 

of 2. More investigation is required to explain this phenomenon. 

 
Figure 4.8. The minimum force in nano-Newtons versus the NPPB per algae varying the 
degree of polymerization N. The NPPB/algae are logarithmically plotted for comparison 
purposes. The numbers outlined by a box denote the un-scaled value for NPPB/algae 
when the force becomes attractive. The monomer charge fraction is held constant at 
0.75.  
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 The NPPB per algae required scales nonlinearly with the degree of polymeriza-

tion, though the effect is less pronounced then for changing the monomer charge 

fraction at constant N. When the number of monomers is doubled from 50 to 100, the 

NPPB per algae required for the minimum force to become attractive halves. However, 

when N is doubled again from 100 to 200 the NPPB per algae decreases by a factor of 

0.44. Finally, as N is increased by a factor of 1.25 from 200 to 250, the NPPB concen-

tration decreases by a factor of 0.65. From these results we observe that as N is 

increased by some factor x, the NPPB per algae required is reduced by a larger factor y. 

We can write this expression more explicitly as: x < 1/y as N à 250. This inequality be-

comes more disproportionately weighted toward 1/y as N à 250. The rate at which the 

NPPB required decreases is greater than the rate at which N increases. Physically this 

corresponds to obtaining the same harvesting efficiency for much less NPPB when one 

monomer is added to N = 200 than when it is added to N = 50. As N approaches 250 

this effect is more prominent. There is some basis to this theoretical outcome in experi-

mental results. In Figure 4.2b, we can qualitatively see the comparison. As N is 

approximately doubled from 65 to 124, the change in the nanoparticle concentration is 

much less than when N is doubled again from 124 to 245. The rate at which N increases 

is less than the rate at which the NPPB concentration decreases in this case. A similar 

conclusion can be drawn when comparing the scaling of the NPPB concentration be-

tween N = 124 and 198.  

 Like in Figure 4.7 we can provide a plot of the harvesting efficiency for different N 

if we assume that once a floc of algae is created it can be harvested. Placing 25×106 

algae cells in four separate containers, Figure 4.9 gives the harvesting efficiency as the 

NPPB is increased for each of the different brush structures. This diagram should be 

directly compared to Figure 4.2b. As in experimental results, the harvesting efficiency 

for N = 200 more closely resembles the results for N = 250 than for N = 100. This is due 

to the fact that adding 50 monomers to each chain for N = 200 is a much smaller differ-

ence than subtracting 100 monomers from each chain. Therefore the physical difference 

between the number of monomers for N = 200 and 250 is minor compared to the differ-

ence between N = 100 and 200. The relationship between the other brush structures at 
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different harvesting efficiencies emulates the theoretical scaling between N and the 

NPPB per algae at the minimum force discussed previously.  

 
Figure 4.9. Theoretical harvesting efficiency versus the number of NPPB for different N.  

 Now that the theoretical and experimental results have been compared, we set 

out to uncover the fundamental physics that defines these observations. More specifi-

cally we want to explain the relationship between the brush structure and the harvesting 

efficiency. As before, the transition where the minimum of the total force becomes at-

tractive is defined by the value of the algae pair and algae – NPPB interaction forces at 

the equivalent D where this minimum occurs. The value of the relevant parameters are 

presented in Table 4.2. See Section 3.10.2 for SCFT results depicting the depth and po-

sition of the adsorption well that determines the algae surface separation and algae – 

NPPB force at the total force minimum. 

From Table 4.2 it is evident that the nonlinearity between the scaling of the NPPB 

concentration between the different degrees of polymerization is a product of the expo-

nential decay of the algae – algae force and not the algae – NPPB force at the minimum 

value. The algae – NPPB force, which corresponds to the free energy of interaction well 
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depth between the brush and the algae via Eq. ( 4.8 ), varies linearly with N. For in-

stance, doubling the degree of polymerization from 50 to 100 results in a decrease in 

the algae – NPPB force by a factor of 1.7 (force at 100 divided by force at 50). This 

same factor is reproduced when the degree of polymerization is doubled again from 100 

to 200. Therefore, increasing the number of monomers along the chain by the same fac-

tor regardless of the original N will decrease the algae – NPPB force at the minimum by 

an identical ratio.  

Table 4.2. Theoretical values when the total force of the interaction between coated 
NPPB is at a minimum for constant charge fraction f = 0.75 varying N. 

N 50 100 200 250 
Algae Surface Separation (nm) 342 384 454 531 

Algae – Algae Force (nN) 23.62 23.40 23.08 22.72 
Algae – NPPB Force (nN) -32.02 -53.57 -90.96 -107.21 

The behavior of the length of the polymer brush in the polyelectrolyte regime is 

the root of this conduct. To understand this, let us again use the parallel of the brush to 

a spring. Consider spring “1” of length L and a spring “2-3” consisting of two of spring 1 

hooked up in series (Figure 4.10). Placing an equal weight at the top of both produces a 

force F on both springs such that F2-3 = F2 = F3 = F1 and the equilibrium displacement of 

spring 1 is equal to half the displacement for spring 2-3. In order for this to be true, the 

spring constant of spring 1, k1, must be double k2-3. Thus, it takes twice the amount of 

force to displace spring 1 by the same amount as spring 2-3. Now if our spring length L 

scales as ~ N, the force also scales as ~ N. If we replace the springs with the polymer 

brushes of different N, which are all of the same material and charge fraction, and ex-

change the mass with the approaching algae surface instead, the force at some 

displacement of the brush scales as ~ N, as well. For instance, doubling the degree of 

polymerization results in increasing the repulsive force counteracting the compression of 

the brush by a factor of 2C given equivalent displacements of the brushes from their 

equilibrium height. Here C is the brush length scaling constant associated with N. The 

algae – NPPB force is increased by a factor of 2C at each displacement, as well. There-

fore when N is doubled from 50 to 100 the algae – NPPB force at the minimum is 
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decreased by the same factor as when N is doubled from 100 to 200 since the repulsive 

force of the compressed brush scales as ~ N. Less of the cationic monomers along the 

backbone are able to adsorb onto the negatively charged algae surface before the in-

teraction becomes repulsive.  

 Since the NPPB – algae force scales linearly with N, it must be the algae pair in-

teraction force that causes the nonlinear relationship between N and the value of the 

minimum of the total force and therefore the NPPB required per algae for flocculation to 

occur. This force decreases exponentially as 𝑒!!!!"#!!"#, where 1/𝜅 is the Debye length 

and Dalg-alg is the algae – algae surface separation. Recall that the minimum of the total 

force results from bridging of the two algae cells by the NPPB layer. Since the brush 

length scales as ~ N, this bridging gap approaches the Debye length as N increases 

and the total force falls off exponentially. This causes the nonlinearity between N and 

the minimum of the total force.  

 
Figure 4.10. Depiction of spring 1 and two spring 1 hooked up in series with a mass M 
placed on top of both.  

4.4. Comparing Theoretical Models 

 The discussion has surrounded the predictions of the scaling behavior of the 

NPPB concentration at equal harvesting efficiencies varying f and N. It would be useful 

to visually compare how the scaling behavior for these variables using the different the-

oretical models presented in Section 4.2.1 (termed Matching Charge, or MC Theory) 

and Section 4.3 (termed Free Energy, or FE Theory) relate to one another and to exper-

imental data. For experimental data, we can use the NPPB concentrations depicted in 

Figure 4.1b and Figure 4.2b at approximately 100% harvesting efficiencies. As f varies 
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from 0.75 to 1 and as N varies from 198 to 245, the NPPB concentrations are consid-

ered identical at equal harvesting efficiencies. For the experimental data varying N, the 

NPPB concentration at 95% harvesting efficiency will be used since not all studied N 

reach 100% harvesting efficiency.  

 Before the NPPB concentrations at varying N are studied though, we examine 

the NPPB concentrations at 100% harvesting efficiency for the two theoretical models 

and experimental results varying f. In Figure 4.11 the normalized NPPB concentrations 

are plotted for the different monomer charge fractions. Since the NPPB concentrations 

are normalized by the maximum value in the set, each of the three different series has a 

value of unity at f = 0.25. The error bars represent the order of absolute uncertainty dis-

cussed earlier for MC Theory. While these error bars show the possible variation in the 

NPPB concentration for MC Theory, it should be noted that they have a common error 

factor such that the scaling behavior would still remain linear with respect to f. Finally, 

we mention that while the scales of the normalized NPPB concentrations may not match 

up, the important piece of information to gather is the magnitude of the change in the 

dependent variable as f varies.  

 
Figure 4.11. NPPB concentration normalized by the maximum value in the set for vary-
ing f. MC Theory data represents the model in Section 4.2 and includes the order of the 
margin of error denoted by the error bars. FE Theory data is graphed on the secondary 
axis (blue) and represents the model in Section 4.3.  
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 MC Theory shows better scaling agreement with experiment for the scaling of f 

between 0.25 and 0.75, but FE Theory gives more accurate results for the scaling of f 

from 0.75 to 1. Despite the FE Theory sharing nonlinear scaling behavior with experi-

mental results with respect to f, the predicted slope is too steep for the change in the 

NPPB concentration as f increases from 0.25 to 0.5 and from 0.5 to 0.75. We discussed 

previously that this may attributed to an error in lower charge fraction states arising from 

distributing the charge evenly between monomers, diluting the electrostatic relaxation of 

the free energy that occurs as opposite charges come in close proximity in the same 

layer. We also assumed that even coating occurs. The lower charge fractions may be 

able to be in closer proximity to one another, meaning that a disproportionate amount 

could be localized between algae surfaces where they can lower their overall free ener-

gy by forming a bridge between two algae surfaces rather than with just one. The 

significance of these two assumptions diminishes as we reach higher charge fraction 

when f increases from 0.75 to 1. FE Theory accurately predicts that the slope begins to 

level off as the algae – NPPB binding force becomes much greater than the repulsion 

between the algae (ref Table 4.1) and the behavior of the brush for f = 0.75 is much 

closer to the brush with f = 1 than to f = 0.5.  

 The relationship between the scaling behavior of MC Theory and experimental 

results also demonstrates that even the linear slope over predicts the change in NPPB 

varying f at equal harvesting efficiencies. As f increases from 0.25 to 0.5 and from 0.5 to 

0.75, the net effect still results in a decrease in the NPPB required. However, the rate at 

which this change happens is still less than the case where adding an NPPB to the sys-

tem was equivalent to adding a number of charges. We discussed that unless the 

effective charge radius around a NPPB is greater than the radius of the algae, the num-

ber of cells one NPPB can at most aggregate is two. So while adding more charge may 

increase the binding force created by a bridging interaction between algae – NPPB – 

algae, incorporated in FE Theory, the number of algae one NPPB can aggregate is still 

only two. Then as f increases from 0.75 to 1 the NPPB – algae binding force has al-

ready reached a threshold where it is sufficient in both structures such that very few 
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NPPB are required to attract and bridge two algae, as predicted by FE Theory. Yet only 

two can be bridged, leading to zero slope in the scaling of the experimental results.  

 Next we look at the scaling of the normalized NPPB concentration to the degree 

of polymerization, N. Figure 4.12 illustrates the normalized NPPB varying the degree of 

polymerization for both theoretical models and the experimental results. The similarity 

between the results for the two theoretical models are to be expected since we already 

discussed that the algae – NPPB force scales linearly with N. The nonlinearity as N ap-

proaches 250 in FE Theory is a result of the decay of the algae – algae repulsion as the 

NPPB diameter approaches the Debye length. Once again the error bars represent the 

order of magnitude of the absolute uncertainty for MC Theory measurements.  

 
Figure 4.12. NPPB concentration normalized by the maximum value in the set for vary-
ing N.  

 The rate of change in the experimental results for the normalized NPPB concen-

tration more closely mirrors the theoretical models than compared to the scaling for f. 

When the bridging gap, given in Table 4.2, is still only about one third of the Debye 

length the rate of the algae – algae repulsion does not fall off as quickly as the linear 

decrease of the NPPB – algae attraction. However, once this gap begins to approach 

the characteristic range of decay for the algae – algae repulsion from N = 124 to 198 
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experimentally and from 100 to 200 in FE Theory, the slope falls off quicker. Once again, 

we observe a threshold where the slope from N = 198 to 245 is zero. In the scope of MC 

Theory, where the magnitude of the slope also falls off, we see that this could be a re-

sult in the small difference in the extra amount of charge added to the system as N 

increases from 200 to 250. Using FE Theory, we argue that a threshold is reached 

where the algae – NPPB force is sufficient enough at these bridging gaps where once 

again only a very few are required to induce flocculation and the harvesting efficiency is 

limited by the fact that one NPPB can at most aggregate two algae.  

 

4.4. Conclusions 

 It is evident from the above analysis that the behavior of the polymer brush for 

different polymer parameters has a direct influence on the harvesting efficiency. Optimi-

zation of the brush architecture will allow lower NPPB concentrations to reach higher 

harvesting efficiencies. First off, matching the charges of the NPPB and algae demon-

strated that adding more charge per NPPB led to lower NPPB required for equal 

harvesting efficiencies. However, the influence of this charge is limited by the effective 

charge radius determined by the diameter of the NPPB and the Debye length. One 

NPPB can only flocculate (and therefore harvest) two algae. Stretching the effective 

charge radius past the radius of algae would allow more algae harvested per NPPB. 

This can be achieved through several means, including increasing the charge, the graft-

ing density, the degree of polymerization, or the core radius. However, the approach of 

synthesizing and NPPB so that its size is on the order of several micrometers is imprac-

tical. We observed that very few NPPB are required per algae in Section 4.3 for most 

charge fractions and degree of polymerizations before the bridging force between two 

algae via a NPPB becomes attractive. Therefore only a few bridging points on an algae 

surface are needed before a large floc is formed. Since large NPPB particles would re-

quire a large amount of mass to synthesize, on a mass per volume concentration basis 

NPPB on the order several micrometers is wasteful.  

 Adjusting this model to include a probability distribution of coating algae with 

NPPB explained experimentally observed decays in the harvesting efficiency at certain 
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NPPB concentrations at some threshold. As the number of NPPB started to saturate the 

algae surfaces, the probability distribution approached uniformity. Once this began to 

happen, the rate at which algae passed the certain NPPB concentration threshold re-

quired to harvest them diminished for each of the brush structures at each increment of 

added NPPB. Higher N and f led to harvesting efficiencies closer to 100% at this transi-

tion, causing a less persistent trail off at higher harvesting efficiencies compared to 

lower N and f. Optimization of the brush structure would lead to harvesting efficiencies 

close to 100% well before this transition.  

 One unrealistic piece of this model is that the number of NPPB per algae in the 

Poisson distribution is unbounded. In reality, there is some transition where the algae 

surface is covered with enough NPPB that addition of another one is energetically disal-

lowed due to the like charge repulsion between two NPPB particles. Instead, a cap 

should be placed on the number of NPPB per algae allowed. A further discussion of 

possible solutions will be discussed in Chapter 5.   

Using the free energies of interaction led to conclusions on the optimal charge 

fraction and degree of polymerization, as well. As f is increased for constant N, the 

brush length scales as ~ f ½. The means that the brush length for f = 0.75 is much more 

similar to the brush length for f = 1 than f = 0.5. The brush for f = 0.75 is able to expose 

a greater percentage of its charge than for f = 0.5 since more of its cationic monomers 

are able to adsorb to the algae surface before the brush becomes too constrained. 

However, f = 1 was still able to expose more charge due to its greater monomer charge 

fraction. Also, the longer brush length for f = 1 resulted in a greater bridging gap be-

tween two algae cells at the total force minimum. For bridging to occur, less NPPB per 

algae are required to overcome the repulsive force between algae. Optimization re-

quires greater monomer charge fractions, which would again suggest that increasing the 

grafting density would cause lower NPPB concentrations for equal harvesting efficien-

cies. As N is increased for constant f, the brush length and the value of the algae – 

NPPB force at the minimum total force scaled as ~ N. Increasing N should lead to high-

er harvesting efficiencies at lower NPPB concentrations. This effect should trail off when 
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the polymer free end to end brush diameter approaches the Debye length as the repul-

sive algae – algae force exponentially decays as 𝑒!!!!"#!!"#.  
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CHAPTER 5  

SUMMARY AND CONCLUSIONS 

 

 Our main goal was to find the relationships between the harvesting efficiencies 

and the brush structure. We have proposed some answers to this question in the previ-

ous chapter. Here we will summarize the results and recommend the optimized brush 

structures. 

 

5.1. Summary of General Conclusions and Recommendations to Experiment 

 Biofuel derived from biomass has the potential to reduce our reliance on fossil 

fuels for energy. Microalgae serves as a promising source of biomass for many reasons, 

including its ability to grow quickly and in non-arable land, to contain high lipid content 

by weight, and to produce high value derivatives that can offset the cost of the final fuel 

product. However, a major hurdle that is keeping microalgal biofuel from being cost 

competitive with petroleum-based fuels is the energy intensive and expensive dewater-

ing step required to concentrate the naturally dilute cultures of microalgae before lipid 

harvesting.  

 Due to their low specific mass, small cell size, and negatively charged surfaces, 

microalgae form a stable suspension in solution. Sedimentation and filtration are not 

feasible for a continuous cycle industrial process. Centrifugation is only economically 

realistic at lab scales. Flocculation is one method that has garnered more attention re-

cently in concentrating algae cells so that they can be dewatered. The flocculation agent 

is generally synthesized out of readily available materials and can perform quick and 

efficient concentration of algae cells. However, this flocculation agent must eventually 

be separated from the harvested algae cells in order to avoid downstream contamina-

tion of the final fuel product. Furthermore, recyclability of the flocculation agent would 

help drive down the cost of harvesting, as well.  
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 Our experimental collaborators have developed a flocculation agent that inex-

pensively and efficiently leads to high harvesting efficiencies of algae and solves the 

problems associated with flocculation. It is both recyclable and is able to be separated 

from the aggregated microalgae cells once it is no longer needed. The flocculation 

agent is a cationic polymer brush with a paramagnetic nanoparticle core. An in depth 

theoretical study was conducted in order to understand how certain structural parame-

ters of this nanoparticle polymer polyelectrolyte brush (NPPB) influence the harvesting 

efficiency.  

 Once the natures of all the pair interactions between the relevant bodies in the 

system were determined, various models were employed to model harvesting efficiency. 

The first method involved in determining when the effective charge, the charge that pro-

duces the electrostatic field felt by another algae, was completely screened. We 

observed in Chapter 2 that the repulsion between two similarly charged algae cells was 

a result of the strong electrostatic double layer repulsion at most surface separations. 

Negating the effective charge on an algae cell through cationic charge screening be-

tween the two surfaces would eliminate the repulsion and allow microalgae to form 

clusters. When the NPPB is added to the system, the positively charged monomers 

along the chain backbone serve to screen the anionic effective charge on an algae sur-

face by adsorbing onto the surface. In this model neglecting the Debye screening length, 

when the number of positive charges provided by the polymer equaled the number of 

negative charges on the algae surface, cells could flocculate since the effective charge 

was completely screened in the model. Making the assumption that any size cluster of 

algae cells had enough NPPB to be manipulated by the magnet, the percent of floccu-

lated algae was able to be directly translated into a harvesting efficiency. We examined 

the effect that changing the degree of polymerization N and the monomer charge frac-

tion f on the NPPB had on the harvesting efficiency. Since the number of positive 

charges in the system was directly proportional to either N or f when the other was held 

constant, the required NPPB concentration at an equal harvesting efficiency scaled lin-

early with N or f also. However, the experimental results showed a nonlinear scaling 

behavior when these two brush parameters were independently varied. We understood 
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the limitations of this model. In reality, adding one NPPB represented adding a certain 

amount of charge localized around a single particle. Therefore the effective screening 

range of one NPPB was limited by the Debye length and the size of the NPPB. This ef-

fective screening range was less than the algae radius, signifying that one NPPB could 

at most flocculate two algae. Furthermore, we determined that one algae could accom-

modate about 40 NPPB before their effective screening ranges intersected.   

 To model harvesting efficiency using the free energies calculated in Chapter 2 

and Chapter 3, we used two bare algae as a reference and then coated both with a uni-

form density of NPPB. We could then determine the number of NPPB per algae required 

for the force between the two bodies to become attractive at some surface separation. 

When the force becomes attractive, the two algae are able to aggregate at this surface 

separation. Making the assumption that algae were not coated evenly, i.e. the first 100 

NPPB may go only to the first two algae these NPPB come across, and that the number 

of NPPB in a cluster of algae cells was enough to feel the pull of the magnet led to a 

way to determine harvesting efficiencies versus the number of NPPB added to a system. 

The assumption that the algae are not evenly coated is based on the strong energy of 

adsorption between the NPPB and the algae surface, which is many times kBT. An 

NPPB placed in the system would irreversibly adsorb to the first algae surface it comes 

in close proximity to. Therefore we expect this assumption to be closely related to phys-

ical reality. We then studied the effect that altering N and f had on the theoretical 

harvesting efficiency and compared this to experimental data.  

 The behavior of the polymer brush in response to independent variations in N 

and f influenced the scaling of the number of NPPB at equal harvesting efficiencies for 

the different brush structures. The algae surface separation when the force was at its 

minimum coincided with the situation when the polymer brush was adsorbed at its min-

imum free energy of interaction well depth onto both algae surfaces. The NPPB bridges 

the two algae particles. Therefore the value of the total force minimum versus the num-

ber of NPPB added to the system at the transition when the force becomes attractive 

was dependent on two parameters of the interaction. The first is the length of this bridg-

ing gap determining the force between the two similarly charged algae. The second is 
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the magnitude of the energy well depth that determined the strength of the algae – 

NPPB attraction. For constant N and varying f, the brush length scales as ~ f ½. Thus as 

f is increased, the length of the brush increases. This means that the bridging gap wid-

ens and the surface separation between the two algae cells begins to approach the 

Debye length, 1/𝜅. The repulsive force falls off exponentially as 𝑒!!!!"#!!"#, signifying 

that as the brush length causes the NPPB diameter to approach 1/𝜅 when f is increased 

the total force decays proportional to this rate, as well. Since the brush length scales as 

~ N, adding more monomeric units for constant f also produces a similar effect, but 

much more pronounced. For the algae – NPPB force, higher monomer charge fractions 

also resulted in greater sequestering of the algae charge on the surface and a higher 

binding energy. For constant f the algae – NPPB force scales linearly with N since the 

brush height scales as N. When understanding this effect in the context of springs, dou-

bling the spring length means decreasing the necessary force required to displace the 

spring to an equal distance by one half. Therefore brushes with higher charge fractions 

and degree of polymerizations as f approaches one and N approaches 250 have lower 

(more attractive) NPPB – algae adsorption forces.  

 These observations lead to recommendations for the optimal brush structure. 

When the degree of polymerization results in a brush length such that the free polymer 

end-to-end diameter is less than the Debye length, higher charge fractions are needed 

to hold the bridged algae together in order to overcome the algae – algae repulsive 

force. However, if the degree of polymerization results in a brush such that this bridging 

gap is close to or greater than the Debye length lower charge fractions are required. 

This can be achieved by increasing the grafting density and/or increasing f. Since the 

monomer charge fraction is easy to control, the optimal brush structure would be one 

where f = 1 and the end-to-end brush diameter is close to or greater than the Debye 

length. This can be achieved by increasing the diameter of the nanoparticle core size 

and/or the degree of polymerization. Furthermore, we observed that unless the effective 

charge radius of an NPPB is larger than the radius of an algae cell, one NPPB can only 

flocculate two algae at most. Creating an NPPB that could bridge two algae and be 

large enough such that its effective charge radius was larger than the algae radius 
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would allow it to flocculate more than two algae cell at a time. This can also be done by 

increasing the diameter of the NPPB through increases in N or the core diameter. How-

ever, very few NPPB are required per algae in order for the bridging force of an NPPB to 

outweigh the repulsion between two algae surfaces as this gap distance. In fact, for 

most brush structures Table 4.1 and Table 4.2 demonstrate that the attraction of one 

NPPB is strong enough to hold two algae surfaces together. Large flocs can be formed 

through the bridging of only a several NPPB between algae surfaces. Therefore, a more 

efficient and economically feasible route for algae harvesting is to utilize smaller NPPBs 

rather than synthesize nanoparticles with dimensions of a few micrometers.  

 

5.2. Future Work 

 So far we have been working off the hypothesis that harvesting efficiency is de-

pendent on the number of algae cells that can form aggregates in solution. As a 

consequence, the capability to concentrate the cells has thus far been solely a result of 

the ability of the NPPBs to lower the energy barrier between algae. However, given the 

experimental harvesting set up, it is quite possible that the force of the magnet plays a 

role in the harvesting efficiency.  

 The methods outlined above predict whether clusters of algae and NPPB parti-

cles will form. In the proposed harvesting set up though, these clusters must be able to 

be manipulated by the external magnetic field. Magnetophoresis describes the move-

ment of magnetically susceptible particles in a medium caused by a magnetic field 

gradient. The magnetophoretic force for our paramagnetic NPPB is proportional to the 

volume of the particle V and the applied field gradient via the following relationship:   

 𝐹~  𝑉 ∇𝐵 !  

In order for clusters to be congregated by the magnet, we hypothesize that the magne-

tophoretic force must overcome the random Brownian forces dispersing the cluster. 

Only clusters large enough where this relationship holds will be harvested. Harvesting 

efficiency is now dependent on the ability of NPPB and algae to form clusters, the size 

of that cluster, and the number of NPPB in the cluster. How many NPPB per cluster are 

required could be elucidated. This might be tested experimentally by measuring harvest-
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ing efficiency for different strength magnets. 

 We also mentioned previously that the theoretical NPPB required per algae to 

reach certain harvesting efficiencies does not correctly predict the correct experimental 

values in Section 4.3. The reason for the underestimated theoretical values with varying 

N was unclear. More investigation is required to explain this difference. One possible 

avenue would be to use molecular simulations such as Monte Carlo or Molecular Dy-

namics to explicitly depict a system. A potential energy function between all the species 

has already been outlined in this document. One possible difficulty in Monte Carlo calcu-

lations is the lack of movement between clusters. Once a group of algae and NPPB 

form, the event may be so stable that there could be no movement among separate 

clusters. Moreover, irreversible binding may lead to slow equilibration and thus non-

equilibrium behavior that is not captured by equilibrium Monte Carlo. Molecular dynam-

ics automatically incorporates the ability of separate clusters to interact with one another, 

but could be difficult given the strengths of the attractions. 

In Section 4.2, we discussed how the number of algae one NPPB can flocculate 

is limited to two. This is a result of the effective range of the electrostatic attraction of the 

NPPB to another algae being less than the dimension of an algae cell. Using SCFT, one 

could predict the degree of polymerization and the monomer charge fraction required to 

have the effective charge radius extend beyond the radius of an algae particle for differ-

ent core diameters and salt concentrations. Then, a cost-benefit analysis could be done 

where the NPPB structure that minimizes the cost but still has an effective charge radius 

that extends beyond two flocculated algae radius could be determined. An NPPB with 

this structure could flocculate up to four algae. This could be compared to the cost of 

having a smaller NPPB with an effective charge radius less than the algae radius that 

can only flocculate two algae. The balance would be between the added amount of ma-

terial for the former case between the larger amount of NPPB needed to be added in the 

latter.  

A limitation of the free energy model for harvesting efficiencies in Section 4.3 was 

the assumption of even coating around the algae surface. As with the model in Section 

4.2, an interesting addition to the model in 4.3 would be an inclusion of a distribution 
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function for the NPPB on an algae. However, this time it would be the distribution of a 

NPPB on the surface of one cell. For instance, we discussed how for lower monomer 

charge fractions a disproportionate amount could be localized at a position where they 

could form a bridge between two algae. This could possibly be completed using a 

Boltzmann factor where the reference location for the NPPB would be in a binding site 

where it did not electrostatically interact with other NPPBs. This may lead to more accu-

rate predictions of the number of NPPB per algae to induce flocculation.  

In a more general scope, examining the correct NPPB distribution between multi-

ple algae could lead to a more accurate model as well. Recall in Section 4.2.2 where we 

introduced the Poisson distribution to account for the probabilistic nature of NPPB coat-

ing a large number of algae. The number of NPPB per algae did not have a maximum 

threshold, but was kept uncapped. A more realistic model would cap the number of 

available sites per algae. Once that threshold for a certain algae was reached, it could 

no longer take on any more NPPBs.  

A possible threshold could be found from the number of NPPB effective charge 

areas that could fit on an algae surface. In Section 4.2 we mentioned that the effective 

charge area surrounding a NPPB was determined by the characteristic range of electro-

static forces in a medium, given as the Debye length. This suggested that a single algae 

surface had approximately 40 binding sites where an NPPB could adsorb and not feel 

any other NPPB. If any more NPPB were added they would interact with another NPPB 

on the surface and the electrostatic repulsion would make further binding energetically 

unfavorable. The cap could be set at the maximum number of these binding sites. The 

number of binding sites would be determined by the number of NPPB effective charge 

areas that could fit on an algae surface before they begin to overlap for a given f or N. In 

order to determine the effective charge radius that governs the effective charge area, 

we could consider all the charge located at the first moment of distribution for the mon-

omer volume fractions, given as the brush height. The effective radius would then be the 

radius of the NPPB core to the brush height plus the Debye length. The brush height for 

all the structures has already been determined in Section 3.10.  
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It is possible to link theoretically predicted harvesting efficiencies with the Ber-

noulli probability distribution using this cap. Now, instead of A in Eq. ( 4.6 ) being the 

number of algae it becomes the number of possible binding sites on an algae surface. 

There is some total number of NPPB added to a given number of algae. The question 

then becomes: What is the probability that a given number of k NPPB is/are adsorbed to 

an algae surface? We can use the results in Section 4.3 to determine how many NPPB 

are required on an algae surface before the bridging attraction provided by the NPPB is 

greater than the repulsion between two algae, given again as k*. For instance, if the ad-

sorption force from only one NPPB is more attractive than the algae pair repulsion, we 

could conclude that only one NPPB per algae are required before a bridging network 

begins to form. Once this network forms between algae cells, large enough flocs are 

created in order to be harvested. The harvesting efficiency is equal to the probability 

that an algae will posses the cutoff number of adsorbed NPPB required before floccula-

tion occurs. It is possible that for low values of k* compared to the number of binding 

sites that the correction might not prove significant since the number of possible binding 

sites is much greater than the number currently filled. 

For experimental results, we observed that there was little to no dependence on f 

and N once a certain threshold was reached. In our case, this corresponded to when N 

was greater than 200 and f greater than 0.75. When forming these bridging networks 

discussed above, we mentioned that for some structures only one NPPB is needed to 

bridge two algae cells since the algae – NPPB attractive force outweighs the algae – 

algae repulsion. Once a certain f and/or N is reached, the attractive force becomes 

greater than the repulsive force and a threshold is passed were addition of any more 

monomer units or charge along those units does not change the physical requirement of 

needing only one NPPB per algae to create a bridging network. This could explain the 

little to no dependence on f and N once f > 0.75 and N > 200. Theoretically we can in-

vestigate when this transition occurs.  

A main source of uncertainty in our calculations was the surface charge density 

of the algae cell. In our current model, we backed out the surface charge from the zeta 

potential. However, instead of making several assumptions in order to perform this cal-
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culation, the surface charge density could be a parameter determined from experiment. 

Recall that once we knew the surface charge density we could estimate the critical ionic 

strength when the algae – algae repulsion would be screened and flocculation could oc-

cur. We could reverse the process and design an experiment where an algae culture is 

titrated with 1:1 salt concentration. The critical ionic strength at which the majority of the 

algae begin to precipitate out of solution would then be recorded and the surface charge 

density could be determined using our current model.  

Finally, in Figure 1.6a the experimental harvesting efficiencies using the NPPB 

were compared to harvesting efficiencies using free polymer. For the free polymer, after 

a coagulant concentration of approximately 0.2 mg/mL was reached the harvesting effi-

ciency began to decrease upon the addition of any more coagulant agent. An 

investigation into the physical processes that govern the interaction between algae spe-

cies and free polymer would lead to further information on the efficiency of the NPPB 

coagulation agent via a contrast with the free polymer. It is possible that since the free 

polymer is not grafted to a nanoparticle, its charge is not localized around a single point. 

Therefore, its effective charge area is much more spread out on a mg/mL basis. Adding 

more free polymer after a certain point would lead to repulsion between coated algae 

cells due to the similarly charge polymer adsorption layers, and flocs would begin to 

disband.  
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