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Crustal Faults

Anders and Schlische, 1994 — NE Idaho, Beaverhead Fault
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Figure 4. Generalized geological map of two intrabasin highs found along the southem ion of the Beaverhead fault in
northeast Idaho. Modified from Crone and Haller (1989) and Rodgers Anders (1990). Also shown 1s cross-section X-X'
through the Blue Dome inrabasin high.
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Anders and Schlische, 1994, Newark Basin
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Figure 3. a. Geologic map and longitudinal cross section of the Connecticut Valley basin. Modified from Schlische
[1%93) and based on Wise (1992). b. Geologic map and cross sections of the Newark basin, showing the segmented
border fault system, inabasinal splay faults, and relay ramps. Modified from Schlische (1982). ¢. Geologic map of
southwestern Newark basin (box in &. gives location). showing the relationships among overlapping border fault
sepments, relay ramps, and transverse folds. Numbers indicate thickness in meters of siratipraphic marker unit across
the hinge of the Jacksonwald syncline. Modified from Schlische (1992).
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Cartwright, 1991 — North Sea Central Graben
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Fig. 1. Principal tectonic elements of the Danish Sector of the Central Graben. The insct figure gives the
regional location and shows the curvilinear form of the Coffee Soil Fault as depicted on early maps of the

Arca.
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Childs et al., 2003 — North Sea

. Childs et all / Journal of Structural Geology 25 (2003) 633648
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Fig. 2. (a) A large synsedimentary fault from the North Sea as seen on a map of pre-faulting Horizon d. (b) Throw contoured strike-projection of fault, viewed
from the footwall side. with contours (solid lines)inms TWT (1 ms = ca. 1.5 m) and the uppermost contour representing the zero throw upper tip-line. Horizon
traces on the fault surface (taken as midway between footwall and hanging wall cutoffs) are shown by broken lines with the base syn-faulting Horizon d shown
by the heavy broken line. The strike-projection is aligned with and on the same scale as map (a). (¢) Cross-section along line A—A’ on map (z). Note the

difference in thickness of the syn-faulting sequence (Horizons d—g) in footwall and hanging wall.
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Cowie and Roberts, 2001 — Central Italy, Abruzzo

PA Cowie, GP. Roberts / Journal of Structural Geology 23 (2000) 19011915
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Gawthorpe and Hurst, 1993 — Zararana Transfer Zone
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Gawthorpe and Hurst, 1993 —Central Greece, Gulf of Evvia, Atalanti
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Gawthorpe and Hurst, 1993 — Gulf of Suez, Esh el Mallaha
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Fig. 10. Miocens palacogeography for the area around Esh el
Mellaha, southern dip province, Guolf of Suez (alter Burchette 1987)
(see Fig. 6 for location). The Tarbul embayment is located at the
synthetic relay ramp, developed at the southern end of the Esh el
Mellaha border fault. The Abu Shaar ¢l Qibli carbonate platform is
localized within the transfer zone and has carbonate ramp and
rnimmed shelf margins that are controlled by the topography of the
transfer zone. These platform margins contrast markedly with the
escarpment bypass margins developed along the Esh el Mellaha
border fault.
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Gawthorpe and Hurst, 1993 — Nevada, Tobin Range

R1
OL=6500m
L=6500m
Wmax=5000m
S=5000m
Lt=41000m
L1=16000m
L2=32500m
Wmin=2500m

R2
OL=1500m
L=10000m
Wmax=4500m
S=2500m
Lt=45000m
L1=32500m
L2=17500m
Wmin=3000m

R3
OL=1500m
L=1500m
Wmax=7500m
ruplures S=7500m
Lt=25500m
Other faults L1=17500m
- L.2=11000m

| Bedrock Wmin=7000m

Alluviated valleys
and basins

Fig. 13. Surface rupiures associated with the 1915 Pleasant Valley
carthquake (after Wallace 1984; dePolo er @l 1991 Zhang er af,
1991). Note the intrabasin relay ramps (TZ) separating the main
fault segments defined by the 1915 ruptures, The Sou Hills

represents an interbasin antithetic transfer zone separating the
Pleasant Walley and Dixie Valley segments and is a persistent
barrier o rupture propagation (Fonseca 1988). Arrows in the inset
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mark the location of major segment boundaries (interbasin transfer
zomes), from Zhang ef af . (1991). PV, Pleasant Valley; SH, Sou
Hills: PS, Pleasant Valley segment; TS, Tobin segment; CM., China
Mountain segment.
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Larsen, 1988 — East Greenland, Karstryggen
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Fig. 6. Basement contour map of the Karstryggen area, East Gred
land. The contours show the Caledonian crystalline basement surfs
in the downfaulted areas in relation to present day sea-level. The fa

surfaces in lows are without ornamentation.
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Morley et al., 1990 — North Sea Central Graben Argyll and Auk Fields
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Figure 14—Argyll field, Central Graben, North Sea (from
Brennand and Van "o"een, 1975). See Figure 11 for location.
The field is located in one of a series of left-stepping synthetic
overlapping transfer zones.
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Morley, 2002 — NW Kenya, Lokichar Fault
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Roberts and Jackson, 1991 — Cenggl Greece, North Gulf of Ev

via
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Fig. 1.(a) General fault map of central Greece, showing the principal areas (stippled) where Miocene—Recent
sediments are preserved, The region is identified in the inset map, where NAT is the North Acgean 1 rough and
% is the island of Skyros. Major range-bounding faults are shown in heavy lines with filled blocks on their
downthrown side. Other ‘large’ faults, capable of generating canhqu-_akus_uf mag_,m:udc_ 6.0 or greater, but with
apparcntly less displaccment or topographic expression, are shown in thinner lines with open blocks, The
distinction between these two fault types is, to some extent, subjective. Some ll’:l s, swch as }hom: on the NE
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Roberts and Jackson, 1991 — Greece, Saronic Gulf
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Roberts et al., 2004 — Central Italy, Lazio-Abruzzo Apennines
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Fig. 2. Map of active faults in the Lazio— Abruzzo Apennines, central Italy

from Roberts and Michetti (2003, this issue). The map also shows the
across-sirike distance within which faults will cease to be active (x:) if the
central Fucing Fault achieves 45 (see Fig. | for reasoning). The Fucino fault

has not achieved d» so the across-strike fault spacing remains close o x;.
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Soliva and Benedicto, 2004 — Spain, Granada province, Andalucia, Padul-Niguelas
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Fig. 2. Location of the study areas. {a) The Fumanyi faults (Figols Quarmy, Bergueda, Catalonia), located in the Sera d'Ensije anticline, are exposed on a
Maestrichtian bedding plane of the early Garumnian Formation. A Z.=axial zone, C.U. =Cadi unit, P.1UJ. = Pedraforca unit. {(b) The Nigielas faults { Granads
province, Andalucia), located in the southwestem Betics, are exposed on a large slip surface of the Padil-Niglelas fault zone.
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Upper-Crustal Confined Faults

Bozkurt Ciftci and Bozkurt, 2007 — Western Turkey
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Figure 5. Geological map of the study area (Map grid is UTM, Zone 35). The low-angle normal fault is illustrated as an area representing
the exposed slickensided surface of the fault {lines are parallel to slickenlines). Major high-angle normal faults are labelled on the map
as F-1, F-11, F-11I and F-1V. Five different lithostratigraphic units comprising continental clastics overlie the metamorphic rocks of the
Menderes Massif. The Akcapmar relay ramp is located between the overlapping sepments of F-I and F-11.
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Childs et al., 1995 — Central North Sea
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Fig. 3. (a) Map showing the traces of wo synthetic overlapping
faults from the Central North Sea; the faults are unconnected in 3D.
The map is derived from a seismic survey with shotlines oriented
perpendicular to the fault traces and spaced every 100m.

(k) Vertically exaggerated (= 3) throw strike-projection of the two
faults mapped in {a). The throw contours (ms), are derived from

. 20X} datapoints: nole that the contour imerval is different for the
two faults and that contours on the smaller fault are shown by
broken lines where this faull lics behind the larger fawlt. The
sub-horizontal light broken line shows the trace on the faull surfaces
of the horizon mapped in (a). Heavy lincs indicate the fauk
tip-lines; the tip-line of the smaller fault is shown as a broken line
where it [ies behind the larger fault. (€} Throw versus distance
profiles for the two faults shown in (a). Throws are measured on the
horizon which 1s mapped in (a) and indicated by the broken line in
{b). The bold line shows the aggregate throw for the two faults,
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Childs et al., 1995 —
a X Northern North Sea
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Fig. 5. () and (b) Two map views of the same fault array from the
Northern North Sea. Horizon 2 is within the syn-rilt sequence and
Horizon 1 is at the 1op of the pre-rift sequence. Overlapping normal
faults on Horiron 2 link at depth along a horizontal branch-line and
connect to the large fault on Horizon 1 (stippled). Fault A on
Horizon 1 does nol intersect Horizon 2. The maps are constructed
from scismic shotlines spaced every 100m and oriented parallel 1o
the line of section X-X1. (¢) On a cross-section (X-X1) through the
fault array shown in (a) and (b), the branch-line hetween the two
overlapping faults on Horizon 2 is scen as a branch-point, near to
the eentre of the cross-section, (d) Throw profiles of the two
overlapping laults on Horzon 2 shown in (a). The bold line is the
nggregate throw for the two Faulis.
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Childs et al., 2003 — Inner Moray Firth
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Fig. 12. Map (on Horizona: Figs. 13 and 14) of overlapping faults bounding
a relay zone. The successive locations of the tip-line of F1 at the time of
deposition of Horizons a—c are indicated. The approximate location of a
relay breaching fanlt. which offsets only Horizons b and ¢, is indicatad by
the heavy broken line. The branchpoint between F1 and the breaching fanlt
is shown (bp). Locations of cross-sections A—A' and B-B' (Fig. 13) are

indicated.
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Dawers and Anders, 1995 — Eastern California, VVolcanic Tablelands
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Fig. 4. (s} Map view of the mapped fault segments. (b Elevation change slong the sirike of the fault sone; the view is
looking toward the scarps from the hangingwall. The shaded regions represent tilting of the upper surface of the tuff wward
the hangingwall. Note that smaller faults are concentrated at the overlapping regions of the four large throw segments and in

Wi mpelay zone at the northeon fault tip.
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Figure 16. Map of an internal part of the Gulifzks Sar field in
the northem Morth Sea. Two areas mapped as fault overlap
structures (areas of double-tip interaction) are drded. One &
penetrated by a well (34/10-2), which indicaes multiple sub-
seismic faults and numemus deformation bands. The map &
based on Barstad (2003).
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Fossen et al., 2005 — Northern North Sea, Gulfaks Sor Field
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Gawthorpe and Hurst, 1993 — Central Greece, Gulf of Corinth, Pateras Fault Zone

Fig. 16. Drainage and structure map of
the Pateras fault zone, east end of the
Gulf of Corinth, central Greece. Note
that all the major streams draining the
footwall upland enter the Megara Basin
through intrabasin transfer zones sepa-
rating the fault segments, In contrast,
the large drainage system (A) at the
eastern end of the fault zone has cut a
large gorge through the footwall and its

.
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Janecke et al., 1999 — SW Montana, Muddy Creek
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McClay et al., 2004 — Gulf of Thailand, Patanni Basin

Time-Structure Map - Middle Miocene Horizon
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McClay et al., 2004 — Southern North Sea, Jupiter Fields
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Fig. 14. Example of segmented extensional fault system @t the Base
Tertiary horizon, Jupiter Fields, Southern North Sea. (a) 31 obligue
visualization of offset extensional fault system. (h) Map pattern of north-
dipping extensional faults shown in (a) above, Two prominent relay
systems | and 2 are developed between overlapping fault segments,
(e} Fault length—displacement diagram for the fault map shown in

(b} above. Faults are colour coded as in the map, Note the dizplicement
minima at the relay ramps. (d) Along-sirike hangingwall —footwal | map
(in the fault plane) showing the elliptical fault displacement paticms
(Base Tertiary horizon) for individual fault segments.
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McLeod et al., 2000 — Northern North Sea, Strathspey-Brent-Statfjord
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Fig. 15. Schematic model of the growth of the SBS fault system. Based on the observations from the dis placement—distance
profile between 10 and 30 km along-strike (Fig. 10a). In each stmge (a) is a plan view of the Bult system with depocentres shaded
in grey, (b) is a schematc displacement—distanoe profile and (c) is a plot of D, against L for the evolving fault 1. See text for

further explanaton.
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Resor, 2008 — Grand Canyon, Parashant Canyon
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Figure 1. Geologic and structural map of study area. Formation contacts modified from Huntoon and Billingsley (1981} Faulis from this
study. Bedding attitwdes with asterisks (*) are from Huntoon and Billingsley (1981); all others are new data. Bold black sutline is boundary
of area of surface medel presented in Figure 6. Bold gray box shows area of Figure 11. Coordinate system: Universal Tramsverse Mercator
(UTM} zone 12N, World Geodetic System (WGS) 1984 datum. Grid unit: meters. Pm—Permian; Penn—Pennsylvanian; Miss—Mississip-
pian; Dev—Devonian.
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Walsh et al., 1999 — Timor Sea
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Walsh et al., 1999 — Timor Sea

(a)

M

(b}

Fig. 5. {a) Faull polypoms on a map of hormoon H farmowed m b))
showing the long length of overlap elative io the sepamion dis-
lzmce, which woukl nol he expecied on a2 newim] elay. (b)) Sasmc
section showmng interpretesd irsoes of overdapping nommal lEolts frm-
ing an unbmeached conimdimal mlay. Nole the inoressed bed dips
within the rlay which sooommodaie & smple shear and sccoumis lor
& hagh propexrton of the todel faoli offsel The apparenl offed of the
stong reflecion mmedisidy below the lower p-pant of the [ool-
wall Bult, 5 bebeval b0 be an anefsct due to distoriion of the seds-
mac sigml {cf Block disgrem of the relay shown m (2) mnd (bl wath
tap=limes bouncding the [aull surisees (shaded); the plane of section in
{hi 15 indicated. The tipelines are mapped on 58 hnes spaced =i 25 m.
Sammaic [rom the Tmmor Sea
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Zampieri, 2000 — Verona Italy
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Fig 2. Structural map of the study area showing the complex array of Paleogene normal faults. Some faults were reactivated as

strike-slip faults during the Neogene, when the Come d"Aquilio inversion structure ( NW corner of map) developed.
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Detached/Mobile Substrate Faults

Fossen et al.

B Cover
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Intermigtent strearn [§2

Figure 6. Geologic map of the northern part of the Moab fault. Several fault branch points that we interpret as areas of single-tip

interaction are seen. Based on Doeling (2001) and own mapping.

, 2005 — SE Utah, Moab Fault
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Huenink — Canyonlands, Utah
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Huenink — Canyonlands, Utah
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Huenink — Canyonlands, Utah
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Peacock and Parfitt, 2002 — Big Island, Hawaii, Kilauea VVolcano
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Trudgill and Cartwright, 1994 — Canyonlands, UT, SOB Hill
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Trudgill and Cartwright, 1994 — Canyonlands, UT, Twin Valleys
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Figare 5. A simplified struc-
tiral map of the Twin Valleys re-
gion (morthern Devil's Lane).
Three migjor overlapping graben
segments are present, linked by a
series of normal faulis amd asso-
ciated relay ramps.
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Bedding/Layer Confined Faults

Barnett et al., 1987 — Cumbria, England
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Figure 12—(a) Structural contours on worked coal seam, Out-
gang opencast site, Cuambria, England. Contours in meters
above sea level. Asymmetric contour patterns on either side of
fault [maximum vertical displacement, 9.8 ft (3 m)] result from
reverse drag of bedding that had a pre-faulting strike oblique to
that of fault. (b) Stratigraphic separation diagram for same
fault. Dashed curve = footwall, solid curve = hanging wall.
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Fossen et al., 2005 — Goblin Valley State Park, Utah, Buckskin Sping
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Figure 14. Relay structure & Buckskin Spring near Goblin
Valley. Oblique deformation bands in the wide overlap damage
Zone are present.
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Fig. 2. Fault trace geometries and corresponding throw profiles for four segmented faults. Recorded throw values (m),
fault throw directions (tick on downthrown side), fault trace tip-points (open circles), and ends of data (vertical bars) are
shown. Throw profiles show individual trace profiles (thin solid lines) and aggregate throw profiles (thick broken lines).
(a) Silkstone seam, Rockingham Colliery, South Yorkshire; (b) Parkgate seam, Denaby Main Colliery, South Yorkshire;
{c) 1st Waterloo seam, Glapwell Colliery, Derbyshire—note that throw readings on the footwall splay were not recorded;

(d) 2nd Waterloo seam, Silverwood Colliery, South Yorkshire.
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Huggins et al., 1995 Northumberland, Daisyhill Coal Site
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Fig. 6. Relay ramp at Dadsyhall open-cast coal site, Northomberland. (2) Map of fault segments A and B on the Main Scam,

[ the British Cuoul Explurativn Geoboyieal Plan, showing recorded faulr theow valees (m), thiow difecthions (licks on

downthrown sides) and seam elevation contours in m, broken contours are poorly constrained; (b) throw profiles of fault

segments A and B (solid line) in the region of the relay 2one, aggregate fault throw (broken line) and aggregate throw,

including the ductile shear stfam component (broken line, labelled); (o} composite horizon separation diagram for fault
segrments A and B,
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Huggins et al., 1995 — North Derbyshire, Markham Colliery
(a) (b}

]

[
1 -2 -Z -2
Fig. 15. {a) Fault trace geometries, on five scams, of part of a relay zone at Markham No. 2 Colliery, North Derbyshire,
projectad vereally onte 3 common horizontal surfuce. The Gl bas o continwows wace on te botmom two seams. Falt
trace tip-points {open circles), ends of data (bars), truncated data {arrow heads) and throw directions (ticks) are shown,

Seam dip is 4.5° 1o the northeast. Locations of the cross-sections shown in (b) are indicated; (b) cross-sections through the
Ll viewsd [FOE TINe TIgNE (£881).
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Peacock and Parfitt, 2002 — Big Island, Hawaii, Kilauea Volcano, Hilina-Pali Road
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Peacock and Sanderson, 1994 — Somerset, Kilve
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Figure 5—(a) Map of a stage 2 relay
ramp at Kilve, Somerset. See Figure
2 for key. (b) Hanging wall and
footwall cutoffs for map in part (a).
(c) Throw—distance (t-x) graph for
same map. The relay ramp does not
cause a notable minimum in throw.
(d) Displacemeni—distance (d-x)
graph for same map.
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(b)

Peacock and Sanderson, 1994 — Somerset, Kilve
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Figure 7—Maps of
relay ramps illuserar-
ing different locadons
of breakage by frac-
mres that conmect the
oversiepping scg-
menis. See Figure 2 for
key. (a) A connecting
fault has developed at

1 one end of the relay

ramp. (b} Both ends of

within the composite
faule. () Possible
example of fracmring
at the center of the
ramps can be frac-
mred at several loca-
tons o produce a
complex fracture zone
(Figure 2a), often with
the relay becoming
almest brecciaed. A
ramp can become
locked, so further dis-
placement has been
accommodated by
renewed propagation
of one or both of the
fault segmenis, there-
by preserving the
ramp. These examples
are comparable with
the posidons of break-
age of the bridges
berween oversicpping
velns (Figure 6 of Pea-
cock, 1991a.
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Soliva and Benedicto, 2004 — Andalucia Spain, Granada province

a. Displacement

D icm)

b. Separation

S {cm)
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C. Picture

F19
OL=0.22m
L=0.22m
Wmax=0.22m
S=0.22m
Lt=0.54m
L1=0.38m
L2=0.42m
Wmin=0.20m
DmaxF1=0.055m
DmaxF2=0.050m

F14
OL=1m
L=1m
Wmax=1.2m
S=1.2m
Lt=2.1m
L1=1.4m
L2=1.3m
Wmin=1.11m
DmaxF1=0.14m
DmaxF2=0.17m

TOF  BOD 900
L{em)

Fg. 5. Examples of open relyys. (2) Displacement profiles 2 relay ramps, (h) assocised separation profiles (distance hetween fanks nommal i theirtrace along
averlap), and {c) rendesd phoiograph of eadh =lay. Relays referenced by the letiers F and N are from Fomanyd and Nigiels fauli seis, respedivdy. In
displacement profiles, broken lines represent aggregate profiles at the overlp zone. Diphcement profiles of each segment are projectad following an axis
perpendicabr to falt sepments. Frror bas are lahelled on pmfiles. Sapantion is taken Sllowing an axis perpendicular w0 fanh s=gmems, and eror & ahom

1 mm

F10 N18 N21 N5
0OL=0.085m 0OL=0.034m OL=0.7m OL=1.78m
L=0.085m L=0.034m L=0.7m L=1.78m
Wmax=0.125m Wmax=0.024m Wmax=0.08m Wmax=0.78m
S$=0.125m S$=0.024m S=0.08m S=0.78m
Lt=0.325m Lt=0.054m Lt=0.96m Lt=5m
L1=0.238m L1=0.05m L1=0.9m L1=4.1m
L.2=0.188m L2=0.04m L2=0.76m L2=2.67m
Wmin=0.075m Wmin=0.01m Wmin=0.04m Wmin=0.56m
DmaxF1=0.085m DmaxF1=0.0025m DmaxF1=0.055m DmaxF1=0.15m
DmaxF2=0.045m DmaxF2=0.0024m DmaxF2=0.064m DmaxF2=0.13m
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Soliva and Benedicto, 2004 — Andalucia Spain, Granada province

d. Displacement

b. Separation

m 220
L {cm)

Ino-l

D {cm)

300 E Ain

L [erm}

E

Licm)
Fig. &. Examgiles of linked relays; see text of Fg. 5 for moe detaik In separafion profiles (b) broken fnes ®pesent linking thmugh-going falis

a0 60 BN
L {em|

C. Picture

F1
0OL=0.42m
L=0.42m
Wmax=0.08m
S=0.08m
Lt=0.6m
L1=0.52m
L2=0.5m
Wmin=0.02m
DmaxF1=0.04m
DmaxF2=0.045m

Stage 3 - Fracturing

E5
0OL=0.93m
L=0.93m
Wmax=0.2m
S=0.2m
Lt=1.267m
L1=1.03m
L2=1.167m
Wmin=0.03m
DmaxF1=0.10m
DmaxF2=0.16m
Stage 3-Fracturing

E7
OL=1.25m
L=1.25m
Wmax=0.35m
S$=0.35m
Lt=1.8m
L1=1.7m
L2=1.4m
Wmin=0.2m
DmaxF1=0.22m
DmaxF2=0.22m
Connecting Fault
Breach

F9
OL=1m
L=1m
Wmax=0.29m
S=0.29m
Lt=1.14m
L1=1m
L2=1.11m
Wmin=0.17m
DmaxF1=0.17m
DmaxF2=0.08m
Connecting Fault
Breach

N2
OL=0.58m
L=0.58m
Wmax=0.14m
S=0.14m
Lt=0.8m
L1=0.76m
L2=0.64m
Wmin=0.02m
DmaxF1=0.07m
DmaxF2=0.21m
Connecting Fault
Breach

N3
OL=1.9m
L=1.9m
Wmax=0.25m
S=0.25m
Lt=2.25m
L1=2.1m
L2=2m
Wmin=0m
DmaxF1=0.19m
DmaxF2=0.26m
Lower Ramp
Breach
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Soliva and Benedicto, 2004 — Andalucia Spain, Granada province

d. Displacement

Relay F&

o
130 381 30 A0 30 M
L {cm)

Felay M20
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b. Separation

Fig. 7. Examgles of folly heached reloyvs; see tent of Figs. 5 and 6 for more details.

C. Picture

E6
OL=0.189m
L=0.189m
Wmax=0.056m
S=0.056m
Lt=0.367m
L1=0.256m
L2=0.278m
Wmin=0m
DmaxF1=0.105m
DmaxF2=0.11m
Upper Ramp Breach

F18
OL=0.77m
L=0.77m

S=0.086m
Lt=1m

L1=0.77m
L2=0.97m
Wmin=0m

Lower Ramp
Breach

Wmax=0.086m

DmaxF1=0.20m
DmaxF2=0.36m

Relay N17
—=F - R
3 I
2] 3
BT
E8 N20
OL=0.42m OL=0.25m
L=0.42m L=0.25m
Wmax=0.08m Wmax=0.083m
5=0.08m S5=0.083m
Lt=0.72m Lt=0.583m
L1=0.58m L1=0.33m
L2=0.56m L2=0.467m
Wmin=0m Wmin=0m
DmaxF1=0.15m DmaxF1=0.13m
DmaxF2=0.18m DmaxF2=0.23m
Double Breach Connecting
Fault Rreach

N15
OL=0.113m
L=0.113m
Wmax=0.031m
S$=0.031m
Lt=0.181m
L1=0.15m
L2=0.144m
Wmin=0m
DmaxF1=0.041m
DmaxF2=0.053m
Lower Ramp
Rreach

N17
OL=0.25m
L=0.25m
Wmax=0.038m
S=0.038m
Lt=0.425m
L1=0.35m
L2=0.35m
Wmin=0m
DmaxF1=0.048m
DmaxF2=0.062m
Double Breach
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Stewart and Hancock, 1991 — Aegean Region

T

Tl
5

Fig. 5. Step-over zones within (a) the West Youchtas fault zone, (b) the Yavansu fault zone, and (c) the Lastros fault zons
Diagrams show how slip-plane inclination and height (lengths of vertical lines in ornament indicate heights direct]
proportional to horizontal scale) vary in relation to the location of step-over zones. ‘Stereoplots” are lower-hemisphei
equal-area diagrams.

Lastros Yavansu
OL=265m OL=175m
L=429m L=175m
Wmax=265m Wmax=118m
S=200m S=118m
Lt=1494m Lt=682m
L1=835m L1=554m
L2=976m L2=332m
Wmin=206m Wmin=82m
Tilt=30° Tilt=31°
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Walsh et al., 1999 — South East Asia

Fig. 2. (@) Fault polygons onm 2 map of horison H [armowed m (b))
with locabon of oosdectsn in (b mdicaied. (b S=mme schon
wilh interpretation of irsces of & moster faull and 2 splay miened-
img &l 8 brench-poml. Vertical o hormzontsl scale 5 sppoos ms ldy
151 {lms=ca 125mj} {c) Block dizgram of laull mierpretsion
wilth surfzce of masier FEull shaded, snd boundsnes of the splay
[zl defined by an L-shaped branchdme (hesvy hneh and crved tp-
line. The plane of cross-sacton m (b) 15 inshcated lopether with
traces of master fzull and splay on ths section. The branch-lme =nd
bplme of the splay [aull are esch delined by 10 data poants on 10

seEmic sedions spaced a1 12.5 m. MNole the sgnificant proportion of

the faull duplacemen! sccommodaled by & conlmiois stram, vwith
bed mlztion, helwem the averlzppmg (aulls. The siruclure is mier-
praed &= breschmg of @ sormal (@il neidral elay by the Tootwall
l2ult, with the mlay origmally lermmatmg downwanls a1 a hranch

pomi &l the approxmate pos bon of the cross-sschon (see Fig. la).
The imim] breeching probably occumesd at some pomi on the down-
dip segmend of the branch-lne. Seismc from the South-Exil Adza.

OL=133m

L=133m
Wmax=48m

S=48m

Lt=690m

L1=300m

L2=519m
Wmin=0m

Upper Ramp Breach
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(a)

Willemse, 1997 — VVolcanic Tableland, CA
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step or stepover underiap ‘_l segment

Figure 1. Map traces of segmented normal [aults, (i) A normal fault zone in the Bishop Tuff, Volcanic
Tableland, California. The faults are widely spaced, overlap, and are left-stepping. (b) Terminology for the
trace geometry of discontinuous fault zones. A relay structure is the zone connecting the footwall and hanging
wall of a fault zone, where slip is transferred between segments [Goguel, 1950; Larsen, 1988]. Reorientation
of bedding at the fault step may creale a relay ramp [Peacock and Sanderson, 1991]. Where segments link, the
term jog has been used [Sibson, 1986]. Inset illustrates definitions of length and height of a lault surface

(shaded).

1
OL=359m
L=359m
Wmax=205m
S=205m
Lt=1179m
L1=795m
L2=718m
Wmin=205m

2
OL=231m
L=231m
Wmax=154m
S=154m
Lt=1051m
L1=718m
L2=590m
Wmin=128m

4
OL=333m
L=333m
Wmax=154m
S=154m
Lt=1179m
L1=974m
L2=564m
Wmin=128m

3
OL=513m
L=513m
Wmax=282m
S=282m
Lt=1051m
L1=590m
L2=974m
Wmin=256m

5
OL=385m
L=385m
Wmax=231m
S=231m
Lt=846m
L1=564m
L2=667m
Wmin=179m
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Willemse, 1997 — Volcanic Tableland, CA
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Figure 3. The 2-D slip distributions along segmented normal fault in the Bishop Tuff, California. Numbers
on the fault trace map identify the seven segments. The distribution of vertical offset along the various
segments is asymmetric on the distal segments and more symmetric on the central segments. The slip-to-
length ratio is greatest on the central segments. Dashed line indicates aggregate of all segments but does not
include the extra offset accommodated by rotation of bedding in the relay zones

6 7 8
OL=49m OL=11m OL=16m
L=109m L=76m L=22m
Wmax=44m Wmax=11m Wmax=11m
Wmin=16m Wmin=11m Wmin=11m
S=22m S=11m S=11m
Lt=235m Lt=207m Lt=180m
L1=153m L1=153m L1=82m
L2=153m L2=82m L2=120m
DmaxF1=2.4m DmaxF1=6.2m DmaxF1=7m
DmaxF2=6.2m DmaxF2=7m DmaxF2=5.9m

9 10
OL=11m OL=8m
L=27m L=30m
Wmax=11m Wmax=5m
Wmin=8m Wmin=0m
S=11m S=5m
Lt=125m Lt=136m
L1=120m L1=54m
L2=54m L2=115m
DmaxF1=5.9m DmaxF1=5.7m
DmaxF2=5.7m DmaxF2=3.1m

Lower Ramp
Breach

11
OL=5m
L=5m
Wmax=8m
Wmin=5m
S=8m
Lt=191m
L1=115m
L2=65m
DmaxF1=3.1m
DmaxF2=1.0m
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Model Generated Faults

Childs et al., 1993

s & 7 A& 8 10 11 12

Scm

5 & 7 B 9 10 11 12

Scm

Fig. 9. {(a) Portion of the fault map of Horizon ¥ for the tinal

model, showing fault F2 and its synthetic splay. (b) As (a) but

with fault heaves restored to their approximate values at the
time of deposition of Horizon 10,

A
OL=0.077m
L=0.077m
Wmax=0.023m
S$=0.023m
Lt=0.131m
L1=0.108m
L2=0.104m
Wmin=0m
Upper Ramp Breach

B
OL=0.069m
L=0.069m
Wmax=0.023m
S$=0.023m
Lt=0.131m
L1=0.112m
L2=0.092m
Wmin=0.092
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Fig. 3. Analogue model 1—orthogonal
rift. (a) Overhead view of the analogue
model after 2 cm extension. Hlumination
is from the left. Dark bands are faults
dipping to the left and light bands are
faults dipping to the right. The linkage of
the right-hand border fault system is
highlighted. (b} Overhead view of the
analogue model after 4 cm exiension.
Note the increased displacement on the
fault systems with fault overlaps produ-
cing relay ramps and breaching of relay
ramps (highlighted). (¢) Overhead view
of the analogue model after 6,0 cm
extension. Relay ramps have become
breached by along-strike propagation of
overlapping faults. (d} Overhead view of
the analogue model after 10cm exien-
sion. Local accommodation zones are
highlighted.

McClay et al., 2004 — Model 1

a) 20cm

Linked
Fault
System

S

Model 1-1
OL=0.093m
L=0.093m
Wmax=0.021m
S=0.021m
Lt=0.314m
L1=0.164m
L.2=0.229m
Wmin=0.007m

Model 1-2
OL=0.071m
L=0.071m
Wmax=0.021m
S=0.021m
Lt=0.229m
L1=0.129m
L2=0.171m
Wmin=0m

Upper Ramp
Breach
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McClay et al., 2004 — Model 2

Ifilra-Basin Accommiadalion Zone

Model 2-3
0OL=0.133m
L=0.133m
Wmax=0.044m
S=0.044m
Lt=0.361m
L1=0.361m
L2=0.133m
Wmin=0m
Upper Ramp Breach

Fig. . Analisgie model 2—&F oblique fi. () Line diagram
Imierpretatbon of ihe surfnoe sl e ol the end of exbensson

Dark bads are fauhs dippong o the Ledt osd Tigh bands ane faihs
apping o the night. Segmentation sni linkages along the mght hond
bemler fult system are highlighted wgether with the inra-basin
acoommmdation pones, (b Serial sections through ibe ml.qut rift
mindel, Syn-kinemabic sirata are the red and white layers that infill the
graben sysiem whercas pre-kinemalic strala are the blue, hlack amil
white Lavers, litri-basin accommodabin 2ones are chanacterized by
conjugate fanl ammys—Sections I3, 5 aml 7.

Model 2-4
OL=0.050m
L=0.050m
Wmax=0.039m
S=0.039m
Lt=0.194m
L1=0.133m
L2=0.111m
Wmin=0.028m
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McClay et al., 2004 — Model 3

Mnjar
Ralay
Stniclune

- Sinic
-~ [:}

S0-Link
AN margin

inlra-Basin Accommodatio Inira-Basin Accommedaiion Zone
=liem .

d} 11.5 om

Ebrnneing
A Linkage
Aiong
. Fin Barduy
\ A .

o

Intr&-Bnsn Accommodalion Ione

L}

Fig. 7. Anabiggoe model 3—60° ofTset oblique rifl (o) Overhead view of the anologee model ater 2 em exiension. Hiuminstion is from ihe lefi. Purk
bapcds are faults dippang (o the e and light Bands are Gubts dipping e the righs, Intr-hesin occommodation cooes (highlighted) develop shove the
basement offsets. (b Overbesd view of the analogue model after 4 cm of extension. Intra-hasin necommedsion zooes (hlghlighieds are well develaped
und consist of everlnpping and interlocking fault arrays. Overlapping faulls o the nift borders produce well<levelopad relay mmps, (e Overhead view of
the analogue model after 6.0 cm extension, The Infr-tasin sccommodalion sones ane highlighted. At the borders of the nfi relay ramgs are breached by
propagation ol overlapping foulis. (d) Overbead view of the analogue madel afber 115 om extension, Theee well-developed sccommsudation sones
(highlighted separate dallenent domains of Hke-dipping Fuuls.

Model 3-5
OL=0.109m
L=0.109m
Wmax=0.091m
S=0.091m
Lt=0.391m
L1=0.264m
L2=0.200m
Wmin=0.036m
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McClay et al., 2004 — Model 3

11 1 10

=

Intra-Basn Accommodation Zone

27 0 bl

Fig. & Annlogue nodel 3—6 offset obligue mi (i Line disgram
imterpretaiion of the surfnce faalt pesiem at the end of exrension, Dark
bamxlx are fauls dipping 1o the lefi and lght bands are fuls dipping o
the rght. The mir-basin scecommodation zones shove ihe odfset
basmement are highlighted, Linkages of the righi-hand border Fauli system
are akso showie () Seraal sections ikrough the ollvel obligue rfl model.
Syr-kincmstic strata are the red amd whale lavers that mbll the graben
system whereas pre-kinemaric siracn are the blue, black and wiate Wyers
The well developed inirn-basin accommuodamtion zomes are marked by
comjugnle (ol ermys in Sections 4, 6. 7 and 10

Model 3-6
0OL=0.089m
L.=0.089m
Wmax=0.050m
S=0.050m
Lt=0.328m
L1=0.256m
L2=0.167m
Wmin=0.017m
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McClay et al., 2004

{a] ; A 11
OL=0.033m
L=0.033m
Wmax=0.021m
S$=0.021m
Lt=0.108m
L1=0.092m
L2=0.050m
Wmin=0.021m

12

4 OL=0.008m
¥ 2o L.=0.008m

Wmax=0.008m
S=0.008m
Lt=0.075m
L1=0.033m
L2=0.050m
Wmin=0.008m

13
OL=0.045m
L=0.045m
Wmax=0.009m
S$=0.009m
Lt=0.327m
L1=0.200m
L2=0.182m
Wmin=0m
Upper Ramp
Breach

1D em 11

Fig, 15, Ci plual padterns of fa
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