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ABSTRACT

In response to the discussion on how electric power distribution systems should evolve 

under the Smart Grid, this thesis explores methodologies for the redesign of electric distribution 

systems by incorporating elements o f emerging distribution systems. Firstly, an optimization 

problem is defined to simultaneously determine locations for Distributed Generation (DG) and 

feeder intertie connections in a legacy radial distribution system to improve reliability in the 

islanded mode of operation -  i.e., microgrid. For that, an extended methodology o f an existing 

Multi Objective Genetic Algorithm (MOGA) is proposed. The MOGA is applied to a test system 

in which two types o f modeling the load are explored and satisfactory design solutions are 

obtained.

Secondly, a methodology is proposed to determine the impact of penetration of a plug-in 

hybrid vehicle (PHEV) fleet with vehicle-to-grid (V2G) features on distribution systems. The 

methodology is based on a probabilistic simulation of daily behavior of a PHEV fleet to 

determine the charging patterns o f the vehicles for utility peak-shaving purposes and for the 

benefit o f the owner through a Linear Programming (LP) optimization method. The charging 

patterns o f the PHEV simulated fleet are used to determine the impact of PHEVs in a distribution 

test system under islanded mode of operation. Finally, the impact of PHEVs in the redesign of 

such distribution system islands is also considered.
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CHAPTER 1 

INTRODUCTION

1.1 Objective

The objective o f this thesis is to extend methodologies for the redesign o f electric 

distribution systems by incorporating elements o f emerging distribution systems. First, the 

purpose is to enhance an existing technique to improve the reliability o f radial distribution 

systems under islanded mode o f operation through the optimal integration of Distributed 

Generation (DG) and addition o f networked lines. Secondly, the objective o f this thesis is to 

develop a methodology to analyze the contribution o f  Plug-in Hybrid Electric Vehicles (PHEVs) 

to the reliability of such power system islands.

1.2 Motivation

In the U.S., the Smart Grid Initiative (SGI) is outlined in Title XIII of the Energy 

Independence and Security Act o f 2007 (EISA07) [1]. It is the policy o f the United States to 

support the modernization o f the Nation's electricity transmission and distribution system to 

maintain a reliable and secure electricity infrastructure that can meet future demand growth. The 

US Department of Energy explains the necessity o f  the SGI, and describes that the grid’s 

development has mirrored the growth in population and global economy and as a result, the 

reliability of the grid is the biggest risk o f the grid as it is nowadays: there have been five massive 

blackouts over the past 40 years, three o f which have occurred in the past nine years, and outages 

and power quality issues are estimated to cost American businesses more than $100 billion on 

average each year [2]. Moreover, the savings from a more efficient grid is seen as an opportunity 

for improvement. The outages are also viewed as a national security issue, and finally, the desire 

of being more attuned to environmental aspects and climate change are addressed, as well as 

increasing the global competiveness o f the U.S. in the modem energy market. In Europe, the 

modernizations efforts on the grid are beheld in the European Energy Commission’s 2006 Green 

Paper “A European Strategy for Sustainable, Competitive and Secure Energy”[3]; this is 

presented in three main themes, namely sustainable energy mix, security o f power supply, and 

competitive energy market. The European technical platform for the electricity networks o f the 

future presents Smart Grids as a necessary response to the environmental, social, and political
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demands placed on energy supply [4], Finally Asia and South America are moving towards smart 

grids [5,6]. However, the challenges are more diverse in Asia and South America than in Europe 

or the United States, where the challenge depending on the country is more grid renovation than 

grid extension. The most notable policy from a Smart Grid perspective in China is the 2007 

Energy Policy declaration [7] and in India is the National Electricity Policy of 2005 [8], where 

the need to do important grid related activities is addressed such as strengthen regional power 

grids and power transmission and distribution networks, develop an emergency response system 

for power safety and reliability, strengthen power Demand Side Management (DSM) and 

reinforce the priority policies for renewable energy electricity among others.

This general overview of the motivations from all over the world for modernizing the 

power grid has common directions o f work at the distribution level. It is widely expected that 

most o f the recommendations o f the SGI are going to affect the distribution sector of the 

electricity delivery infrastructure, to make inroads into load relief of the transmission system by 

increasing the generation in the distribution system and enabling new ways of physical and virtual 

storage to balance consumption and production in order to improve reliability in supply. One of  

the implementation topologies that caters to the SGI is the distributed islanded resource or 

microgrid [9]. This entity is defined as a self-contained autonomous subset of the area electric 

power system, operating at voltages at or below the primary distribution voltage and with access 

to micro-sources, distribution system assets, control and protection gears, and at least one end- 

user facility and capable o f operating in one o f the following two modes -  grid islanded and grid 

interconnected [10,11]. There are concentrated efforts in research, development, and 

demonstration (RD&D) currently in progress in Europe, the United States, Japan, and Canada on 

microgrids which are able to provide power quality and reliability different from general macro- 

grid standards [12].

In addition, if  proper policy is in place, PHEVs can provide a promising solution to 

increasing generation in the consumer end side o f the grid and enabling new ways of physical 

storage, acting as mobile decentralized storage. The American Recovery and Reinvestment Act 

o f 2009 (ARRA) provides energy incentives for both individuals and businesses for qualifying 

plug-in electric drive vehicles purchased after 31 December, 2009 [13].The US Department o f  

Energy (DOE) has already identified a range o f policies, incentives and regulations designed to 

enhance the probability o f success in commercializing PHEVs as they enter the automotive 

marketplace starting in 2010 [14].The entire concept o f using the battery of a vehicle as a 

Distributed Energy Resource (DER) -  load and resource -  is known as the vehicle-to-grid or V2G
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concept [15]. In this capacity, PHEVs can serve in two modes: V2G where power flows 

from vehicle to grid and the reverse, grid to vehicle where power flows from the grid to the 

battery vehicle. The mobility o f the energy storage in PHEVs allows for strategic placement of 

the DG source to optimize power system needs. Widespread deployment of PHEVs will allow for 

increased energy storage, and improved reliability and stability of the electric grid [16]. Linking 

the transportation and power systems through PHEVs will allow for electrical energy storage on a 

scale much larger than is currently feasible [15]. The additional energy capacity will be directly 

proportional to the penetration o f PHEVs into the automobile market, and modeling is needed to 

determine the increase in capacity across the space and time dimensions [17].

As the SGI progresses toward implementation, it is imperative to study the design of the 

emerging distribution systems as an evolution of the legacy system -  specifically, from the radial 

topology to a partially meshed network system with DG, seemingly resembling a transmission 

system so as to maximize the reliability o f the distributed islanded resource [18]. Furthermore, it 

is apparent that customers who own PHEVs would seek to attain optimal operational profits from 

the V2G capability o f their cars while the utilities to which such customers connect may 

potentially use the PHEV for peak shaving purposes and increase energy storage, as with 

Distributed Energy Resources (DER) installations [19]. Modeling o f a PHEV fleet, with an 

emphasis on maximizing consumer profit and/or utility peak shaving capability is attractive to 

determine their possible contribution to the reliability o f emerging electric distribution systems 

Under islanded mode of operation.

1.3 Scope

The scope o f this thesis includes an extension of an existing method described in [20], to 

selectively modify a legacy radial topology to maximize reliability on an islanded distribution 

system. The enhancements presented here are: consider simultaneous co-location of DG and 

feeder interties, as opposed to assumed locations o f DGs, use annual load duration curve for 

expressing the load in the distributed island resource as opposed to average loads alone, and 

measure of the impact o f PHEVs on the reliability o f legacy radial and redesigned distribution 

systems . The extended method presented in this thesis models DG as in [20], where the capacity 

factor (CF) of the generators is used to represent their power output.

Furthermore, a methodology to determine the contribution of PHEVs with V2G 

capabilities to the reliability o f  islanded distribution systems is presented. This technique is based
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on optimal charging patterns of a simulated PHEV fleet behavior over a year, to maximize the 

profit o f  the customers as well as for utility Demand Response (DR) actions.

However, the scope of this thesis precludes protection and control topics that are key 

features for the operation of such electric power systems with generation on the customer end o f  

the grid, but also for the operation o f DGs themselves (including PHEVs with V2G technology).

1.4 Literature Search

This section describes primary the evolution of electric distribution systems under the 

smart grid paradigm. Following which, the literature review is split in three themes: first, current 

research on distribution planning methodologies, secondly, a discussion of the state-of-art o f 

PHEVs studies on distribution networks and at last, a section on tools and methods used in this 

thesis.

1.4.1 Evolution o f distribution systems with smart grids

“Smart Grids” have been defined as electricity networks that can intelligently integrate 

the behavior and actions o f all users connected to it - generators, consumers and those that do 

both - in order to efficiently deliver sustainable, economic and secure electricity supplies, 

employing innovative products and services together with intelligent monitoring, control, 

communication, and self-healing technologies. [4]. “Grid 2030” report, a policy that aided the 

smart grid concept, identified several promising technologies for incorporation in the electricity 

grid, such as DG, distributed intelligence, advanced energy storage, smart controllers, and power 

electronics, with the vision o f creating a national electricity backbone, providing efficient 

generation from many sources to take advantage o f varying seasonal and regional peak 

differences, which would be supported by regional interconnections and local distribution 

systems, which may be mini- and/or micro-grids [21]. In this thesis, a smart grid is understood as 

a way o f  operating the power system using a set o f enabling technologies (communication, power 

electronics and storage) to balance new types o f production and consumption at all levels, i.e., 

from the generation side to the customer side.

Title XIII o f  the EISA07 [1], characterizes a smart grid which includes:
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• Deployment and integration of distributed resources and generation including 

renewable resources

• Development and incorporation of DR, demand-side resources, and energy- 

efficiency resources

• Deployment o f 'smart' technologies (real-time, automated, interactive 

technologies that optimize the physical operation of appliances and consumer 

devices) for metering, communications concerning grid operations and status, 

and distribution automation

• Deployment and integration of advanced electricity storage and peak-shaving 

technologies, including PHEVs, and thermal-storage air conditioning.

• Provision to consumers of timely information and control options

The power grid is moving from a centralized generation characterized by large power 

plants in the generation side, towards a small and dispersed generation on the distribution side. 

Centralized generation has been the traditional way of production of electrical power to the 

transmission system o f the grid, which is finally distributed to the users. DG or DER are 

characterized by being placed in the distribution side of the grid and by small power generation 

and/or storage. Definitions o f DGs or DERs in the literature prepared by different Institutes, 

Agencies, Governments, etc, are presented in [22-24], For low levels o f penetration o f up to 15% 

o f peak demand, DGs do not have a large effect on distribution systems [25]. However, a smart 

grid must have the potential to integrate large sources of DER in which case, the distribution 

systems may begin to resemble to a small transmission system and similar design issues need to 

be considered such as non-radial topologies. Small generation at the customer interface such as 

DG but also PHEVs with V2G capabilities complicate the power flow analysis and control o f the 

network. Protection and control schemes will need to account for bidirectional power flow and 

multiple fault sources [26] as well as interconnection issues different from those o f conventional 

systems [27]. However, as mentioned earlier, the protections and control aspects are out o f the 

scope o f  this thesis.

Over the years, there have been numerous studies that suggest that consumers would use 

less electricity if they knew how much it was costing them [28]. DR enables the capability o f a 

more active network at the distribution level where demand-side resources are managed to meet 

the available generation and the grid’s power delivery at any time [29]. For that, Advanced 

Metering Infrastructure (AMI) needs to be deployed to improve demand-side management,
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energy efficiency, and a self-healing electrical grid. Smart meters empower an AMI which is able 

to react almost in real time, provide fine-grained energy production or consumption info and 

adapt its behavior proactively. Smart meters provide new opportunities and challenges in 

networked embedded system design and electronics integration. They are able not only to provide 

(near) real-time data but also process them and take decisions based on their capabilities and 

collaboration with external services. That in turn has a significant impact on existing and future 

energy management models. Households and companies are able to react to market fluctuations 

by increasing or decreasing consumption or production, thus directly contributing to increased 

energy efficiency [30].

The result of the electricity market structure is that the wholesale price of electricity, 

reflecting the supply and demand interaction, varies constantly. Real Time Pricing (RTP) o f  

electricity describes a system that charges different retail electricity prices for different hours o f  

the day and for different days, based on end-use and supply availability. The end-use costumers 

and devices can have visibility of possible distribution grid conditions and dynamic prices and are 

able to control their consumption. An existing form o f implementation o f dynamic pricing is 

time-of-use (TOU). Under TOU, the retail price varies in a preset way within certain blocks o f  

time. Because TOU rates do not capture the price variation within a price block, TOU pricing is 

often combined with a separate charge for peak usage. These “demand charges” are a price per 

kilowatt for the highest usage by the consumer during the billing period (usually a month). 

Reference [31] describes five types of programs for introducing greater economic incentives into 

electricity demand: RTP, TOU with or without demand charges, Critical Peak Pricing (CPP), 

Demand Reduction Programs (DRPs), and Interruptible Programs (IDPs). CPP programs usually 

start with a TOU rate structure, but then they add one more rate that applies to “critical” peak 

hours, which the utility can call on short notice. (DRPs) pay a customer to reduce their 

consumption at certain times and IDPs give the system operator the right to instruct the customer 

to cease consumption on very short notice. In return, the customer receives some sort o f  

compensation in its electricity rate. All o f these programs attempt to give end-use customers 

economic incentives to reduce their demand at times when the supply/demand balance in the 

system is tight. The importance of developing such programs from the utility side is a necessary 

factor to reflect hourly and daily change in pricing due to seasonal changes- thus, providing the 

end user with information and control capability.

Distribution Automation (DA) refers to monitoring, control, and communication 

functions located on the feeder [25]. The medium-voltage distribution network has traditionally
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been passive, implying that it merely delivers power form bulk supply points to customers. DA 

enables a more active distribution network through key electrical power technologies and 

information systems such as adaptative and integrated protection systems required to provide 

flexible and optimized reaction to network fault conditions and real-time network simulation and 

analysis methods, key to providing decision support for operation and management systems [32]. 

Electric power utilities worldwide are increasingly adopting the computer aided monitoring, 

control and management o f electric power distribution system to provide better services to 

electric consumers. Therefore, research and development activities worldwide are being carried 

out to automate the electric power distribution system utilizing recent advancement in the area of 

Information Technology (IT) and data communication system. Reference [33] reports the present 

and past status of the research and development activities in the area of electric power distribution 

automation both in developed as well as in developing countries and highlights advanced sensors 

and distributed communication links as essential to allow the transfer of real-time power system 

data. One of the features provided by DA is feeder reconfiguration which will be described in 

more detail in the next section 1.4.2.

Finally, the SGI encourages integration storage and peak-shaving technologies including 

PHEVs. Stressed and less secure power system operating conditions have encouraged both power 

utilities and large industrial power consumers to look for bulk energy storage systems. Reference

[34] reports on the need of development o f techniques to enable the benefits o f Energy Storage 

Systems (ESS). The peak-shaving application is particularly attractive for large industrial plants

[35], where battery ESS can be used to reduce peak demand and thus reducing the plant 

electricity bill by discharging stored energy during peak loads. ESS working in parallel to DG, to 

the advantage of DG owners is also an emerging area o f research. References [36,37] develop 

techniques to drive the operation o f residential DER with ESS toward regions o f operational 

profit. Energy can be stored in PHEV batteries during the night - when the price is expected to be 

low and is withdrawn during peak-time when the price is high. By acting in such as way, they are 

suitable for peak-shaving purposes as well as for ancillary services. In a further section 1.4.3, the 

state-of-the-art in many fields o f research regarding the impacts o f PHEV deployment on 

electrical power systems is presented.

1.4.2 Distribution planning methods

Under the smart grid paradigm, new capabilities are expected from electric distribution 

systems that are moving towards an automated and intelligent distribution network. Distribution
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systems are expected to be planned more as an integrated network of distribution lines and 

distributed resources.

One o f the features that DA enables is the reconfiguration of distribution systems at the 

operation level. The feeder reconfiguration problem consists o f changing the topology of a 

distribution system through resetting the status of the switches located at certain points of the 

network [38]. Reconfiguration is performed to improve the distribution systems operating 

conditions while satisfying the network constraints such as voltage tolerance and line loading 

limits. Because feeder reconfiguration is a combinatorial optimization problem, soft computing 

methods are commonly used including GA (Genetic Algorithm), ACO (Ant Colony 

Optimization), SA (Simulated Annealing) or PSO (Particle Swarm Optimization) [39]. The more 

traditional class o f approaches has been based on heuristic search techniques [40].

Reference [41] compares a linear programming method and two heuristic methods order 

to reduce the losses in distribution systems. Linear programming methods have proven unsuitable 

for feeder reconfiguration since the objective function and constraints are inherently non linear. 

The first heuristic technique is based on optimal load flow method and requires efficient, and 

accurate methods for solving such power flow problem repeatedly which can make the approach 

too inefficient. The second one is a heuristic search method considering all possible switching 

options and although more time consuming than the optimal load flow method, it is reasonably 

fast. Heuristics techniques have been widely used for loss reduction such as non-linear methods 

based on discrete ascent considered in [42] and based on optimal power flow calculations in [43]. 

Moving towards evolutionary techniques. Genetic Algorithms (GAs) are among the most used 

methodologies. References [44 -46] approach the loss minimization problem through network 

reconfiguration using GAs. Other objective improvements o f distribution systems through feeder 

reconfiguration using GAs are considered in the literature such as the cost of the reconfiguration 

[47], time-delay for network control systems [48], DG penetration in distribution networks [49], 

and congestion management [50]. In recent years, the reconfiguration problem has been 

addressed in a multi-objective manner to increase the complexity of the problem by improving 

multiple objectives which may be in conflict with each other. GAs are used for multi-objective 

approaches for real power loss and voltage drop due to three-phase fault minimization [51], and 

losses and reliability improvement [52]. Other evolutionary techniques have been applied such as 

Artificial Immune Systems (AIS) and ACO considering system loss, transformer load balance 

and voltage deviation from nominal value [53], and fuzzy-logic [54], applied for the minimization



o f the system power loss, the deviation o f node voltages, the branch current constraint violation 

and finally the load balancing among various feeders.

The ability enabled by DA to quickly and flexibly reconfigure and interconnect network 

feeders is a key component of the Smart Grid which has an impact on the distribution system 

design. However, the related work to the reconfiguration problem presented above is done form 

an operational perspective and considers only the network with radial topologies and rarely 

considers the presence of DG. The problem addressed in this thesis is the reconfiguration o f radial 

legacy distribution systems from a design point view [40].

The problem of expansion planning to a distribution system consists o f determining the 

capacity, sitting, and timing o f installation of new distribution equipment, taking capacity 

restrictions on feeders, voltage performance, and demand forecasts into account [55]. DG offers 

an alternative that utility planners should explore in their search for the best solution to electric 

supply problems, in particular for deferring investments in the transmission infrastructure. DER 

installations can be strategically placed in power systems for operational improvement o f  

distribution systems such as loss reduction, on-peak operating costs, voltage profiles and load 

factors, reliability, etc. Reference [56] presents analytical approaches for optimal placement o f a 

DG power unit in a radial and in a networked system to reduce the system losses. The proposed 

approach was non-iterative unlike power flow programs. Therefore, there is no convergence 

problem involved, and results could be obtained quickly. However, the authors have indicated 

that other constraints such as voltage and line limits may affect the DG placement. Heuristic 

methods have gained attention because they can work in a straightforward fashion with nonlinear 

constraints and objective function; although there is no guarantee that an optimum solution can be 

found [57]. Additionally in this approach, it is also easy to introduce aspects, such as losses, 

reliability, and uncertainties. Notable among heuristic methods are the branch-exchange 

algorithms [58] and algorithms based on evolutionary computation such as GAs [59-63], Other 

heuristic methods that have been used for the problem include the ACO [64], SA [65], and tabu 

search [66]. A method based on GAs, able to support distribution network operator in planning 

phase is proposed for solving distributed generation planning problem in different utility 

scenarios as an optimization problem [60]. The objective function is based on supply-demand 

chain which aims to minimize the investment and operating costs of local candidate DGs, 

payments toward purchasing the required extra power by a distribution company, payments 

toward loss compensation services, as well as the investment cost of other chosen new facilities
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for different market scenarios. Among the feasible network upgrades, the method selects the new 

lines to build that minimize the mean square error of the buses voltages. Another GA search 

technique for DG allocation is presented in [61] where it is used to reduce losses and improve 

voltage profile. Not only the sitting but the sizing has also been considered using GAs in order to 

reduce power losses and improve voltage profile [62], as well as to minimize the cost of power 

losses, service interruptions, network upgrading and cost o f energy [63].

Distribution systems, having the potential to integrate large sources o f DER affect the 

topology of distribution systems i.e., they begin to resemble small transmission systems. Another 

design issue is related to the ability of distribution systems to operate as an electrical island. DGs, 

either utility or private owned, can be used to sustain a distribution system during unavailability 

of the transmission feeds. The experience of Hydro-Quebec in islanding for the maintenance o f a 

transmission line is given in [67], where studies that should be done prior to planned islanding of 

distribution systems with DER such as protection, stability, flicker and power factor are 

presented. In general, such distribution island or microgrid, may comprise part o f medium/low 

voltage distribution systems served by distributed resources. A microgrid may operate with a 

point o f common coupling to the rest of the grid and can shift between a grid-dependent mode or 

a grid-independent (autonomous mode) depending on power exchange and interaction o f such 

microgrid with the main grid [68]. This ability relies on the flexibility o f advanced power 

electronics that control the interface between distributed sources and the network. Power 

electronics control and communication capabilities that permit a microgrid to function as a 

semiautonomous power system is a key feature for islanding [69]. IEEE 1547 2003 Standard for 

Interconnecting Distributed Resources With Electric Power System is the first in the 1547 series 

of planned interconnection standards [70]. This standard rests on certain assumptions about the 

contribution of DER to power quality and reliability. Although IEEE 1547 does not use the term 

microgrid, it allows for implementation of a group of DER, which it refers as a Local Electric 

Power System (LEPS) and applies at the point where LEPS or microgrid connects to the grid, i.e. 

applied to a microgrid containing many small DER devices would be the same as for one large 

DER [71]. However the applicability of IEEE 1547 is limited to DER rating o f 10 MVA, which 

may be smaller than the ratings expected for microgrids [70]. From a distribution systems 

planning perspective, the approach is to develop microgrids that may be networked in structure 

and conform to the US DOE vision of microgrid, and can operate in both grid-connected and 

islanded modes [9]. Once again, analytical techniques to solve the problem o f developing optimal 

microgrid architectures have been developed [72, 73], as well as heuristic methods such as PSO

10



[74] and SA [75]. Yet, fewer studies have considered the topological design of distribution 

networks and DG assessment in microgrids. Reference [76] envisions the development o f optimal 

microgrid architectures based on PSO consisting o f two aspects: optimal sizing and siting of DG, 

and optimal network topology, comprising an optimal set o f interconnections and associated 

capacities.

1.4.3 State-of-the-art in PHEV studies

Under the SGI, PHEV is one o f the tools to integrate electricity storage and peak-shaving 

technologies. A PHEV is defined by the IEEE, as “vehicles that have a battery storage system 

rating of 4 kWh or more, a means of recharging the battery form an external source, and the 

ability to drive at least 10 miles in all electric mode” [77]. PHEVs presence on the market has 

emerged and there are vehicles with PHEV technology currently available [78]. Prototypes are 

being built by universities and research centers and auto manufacturers are developing next 

generation PHEV technology [79]. A rapidly growing number o f studies report on PHEV 

performance and impacts. These studies typically fall into one or more of the following 

categories: (1) vehicle performance studies that look at the cost o f ownership and emissions 

impacts; (2) supply adequacy studies that aim to assess the potential to meet growing demand 

with existing generation assets; (3) vehicle-to-grid (V2G) studies, that look at the value of 

vehicles for the provision of bi-directional grid support services; and (4) distribution system 

studies, which study the impact o f increasing PHEVs on the medium/low voltage network 

infrastructure. In all categories, the need of simulation tools to model the real-world drive cycles 

characterizing the US vehicles fleet behavior is a requirement, in order to replicate and study 

vehicles performance and impact and contribution to the power grid. PHEVs can be externally 

charged to directly displace petroleum during short trips while operating in a Charge-Depleting 

(CD) mode. After depleting the externally charged energy, PHEVs still achieve high fuel 

economy through regenerative energy recovery during braking, turning the engine o ff instead of 

idling, and enabling higher engine efficiency. This operation is referred to as the Charge- 

Sustaining (CS) mode.

The dual operating modes that make PHEVs attractive also make it difficult to estimate 

their in-use fuel economy directly dependent on the miles driven by each vehicle, and necessary 

information to study the vehicle’s performance. Simulation tools such as ADVISOR [80] have 

been developed by the National Renewable Energy Laboratory (NREL). Another modeling 

software for PHEVs is Powerdrive Simulation Analysis Tool (PSAT) [81], a major simulation
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tool o f DOE developed by the Argonne National Laboratory (ANL) and has been used for 

numerous studies to assist DOE in identifying future research directions regarding plug-in hybrid 

electric vehicles. The increased complexity and diversity of the technologies has led to a 

partnership, initiated by General Motors in 2007, to develop the next generation of automotive 

simulation tools [82]. In the past three years, ANL has developed a new tool, called Autonomie 

[83], to accelerate the development and introduction of advanced technologies through plug-and- 

play architecture. Autonomie enables the. evaluation o f new powertrain and propulsion 

technologies for improving fuel economy through virtual design and analysis.

Vehicle performance studies o f PHEVs include, battery and power requirements as well 

cost analyses and emissions are [84-90]. PHEV penetration could significantly reduce C02 

emissions from the automotive sector and advances in battery technology have already put 

practical electric vehicles within reach; however, further advancements in manufacturing costs 

and storage capacity are needed to make such vehicles appealing to the mass market. Concerning 

category (2), i.e. power supply adequacy, there is a general agreement that as long as PHEVs do 

not increase peak demand, their use will not require the construction of new power plants. The 

vast majority o f existing studies find that there is sufficient surplus o f generation capacity during 

off-peak hours to fuel a large number o f PHEV penetration [89-92]. However, this is only the'i
case if  the charging o f vehicles is optimized. In addition, changes in demand and new structures 

for electricity prices and emissions standards created by the introduction o f PHEVs, may lead to 

negative consequences in some regions if  the current utility plan is not changed [93].

V2G study is the term used in the literature to describe the use of bi-directional 

charge/discharge capabilities o f PHEVs. PHEV with V2G capabilities can increase grid 

reliability, lower electricity generation costs, potentially reduce emissions by facilitating the 

integration of renewable based generation and provide a revenue stream for electric vehicle 

owners [15]. A detailed description o f four electric markets and their suitability to purchase V2G 

power concluding their participation in ancillary service market and regulation is provided in 

[15], and reference [94] evaluates the feasibility and practicality o f vehicles providing a grid 

ancillary service called regulation. Regulation, also referred to as Automatic Generation Control 

(AGC) or frequency control, is used to control the frequency and voltage o f the grid by matching 

generation to load demand at the second and minute time scale [15]. V2G implementation and 

business models are also being the focus o f research. The deployment o f PHEVs with V2G 

capabilities for integration o f large scale solar for peak power and large scale wind for base load 

power is being considered to stabilize the grid [95,96]. Additionally, V2G is also seen as storage
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source for future large offshore wind power [97]. Reference [98] presents techno-economic issues 

o f plug-in hybrid vehicles with V2G operation, including the policies needed to integrate in the 

electricity market. In category (3), researchers are working on long-term infrastructure and 

information architectures required for a massive market infiltration of PHEVs. The grid operator 

may send request o f power for supply to each individual vehicle, or to the office of a fleet 

operator, or through a third party aggregator o f dispersed individual vehicles. In order to achieve 

infiltration of the ancillary services market, V2G must satisfy the requirements of the grid system 

operator o f industry standard availability and reliability form the V2G system [99, 100]. On the 

other hand, the vehicle owner will demand a return on their investment in V2G technology which 

requires development o f the economics o f V2G using pricing techniques [99-101].

Finally, moving from the contribution of PHEVs to their impact on the power grid in 

category (4), the additional load that PHEVs add in distribution systems typically designed for 

specific load carrying capability based on load consumption patterns of customers is a concern. 

PHEV market penetration is likely to be higher in some areas that others, and it is important for 

utilities to be aware o f these regions in order to appropriately focus on maintenance and 

monitoring resources, particularly in transformers just as when traditional electric loads increase 

in parts o f the grid [89, 90], [102, 103]. As mentioned earlier, the charging of PHEVs has an 

impact on the adequacy assessment of generation but also on distribution systems if undesirable 

and larger peaks occur in the electrical consumption [104]. The improvements in power quality 

and efficiency [105], and benefits in cost and emissions of coordinated charging patterns have 

been explored [88]. However, so far few publications have explored the optimal coordination 

between o f  PHEVs. A time coordinated optimal flow model for integrating PHEVs and tap 

changers in order to minimize power loss and tap changers usage is suggested in [106]. A 

quadratic and dynamic programming model for assessing the impacts of PHEVs on the 

distribution grid o f Belgium when PHEVs are charged at home is developed in [107, 108], and 

are applied both to deterministic and stochastic methods to reduce power loss and voltage drop.

1.4.4 Tools and methods

This thesis is organized in two main parts: first, Chapters 2 and 3 address the redesign of legacy 

distribution systems to increase the reliability by means o f feeder interties and DG under islanded 

mode o f operation; and secondly, the impact o f PHEVs on such systems is quantified in Chapter 

4.
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For the first part, the optimization problem of the redesign o f distribution systems is 

approached by using an evolutionary technique. Reference [20] shows that the solution space for 

the feeder reconfiguration problem from a design perspective is very large. A heuristic and a GA 

technique are compared and it is proven that as the number of possible topologies increases, the 

performance o f the heuristic approach decreases [20]. However, the GA uses evolutionary 

operators to perform a multi-directional search by maintaining a population o f  potential solutions. 

The “population-to population” approach avoids the local minima within the search [109]. From a 

generation to another, a population undergoes a simulated evolution by means o f selection, 

crossover and mutation evolutionary operators. Elitism is also employed from a generation to 

another, to preserve the best individuals in a population to evolve to the next [109]. For that 

reason and based on the conclusions presented in [20], the GA is the desired technique in the first 

part o f this thesis.

The GA is implemented in Matlab™. This software has a Genetic Algorithms for 

Optimization Toolbox (GAOT) which provides many inbuilt functions [110]. The basic call of 

the multi-objective GA function which runs the simulated evolution requires an evaluation 

function unique to the problem at hand which is the fitness function. The fitness function unique 

to the redesign problem must evaluate the fitness of an individual in terms o f  cost and reliability 

and verify that such solution does not violate any system constraints. To obtain the reliability o f a 

candidate solution and to determine any system constraint violations, a power flow calculation 

must be performed. Power flow computer programs are used for solving the power flow, i.e., 

computation of the voltage magnitude and angle at each bus and real and reactive power for the 

equipment interconnecting the buses in a power system under balanced three-phase steady-state 

conditions [111]. In this thesis, PowerWorld Simulator™ is the software tool used to perform 

such calculations [112]. This software has an add-on called Simulator Automation Server™ 

(SimAuto™), which allows the user to remotely access PowerWorld Simulator™ from an 

external program such as MatlabTM [113]. SimAuto™ enables to access the data o f  a test system 

modeled in PowerWorld™, perform data manipulations, compute a power flow calculation and 

send results back to the original application. In this thesis the original application is the fitness 

function and required by the multi-objective GA function used in Matlab™ to solve the redesign 

problem.

With regard to the study of the impact of PHEVs in the second part o f this thesis, the 

optimization problem addressed is to determine the expected hourly charging patterns over a year 

o f a fleet o f PHEVs in a given distribution system. For that, the problem is formulated in as a
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Linear Program (LP). LP has been used to optimize the operation Energy Management System 

(EMS) such as PV-battery storage systems [114], and as verification of a heuristic technique for 

scheduling a residential DER installation containing PV arrays and local energy storage [19]. 

AMPL™ is the mathematical computing environment used to program the LP, and IBM ILOG 

CPLEX™ is the solver employed. The Simplex method is the algorithm used by IBM ILOG 

CPLEX™ and is based on a search within adjacent extreme points in which the objective function 

value is computed. If a feasible extreme point provides an objective function value at least as 

good as that provided by its adjacent feasible extreme points, the extreme point provides an 

optimal solution [115]. In other words, due to the convex property o f a feasible region in LP, a 

local optimal solution is globally optimal. For more information on the Simplex Method, refer to 

[116,117]. Finally, in order to provide the behavioral and design parameters o f the PHEVs 

required by the LP in order to constraint the problem and compute the charging patterns, a 

probabilistic simulation methodology proposed in [90] is used.

The literature review provided above reflects the fundamental changes that are currently 

taking place or predicted to occur shortly in electric distribution systems. This thesis incorporates 

islanded mode of operation as a design problem to take into account in distribution systems 

planning as well as the move towards meshed network delivery systems with DG. Finally, a 

manner o f quantifying the contribution of PHEVs with V2G as load and as generation to 

distribution systems is explored, based on optimized management o f the electric vehicles by the 

owner or the utility that has not been explored so far, to the best knowledge o f  the author.

1.5 Organization of Thesis

The introduction to this thesis is followed by Chapter 2, where the modeling o f electric 

distribution systems is described, as well as an enhancement to an existing technique to improve 

the reliability o f radial distribution systems under islanded mode o f operation through the optimal 

collocation of DG and addition of feeder interties. Chapter 3 presents the results of the application 

o f the said enhanced optimizing technique to two distribution test systems including several case 

studies. Next, in Chapter 4, a methodology to study the impact o f PHEVs on distribution systems 

under islanded mode of operation is proposed, based on optimized charging patterns of an electric 

vehicle fleet. Finally, Chapter 5 concludes and discusses possible avenues o f  future work.
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CHAPTER 2

OPTIMIZATION OF ISLANDED ELECTRIC DISTRIBUTION SYSTEMS

In this chapter, the modeling of electric distribution systems is presented. General 

reliability concepts are also presented in order to address the redesign of radial distribution 

systems into partially networked systems with access to distributed resources; this redesign is 

specifically applicable to islanded distribution systems which may function as microgrids. The 

evolution o f  such islanded distribution systems are validated by the IEEE standard 1547.4 [70]. 

The optimization problem addressed is the following: given a radial distribution system, to 

optimally collocate DG(s) and feeder intertie(s) between feeders at a feasible cost so to improve 

supply reliability, while satisfying power flow constraints in an islanded mode of operation of the 

distribution system. For that purpose, an expansion to the Multi Objective Genetic Algorithm 

(MOGA) methodology described in [20] is proposed in this chapter. The additions to the methods 

described in [20] are: the simultaneous location o f DG and feeder intertie as opposed to assumed 

locations o f  DGs, the use o f annual load duration curve for expressing the load in the distributed 

island resource as opposed to average loads alone and the study of the impact of PHEVs.

2.1 Modeling a radial electric distribution system

Electric power distribution systems have traditionally a radial topology as shown is 

Figure 2.1. The main elements composing a radial feeder are: lines, transformers, buses, and 

loads. The infinite bus is a theoretical construct for modeling purposes representing the power 

grid, a large interconnected system with constant voltage magnitude and frequency. Alternatively, 

the infinite bus may be understood as an ideal voltage source providing the radial feeder with an 

infinite source o f current at zero impedance.

The evolution o f electric distribution systems that is addressed in this chapter consists of 

the optimal addition o f both feeder interties between radial feeders and distributed generation 

units on the distribution end o f the grid. The objective is to improve the reliability of the system; 

however, this must be done within the maximum cost of the project chosen by the candidate 

utility that owns the distribution system. Figure 2.2 illustrates the idea of evolving a traditional 

electric distribution system with generation on the consumer side, towards networked or meshed 

system topologies resembling the topology o f the transmission side of the power grid. The 

distribution planning problem that is dealt with here has strong similarities with the Transmission
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Network Expansion Planning (TNEP) and Generation Expansion Planning (GEP) problem [118, 

119].

Radial feeder 1 Bus Transformer
Infinite Bus

Une
Grid

Radial feeder 2

Load

Grid

Figure 2.1: Elements o f traditional radial feeders in electric distribution systems.

Grid

Grid

DG

Figure 2.2: Evolution of electric distribution systems towards meshed systems with DG.

2.1.1 Modeling o f the annual load

The electric power distribution redesign problem presented in this thesis is meant to 

improve the reliability o f a given radial system, measured/quantified annually. In order to do so, 

the load points in the system have to be modeled by the load occurring annually. For that purpose, 

the loads can be represented in two modes:
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a) Average annual load

In this mode, the annual load is represented by taking the values of the annual average 

load at every load point throughout the system as shown in (2.1). This representation assumes a 

fixed average value o f the load for a year. The average annual load at load point i LiALoad 

represents the hourly load Lu occurring at that load point , which is a fixed value for the 8760 

hours in a year.

(2 .1)
Li,t =  Li ALoad  V t =  1 ... 8760

b) Step-load duration curve

In this mode o f modeling, the demand includes a time dependency of the load. The time 

dependency o f  the load is incorporated by finding the hourly peak demands of the system over a 

year and convert them into a load duration step-curve [89,103]. This is shown in Figure 2.3, 

where hourly peak load is represented on the y-axis and the number of hours is represented on the 

x-axis. While it is feasible to obtain the peak load values of every load point for each hour for a 

one year study period (i.e., 8760 data points), performing a large number of power flow 

calculations may become computationally prohibitive and redundant. Within a year, each hour 

maps to exactly one load level Lp, whereas each load level may represent several hours Azy To 

reduce the computational burden and redundancy, a reduced number of data points for the peak 

load values are chosen arbitrarily. Equation (2.2) defines the step size, which is gives the number 

o f steps or load levels Np between the maximum peak demand occurring in the system annually 

Lpmax, and the annual peak base load Lpmin. The number of unique values of the peak loads 

determines the resolution of the hourly component loading profiles. A higher number of steps np 

will increase the computational burden but will result in more accurate load profiles. In summary, 

the load duration step-curve reorders demands by increasing power levels, and so shows the 

percent o f time that demand equals or exceeds a given power level Lp over a year (note that AT) = 

8760 hours). The demand at every load point i is given by (2.3), where LLpioadmax is the highest 

annual peak demand at load point i and Lp(kTp) is the power level occurring for AT) number of 

hours.



h p  ~  L i ,PLoadmax * h ( à T p ) (2.3)
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Figure 2.3: Step-load duration curve representing the annual peak load over a year.

2.1.2 Modeling o f DG

DG is modeled as in [20], where it is proposed that the capacity factor (CF) o f the 

generators is used to represent their power output. CF is the ratio between the actual power output 

of a generation source during a time period to the output if  it had operated at rated power the 

entire time. CF includes the aggregate outage time for the entire year, without analyzing each 

separate outage event. The use of the CF to model the power output o f DER has been largely used 

to avoid employing stochastic models for solar and wind generation, which impose the need for 

stochastic power flows, as well as stochastic load profiles.

The CF of a wind turbine is approximately 25% [120], depending on the wind resource 

available at the location of installation and 30% was selected for PV installation. The value for 

the PV installation reflects the CF of PV in Boulder, CO, geographically close to the location o f  

the author. As in [20], it is assumed that the DGs introduced in the system have the adequate 

control systems in order to curtail or store the excess of generation, should the supply exceed the 

demand under islanded conditions.
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Based on the generation mix identified by an industry survey seeking a definition o f a 

smart distribution system [121], the total system DER power output is given by

+ D S  + CDG (2.4)

where RE, DS, and CDG correspond to the contributions from Renewable Energy resources, 

Distributed Storage and Conventional DG sources, and are calculated using (2.5)-(2.7). Equations 

(2.4-2.7) are directly taken form [20].

RC (2.5)

DS = ((7-C7W*0.75% (2.6)

CDG —R c d g  * C F ç d g  (2.7)

where the R represents the total rating of the source listed in the index subscript: RE for RE 

resources and CDG for conventional (or, non-renewable) DG sources. CF  indicates the capacity 

factor o f the subscripted source. Lg represents the sum o f the average installed loads at bus g  

where the RE resource backed by storage is installed. Equation (2.5) corresponds to the RE 

resource generation, while (2.6) describes the contribution o f RE resources that are supported by 

DS and whose output is 15% of the total load at the installation point based on survey responses 

[20,121], The rating of the CDG resource is given by R Cdg =  R - R re , which is the rating of the 

RE resources in the system subtracted from the total DG rating o f the system. In this thesis, the 

Pout is aggregated to known points throughout the test system, as explained in the following 

Example 1.

Example 1

The total DG rating is 10 MW and the contribution from RE generation to the total DG rating is

20% with a capacity factor o f 0.28. The capacity factor o f  CDG is 0.8. Two units, 1 and 2, are

placed at two different buses with average annual connected loads o f  0.8 MW and 0.9 MW  

respectively. Calculate the Pou, o f each DG unit using (2.4).
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Pout — P r e  * CFr e  + R cdg  * CFcog + (1 — FFRE)  * 0.15 * Lg

P outi =  ( 0.2 * 10* 0.28 +  0.8 * 10* 0 .8 )/2  +  (1 -  0 .28)  * 0.15 * 0.8 =  3.5 M W  

Pout2 =  ( 0.2 * 10 * 0.28 +  0.8 * 10* 0 .8 )/2  +  (1 -  0 .28)  * 0.15 * 0.9 =  3.6 M W

If the number of units was three, then the first term in the equations above will be divided 

by three. Note that the maximum number o f units to distribute determines the minimum size o f a 

DG unit. In this thesis, it is assumed that the size o f a DG unit must be greater than the average 

annual load of the radial feeder in which the DG unit is located.

2.1.3 Basic reliability concepts

The term reliability when used in the context o f the utility business usually refers to the 

amount of time end users are without supply for an extended period of time [122]. This extended 

period of time is known as an “outage”. Definitions on what constitutes a sustained interruption 

vary among utilities and end users. In this thesis, existing reliability indices for utility distribution 

systems will be employed to quantify the reliability. Reliability is affected by system events such 

as permanent faults on the system that must be cleared before service can be restored. For that 

reason, introducing DGs on the end user side o f the system will increase the reliability o f an 

electric power distribution system under islanded mode of operation while the system event is 

incipient.

One traditional reliability index that will be used in this thesis is the Average System 

Availability Index (ASAI) which may be defined as shown below [122]:

C ustom er hours service availability  
Custom er hours service demand  (2-8)

where customer hours service demand = 8760 for an entire year. This index describes time as a 

fraction of a year for which the system is available.
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Next, the load related metric used in this thesis to evaluate the reliability of a power 

system is the Energy Not Supplied (ENS) which quantifies in kWh the unserved load over a time 

period, generally one year, and is defined as shown below [123]:

where i refers to the load point with Z, average load connected and f/, annual outage time.

The annual outage time at every load point of the system is a value that is not as

subtracting the ASAI from unity as shown in (2.10), which represents the time as a fraction of a 

year for which the system is not available [20]. In order to obtain the annual outage time in hours, 

U  in (2.10) is multiplied by the customer hours service demand explained earlier (i.e. 8760 

hours).

When moving towards a distribution system with local generation on the consumer end, 

the average load connected at load point i is no longer the Power Not Supplied (PNS) of the 

system. The PNS is given by the demand not met by the generation in the power system under 

islanded mode o f operation. As mentioned earlier, in order to successfully operate a power system 

under normal balanced three-phase steady-state conditions, generation must equal the demand in 

the system at all times and this is met through the slack bus construct represented as a generator. 

The slack bus output Ps o f slack bus 5 in kW represents the PNS of a radial feeder; so, the sum of 

the slack bus outputs is the PNS o f a radial distribution system with a slack bus per radial feeder 

for a given load and generation entered data.

The two ways o f modeling the annual load in a power system, presented in section 2.1.1 

are used here. The first method models the annual average load as a fixed value of the demand 

throughout a year. When solving the power flow and extracting the slack bus outputs to obtain the 

PNS. Multiplying this value by the 8760 hours o f a year we obtain the ENS [MWh] as shown in 

(2.11.a). However, with the second way of modeling the load in the system that uses a step-load 

duration curve, a power flow computation is performed for each load level Lp in the system. 

Recall that each load level Lp occurs for AT} hours in the period of one year; so the slack bus 

power output Ps has to be multiplied by the number of hours for which load level Lp occurs. The 

ENS for the load modeled using a step-load duration curve is given in (2.1 l.b).

(2.9)

commonly available; the ASAI is used to compute the annual outage time of the whole system by
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U = ( l -  ASAI) (2 .10)

N s

ENSa) =  U * 8760 * ^ P S (211 a)
5  =  1

NpNs

ENSb) =  U*  V ATp* PsiLp) (2.1 l.b)
/5=l,s=l

where in (2.11.a) ENSa) is the Energy Not Supplied with annual average loads modeled in the 

system and there are Ns slack buses with each Pspower output. Equation (2.1 l.b) gives the annual 

ENS using a step-load duration representation of the loads, in which the power output o f a slack 

bus depends on the load level Lp o f the system occurring for ATp hours and there are Np loading 

levels.

2.1.4 Power systems simulation tool

In order to obtain the reliability of a candidate power system, a power flow calculation 

must be performed. A power flow evaluation is the computation of the voltage at each bus and the 

loading of the lines and transformers in a power system under balanced three-phase steady-state 

conditions [111]. Successful power system operation under normal balanced three-phase steady- 

state conditions, from requires the following [111]:

1. Generation supplies the demand, to control the frequency o f the system

2. Bus voltage magnitudes remain close to the rated values

3. Lines and transformers are not overloaded

The power flow computer program is the basic tool for investigating these requirements, 

and PowerWorld Simulator™ version 14 was chosen as in [20], where it is justified that it 

performs well solving the power flow of a system with radial feeders compared to other solvers 

[112]. The solution type used is polar-Newton, which is the Newton-Raphson power flow as 

described in [111]. The use o f PowerWorld™ has the additional benefit that test systems can be 

built graphically with the relevant component data as shown in Figure 2.4.
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The large interconnected grid represented by the theoretical concept o f infinite bus 

explained earlier, is also known as slack bus (or swing bus) in power flow computations. The 

slack bus is modeled as a generator that absorbs or supplies generation in order to balance the 

load, as illustrated in Figure 2.4 where the numbered circled quantities correspond to the 

requirements listed above. Note that when operating in steady-state conditions, generation and 

demand are fixed.

I. Enter the power system component data

1 pu 
ODeg

1 pu 
ODeo

1 pu 
ODeg

0 Mvar H  0%
MVA

0%
MVA

5 MW
0 Mvar

10 MW 
0 Mvar

H. Solve the Power Flow under balanced three phase conditions

2 . :

5
0 Mvar

10 MW | 
OMvar I

5
0 Mvar

Figure 2.4: Power systems operation under balanced three-phase conditions 

2.2 Definition o f the distribution system redesign problem

The problem o f collocating DG sources and networked connections in a given legacy 

distribution system to improve reliability at a feasible cost does not present the same 

characteristics as the individual consideration, i.e., DG location in distribution networks or adding 

networked connections in distribution systems with DGs while improving the desired 

objective(s).

In fact, when solving the individual problems, i.e., first the optimal sitting o f DGs in a 

given distribution system and, secondly, the addition, o f optimal networked connections to
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increase the system reliability at a feasible cost does not improve the objectives cost and 

reliability as much as to address the problem as a whole. Empirically, singly handling the optimal 

location of DG first and optimally locate feeder interties second produces worse objective 

function values than simultaneously collocate DG units and feeder interties in a radial distribution 

system.

On the one hand, the optimal DG allocation in a given distribution system is in radial 

feeders with the highest loads and particularly, at buses where the highest loads are connected. 

On the other hand, the optimal solution o f adding networked connections to improve reliability at 

a feasible cost is the cheapest available connection between a feeder with DG to one that has no 

embedded generation. However, the optimal location o f a DG in a highly loaded feeder is not 

necessarily the feeder from where adding a connection has the lowest cost. In addition, the 

feeders with higher loads might be close to each other and further away from low loaded feeders 

with no DG. If that is the case, adding networked connections from high load feeders with DGs to 

the feeders with lower loads and no DGs may not be cost effective.

In the following section, a description o f GAs and their adequacy for the problem 

addressed in this chapter is presented. The optimization problem addressed in this thesis is as 

follows: for given a distribution system, collocate D G  and networkedfeeder interconnections at a 

feasible cost so to improve the reliability while satisfying power flow  constraints in an islanded 

mode operation. For that, the problem includes the same assumptions regarding the 

characteristics of the distribution system in question as in [20], where the author addresses the 

issue of the addition o f system feeder interties to maximize the utility of RE resource-based DGs 

in a legacy radial distribution system that is islanded. These assumptions include also 

characteristics particular to the problem defined below and are resumed as follows:

• “The protection system allows bi-directional power flow” [20]

• “All connections between feeders are allowed (established rights-of-way)” [20]

• DGs can be placed at every bus o f the system, with the exception of slack buses

• “The reliability o f existing components will not change as a result of the redesign 

of the given distribution system and also that the new configuration will have similar 

reliability as the existing components.” [20]
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2.3 Genetic algorithm structure

In this section, we will describe the enhanced methodology proposed to address the 

problem described in previous. A description o f how GAs work is made and following that, the 

mathematical formulation of the GA is presented.

2.3.1 Multi-objective Genetic Algorithm (MOGA)

The problem o f  collocating DGs and feeder interties in a given distribution system can be 

stated as a multi-objective (MO) planning problem, where the objective functions which 

contribute to define a good solution may conflict each other: investment cost versus reliability.

The concept o f an optimum for possibly conflicting objectives is described by Pareto 

optimality [124]. While traditional optimization procedures may result in unique solutions, 

methods for MO-problem may provide a set o f pseudo-optimal solutions. Often, there is no single 

optimal solution, but rather a set o f alternative solutions. These set of points are non-dominated 

and comprise the Pareto front and the goal o f any multi-objective optimization procedure is to 

identify this Pareto front .The MO planning problem addressed in this thesis is aimed at allowing 

a utility distribution system designer/planner to choose the “best” solution from candidate 

topologies. For instances, a redesign solution in a distribution system might increase the 

reliability by a certain amount at a high cost versus a different redesign solution with lower 

reliability measure but associated with a lower cost of the project. None o f these two solutions 

can be said to be superior if  we do not include preference information o f the objectives. Thus if 

no such information is available, it may be useful to have knowledge about those alternative 

architectures. A tool exploring the design space for Pareto-optimal solutions can essentially aid 

the decision maker in at a final design.

In general, a MO optimization problem can be expressed as follows:

m in /( x )  =  / 2(x) ,x  E fi

subject to (2 .12)

x e n
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Cj(x) =  0 J  = 1, ...,n

/ife(x) <  0 , /c = 1, ...,p

where % represents a decision vector, Q  is the solution domain, f(x) denotes the objective 

functions c/x) and hk(x) are the equality and inequality constraints, respectively.

GAs have become a viable solution to strategically perform a global search by means o f  

many local searches and have shown to approximate the Pareto front fairly well in power system  

optimizations [125]. In the literature review provided in this thesis, evolutionary techniques and 

in particular GAs were used for the reconfiguration problem from an operational perspective, 

from a design perspective, and for the distribution planning problem of sizing and locating 

generation on the consumer end of the grid [20], [38, 39], [44-51], [59-63] . Furthermore, GAs 

have been widely used in power systems for optimal TNEP, GEP, reactive power planning, 

economic and environmental power dispatch and hydropower operation [118, 119], [125-129].

The basis of the GA methods is derived from the mechanisms of evolution and natural 

genetics [130]. GAs work by building a population of chromosomes, which are a set o f possible 

solutions to the optimization problem. Within a generation of a population, the chromosomes are 

randomly altered by means o f evolutionary operators in hopes of creating new chromosomes that 

have better evaluation scores. The next generation population of chromosomes is randomly 

selected from the current generation with selection probability based on the evaluation score o f  

each chromosome. This is accomplished by looking up the score given by the input fitness 

function o f each gene in the chromosome, adding the scores up, and averaging the score for the 

chromosome. Each chromosome has a probability of being chosen equal to its score divided by 

the sum o f the scores o f all o f the generation’s chromosomes of that generation. Chromosomes 

for the next generation are selected using the roulette wheel selection scheme to implement 

proportionate random selection [131].

Individuals in a generation are modified by evolutionary operators such as crossover and 

mutation. In order to avoid losing ground in finding the highest-scoring chromosome, elitism is 

implemented form one generation to another [130]. Elitism reserves two slots in the next 

generation for the highest scoring chromosome of the current generation, without allowing that 

chromosome to be crossed over in the next generation. In one of those slots, the elite chromosome 

will also not be subject to mutation in the next generation. In the crossover phase, all o f  the 

chromosomes (except for the elite chromosome) are paired up with a default probability value o f
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80%, and are crossed over. The crossover is accomplished by randomly choosing a site along the 

length of the chromosome, and exchanging the genes of the two chromosomes for each gene past 

this crossover site. After the crossover, for each of the genes of the chromosomes (except for the 

elite chromosome), the gene will be mutated to any one of the codes with a default probability 

value of 20%. With the crossover and mutations completed, the chromosomes are once again 

evaluated with fitness function for another generation, i.e., another round o f selection and 

reproduction follows.

The multi-objective genetic algorithm (MOGA) has been implemented using a Matlab™ 

toolbox, which is s group of related functions named Genetic Algorithms for Optimization 

Toolbox (GAOT) [110]. The basic call of the multi-objective GA function which runs the 

simulated evolution requires an evaluation function unique to the problem at hand. The Matlab™ 

sub-function to run a multi-objective GA for a user-defined fitness function is gamultiobjQ [110] 

and has inbuilt operators for mutation, crossover, and selection. This function has rigid rules on 

input, and does not accept constraints as defined in (2.12). For that, the constraints are part o f the 

evaluation of the objective fitness function and used to penalize any topology and DG allocation 

that violated the constraints [20].

2.3.2 Objective function and constraints

The objectives to minimize are the cost function / 7 and the reliability o f the given 

distribution system/?. Note that improving the reliability is equivalent to minimizing the ENS of  

a power system.

The set of indexes and parameters used in the mathematical formulation o f the 

optimization problem addressed are presented in Table 2.1.

The first objective function cost is defined in equation (2.13) below. If the binary variable 

is true (i.e., Xt = 1 or Xg = 1 ), then connection(s) i is made and (or) a DG(s) is located at bus g; 

otherwise, no connection is made and (or) no DG is located at that bus.

NC Hg

fi  ^  Ci Li Xi +  2  C9 GP3DGxg [$] (2-13)
i = l  j = l
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Table 2.1 Sets, parameters and variables o f  the MOGA

• Sets

I: Set of possible connections, 1 ... Nc
O G: Set of possible locations of distributed generation, 1 ... Ng
O S: Set of slack buses, 1 ... Ns
O /?:Set o f annual load levels, 1 ... Np
o B: Set of branches (lines) in the system, 1 ... Nb

• Parameters

O PDGg-  Power output of the DGs located at bus g, g  in G [kW]
o CDGg= Cost of the DGs per kW, located at bus g, g  in G [$/kW]
o Cc,= Cost of the possible connection i, i in I  [S/km]
o Lc,= Length of the possible connection i, i in I  [km]
o U= Annual outage time as a fraction o f a year
o Ps = Power output of slack bus s, s in S' [kW]
o A7}t= Hours in a year with for which the load level is less than or equal to Lp, fi in Np [h]

• Variables

o Xj = Connection (s) (binary)
o Xg = Location of DGs (binary)

The reliability is evaluated using the Energy Not Supplied (ENS) metric introduced in a

previous section. As a consequence of the two methods o f modeling the load in the candidate

power system, there are two distinct computations o f the second objective function given by,

N s

f2d) =  U * 8760  * ^ P S (2.14.a)
S = 1

N p , N s

f ib)  =  U * * Ps {Lf$) (2.14.b)
p = i,s= i

where (2.14.a-b) are analogue to (2.11.a-b), corresponding to the ENS over a year when annual 

average loads and step-load duration curve are used respectively for modeling the load in the 

system.
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The constraints o f the problem are to maintain the voltage within ±5% o f the rated value 

of Ipu for every bus a, as well as not overload the line(s) between buses a and b in the system; 

these constraints are formulated as:

0.95 <  Va (x) <  1.05 (2.15)

SabW  <  1.00 (2.16)

The penalty function is a multiplier, proportional to the square of the branch overloading

in (2.17) or the square o f the voltage deviation from the limits in (2.18). Quadratic penalty

functions were chosen as in [20] so that violations would be penalized based on their severity. 

Equations (2.17) and (2.18) are directly taken from [20] and are only evaluated for buses and 

branches that violate the constraints: branch loading greater than 100% and bus voltage outside of 

the ± 5% operating limits. The penalties are:

bus

p̂TTiw2 (217)
k = l

where Nbranch is the number o f branch loading violations and bLk is the percentage loading on 

branch k. The penalties for the voltage violations are

f b̂us
r [ | 2 - ^ l 2. if  vk < 1.0
U  (2.18)
Nbus
n ^ l 2. if Vk > 1.0
k=l

In (2.18), Nbus is the number o f bus voltage violations and Vk is the per unit voltage at 

point k. The overall penalty is given as

-  (2.19)
* ^ bu s branch

and is applied to the ENS value by multiplying/^ by the overall penalty.

In addition, the distribution design planner can decide to set a maximum cost of the 

project f j  [$] and/or a desired value o f improved reliability so that ENS is at the most f 2 [MWh]. 

Again, these constraints are included in the fitness function to penalize any individual (a 

networked topology and set o f DG locations) violating the chosen design parameters. This is done
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by multiplying the objective function(s) by an artificial factor of 103 to the one(s) violating the 

required planning design value- thus, removing it from considerations in future "generations

2.3.3 Initial population and its importance for convergence

As mentioned earlier in this chapter, a population is comprised of individuals that will be 

evaluated by a fitness function. In the GA applied to the design problem, a chromosome or 

individual is divided into two components. The first part consists on Nc binary variables, which 

are the total number of possible connections and the second part representing the possible 

locations, the buses in which DGs are connected and is made of Ng binary variables. Figure 2.5 

illustrates the partition a chromosome (individual) which represents a candidate solution.

X (binary)

Xe XS

Possible Connections Possible location of DG

0 0 0 1 0 0 1  ....................Nc 0 1 0 1 0 0 0 .................. Ng

Figure 2.5: Chromosome encoding for Nc possible connections to be added and Ng possible
locations o f DG.

In the conventional GA, the initial population is generated randomly. Yet, selecting an 

initial population that integrates characteristics o f the problem addressed can encourage the 

convergence to the Pareto front [20], [49]. For that three different ways to input the initial 

population are explored. Each one o f the. initial population type leads to better or worse 

convergence, as proven further in Chapter 3. The three types of initial population configuration 

are listed below. Based on the knowledge o f the problem addressed, an optimal solution has the 

following characteristics: not a big number of feeder interties additions at feasible cost, and the 

need of at list one DG unit placed in the system for a connection be able to improve the reliability 

o f  the system.

i. All possible connections between distinct feeders combined with random

possible locations of DG within the buses of the system

ii. All possible connections between distinct feeders combined with random 

possible locations o f DG within the buses in the feeder from which the 

connection is made
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iii. Possible connections between distinct feeders no longer than 3 km combined 

with random possible locations of DG within the buses in the feeder from which 

the connection is made

The three ways o f selecting the initial population as listed above are illustrated in Figure 

2.6. The three initial population configuration types correspond to a matrix with Nc rows and Nc + 

Ng. The number of possible connections Nc considered may change from one configuration type 

to another whereas the number o f possible bus locations for DG units Ng does not. Ng is always 

given by the total number of buses in the system, except the slack buses. An individual (row) in 

configuration type (i) represents one connection matched with one DG unit located randomly. Nc 

in type (i) is the total number o f possible connections between distinct feeders in a given test 

system. In configuration type (ii), a chromosome represents one possible connection and one DG 

unit located at a bus within the feeder form which the possible connection is effected.

The total number of connections Nc considered is the same as in type (i). The main 

difference between types (i) and (ii) is that in the former the DG unit is randomly located within 

the buses o f the system. In latter, the location of a DG unit is restricted to the buses in the feeder 

form where the feeder intertie is issued. Finally, initial population type (iii) is analogue to type 

(ii), except the total number of possible connections Nc considered is lower and restricted to 

feeder interties no longer than 3km.

2.3.4 Evaluation by the fitness function

Finally the algorithm structure is illustrated in Figure 2.7, which shows a flowchart of  

the fitness function used to evaluate each individual or chromosome contained in the initial 

population and in the evolutionary ones, and gives the reader an illustrative explanation o f the 

methodology proposed. The fitness function is programmed in Matlab™ and included in the 

electronic appendix. This function is an extended version of the fitness function proposed in [20] 

which includes simultaneous collocation of DG and feeder interties versus feeder interties only 

considered in [20]. Additionally, there are two versions of the fitness function in this thesis, one 

for each modeling of the annual load in the system.
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Figure 2.6: Initial population: (i) Nc= ail possible connections between distinct feeders combined 
with one random possible location of DG unit; (ii) Nc= all possible connections between distinct 
feeders combined with possible locations o f a DG unit within the buses in the feeder from which 

the connection is made; (iii) same as (ii) but Nc= possible connections no longer than 3km
between distinct feeders.
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PowerWorld Simulator™ 14 introduced in a previous section is chosen to build the radial 

distribution test system. This software has an add-on called SimAuto™ which allows one to 

remotely access PowerWorld™ from Matlab™ [20]. SimAuto™ contains most o f  the 

functionality available in PowerWorld through the use of script commands such as enter edit

mode, run mode, reset the system to flatstart and extract case information.

The typical procedure of the fitness function described in Figure 2.7 includes:

1. Through SimAuto™, transfer the fitness function input information provided by 

an individual in Matlab™ to the test system built in PowerWorld™, i.e., close the 

network connection^ to be added as well as the DG(s) to be located

2. Calculate the cost of the redesign

3. Through SimAuto™ , run a power flow calculation in PowerWorld™ from

Matlab™

4. Through SimAuto™, extract case system information in order to calculate the 

reliability metric

5. Through SimAuto™, extract case system information in order to evaluate the 

constraints and penalize the redesign if required

The steps of computing the fitness function of the MOGA are the same for both load 

models, with the exception of the ones designed with an asterisk in Figure 2.7. As explained 

earlier in this chapter, a power flow is run and bus and branch information is extracted for the 

system. Also, the constraints are verified for each loading level in the system.

Power systems modeling concepts and reliability metrics o f distribution systems have 

been presented under radial and islanded mode of operation. Subsequently, the distribution 

systems planning problem addressed in this chapter regarding the collocation o f  feeder interties 

and DG in a given legacy radial system is described. Finally, an extension to the MOGA 

methodology proposed in [20] is presented in order to address the problem o f simultaneously 

collocate DG and feeder interties, instead of assuming the number and location o f  the DG in the 

available in system. Additionally, two ways of modeling the annual load in the system and three 

types o f initial inputs to the MOGA are explored.
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Figure 2.7: Flowchart of the fitness function proposed to evaluate the objective functions o f the 
candidate solutions while satisfying the system and design constraints.

In the next chapter, the extended MOGA methodology is applied first to a three feeder 

test system, and secondly to a six feeder test system. Several case studies are presented and a 

discussion on the computational time required by the MOGA depending on the one hand, on the 

modeling of the load and the second hand, on the initial input to the algorithm is offered.
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CHAPTER 3

CASE STUDIES OF DISTRIBUTED RESOURCE ISLAND RECONFIGURATION USING 

THE MULTI-OBJECTIVE GENETIC ALGORITHM

The multi-objective genetic algorithm (MOGA) developed in Chapter 2 is applied first to 

a simplified three-feeder radial distribution system (3FDR) used as a test system to verify the 

methodology proposed. Next, the MOGA is implemented in the Roy Billinton Test System 

(RBTS), developed by the Power Systems Research Group at the University of Saskatchewan as 

a tool for reliability education and for which data is available [132,133]. Two case studies for the 

RBTS are solved, differentiated by the approach taken in modeling the annual load in the system. 

Finally, a discussion on the computational time taken by the MOGA to converge, depending on 

the choice of the initial population inputted to the algorithm, is presented.

3.1. Simplified three-feeder test system (3FDR)

The simplified three-feeder test system is developed to test the applicability o f different 

optimization methods to the feeder addition problem [20] [40]. The system incorporates three 

feeders, three transformers and three loads. The advantage of using a simple test system first is to 

allow the verification of the methodology employed, from the optimization algorithm selected to 

the software tools utilize for solving and for modeling purposes.

3.1.1. 3 FDR test system data

For purposes o f completeness, the description of the 3FDR test system is directly 

reproduced from [20], [40] as follows: “The 3FDR has three feeders, ten buses, and two voltage 

levels, V, and V2i where Vj is greater than V2. There are three loads, at buses 3, 6, and 9... Buses 1, 

4, and 7 are normally connected to the grid. Since the modeling of this system is under isolated 

conditions, the grid ties are not shown. Some o f  the system data for the 3FDR test system were 

synthesized using example data from [134]. ...It is also assumed that the required loads on ... 

[the] radial feeders are rated less than the DGs located on those feeders. Each load bus has a non- 

critical and a critical load component. The critical load is the load that must be served and cannot 

be interrupted.” The critical demand o f the three load points is shown in Table 3.1 and 

corresponds to annual average loads. Table 3.2 contains the values of the parameters required by
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the MOGA as in Table 2.1 in order to obtain the value o f the cost of a given configuration as well 

as evaluate the reliability o f the system by calculating the ENS. Note that in the study o f the 

3FDR, we use annual average loads in the system and the ENS will be calculated as in (2.11.a).

For the purpose o f checking the algorithm proposed in a simplified test system, we 

explore locating only Renewable Energy (RE) DG sources using the capacity factors for wind and 

solar o f 0.25 and 0.3 respectively, as justified in Chapter 2 section 2.1.2. However, the terms for 

CDG sources and DS in (2.4) are excluded for the modeling o f DG in the 3FDR test system. The 

capital cost o f adding RE DG is directly taken from [135] and is included in Table 3.2.

Table 3.1 Annual average load in the 3FDR test system [20]

Load Critical [kW]

LI 80.2

L2 100.2

L3 50.8

The length o f the possible connections to add between feeders is included in Table 3.2. 

The 3FDR system has two voltage levels Vj and V2 and a transformer may be required for a 

feeder intertie to be added. If that is the case, an impedance of 0.01 + j0.06  is assumed on the 

transformer base [20]. The costs of adding a possible connection in [$/km] is included in Table

3.2, with the upgrade cost o f adding transformer [20]. Finally, the line data for the existing  

connections o f the 3FDR system and the data used for the possible connections to be added 

between feeders is included in the Appendix. Finally, the annual outage time U is obtained from 

and ASAI o f  0.999375, value taken from [123].

The 3FDR test system is built in PowerWorld™ using the data provided with the possible 

connections and DG units to be placed modeled as open lines and generators [112]. In the 

following sections, the MOGA methodology is applied to the 3FDR system in order to locate first 

RE DG wind-based generation only and feeder interties, and secondly RE DG solar based 

generation only and feeder interties in the system.

38



Table 3.2 Parameters required for implementing the MOGA in the 3FDR test system

•  Param eters

o PgG= Power output o f  the DGs located at bus g, based on [20]

G 2 3 4 5 6 8 9
Wind,PgDG[kW] 0.0 91 0.0891 0.1421 0 1421 0.1421 0.1231 0.1231
Solar,P/G[kW] 0.1069 0.0891 0.1705 0.1705 0.1705 0.1477 0.1477

o CgG= Cost of the DGs located at bus g, directly taken from [135]

Cg G for wind based generation [$/kW] 1.6
Cg G for solar based generation [$/kW] 5.5

o Cf= Cost of a possible connection i, [$/km], directly taken from [20]

Transformer [$] 400000
2.4 kV Line [S/ft] 50

12.47 kV Line [$/ft] 1 0
Fixed Line ost [$] 100000

o L f= Length of the possible connection i [km], directly taken from [20]

Connection i frf [miles] Connection i i f  [miles]
Line 1-4 0.1894 Line 3-6 0.4214
Line 1-5 0.3788 Line 3-7 1.043
Line 1-6 1.1364 L ne 3-8 0.9996
Line 1-7 0.3206 Line 3-9 1.4330
Line 1-8 0.3909 Line 4-7 0.1376
Line 1-9 0.5666 Line 4-8 0.1701
Line 2-4 0.261 Line 4-9 0.4543
Line 2-5 0.2841 Line 5-7 0.3588
Line 2-6 0.3267 Line 5-8 0.3933
Line 2-7 0.3262 Line 5-9 0.5764
Line 2-8 0.3551 Line 6-7 0.5687
Line 2-9 0.5926 Line 6-8 0.4136
Line 3-4 0.8996 Line 6-9 0.3855
Line 3-5 0.7576

o ASAI = 0.999375, directly taken form [20], [123]

o U= Annual outage time as a fraction of a year = ( 1 -0.999375)
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3.2. MOGA applied to 3FDR with RE DG

The extended MOGA algorithm presented in the previous chapter is implemented in a 

simple 3FDR system. The purpose of testing the methodology in the 3FDR test system is to first, 

verify the algorithm as already mentioned previously, but also to learn about the redesign 

solutions obtained.

The problem addressed in the following two sections is to co-locate feeder interties and 

RE DG units at a feasible cost in order to increase the reliability o f the system. The constraints o f  

the system are to maintain the voltage within the acceptable limits o f ± 5% and penalize the 

overloading of the lines in the system. First, wind based DG units are simultaneously located with 

feeder interties in the 3FDR system, and secondly, solar based DG units are collocated. In the 

simplified 3FDR test system, the size of the DG units does not depend on the load of the bus in 

which they are sited, because the DS term in (2.4) is excluded. Consequently, the power output o f  

the DG units is fixed and sized to be higher than the critical load in the feeder in which the unit is 

located as shown in Table 3.2. The loads in the system are modeled using annual average demand 

values and thus, equation (2.14.a) is employed to obtain the value o f the reliability metric ENS. 

To calculate the cost of the redesign project, (2.13) is used.

3.2.1. Results of the MOGA applied to 3FDR with wind generation

In this section, the MOGA is applied to the 3FDR system to propose a redesign solution 

that increases the reliability of the system considering the cost of the project. The reliability 

metric used is the ENS described in section 2.2 and as a reminder, increasing the reliability o f a 

system corresponds to decreasing the ENS. The results are presented in Table 3.3.

Table 3.3 results of the MOGA applied to the 3FDR test system with wind based DG

Solution # Connection (s) DG (s) (wind) bus 
location #

Cost [106 US $] ENS [MWh]

f ' T  ; 0.13 ; A 0.83
->

- 0 ().2I 0.-2
3 ' /  T  I . ' .. 0.35 : 0.28
4 Line 4-~ 3 & (> 0.52 0.05
5 - 3 & 6 & 9 0.53 0
6 Lines 4-7 & 2-6 3 & 6 0.71 0
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The solutions are ordered from in increasing order of cost, which corresponds to a 

decreasing order o f ENS. The cost o f the redesign project and the reliability o f the system are 

conflicting objectives.Foliowing the application of* the MOGA to the 3FDR test system it is 

observed that wind based DG is preferably placed in radial feeders where the higher loads have to 

be supplied. Solution No.l corresponds to placing one DG unit in feeder 1 where the second 

highest critical load of 80.2 kW is located. Solution N o.2 corresponds to locating one DG units in 

feeder 2 where the highest load o f 100.2 kW is. If placing 2 DG units, feeder 1 and 2 are as 

shown in Solution No.3. Within a radial feeder, the DG unit is located in buses where the loads 

are, at buses 3, 6 and 9. Concerning the feeder interties, the MOGA selects the cheapest 

connection to add between a feeder with a DG unit and a feeder with no generation. Solution 

No.4 corresponds to co-locating 2 DG units in the highest loaded feeders 1 and 2 where the loads 

are located (bus 3 and 6) and a feeder intertie between feeders 3-4. However, the ENS of Solution 

No.4 is 0.05 MWh. The ENS is not reduced to 0 because the excess o f energy from the DG unit 

located in feeder 2 is not sufficient to supply the load o f  feeder 3. Solution No.5 corresponds to 

locating 3 DG units, one per radial feeder at the bus where the load is located and reducing the 

ENS to 0 MWh. Solution No.6 proposes to locate 2 DG units in feeders 1 and 2 respectively, and 

add feeder interties between feeders 1-2 and 2-3, which reduces the ENS to 0 MWh. The excess 

of energy produced by 2 DG in feeders 1 and 2 is sufficient to supply the load in feeder 3. 

However, it is more expensive to add the feeder interties than to place a third DG unit in feeder 3.

The algorithm is verified to provide the Pareto-optimal solutions to the design problem 

under consideration. The solutions are presented in a look-up table, Table 3.3 and the decision 

maker, i.e., the utility planning engineer, can choose the best solution to satisfy the set o f criteria 

under consideration. Finally, note that in a that in a radial feeder with critical loads to satisfy in 

the 100 kW range, i.e., wind based DG sized to generate a power output o f around 100 kW per 

feeder, adding a DG unit in a feeder may be less expensive than adding feeder interties. Solution 

No.5 which proposes placing 3 DG units, i.e., one DG per radial feeder is less expensive than 

Solution No.6 which considers locating 2 DG units and building 2 feeder interties between 

feeders 1-2 and 2-3. Both o f these solutions reduce the ENS to 0. Solutions 4 and 5 are sketched 

in Figures 3.1 and 3.2 respectively.
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Figure 3.1: Solution 4 for the MOGA applied to the 3FDR system with wind based DGs.

Slack
bus

-Î DG

0.0802 MW

Slack
bus

10 4 5) / V ' t

0.1002 MW

I Slack y.
/  Ni  DG Î

0.0508MW

■- Solution 5 Cost: 530,000 [US $] 
ENS: 0 [MWh]
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3.2.2. Results of the MOGA applied to 3FDR with solar generation

The MOGA is applied to the 3 FDR locating solar based DG, instead of the wind based 

DG presented in the previous subsection. The capacity factor of solar based DG is 30% and the 

cost per kW increases to considerable to 5.5 $/kW compared to DG wind based.

In general, the solutions present the same characteristics as in the previous case, i.e., DG 

are located at buses with higher loads and networked connections are added between feeders(s) 

with DG to satisfy the load in the feeder(s) with no DG. The solutions are presented in Table 3.4 

in increasing order o f cost.

Table 3.4 Results o f the MOGA applied to the 3 FDR test system with solar based DG

Solution # Connection (s) DG (s) (wind) bus 
location #

Cost [106 US $] ENS [MWh]

/ 3 0.59 0.83
0.94 OT2

3 - Line 4-7 - ; ,  6 1.12 0.33
4 3 & o 1.21 0.28
J' Line 4-7 3 & 6 1.51 0.0
6 - 3 & 6 & 9 0.23 0

Note that this time, with solar powered DG, the cost of adding feeder interties to increase 

the reliability o f the system is less expensive than adding DG. Solution No.5 and No.6 both 

reduce the ENS to zero. The former corresponds to locating 2 DG units and adding networked 

connection between feeders 1-2 and 2-3 is less expensive than the latter, Solution No.6 which 

corresponds to distributing 3 DG units, one per radial feeder. Additionally, the higher power 

factor for solar generation based DG placed in feeder 2 is sufficient to supply the loads in feeders 

2 and 3 in Solution No.5.

The solution space for the 3FDR system with wind and solar based DG is shown in 

Figure 3.3. The plot illustrates the concept o f Pareto-optimality, in which a range o f solutions 

between lower cost and high reliability and vice versa are included. It corresponds to the decision 

maker to choose the solution that adapts the best to his subjective preferences.

From implementing the MOGA to a simplified test system such as the 3FDR, preliminary 

observation of the applicability o f the evolutionary optimization methodology proposed in 

Chapter 2 is obtained. Satisfactory solutions are shown in the Pareto front and are adapted to each
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case study with wind and solar DG. For illustrative purposes, solutions 5 & 6 for DG wind based 

solar based are given in Figures 3.4 and 3.5.
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Figure 3.3: Pareto front of the MOGA applied to the 3FDR test system. Triangles are solutions 
with wind based DG and stars are solutions with solar based DG.
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3.3. Roy Billinton Test System (RBTS)

The Roy Billinton Test System (RBTS) is a basic reliability test system originated from 

the reliability education and research programs conducted by the power system research group at 

the University o f Saskatchewan [132]. The basic system data at the transmission level is 

published in [132], in particular, the annual hourly peak load data is used in this section. 

Reference [133] develops the distribution networks providing the data at Bus 3, which is the 

legacy radial distribution test system selected as in [20]. In this section, two test cases with 

differing modeling o f the annual load in the RBTS are explored. The redesign problem is solved 

for both test cases using the MOGA and the results are given and discussed.

3.3.1. RBTS data

In this section, the same test system as in [20] is chosen. Reference [20] had selected the 

11 kV distribution circuits o f the bus 3 in RBTS as the candidate system for the purpose of testing 

the methodology proposed. The distribution network of the RBTS at bus 3 has a peak load of 85 

MW. Since two 138 kV feeders were neglected, the peak load of the system shown in Figure 3.6 

is 29.5 MW. Under emergency conditions, 20% of the total load of the Bus 3 distribution system 

is expected to be available for curtailment [133] and it is taken into account by considering only 

the 80% of the power not supplied, i.e. the sum of the power output o f the slack buses of the 

system by 0.80 [20]. The PowerWorld™ screen shot in Figure 3.6 shows the part of the RBTS 

bus 3 used as test system with annual average demand representation. There are 27 possible 

locations for DG units which correspond to the total number of buses in the system, except the 

slack buses. The possible feeder interties to be added in the system are 302 networked 

connections and are not included in the figure. The RBTS system shown in Figure 3.6 has 

normally open tie-switches between buses 1-7, 11-17, and 23-29. The test system in Figure 3.6 

corresponds to the legacy radial RBTS system built in PowerWorld™ and “on top” of which the 

data is changed (closing o f feeder interties, sizing of DG units), the power flow is run and the 

information is extracted. The power output of the slack buses in Figure 3.6 corresponds to the 

sum of the connected loads in a feeder since the generation units are sized to zero output. The 

sum of the slack buses adds up to 17.8 MW, which is the annual average power not supplied since 

annual average loads are modeled in Figure 3.6. The DGs are sized to zero output and the power 

output of the slack bus per radial feeder is the power not supplied in that feeder. The

46



topographical information as well as the sizing of the elements (lines and transformers) o f the 

RBTS Bus 3 is taken directly from [20].
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Figure 3.6: RBTS bus 3 test system with annual average loads.

In the following, we do not provide a table containing the required parameters for the 

implementation of the MOGA as in the 3FDR system because the size of the data is too large.

The DGs size is calculated following (2.4). The power output of a DG located at a given 

bus depends on the number o f units that are being deployed at a time. This parameter is calculated 

in the fitness function for the given input. The cost in $/kW of a DG unit is the result o f the 

weighted costs o f the generation mix of DGs: Conventional DGs and RE DGs. In this thesis, we 

have chosen the following design parameters included in Table 3.5 which are based on the survey 

responses collected and analyzed in [20], [40], [121]. The total rating of DG is 80% of the annual
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average load in the system. From that total DG rating, 20% is assumed to be served by RE 

generation and the remaining 80% is generated by CDG. Finally, from the 20% produced by RE 

generation, it is assumed that 60% is solar based and 40% is wind based generation. Once more, 

the capacity factors selected are justified in section 2.1.2 and are the same as the values used for 

the 3FDR test system. The capacity factor of RE generation is also the weighted individual 

capacity factors o f wind and sun generation based on the percentage contribution o f each source.

Table 3.5 Design parameters for DG in the RBTS test system

DESIGN PARAMETERS

CF: wind, solar, conventional DG 0.25, 0J, 0.&

Total Annual Average Load 17.95 MW

Total DG penetration 14.36 WW

RE penetration 3.59 MW

The line data from [133] is given in the Appendix, in addition to the transformers that 

were chosen for system modeling. The lengths of the 302 possible connections are also included 

in the electronic appendix. In addition, the calculation required in the absence o f topographical 

information of a test system in order to estimate the distance between buses for the possible 

connections is reproduced from [20] in the Appendix. Next, for all connections the ACSR 

Flamingo conductor is chosen at a cost of $200,000 per km, assumed as in [20] on a synthetic 

cost base for the possible connections. The conductor selection is based on a maximum voltage 

drop in a feeder o f 5% and the methodology is reproduced from [136] and repeated below.

A line-to-neutral equivalent circuit of a three-phase line segment serving a balanced 

three-phase load is shown in Figure 3.4. The Voltage drop Vdrop between the source and the load 

is defined by (3.1) below, and the “K drop factor” Kdrop is defined in (3.2).

drop

Vdrop = Re(Z * / )

Percent voltage drop 
KVA * mile

(3.1)

(3.2)
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Figure 3.7: Line-to-neutral equivalent circuit o f a three-phase line segment serving a balanced
three-phase load, taken directly from [136].

The Kdrop factor is determined by computing the percent voltage drop as in (3.1) down a 

line that is one mile long and serving a balanced three-phase load o f  1 kVA [136]. The percent 

voltage drop is referenced to the nominal voltage o f the line. In order to calculate this factor, the 

power factor o f the load must be assumed to calculate the current. We assume a power factor of

0.9 lagging is a good approximation for a feeder serving a predominately residential load as in 

[136]. The Kdrop factor can be used to compute the approximate voltage drop down a line section 

by multiplying Kdrop by the KVA value of the load to be served and by the length to the load from 

the source, i.e. distance from the substation. When line segments are in cascade, the total percent 

voltage drop from the source to the end of the last line segment is the sum o f the percent drops in 

each line segment [136].

Using this method to compute the total voltage drop in feeder 4, which is the feeder with 

higher loading, we obtain a total voltage drop of 2%. The parameters o f the ACSR Flamingo 

conductor are included in Table 3.6 as well as the calculated Vdrop (for a line one mile long and 

serving a load of 1 kVA) and Kdrop in percentage. The voltage drop value is significantly less than 

5%, but we have not considered future load growth and it is a common practice to oversize the 

maximum loading of the lines. However, it is up to the designer to select the conductor that will 

determine the cost of the project.

Finally, the ASAI of Bus 3 of the RBTS system used is 0.99964 [133]; this value is used 

to calculate the annual outage time U as a fraction of a year as in (2.10).

With the data provided, we can proceed to build the RBTS system in PowerWorld 

Simulator™ as shown in Figure 3.6 and proceed to implement the MOGA to a six feeder test 

system.
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Table 3.6 ACSR Flamingo data reproduced from [111].

Resistance R [D/mi] 0.141

Impedance X  [Q/mi] 0.412

Vdrop (Line 1 mile. Load IkVA) [V] 0.016086

Kdrop [%] 0.00025329

Assumed Cost [$/mile] 200000

Table 3.7 Annual average load and maximum peak load per load point in the RBTS test system
[133].

Customer Type L oad points i Average Load, 

Li'ALoad [ M W ]

Max. Peak Load, 

L i,P L oadmax [MW]

Residential 1,4-7, 20-24, 32-36 0.4684 0.8367

Residential 11, 12, 13, 18, 25 0.4758 0.8500

Residential 2, 15, 26, 30 0.4339 0.7750

Small Industrial 8, 9, 10 0.8472 1.0167

Commercial 3, 16, 17, 19, 28, 2 9 ,3 1 ,3 7 , 
38

0.2886 0.5222

Office
Buildings

14,27 0.5680 0.9250

Table 3.8 Load levels in per units form the step-load duration curve and their respective duration
in hours, reproduced from [132]

B Load Level Lp (pu) A7> [hours]

1 1 3*10"4

2 0.8664 291.71

3 0.7329 1757.26

4 0.5993 2543.03

5 0.4657 2680.56

6 0.3321 1487.45
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In the following, two cases o f study are developed differing in the way the load is 

modeled in the system. First, RBTS Case I where the MOGA is implemented to the RBTS test 

system with annual average load data as shown in Table 3.7. Secondly, RBTS Case II where the 

annual demand in the system follows the peak loads in the system represented by the step-load 

duration curve. Table 3.7 includes the maximum peak loads throughout the load points in the 

system, and Table 3.8 shows the corresponding load level in per unit as well as the hours in a year 

that the respective load level occurs. The 6 step-load duration data is taken directly from [132] 

and reproduced in Figure 3.8.
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Figure 3.8: Six step-load duration curve reproduced from [132].

As a reminder, the problem addressed is the redesign o f the RBTS legacy radial system 

shown Figure 3.6. The location of DG units and addition o f feeder interties is optimized. DG 

units are modeled as in (2.4)-(2.7) and the design parameters (rating o f  RE and CDG DG) is 

given in Table 3.5. It is assumed that a DG unit placed in a radial feeder has a higher power 

output than the total loading of that feeder. With the design parameters for DG chosen, this 

assumption corresponds to locating a maximum o f  3 DG in the RBTS test system. The constraints 

of the problem are to maintain the voltage within ± 5% and penalize any overloading the lines 

and transformers of the system.
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3.3.2. Results of the MOGA applied to RBTS Case I

We apply the MOGA to the RBTS system with the demand modeled as annual average 

load data, and using (2.1 l.a) to calculate the ENS. The most relevant results are shown in Table

3.9 (the actual Pareto front contains 80 solutions), and correspond to the solutions that appear 

more frequently in the Pareto Front o f 5 simulations run for 50 generations. The MOGA is run for 

50 generations obtaining satisfying redesign configurations. In general, the number of ideal 

number of generations is found when the results are replicable from one simulation to another. 

However, for the redesign problem addressed in this thesis, there are different reconfigurations of 

the RBTS test system leading to the same or very close values o f the objective functions.

To refresh the mind o f the reader on GAs, each of the chromosomes in a generation must 

be evaluated for the selection process. As part o f the evaluation process, the elite chromosome of 

the generation is determined. Within a generation of a population, the chromosomes are randomly 

altered in hopes o f creating new chromosomes that have better evaluation scores. The next 

generation population o f chromosomes is randomly selected from the current generation with 

selection probability based on the evaluation score of each chromosome. Chromosomes for the 

next generation are selected using the roulette wheel selection scheme to implement proportionate 

random selection [137]. In order to avoid losing ground in finding the highest-scoring 

chromosome, elitism [109] is implemented in this benchmark. Elitism reserves two slots in the 

next generation for the highest scoring chromosome o f the current generation, without allowing 

that chromosome to be crossed over in the next generation. In one o f those slots, the elite 

chromosome will also not be subject to mutation in the next generation.

In the crossover phase, all o f  the chromosomes (except for the elite chromosome) are 

paired up with a default probability value o f 80%, and are crossed over. The crossover is 

accomplished by randomly choosing a site along the length o f the chromosome, and exchanging 

the genes o f the two chromosomes for each gene past this crossover site. After the crossover, for 

each of the genes o f  the chromosomes (except for the elite chromosome), the gene will be 

mutated to any one o f  the codes with a default probability value o f 20%. With the crossover and 

mutations completed, the chromosomes are once again evaluated with fitness function for another 

generation, i.e., another round o f selection and reproduction follows.

The reader can realize the fact that if  different reconfigurations o f the RBTS test system 

lead to the same or very close objective function values and the evolutionary operators are
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applied randomly, not always the same solutions will appear in the Pareto front. When the 

MOGA is run for less than 50 generations, it is observed that the Pareto-optimal solution- the 

cheapest networked connection to add between radial feeders with DG- is not always obtained 

depending on the initial population type inputted. When the MOGA is run for more than 50 

generations, the algorithm yields solutions which point to redesigns of the RBTS within the same 

range o f  objective function value; a point to be noted is that even though the two runs- with less 

than, and with 50 generations- yield solutions within the same range, they differ significantly in 

the computation time — this is explained in section 3.3.5 in detail.

In solutions 1 through 5 proposed by the MOGA algorithm, the networked connections to 

add in the system correspond to switching the normally open-tie switches at zero cost. Solution 

N o.l corresponds to closing the open-tie switch between feeders 3-4, Solutions No.2 and 4 

correspond to close 2 open-tie switches between feeders 1-2 and feeders 3-4, and feeders 3-4 and 

feeders 5-6 respectively. Solutions No.3 and 5 correspond to closing the three open-tie switches. 

Also, in this set o f solutions DG units are located in distinct feeders that cannot be connected by a 

normally open-tie switch. In this system, it is observed that locating DG units at buses with the 

higher loads increases the reliability of the system while increasing the cost of the project. This is 

because the cost o f DG is proportional to the power output, modeled with (2.4) which is a linear 

function o f the load. In fact the second term in (2.6) refers to the storage of renewable energy 

resources and is proportional to the sum of the average loads installed at the bus where the DG 

unit is located. Equations (2.4) and (2.6) are reproduced below.

Pou, = R E +  DS + CDG (2.4)

Z # = (2.6)

where CFre is the weighted capacity factor o f wind and solar RE based DG and Lg is the average 

connected load at bus g  .

Looking at Solution 2, a DG unit is located at bus 4 and another DG unit is located at bus 

15 with low residential and commercial average annual demand at a cost of $18.06 million 

reducing the ENS o f the system to 21.96 MWh. Alternatively, Solution 4 has a lower reliability 

index, ENS o f 21.62 MWh, and corresponds to locating DG units on the same feeders as Solution 

2 but at bus 13 and 29, respectively, where the highest rated loads are connected, i.e., two

53



residential customer type loads per bus at a cost of $18.31 million. Solutions 2 and 4 are drawn in 

Figures 3.9 and 3.10 respectively. The same reasoning can be applied to understand the difference 

in cost and reliability improvement for Solutions 3 and 5. Finally, for Solution 6 (shown in Figure 

3.11), it is proposed that two DG units be located on the same high loaded feeder 3, and a third 

DG unit be located on a distant feeder 5 -  i.e., one that cannot be connected to the former feeder 

by closing any existing open tie-switeh-, one normally open-tie switch connecting feeders 1 and 2 

be closed, and add two new networked connections -  one each between feeders 2 and 3, and 

feeders 4 and 5. This solution corresponds to of the maximum possible improvements o f the 

reliability in the system with an ENS of 21.33 [MWh] a year at a cost o f $18.91 million. The 

maximum improvement is not zero because first, the rating of the aggregate DG in the RBTS 

system is 80% o f the total annual average load, which corresponds to a capacity generation of  

14.24 MW. From the 14.24 MW rating of DG generation, 20% corresponds to RE with 0.28 

capacity factor (the weighted capacity factor of wind and solar with 40% and 60% contribution 

respectively) and 80% o f CDG with 0.8 capacity factor. This corresponds to a power output o f  

10.86 MW. With a maximum of 3 DG units that can be located within the buses o f the system, it 

corresponds to a power output per DG unit of around 3.62 MW each (excluding the DS term 

which depends on the load where the DG unit is located and contributes in the order o f 0.1 MW). 

As a result, even if  20% o f the load is curtailed, i.e., 80% of the power not supplied contributes to 

the annual ENS, there will always be around 5 MW of unserved load. By adding feeder interties, 

the unserved load in the system is minimized.

The utility engineer who is tasked with designing the distributed island resource system  

may decide an apt solution, considering the compromise between the cost o f the project and the 

improvement in reliability o f the system, by referring a lookup table o f possible solutions such as 

the one shown in Table 3.9. The decision maker could use other economic metrics such as the 

Value of Lost Load (VOLL) which estimates the amount that customers 

receiving electricity with firm contracts would be willing to pay to avoid a disruption in their 

electricity service [138]. If this value is greater than the difference in costs between the cheaper 

and expensive solutions, then the expensive solution may be chosen.
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Table 3.9 Solutions of the MOGA applied to RBTS Case I, numbered in increasing order of cost
of the redesign

Solution # Connection (s) DG (s) bus location # Cost [106 US $] ENS [MWh]

Line 11-17 17.97 31.40

2 Line 1-7 

Line 11-17
4& 1 5 18.06 21.96

3

Line 1-7 

Line 11-17 

Line 23-29

4&  15 & 25 18.12 21.88

4 Line 11-17 

Line 23-29
13& 29 18.31 21.62

; ’ 5

Line 11-17 

Line 17-23 

Line 23-29

7 & 13 & 23 18.47 21.36

6

Line 1-7 

Line 9-15 

Line 21-27

11 & 13& 23 18.91 21.33

3.3.3. Results of the MOGA applied to RBTS Case II

In this second case, we execute the MOGA to the RBTS system with the demand

modeled with (2.3), tracking a step load duration curve. Again, the solutions collected in Table

3.10 represent those that occur with a higher frequency on the Pareto front of 5 MOGA

simulations run for 50 generations.

The solutions proposed are very similar to those occurring in Table 3.9 and previously 

discussed in subsection 3.2.2; however, it is observed in this case that the value o f the ENS 

obtained is lower. Again, the DG units are placed on feeders with higher rated loads -  i.e., feeders 

1 and 3 in RBTS - and those that cannot be connected by closing an open tie-switeh. Within a 

feeder, the location that improves the reliability o f the system the most is the bus where the higher 

rated loads are connected; however, this choice may be effected at a higher cost, such as at bus 2 

in feeder 1, bus 13 and 11 in feeder 3 and 23 in feeder 5. Solutions No 1 and 3 are the same as is 

Table 3.9. Solution 2 locates DG at low loaded buses in feeders 3 and 5 and closes the open-tie
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switches between those feeders, at a total cost o f $ 18.03 and an ENS of 17.98 MWh. Solution 

No.3 is an enhancement of Solution No.2, by adding a third DG in feeder 1 and closing the open- 

tie switch between feeder 1 and feeder 2 reducing the ENS to 17.62 MWh, at a cost o f $ 18.18 

Finally, Solutions No. 5 and 6 are variations o f Solution No. 3 concerning the location of DG, 

with generation units located at higher loaded buses such as 11, 13 and 23. However, Solution 

No.6 proposes to build a feeder intertie between feeders 2 and 3 on top of closing the open-tie 

switches in the system an corresponding to one o f the maximum improvements o f the ENS to 

18.17 MWh a year, at a cost o f  $ 18.62.
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Figure 3.9: Solution 2 o f the MOGA applied to RBTS Case I.
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Figure 3.10: Solution 4 o f the MOGA applied to RBTS Case I.
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Table 3.10 Solutions of the MOGA applied to RBTS Case II, numbered in increasing order of
cost of the redesign

Solution # Connection (s) DG(s) bus location # Cost [106 US $] ENS [MWh]

7 Line 11-17 17.97 28.43

2 Line 11-17 

Line 23-29

14 & 25 18.03 19.78

3

Line 1-7 

Line 11-17 

Line 23-29

2 & 15 & 25 18.18 19.62

4 Line 11-17 

Line 23-29

13& 29 18.20 19.60

5

Line 1-7 
Line! 1-17 

j  Einea3-29^ '
2 & I 1 & 2 5 1 ,3 2

6
Line 1-7 

Line 8-14 
Line 11-17 
Line 23-29

2 & 1 3 & 2 9 18.62 18.17

3.3.4. Discussion on the results o f RBTS Cases I and II

By modeling the load in the system with average loads as in RBTS Case I, higher values 

o f the ENS in the system for the same redesign solution are obtained than with a more accurate 

representation of the demand as in RBTS Case II. From this observation we can conclude that 

modeling the demand in the system with annual average loads may potentially overestimate the 

ENS when compared to a more accurate representation of the demand over a year. This is not an 

issue for the redesign when the more accurate value is actually lower. The choice o f the type o f  

load modeled may be influenced by the comparison of accuracy versus the computational time for 

obtaining the Pareto front. In this thesis, a preference of one type of modeling the load over the 

other is not made.

However, introducing a time dependent characteristic of the load allows introducing more 

complexity in the model o f the candidate power system. Modeling time dependent peak loads for
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the solution(s) chosen can provide supplementary information to the designer in order to carry out 

other studies of an emerging islanded networked distribution system with DG, such as including a 

more accurate model o f DG by taking into account the stochastic nature o f RE, adequacy 

evaluation of the DER in the islanded system, analyzing the future impact o f PHEVs, etc. As an 

example, modeling the system with time dependent load can be interesting to study worst case 

scenarios o f generation and demand. This is the case of very low wind and solar radiation based 

DGs combined with high demand, (or vice versa), high power output of RE DG and very low 

demand in the system.

3.3.5. Computational time of the expanded MOGA applied to the RBTS

The computational time required by the MOGA applied to the RBTS depends on two 

factors: the initial population input to the algorithm; and, the modeling o f the demand in the 

system.

Figure 3.7 shows the average computational time required by RBTS Case I and II as 

averaged over 5 simulations of 50 generations for the three ways o f inputting the initial 

population as explained in Chapter 2 and repeated below:

i. one possible connection between distinct feeders combined with one random 

possible location of a DG unit within the 27 buses o f the system. The total 

number of possible connections between distinct feeders is 302.

ii. one possible connections between distinct feeders combined with one possible 

location of a DG within the buses in the feeder from which the connection is 

made. The total number of possible connections between distinct feeders is 302.

iii. one possible connections between distinct feeders no longer than 3 km combined 

with one possible location of a DG unit within the buses in the feeder from 

which the connection is made. The total number o f possible connections between 

distinct feeders no longer than 3 km is 164.

As the reader can appreciate in Figure 3.12, the computational can be reduced by up to 

60% by carefully selecting the initial population. Figure 3.12 illustrates the computational times 

required by the MOGA for 50 generations, and Figure 3.13 to the MOGA run for 25 generations. 

Fifty generations o f the MOGA with initial population configuration types (i), (ii), (iii) converge 

to a satisfactory Pareto-front. However, if the MOGA is run for 25 generations with initial
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population types (i) and (ii), it is observed that the Pareto-optimal solution- the cheapest 

networked connection to add between radial feeders with DG- is not always obtained. In Figure 

3.14, the Pareto front o f the MOGA with initial population types (ii) and (iii) run for 25 

generations for RBTS Case I (average annual demand in the system) arc compared.

(i) (ii) (iii) Initial population type

□RBTS Case I:Annual average loads 0R B T S Case II: Step-load duration curve

Figure 3.12: Computational time o f RBTS Case I (cylinder) and II (box) for 50 generations and 
three types o f configuration o f the initial population.

(i) (ii) (iii) Initial population type

□RBTS Case FAnnual average loads □R BTS Case II: Step-load duration curve

Figure 3.13: Computational time o f RBTS Case I (cylinder) and II (box) for 25 generations and 
three types o f configuration o f  the initial population.
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Figure 3.14: Pareto front o f the MOGA applied to RBTS Case I with initial population type (ii) 
(rhombus) and initial population type (hi) (circles)

The extended MOGA applied to RBTS Case I for 25 generations corresponds to the most 

rapid implementation o f the MOGA with average annual loads in the system and it is still a large 

value of 3 h and 40 min on a dedicated Intel® Core 2 CPU 4300 1.8 GHz machine. This 

increased computational time is due mainly because the fitness function of the MOGA evaluates 

only one individual o f a population each time a population within a generation is evaluated, 

which adds to the run time. The main component o f additional computational time is due to the 

fact that each time the fitness function is evaluated a power flow must be solved in order to obtain 

the reliability of the system and verify system constraints violations. For that, the connection from 

Matlab™ to SimAuto™ must be established and the PowerWorld™ system file opened. For 

Matlab™ to access PowerWorld™ through SimAuto™ takes approximately 10 s. This procedure 

has to be repeated for the evaluation o f each candidate solution within a population. For a 

population size o f 164 individuals, evaluating each of the individuals takes 18 minutes. This is the 

time required to obtain the fitness o f the entire population within only one generation. For RBTS 

Case II, 50 generations o f  the MOGA take between 17 and 18 hours with initial population type 

(iii). In this case, the power flow has to be evaluated for each loading level o f the system in order
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to extract the slack buses power outputs and verify the systems constraints, which more than 

doubles the computational time required by the MOGA to solve RBTS Case II compared to 

RBTS Case I.

Finally, when the expanded MOGA described in this thesis is compared to the MOGA 

proposed in [20], the number o f generation required for convergence is increased. In [20], the 

problem addressed is to optimally add feeder interties in the RBTS system with DGs arbitrarily 

located within the buses of the system. The number of generations required by the MOGA in 

[20] is 15. Adding the complexity to the original problem of co-locating feeder interties and DG 

in the system considerably increases the number of generations required by the MOGA to 

converge to Pareto-optimal solutions.

In the next chapter, a study of the contribution of PHEVs is performed for a fleet o f  

PHEVs with V2G, i.e. enabling bi-directional charge/discharge capabilities of a vehicle from/to 

the grid. The impact is quantified by simulating the behavior of a vehicle as a load and as a 

generator for every day of a year. For that, an hourly peak load representation of the load is 

necessary. In fact, a PHEV hourly load is added or subtracted to the hourly peak load at the load 

point where the PHEV is located if  it is charging or discharging respectively for the 8760 hours o f  

a year. The data for hourly peak load for the RBTS test system is reproduced using [145]. Next, 

the annual average loads and a step-load duration curve are computed so that a similar application 

o f the MOGA as described in this chapter may be performed for quantifying the impact o f PHEV 

additions to a test system and to its design.

62



CHAPTER 4

IMPACT OF PLUG-IN HYBRID ELECTRIC VEHICLES ON AN ELECTRIC 

DISTRIBUTION SYSTEM ISLAND

PHEVs sales are expected to significantly increase in the car and light-truck market 

primary due to their potential to lower fuel cost, reduce petroleum consumption and decrease 

harmful emissions. In addition, the light vehicle fleet and the power grid can be complementary 

systems for managing energy and power through V2G technology. With the existing policies in 

the US, 1 million PHEVs are projected to be on the road in 2015, and between 2015 and 2020, 

PHEV sales are projected to be sustainable without requiring federal aid [139, 140]. As a 

consequence of the increasing number of PHEVs, their impact on the electric grid must be fully 

understood. The impact depends on a number of factors that are unknown yet such as design 

characteristics and market penetration rates. In this chapter, a methodology is proposed to 

determine the impact o f PHEVs in distribution systems based on optimized charging patterns o f a 

PHEV fleet. For that purpose, a probabilistic vehicle fleet simulation is performed in order to 

model the size and driving behavior of a PHEV fleet in the RBTS test system. Subsequently, the 

charging patterns o f the PHEV fleet that may interact with the grid in V2G mode are optimized 

for utility peak shaving purposes and for the profit of the owner of the vehicle, when operating in 

V2G mode, and are compared to uncontrolled and delayed charging of the battery vehicles. The 

charging patterns o f the RBTS PHEV simulated fleet are used to determine the impact o f PHEVs 

in the RBTS system under islanded mode of operation and two case studies are presented.

4.1 PHEVs in electric distribution systems

The deployment of PHEVs has the potential positive impact on the electric power system  

from the point of view of enabling new ways of electric energy management technologies as well 

as offsetting use o f petroleum fuels with other energy sources. It is essential to realize that the 

existing power system infrastructure may not be adequate to deal with the increased demand and 

new patterns of consumption and power flows in the grid. For that reason, an increasing number 

of studies are focusing on the impact that PHEVs will have on the loading o f distribution systems 

[89, 90], [102-108] . Yet, system-wide impacts of PHEVs in emerging distribution systems can 

only be understood when these vehicles are considered as both new loads and new distributed 

resources [79].
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To the knowledge of the author, research related to the impact of PHEVs in distribution 

systems does not incorporate V2G capabilities o f such vehicles. The contribution of PHEVs with 

V2G capabilities to the existing generating capacity o f the grid is being currently explored from a 

technical to an economic point of view, but has not been included so far in the studies on the 

impact o f the additional load on the distribution power grid.

4.1.1 PHEVs with V2G technology

The concept of V2G is that an electric vehicle can provide electric energy back to the grid 

while not engaged in transportation. Perhaps, the most relevant to V2G among the many possible 

electric vehicle types is the hybrid type, which produces electricity on board from an internal 

combustion (IC) engine turning a generator. Specifically, PHEVs which have a grid connection 

allowing recharge from the grid as well as from fuel, and larger electrical components are the 

most suited for V2G purposes [15], [94], [100],[141,142]. PHEVs are designed with large 

capacity battery packs and a control algorithm such that operation is intended to be charge 

depleting, thus substituting stored electric energy in the battery for petroleum-based fuel. A 

PHEV power train runs under a charge-depleting control algorithm until the defined lower limit 

on the state of charge (SOC) is reached, and then runs under a charge-sustaining algorithm. Such 

control algorithms are also to be developed and are an open problem on the same level of 

importance to continued development o f components such as battery chemistries, power 

electronic controllers, and electric machines [90], [102]. The two modes o f charge operation o f a 

PHEV battery will be further described and extended in the next section, since it plays a crucial 

role to determine the energy required per vehicle.

Research on V2G potential o f PHEVs has concluded that the regulation, spinning 

reserves and peak power markets are the most suited for vehicle generation [15], [95]. In this 

chapter, we look at PHEVs as DER with specific battery energy requirements and constraints. For 

that, several enabling technologies must be developed and are considered as assumptions to this 

work. Reference [36] documents the enabling technologies for customer-driven DER and has 

inspired the important ones for PHEVs with V2G. The unique ones to PHEVs with V2G are 

based on the literature research [15] [90], [99]. Principally, some o f the enabling technologies for 

PHEV with V2G integration are: a) adaptive protective system with bidirectional power flow; b) 

existence of a market structure that recognizes the PHEVs with V2G as a fully participating 

entity; c) proliferation of smart power electronic devices to control charging patterns and 

interconnection of electric vehicles under grid connected and islanded mode o f operation; d)
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agent like technology for enabling communication architectures serving the grid system operator; 

e) availability of dynamic pricing o f electricity and load management; and f) presence of smart 

meters.

4.1.2 Key assumptions to determine the impact o f PHEVs

In order to fully understand the impact o f PHEVs in distribution systems, key unknown 

and difficult to predict variables such as likely market penetration and design characteristics rates 

must be assumed. Concerning the former, many analytical approaches that attempt to model the 

customer acceptance and purchasing decisions o f new and used vehicles have been developed 

[139], [141-144], The methodology described in the following sections assumes a 30% 

penetration of PHEVs as in [89, 90], [104], and can be applied to other levels of penetration. 

Another issue is the availability o f  charging stations at work, at shopping locations or along 

streets and roads. In this thesis we consider that vehicles can charge at the respective owner 

residence and that a worker o f commercial and office buildings can recharge PHEVs at work. 

However, in the probabilistic simulation o f daily behaviors it is not considered whether a vehicle 

leaving from a residential load point is the same vehicle that recharges in a commercial or office 

building. This takes into account the fact that not all people arriving to work in a commercial 

building are from the same geographical area. In addition, an added factor that will influence the 

impact of PHEVs is the charging rate, i.e., the power at which the vehicle connects to the grid. In 

the United States, a 40-mile-range PHEV might take six hours to charge at 120 V or three hours 

to charge at 240 V [78]. At 120 V, the utility and the homeowner may not require any upgrades to 

the electrical service whereas at 240 V, the homeowner and perhaps the utility may have to 

perform service upgrades [78]. In this chapter, 50% o f the vehicles charge at home at level 1, 

corresponding to 1.8 kW charge rate per hour, with a 120 V at 75 A connections. The other 50% 

does it-at level 2 o f charging with an electrical connection of 240 V and 30 A, drawing at an 

hourly charge rate o f 7.2 kW. Vehicles in commercial and office buildings are considered to 

charge at level 2.

Pertaining to the design characteristics o f the PHEV fleet, vehicle operational 

characteristics of a vehicle fleet published in [90] are used.

In the following section a methodology to quantify the impact of a PHEV vehicle fleet in 

a distribution system is presented. The methodology proposed in this chapter is depicted in Figure

4.1. Firstly, the methodology estimates a vehicle fleet size and annual behavior using a
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probabilistic methodology proposed in [90], to obtain the daily energy required by the fleet over a 

year and the behavioral daily time parameters o f the PHEV fleet; secondly, a linear programming 

approach is used to optimize the driving patterns of the vehicle fleet in order to determine the 

hourly increased load due to PHEVs over a year; finally, the impact on the annual reliability of a 

distribution system can be quantified by obtaining the ENS in the system with new annual 

loading that includes the PHEVs.

Tools <& 
Methods

Results

Impact of PHEV fleet on annual reliability 
of islanded networked distribution 

systems with DG

Impact of PHEV fleet on annual reliability 
of islanded legacy radial distribution 

systems

Daily vehicle data for LP optimization:
miles driven, energy required, arrival time, departure time

Incorporate the optimized hourly daily load of a PHEV fleet 
to the load duration curve of a distribution system

Probabilistic Simulation PHEV fleet [90]:
population size, design characteristics and behavioral parameters

LP optimization of daily charging patterns for 1 year: 
•for utility peak-shaving purposes 
•for benefit of the owner

Figure 4.1: Methodology proposed to determine the impact of a PHEV fleet on the annual 
reliability o f distribution systems under islanded mode of operation. The probabilistic vehicle 

fleet simulation methodology in [90] is used to generate daily data of a PHEV fleet unique to the 
distribution system under consideration. The LP algorithm is solved and the new annual loading 

o f the distribution system is obtained. Finally, the impact of the PHEV fleet on the annual
reliability can be quantified.
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4.2 Probabilistic simulation o f a PHEV fleet

The probabilistic PHEV fleet simulation used in this thesis is proposed in the final report 

titled “Power System Level Impacts o f Plug-In Hybrid Vehicles” of the Power Systems 

Engineering Research Center (PSERC) [90]. The parts of the methodology used in this thesis are 

presented in this section and Equations (4.1)-(4.8) and Tables 4 . 1- 4  are directly taken from the 

PSERC final report. This is done for the completeness of the thesis. The probabilistic PHEV fleet 

simulation methodology is programmed in Matlab™ in a function named PHEVSimQ using [90]. 

PHEVSimQ and other auxiliary functions specific to the probabilistic PHEV fleet simulation are 

included in the electronic appendix.

The vehicle fleet characteristic design parameters are computed in [90] based on vehicle 

simulations performed using Powertrain System Analysis Toolkit (PSAT) version 6.2, developed 

by DOEs Argonne National Labs [81] and documented in [90]. Four vehicle classes were 

arbitrarily selected by the authors in 2009, to provide a diverse vehicle fleet representative of 

what a real vehicle fleet could look like. In 2011, the future vehicle fleet does not correspond to 

the one the authors o f [90] predicted with regards to the vehicle brands. However, the design 

characteristics (i.e. battery size and efficiency) are still representative o f actual and upcoming 

designs of PHEVs [78], [139].

Once the complete vehicle models are selected, PSAT simulates the operation of the 

modeled vehicles over specified driving schedules. Three drive schedules Highway Fuel 

Economy Test (HWFET), Urban Dynamometer Driving Schedule (UDDS), and the updated 

federal test driving cycle (US06) are selected in [90 ] to generate varied results representative of 

an entire vehicle fleet. PSAT simulations are performed for each vehicle class over each drive 

cycle and varying the amount o f drive energy supplied from the battery obtaining discrete results 

per vehicle class.

The variable amount o f driving energy supplied from the vehicles is defined in [90] as 

“kphev, such that kphev=0 represents a charge sustaining mode in which on average all the drive 

energy is comes from gasoline and kphev=l represents a charge depleting mode, i.e., all of the 

drive energy comes from electricity”. The vehicle simulation methodology utilizes randomly 

generated vehicle design parameters including kphev. To facilitate simulating PHEV operation 

without a priori knowledge o f the exact value o f kphev, performance characteristics such as the 

required energy per mile driven are approximated in [90] based on the discrete PSAT results as,
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Ec =  üc (kphevC)bc (4.1)

where Ec is the required energy per mile driven [kWh/mi.] and aEc [kWh/mi.] and bEc are values 

of the approximated function parameters for each vehicle class (type) c . The function parameters 

shown in Table 4.1 are directly taken form [90]. Reference [90] estimates these parameters from 

the discrete PSAT results using a weighted nonlinear least squares approximation method.

Table 4.1 Parameters o f the approximated function (4.1), taken directly from [90].

Vehicle 
class c

aEc [kWh/mi.] bEc

1 0.3790 0.4541

2 0.4288 0.4176

3 0.6720 0.4040

4 0.8180 0.4802

As mentioned earlier, the benefits o f PHEVs for a driven distance can be optimized 

through the control strategy adopted in the two driving modes: charge depleting and charge 

sustaining modes. At the start o f a trip, the charge depleting mode is used when the vehicles 

battery is fully or almost completely charged. On trips longer than the depleting driving distance, 

after the battery is depleted to a specified lower level determined by the state of charge (SOC) in 

the battery, the control strategy is switched to the charge sustaining mode. The charge sustaining 

mode relies on gasoline to maintain a constant average SOC where on average all the energy used 

to drive the PHEV comes from gasoline. The driving distance in the charge depleting mode is 

called in [90] the charge depleting distance, JVp (miles). The charge depleting distance for each 

vehicle v and class c is calculated as a function of the useable battery capacity Bc [kWh], and the 

vehicles required grid energy per mile Ec as in (4.1). The useable battery capacity is assumed to 

be a random variable (RV) within the battery capacity ranges of SOC defined in Table 4.2 for 

each vehicle class. The distribution of the battery capacity of each vehicle class c is explained in 

section 4.2.2. By assuming a depleting distance MD of 40 miles for every vehicle class in [90], the 

kphev parameter range per class can be obtained from rearranging (4.1) and (4.2) and are shown 

in Table 4.2. The limits of the kphev parameter represent the percentage of energy per mile on 

average which comes from a battery on board a PHEV, within the assumed vehicle control 

strategy. The two-mode vehicle control strategy is dictated by the required SOC during the charge 

depleting mode.

68



“ ■ - T ,
(4 .2)

Once the operational ranges of the four vehicle types have been selected, the design and 

behavioral parameters can be simulated. The following three vehicle parameters are based on 

random distributions in [90]: PHEV vehicle class population size, PHEV design parameters and 

battery capacity and finally daily behavioral parameters such as driving distance, departure time, 

and arrival time. To produce the random parameters of a vehicle fleet, the PSERC final report 

uses the Box-Muller method [145] to generate normally distribute random variables N  which are 

recurrently used in this section and given by (4.3).

N =  y/—2 * ln (l/i) * cos (2 * 7T * U2) (4.3)

where V  is a standard normal value (a normal RV with a mean of zero and a variance o f one), and 

Uj and U2 are independent and identically distributed pseudo random numbers distributed 

uniformly over the range (0,1]. A Matlab™ inbuilt function randQ is used to obtain Uj and U2.

Table 4.2 Kphev ranges per class assuming Bc SOC ranges, reproduced from [90]

Vehicle 
class c

Bc [kWh] kphevc

Max Min Max min

1 12 8 0.5976 0.2447

2 14 10 0.6151 0.2750

3 21 17 0.5428 0.3217

4 23 19 0.4800 0.3224

4.2.1 PHEV class population size

Four vehicle types are selected by the PSERC report. The vehicle class probability 

distribution p c is 0.2 for classes 1 and 4 and 0.3 for classes 2 and 3 [79]. The first random 

parameter to determine is the number of PHEVs in each class. As already mentioned in the 

previous section, the level o f penetration assumed in this thesis is 30%. The total number of 

PHEVs is given by 0.3*Nt, with Nt being the total number of cars in the area power system of
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interest. The number of PHEVs in each class is normally distributed where mean is 0.3*Nt*Pc 

and standard deviation of 1% of the mean. It is justified in [79] that the normal distribution is 

selected because it “often occurs naturally and realistically models random customer behavior”. 

The vehicle class population is then computed as,

N phev = H e+ ° c * N  (4.4)

where N is given by (4.3), pc is the mean and ac is the standard deviation per vehicle class c.

4.2.2 PHEV design parameters and battery size

The next probabilistic parameters that need to be simulated are the vehicle design 

characteristics kphevc and usable battery capacity Bc [kWh]. “The random vehicle design 

parameters are assumed to be distributed according to a bivariate normal distribution with mean 

vector p and covariance matrix [90]. The justification stated in [90] for the assumed 

distribution is the ability of the bivariate normal to include parameter correlation. Using the 

specified ranges of kphevc and Bc simulated in Table 4.2, p and X are calculated. The correlation 

between kphevc and Bc is arbitrarily set to 0.8 by the authors o f the PSERC report. “This 

correlation represents the intuitive relationship between the design parameters kphevc and B ”, 

[90]. The correlation coefficient is arbitrarily selected with added consideration that it be positive 

definite so that a Cholesky decomposition o f L, can be computed. Next, a vector o f two 

standard normal values is generated using (4.3). Finally, the desired multivariate normal 

distribution is given by,

x = \kpll eV‘} = ji +  L *N  (4 -5)
£>c

where p is  a two dimensional mean vector L is the lower triangular matrix from the Cholesky 

decomposition o f and TV is a two dimension vector o f  standard normal values. This procedure 

is repeated for each vehicle class, obtaining the values shown in Table 4.3 (for more details on 

this calculation see PHEVSimQ in the electronic appendix).
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Table 4.3 Random battery size and kphev parameter obtained from PHEVSim ()

Vehicle 
class c

kphevc

1 14.3015 0.5976

2 14.1827 0.6151

3 19.1516 0.5428

4 21.3211 0.4800

4.2.3 PHEV daily data

The next random parameter that needs to be generated is the daily vehicle performance,

i.e., the miles driven per vehicle MdtV [mi.]. The log normal distribution is according to the 

recommendation in [90]. This distribution has been verified in [90] by comparing sample 

generated results with known driving pattern statistics. “The known driving statistics are average 

yearly total miles driven of 12,000 miles, 50% o f drivers drive 25 miles per day or less, and 75% 

of drivers drive 45 miles or less [146]”, [90]. Sample results computed in [90] using 328,500 log 

normal random variables with mean p m= 3.37  and standard deviation om= 0.5, show that the total 

yearly driving distance average is 12,018 miles, 48% o f the vehicles drive 25 miles or less each 

day, and 83% of the vehicles drive 45 miles or less each day, which closely approximate the 

driving performance results from [146]. Once more, the log normal RVs are generated using the 

standard normal random variable (RV) N  in (4.3) and computed using (4.6).

Mdv =  e ^ m+CTm*N  ̂ (4.6)

where Mdv is the distance driven by vehicle v per day d, and p m and om are the mean and standard 

deviation respectively o f the log normal distribution.

Knowing the battery size capacity available per vehicle class B c, the required energy per 

mile driven per vehicle class Ec, the charge depleting distance MCD per vehicle class and finally 

the daily driving distance Md,v per vehicle, the daily recharge energy required form the grid per 

class and vehicle can be computed , DEdc v as in (4.7). The daily recharge energy required from 

the grid depends on whether the charge depleting distance has been reached in a daily trip. If the 

daily driving distance o f a PHEV Mdv is smaller than the charge depleting distance, the energy 

required from the grid when the vehicle arrives home is the energy requirement per mile by the 

vehicle class Ec multiplied by the driven distance that day. Conversely, if  the charge sustaining
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mode has been reached, meaning that the charge depleting distance that day has been exceeded, 

then the SOC o f the battery has been maintained within the assumed limits in Table 4.2 and the 

required energy that day is the full battery capacity per vehicle class Bc.

_  f Bc , i f  M d v >  M d C (4.7)
u c * . c , v - {  Md v * Ec , i f M d}V< M diC

Finally, the time performance parameters, departure time and arrival time are modeled 

using Gaussian distributions, as the best estimate of random residential consumer behavior [79]. 

Different timing distributions are used to model the potential different consumer behaviors on 

weekdays versus weekends. As before a standard normal value TV, is computed using (4.3). Then, 

the time values are given as,

=  ^  +  (4 8)

where the result Tdv is a normally distributed integer with mean //, and standard deviation a, . The 

values for /./, and cr, are given in Table 4.4. The value Td v represents either the arrival time or the 

departure time depending on the values used for the mean and standard deviation. The arrival 

time AdiV for vehicle v- on day- d  must occur after the departure time Ddv for vehicle- on day-. To 

achieve this specification, an acceptance-rej ection method is used in [79]. Let Adv be a particular 

generated arrival time and Ddv be a particular generated departure time. Each generated pair is 

checked, and if  Adv < D d v , then a new pair is generated and the process is repeated until and the 

generated pair is accepted. The number o f pairs (Adv, D dv) are generated for the number of 

vehicles in a residential PHEV fleet.

Table 4.4 Time parameters mean and standard deiviation for weekday and weekends reproduced
from [90]

Departure (am) Arrival (pm)

Parameter Weekday Weekend Weekday Weekend

Me 7 9 6 15

<?c 1.73 2.45 1.73 2.45
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The daily time parameters given by (4.8) are representative of residential loads, which is 

the type o f loading studied in [90]. However, in the RBTS test system there are five office 

building and two commercial building type of loading. For that reason, (4.9) is proposed in this 

thesis as simulating the time characteristics for office and commercial type o f loads. The 

procedure followed is to first generate a number of arrival and departure residential times using 

(4.8) equal to the size of the office and commercial building PHEV fleet. After that, the values are 

used in (4.9.a) and (4.9.b) to determine the actual time characteristics of the office and 

'commercial building PHEV fleet.

Md,v
=  +  (4-9.a)

Md,vDgM-res =  (4.9.b)

where Anori'resd:V and Dnori'resdv are the arrival and departure times respectively o f office and 

commercial type of load points, D reSci:V and Aresdv are residential departure and arrival times 

generated using (4.8) and Mdv is the miles driven by vehicle v per day computed by (4.6). Finally, 

S is the average urban driving speed assumed to be 25 miles per hour [147].

With the probabilistic simulation method described in this section by referring to the 

original work done in [90], data for daily energy requirements per vehicle and arrival and 

departure behaviors of a PHEV fleet can be generated for a year, and used as parameters for the 

linear optimization method presented in the next section in order to determine the annual loading 

o f  a distribution system with PHEVs.

4.3 LP algorithm for the PHEV fleet charging problem

Towards modeling the impact that a simulated PHEV fleet with V2G capabilities may 

have on a given distribution system, an imperative question to answer is: for how long does a 

PHEV behave as a load and for how long it behaves as a generator? From a utility perspective, a 

PHEV fleet in an area may be used for peak shaving purposes. From a customer point o f view, 

the PHEV may be used to reduce the hourly energy consumption, i.e. reduce the owner’s energy 

bill.
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With these two motivations as possible driving factors o f a PHEV charging pattern 

behavior, a LP algorithm is proposed to determine the expected annual loading o f the RBTS test 

system.

4.3.1 Mathematical formulation

Once the PHEV fleet is simulated with the method explained in section 4.2, an LP 

algorithm can be formulated in order to resolve the charging patterns o f a given number of  

vehicles in a distribution system. First, the LP for peak shaving purposes is presented and 

secondly, the one for minimizing the vehicle owner’s energy bill. These two algorithms are 

handled separately in this thesis. Future work may warrant an algorithm for co-optimization 

purposes.

4.3.1.1 LP algorithm for peak shaving purposes

The algorithm is described by introducing first the sets o f indexes used in the algebraic 

notation of the mathematical formulation of the LP, followed by the parameters required in the 

model. Next the variables which need to be determined by the algorithm in order to obtain the 

objective value, the objective function and finally the constraints to the problem.

• Sets: The sets represent the index notation used in the mathematical formulation of the

algorithm.

o I - s e t  of load types, from 1 ... N1 

o C= set o f PHEV classes, from 7 ...Ve

o V= set o f PHEV per class, from 1 ... Nv

o D=set o f days in a year, from 1 ...N0

o T= set o f hours in a day, from 1 ... NT

• Parameters: The parameters are the required data in order to determine the variables 

and constraints of the problem

o N1, Ve, Nv, N0 and Nr are the total number o f  load types z, vehicle classes c,

vehicles v per class, days d in a year and hours fin  a day respectively

o Bc = Battery size per vehicle class c [kWh]
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o Cwavc = Maximum hourly charge rate per vehicle class c [kW]

o DEdCyV= Daily energy required per day d, vehicle class c and vehicle v [kWh]

o AdCtV = Daily arrival time per day d, vehicle class c and vehicle v [h]

o Ddcv= Daily departure time per day d, vehicle class c and vehicle v [h]

o Lavdj=  Average base load (without PHEVs) on day d and load type i [kW]

o Lpeakdit = Peak base load (without PHEVs) on day d, load type i and hour t

[kW]

• Variables: The variables in the system are determined by the LP algorithm. The first 

two variables C+̂ c,HZ and C dC:Vj represent the daily energy charged and discharged per 

vehicle per hour. Note that because o f the hourly time period resolution of the 

variables, power and energy have the same value. Yet, CdCiVj is the energy stored in the 

battery by the end of time period t and is analogous to an inventory variable, keeping 

track of the energy in the battery. The next two variables V*dc,v,t and W*dc_VJ are 

mathematical constructs to sense the variation between charging and discharging within 

one day, and are used to constraint the cycling occurring in a battery per day. At last, 

Ldxt is the total hourly daily load per load type with PHEVs and ZdjJ is the absolute 

difference of the mentioned load and the average base load.

o C ¥d,c,v,t= Amount charged on day d, vehicle class c, vehicle v and time t [kW]

o C dC!Vj= Amount discharged on day d, vehicle class c, vehicle v and time t [kW]

o CdC:Vj= Energy stored on day d, vehicle class c, vehicle v and time t [kWh]

o V"dCiVj = Positive difference between C+d;CjV;t and C d;C)V;t on day d, vehicle class 

c, vehicle v and time i [kW]

o W* d c,v, t=  Absolute value o f the difference between V+diC;V)t and V+d)C)V)t+i [kW]

o Ldlt= Load at day on day d, load type i and hour t [kW]

o Zdxt= Absolute value o f the difference between L^t and L^dd [kW]
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• Objective function: For peak shaving purposes, the objective is to minimize the sum of 

the absolute difference o f the actual hourly daily load to the average daily load. 

Because the actual daily average load with PHEVs is unknown and depends on the 

uncertain variables in the system, the average base load is used instead.

• Constraints: The constraints are the restrictions to the problem and limit the feasible 

region o f  the problem, i.e., the solution space where the values of the variables can be

o Battery restrictions: Equations (4.11) and (4.12) set the maximum charge rate 

o f  the battery o f a vehicle per hour and (4.13) expresses the energy left in the 

battery when the vehicle arrives home. If the charge sustaining mode has not 

been reached, the energy left in the battery will be the battery size minus the 

energy required to bring it to full charge. If the charge depleting distance has 

been exceeded, then the energy in the battery when the vehicle arrives home 

will be 0. Equation (4.14) states the hourly inventory balance in the battery per 

day and it is equal to the energy available in the battery in the previous hour 

added to the charge or discharge occurring in the present hour. In (4.15), the 

requirement is that the vehicle is fully charged by the daily departure time of 

the vehicle. Finally, (4.16-18) are constraints related to the cycles of charge 

and discharged allowed per day during the charging period, i.e. between the 

arrival and departure time of the vehicle. Equation (4.16) measures the positive 

difference between charging and discharging; when positive charging occurs 

and when it is zero discharging occurs. Next, (4.17) subtracts the values of the 

positive variation in (4.16) and hour t to the one occurring at t+1; if the 

absolute value o f the difference is not zero then it accounts for a variation 

between charge and discharge or vice versa and if  the difference is zero, it 

represents no variation between charging and discharging or vice versa. At 

last, the number o f non zero values allowed in W^iCiV t is 3. Suppose that a two 

charge/discharge cycles occur during a charging period: the first non-zero 

value accounts for a variation between the first charge and discharge; the

Peak shaving = Minimize
(4.10)

found.
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second non-zero value accounts for the first discharge and the second charge; 

and finally the third non-zero value accounts for the variation between the 

second charge and the second discharge. The sum of the absolute difference 

between two time periods of the variation between charging and discharging 

should be less than or equal to three times the maximum charge rate. Equation

(4.18) constraints the battery to have a maximum of 2 battery cycles, which are 

defined as a complete discharge, followed by a complete charge o f a battery

o Load in the system with PHEVs: (4.19) calculates the load in the system with 

PHEVs which is the daily base load at load type i added to the sum of the 

charging or discharging of the vehicles present at that load type. Equation

(4.20) gives the absolute value o f the difference between the occurring daily 

load at load type i and time t and the daily average base load value LavdJ.

[148].

m ax (4.11)

m ax (4.12)

Q,c,v,t =  -  DEdcv  V d , c , v  and f o r  t = AdiCiV -  1 (4.13)

Cd,c,v,t = V d , c , v  and f o r  t  =  Dd>c>v (4.15)

(4.16)

m ax V d, c, v, andA, (4.18)
d,c,v,t
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(4.19)

;=i

(4.20)

o Non-negativity constraints: (4.21) states that all the variables are positive or 

equal to zero.

(4.21)

4.3.1.2 LP algorithm for minimizing the vehicle owners consumption

The mathematical formulation of the optimization problem in order to minimize the 

costumers energy bill is very similar to the one presented in the previous section 4.3.1.1. For that 

reason, only the differences to the model discussed above will be presented in this section.

The parameter required to determine the new objective function is the daily price per 

hour PdJ [$/kWh], A TOU pricing scheme is chosen and synthetic data is created, inspired by the 

residential TOU pricing currently offered in [149] and shown in Figure 4.2, and adapted to the 

residential rates offered by a candidate utility in [150] and shown in Figure 4.3.

The objective function for the LP algorithm for the customer benefit is then given by,

where Pdt is the hourly daily rate of energy consumption and Ldii>t is the load in the system with

The set o f constraints that define the optimization problem to minimize (4.22) are the 

same as the ones required for peak shaving purposes, except for (4.20) which is irrelevant to 

minimizing the customers energy bill.

Energy bill = M inimize (4.22)

PHEVs
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4.3.2 LP algorithm implementation

The LP algorithms to optimize the charging patterns o f a PHEV fleet are coded in 

AMPL™ language [151]. AMPL™ is a language designed to make the formulation o f an 

optimization problem easy to the user. The language closely resembles the symbolic algebraic 

notation that many modelers use to describe mathematical programs and similar to the one used 

in section 4.3.1. Yet, it is regular and formal enough to be processed by a computer system. The 

solver used is IBM ILOG CPLEX™ which is a mathematical programming solver for linear 

programming, mixed integer programming, quadratic programming, and quadratically 

constrained programming problems installed in a machine named cross-country in Colorado 

School o f Mines with the following specifications: Dell PowerEdge R410, dual-quadcore Intel 

E5520 with HyperThreading enabled, 12GB of RAM, pair o f 160GB drives in a RAID1 [152].

Ontario Electricity Time-of-Use Price Periods
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Figure 4.2: Ontario Electricity TOU price periods for the summer and winter weekdays, and for 
the weekends and holidays, directly taken form [149].
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Figure 4.3: Synthetic data of TOU price periods for the summer and winter weekdays.
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4.4 Application of the PHEV fleet probabilistic simulation and LP algorithms to the RBTS

test system

First, the PHEV fleet simulation method [79] presented in the previous section is applied 

to the RBTS test system to generate the required parameters for the optimization model. Secondly 

both of the LP algorithms are applied to the characteristics o f the RBTS test system and the 

charging patterns o f the PHEV fleet are determined. The charging patterns o f the battery vehicles 

obtained from the LP solver CPLEX™ are given in the electronic appendix.

4.4.1 PHEV fleet simulation applied to the RBTS test system

In order to use the probabilistic simulation of a PHEV fleet presented in 4.2 to the RBTS 

test system, a number o f assumptions must be held.

First, to determine the total number of cars N, and apply (4.4) to calculate the PHEV 

vehicle class population size, the load types with PHEVs must be chosen. For that purpose, the 

residential, commercial and office building load types are selected to have customers with 

PHEVs. The RBTS test system is described in section 3.1.1 and Table 3.7 shows the load types in 

the system.

The total base load o f residential load points adds up to 19.9 MW. Nt is calculated based 

on an average consumption o f energy per costumer of 2 kW and 1.5 vehicles per electric 

costumer [89,90], [104] such that the total number of cars in the residential area of the RBTS is 

14,925. Using (4.4), the PHEV class population size is shown in Table 4.5. The total number of 

PHEVs in the RBTS test system with 30% of penetration is 4,474. The PHEV fleet is uniformly 

distributed throughout the residential loads in the system, i.e., every residential load point in 

Table 3.7 is assumed to be 186 PHEVs. The 24 residential load points in Table 3.7 are classified 

into 3 types o f residential loads differentiated by their power demand. The total number of 

vehicles for which annual daily behavioral data is generated for each residential load type, is 186 

cars. It would be time prohibitive to generate daily data (energy required, arrival and departure 

times) for the 24*186 vehicles in the residential area o f the RBTS test system. Nevertheless, the 

size of the vehicle fleet chosen allows generating 67,704 values o f probabilistic daily energy 

required, arrival and departure times. These daily parameters for each vehicle within the four 

classes of study and for a year time period are included in the electronic appendix due to their 

large dimensions. Residential charge rates are chosen to be level 1 (120V, 15A) for vehicle class 

1 and 2, and level 2 (240V, 30A) for types 2 and 4.
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Table 4.5 Probabilistic results of population size per vehicle class

Vehicle

class

c

Vehicles per load point type

Residential Office building Commercial

1 44 15 7

2 48 18 9 .

3 45 14 6

4 49 19 1 8

Concerning commercial and office building type o f loads, the size of the vehicle fleet 

depends on the number o f workers in the buildings. According the Energy Information Agency 

(EIA) o f  the US Department o f Energy (DOE), there are in average 38 and 17 workers per office 

and commercial building respectively. If each one of the workers owns 1.5 vehicles, with 30% of 

penetration the total number o f PHEVs per office and commercial building is 17 and 8 PHEVs 

respectively. Each commercial load point is assumed to serve four commercial buildings and each 

office building load type serves two. In addition, the working schedule for office buildings is 

from Monday through Friday, whereas commercial buildings are assumed to be functional all 

days o f the week.

Finally, the PHEV design and battery capacity characteristics are the ones presented in 

section 4.2.2, which depend only on the PHEV type and not on the distribution system where the 

vehicle is located.

4.4.2 LP algorithm applied to the RBTS test system

. The LP algorithm is applied to the loading and PHEV fleet characteristics of the RBTS 

test system. The AMPLsm program used to run both LP algorithms is included in the electronic 

appendix, including the data file, model file and the run file. Table 4.6 includes the dimensions 

of the sets indexes o f the problem and gives the reader an idea o f the size of the problem given by 

the number o f variables and constraints. The number o f vehicles is approximated to the average 

of the average number o f vehicles per load type (three residential types, one commercial and one 

office building). The size o f  a variable related to the battery charge is 4 vehicle classes x 33
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vehicles per class x 364 days in a year x 24 hours per day ~ 1.15*106 per variable. The size o f a 

variable related to the new load in the system is 5 load types (3 residential and 2 non-residential) 

x 364 days in a year x 24 hours.per day ~ 4.37*104. The total number variables n required to 

determine the objective function value is: 5 batteiy related variables x 1.15*106 (size a battery' 

variable) + 1 load variable x 4.37*104 (size o f a load variable) ~ 5.79*106 variables. The size o f  

the problem is the product o f the number of variables n and the number of constraints m=10  and 

is approximately 5.79*10?.

Table 4.6 Size o f the sets of indexes of the LP in the RBTS test system

Sets Dimensions

I I f  = 5

C r̂II%

V A ^ -33

D 7V° = 364

T

an

In the previous chapter, the results published in [132] were used to build the load duration 

curve o f the RBTS Bus 3 test system. A load duration curve described by 100 data points is given 

in [132] for the RBTS system in per unit of the peak load and study periods. However, in this 

chapter, the LP algorithms require the daily load curves per load type of the system for a period 

of 1 year as input parameters. For that purpose, the data on weekly peak in percent o f the annual 

peak load, daily peak load in percent of the weekly peak, and at last hourly peak load in percent 

of the daily peak load of the RBTS test system are used. These data for the RBTS test system are 

the same as that o f the IEEE Reliability Test System (RTS) [145]. The IEEE RTS system was 

published by the IEEE Subcommittee on the Application of Probability Methods and provides a 

set o f data that can be used in system reliability evaluation [132]. The weekly and daily data is 

shown in Table 4.7-8 respectively and the hourly load profile o f the yearly seasons, in percent o f  

the daily peak load is drawn in Figure 4.4. With these data, hourly annual data {24 hours x 52 

weeks x 7 days a week = 8736 load data) can be computed.
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Figure 4.4: Seasonal hourly load in percent of the daily peak load for weekdays {wd) and
weekends (we) reproduced from [145].

Table 4.7 Weekly peak load in percent o f annual peak load, taken directly from [145]

Week Peak

Load

Week Peak

Load

Week Peak

Load

Week Peak

Load

1 82.2 14 75 27 75.5 40 72.4
2 90 15 72.1 28 81.6 41 74.3
3 87.8 16 80 29 80.1 42 74.4
4 83.4 17 75.4 30 88 43 80
5 88 18 83.7 31 72.2 41 88.1
6 84.1 19 87 32 77.6 45 88.5
7 83.2 20 88 33 80 46 90.9
8 80.6 21 85.6 34 72.9 47 94
9 74 22 - 81.1 35 72.6 48 89
10 73.7 23 90 36 70.5 49 94.2
11 71.5 24 88.9 37 78 50 97
12 72.7 25 89.6 38 69.5 51 100
13 70.4 26 86.1 39 72.4 52 ' 95.2
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Table 4.8 Daily load in percent of weekly load directly taken from [145]

Day Peak Load

Monday 93
Tuesday 100

Wednesday 98
Thursday 96

Friday 94
Saturday 77
Sunday 75

Furthermore, in this chapter, a more accurate representation o f office and commercial 

building daily load profiles has been computed using synthetic data. In the previous chapter, the 

load duration curve is computed from the data available in [132] and in which the load points of 

the RBTS system are approximated to behave as residential loads. In this chapter, the winter 

hourly load profile o f commercial and office buildings is computed as in Figure 4.5 in order to 

simulate the charging patterns of vehicles occurring during work hours. The summer load is 

considered to be 15% more than the winter and the spring and fall hourly loads are considered to 

be 15% less than the winter loads. These values may be aptly modified for various geographical 

regions as needed.

% M aximum peak dem and  
120 -,  ---------------------

100

40

^  „?> „> „»

— — Synthetic data for non-residential load types

Figure 4.5: Winter hourly load profile for non-residential type o f load (synthetic data).
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Due to the large size of the problem, the memory o f the cross-country machine used to 

run the LP charging pattern algorithms was not enough to solve the problem. For that reason, the 

algorithms are solved for the three residential load types first and for a vehicle class at a time. 

Furthermore, due to the similar population size o f  vehicles per class, the average o f the 

population size per class is considered, which means that every class has the same number of 

vehicles equal to 46 in a residential load point. With that assumption, the dependence o f the 

vehicle index on the class is avoided. After running the algorithms for the individual four vehicle 

classes, the base load is subtracted from the determined new load o f the residential load types 

with one class of PHEVs, obtaining the added load o f the PHEV fleet per class. This quantity is 

summed for the four classes and added to the base load, obtaining the contribution of the four 

vehicle classes to the base load. Next the algorithms were solved for commercial and office 

building type of load separately, for all types of vehicle classes obtaining the new loading of non- 

residential load types with PHEVs directly.

The results of the optimized PHEV fleet patterns in the loading o f the RBTS system are 

shown in Figure 4.6. The load duration curve is computed, representing the annual loading 

ordered by decreasing power demand of all the load points 1-38 o f  the RBTS system. Curve (1) 

corresponds to the RBTS base load, curve (2) to the RJBTS with PHEVs optimized for peak 

shaving purposes and at last curve (3) is drawn and illustrates the RBTS loading with PHEVs 

optimized for the benefit of the customer.

—  (1) RBTS Base Load
— — (2) RBTS Base load + PHEV for peak

shaving
  (3) RBTS Base load + PHEV for

customer benefit

3.5

9000 
Time [h]

3000 5000 7000 80002000 4000

Figure 4.6: Load duration curve of the RBTS system base load, base load and PHEVs optimized 
for peak shaving purposes, base load and PHEV loads optimized for customers profit.

85



Concerning the loading o f the RBTS with PHEVs optimally charged for utility peak 

shaving purposes curve (3) in Figure 4.6, the peak demand of the system increases by 2.4 MW. 

From the perspective o f the utility serving such new loading characteristics, it means that the 

capacity demanded by the RBTS distribution system area is slightly increased. In addition, the 

annual energy consumed by the RBTS power system area with PHEVs optimized for peak 

shaving purposes is greater than without PHEVs, i.e. the area under curve (2) is greater that the 

area under curve (1). Using a trapezoidal approximation to calculate the annual energy of curves 

(1) and (2), the annual energy consumed by the RBTS base load system is 1.43*105 MWh, versus 

1.62*105 MWh consumed by the RBTS system with an optimized PHEV fleet loading for peak 

shaving purposes. To summarize, the peak demand increases by 2.4 MW corresponding to an 8 % 

increase with respect to the RBTS base load system and the annual energy consumption is 

increased by 73. J %.

Four vehicle charging patterns obtained from the LP algorithm solved with IBM 

CPLEX™ solver are plotted in Figures 4.7 and 4.8. Note that the axis in Figure 4.7 starts in the 

afternoon hours (pm), when residential drivers arrive home. On the contrary, Figure 4.8 begins in 

the morning hours (am), corresponding to the arrival period of time to non-residential buildings.

Vehicle battery charge [kWh] Demand [kW]
900

800

- 700

600

- 500

400

300

-  200

-  100

1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 1 1pm 12am lam  2am 3am 4am 5am 6am 7am 8am 9am 10am 1 lam  Noon 

Vehicle 1 class 2, Level 1 IVehicle 1 class 4, Level 2IVehicle 2 class 2, Level 2

[vehicle 2 class 4, Level 2 Daily total load

Figure 4.7: Individual optimized PHEV battery charging patterns o f four vehicles and total daily 
load for a weekday residential demand for peak shaving purposes.
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Figure 4.8: Individual optimized PHEV battery charging patterns o f two vehicles and total load 
for a weekday commercial demand for peak shaving purposes.

The charging patterns o f four vehicles within the PHEV fleet for a winter day are shown 

for illustrative purposes, as well as the total load for that day for a residential load type 1 in 

Figure 4.7 and for two vehicles for commercial load type o f demand in Figure 4.8. The peak 

demand in residential load types is shifted from the late afternoon (6-8 pm) in Figure 4.4 to the 

night (2-4 am) with 30% o f penetration in residential areas. Looking at the individual charging 

patterns o f the vehicles, four are selected in order to illustrate the peak shaving charging strategy. 

The four column graphics illustrate the energy stored in the battery of a PHEV per hour. The first 

series corresponds to a vehicle class 2, charging at level 1 and arriving home at 5pm. At arrival 

time, it fully discharges the available energy in the battery during peak demand, and waits to start 

charging at 10 am to be completely charged again by 6 am. The vehicle leave.s at 8 am, and has 

discharged for an hour before leaving. The second vehicle class 2 charging at level 1 has arrived 

at 3 pm, waits until 5 pm to start a complete discharge o f the 5.2 kWh of available energy during 

the following two hours and once more, starts the charging periods at 10 pm. The same 

recognizable behavior o f discharging and charging patterns can be observed in the third and 

fourth column series, in which the vehicles charge/discharge at level 2 at a higher rate: vehicles 

discharge during peak time hours o f the base load, and charge during the night. If the vehicle 

arrives home before 5 pm approximately, the general strategy is to wait until the load of the 

system increases during peak demand periods after 5 pm, and then discharge for peak shaving 

purposes.
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For commercial and office buildings, the daily peak demand normally occurring at 3 pm 

is reduced, and the strategy followed is to charge the vehicle when the vehicle arrives to the work 

place before noon, discharge during the afternoon hours and charge again to be have full capacity 

when driving back home as shown in Figure 4.8 for a weekday,

With regards to the loading of the RBTS with PHEVs optimally charged for the benefit 

of the customer shown in curve (3), the peak demand of the system increases considerably from

29.1 MW to 37.4 MW. A capacity demand increase of 8.3 MW is a significant raise o f 25.8 % 

with respect to the power required by the RBTS base load system. In addition, the energy 

consumed by the RBTS with PHEV fleet optimized for the costumers benefit is also 1.62*105 

MWh a year, the same as the energy consumed by a the RBTS with a PHEV fleet optimized for 

peak shaving purposes. The optimized objective function given by (4.22) is 16.72 millions o f  US 

$. It corresponds to the sum o f the hourly energy bill for a year for the entire RBTS system with 

PHEVs optimized for customer benefit. We computed (4.22) for curve (2) (PHEVs for peak 

shaving) and the annual energy bill would be of 17.0 millions o f US $ a year. This difference is 

due to the TOU pricing method employed. First, the TOU pricing off-peak, medium-peak region 

and on-peak time frames where created in function of the RBTS daily base load profile, without 

considering PHEVs in the system. Secondly, the optimization algorithm minimizes the energy 

consumption in the on-peak and medium-peak time frames, shifting the charging o f the PHEVs to 

off-peak TOU pricing regions, see Figure 4.9. Utilities should be aware o f this matter, and should 

carefully offer appropriate TOU pricing schedules to reduce the energy consumption o f  the 

distribution system, as well as the peak demand with respect to the new load daily pattern with 

PHEVs.

Optimized charging patterns with TOU pricing of individual vehicles obtained from the 

LP solved with CPLEX™ are plotted in Figure 4.9 for a residential type o f load, and for a type 

commercial in Figure 4.10. The column graphic illustrates the energy stored in the battery o f a 

PHEV. The first series corresponds to a vehicle class 3, charging at Level 2 and with the 

following time characteristics: arrival time 8 pm and departure time 8 am. The charging strategy 

determined by the LP algorithm is to discharge the 11 kWh available in the battery during the on- 

peak price period and charge during the off-peak pricing frame. Finally, it discharges at the 

maximum discharge rate for Level 2 at 7 am during on-peak and charges back on hour later so 

that the battery is fully charged by departure time. The following question might come to the 

mind of the reader: is it worth for the owner of the PHEV to discharge at 7am to charge at back 

again at 8 am? This question cannot be answered without the individual loading o f  the owners as



available data. The available data in the RBTS is the demand at a load point, which is the 

aggregate o f several individual customers. So it happens to be worth according the LP algorithm 

to discharge and charge back again the following hour in function o f what the other customers 

charging patterns are within that load point because the aggregate load at 7 am and 8 am during 

on-peak hours is reduced in Figure 4.9. The LP algorithm optimizes the charging patterns with 

respects to the electric demand at a load point, but it could be extended to individual charging 

patterns if  the required data is available. The second series corresponds to a vehicle class 3 and 

level 2 o f charging arriving at 3 pm and leaving at 3 am. The charging strategy followed this time 

is to fully charge when the vehicle arrives home during medium-peak TOU price period , 

discharge during on-peak hours and charge back again during off-peak hours. The third and 

fourth column graphs correspond to two vehicles class 1 charging at level 1, and following the 

same strategies as for the first and second series respectively.

Demand [kW]
-i--------r  1 2 0 0

Vehicle battery charge [kWh]

Off-peakOn-peakM edium -peak O n-peak M-p
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-  200

1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am lam  2am 3am 4am 5am 6am 7am 8am 9am 10am 1 lam  Noon

class 3, Level 2 !Vehicle2 class 3, Level 2 Vehicle 1 class 1, Level 1

;Vehicle2 class 1, level 1 Daily total load

Figure 4.9: Individual optimized PHEV battery charging patterns o f four vehicles and total load
for a weekday in winter with TOU pricing.
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Figure 4.10: Individual optimized PHEV battery charging patterns of two vehicles and total 
commercial load for a weekday in winter with TOU pricing.

Finally, the line curve in Figure 4.9 represents the total residential load type 1 for that 

day. The total residential load type 1 for that day is in accord with the TOU price periods selected 

in this thesis, i.e., the charging patterns o f the PHEV fleet have lowered as much as possible the 

loading during on-peak price periods. Yet, the variability o f a residential load point at the medium 

voltage (llkV ) level is increased, creating steeper ramps due to the charging/discharging o f the 

vehicles, but also due to the periods where a big number o f  vehicles don’t charge/discharge and 

the demand decreases or increases to base load values.

4.4.3 Impact of uncontrolled and delayed charging strategies without V2G in the RBTS test

system

In this section, we compare both o f the optimized loadings of the RBTS system with a 

PHEV fleet of 30% o f the total transportation fleet, to uncontrolled and delayed charging o f the 

same size PHEV fleet with no V2G. Uncontrolled charging o f a PHEV means that the vehicle 

plugs in to recharge its battery when it arrives home. Delayed charging of a PHEV is a strategy 

allowing the vehicle to start charging as late as possible, i.e. the beginning o f the charging period 

starts with a delay equal to the time difference between the required charging time at a level of  

charging and the available charging time.

Figure 4.11 shows the load duration curve o f the RBTS base load system, the RBTS with 

and uncontrolled charged PHEV fleet and finally the RBTS loading with a PHEV fleet delayed
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charging strategy. The impact on the RBTS test system of the PHEV fleet with uncontrolled 

charging is especially dramatic. The annual capacity demand in kW rises to 39.9 MW, which 

correspond to percentage increase o f 37 % with respect to the power demanded by the RBTS base 

load area. The annual energy demand o f the area is increased to 16.5*105 MWh, which represents 

an increase o f 15.5 % in energy demand. However, the impact of the same PHEV fleet with 

delayed charging control is mitigated considerably. The annual energy demand of the area is the 

same as with uncontrolled charging o f PHEVs, however, the peak demand of the area is slightly 

increased from 29.1 MW to 29.7  MW.

4.5 Reliability impact o f PHEVs in the RBTS system

Once the size, design and behavioral characteristics of the PHEV fleet are modeled for 

the RBTS test system and the optimized charging patterns have been determined in order to 

obtain the expected new annual loading o f the system, the annual reliability can be evaluated. 

First the reliability impact is quantified in the RBTS radial distribution system and secondly, in 

the RBTS redesigned distribution system with networked interties between feeders and DG units.

(1) RBTS Base Load
(2) RBTS Base load + PHEV 
uncontrolled charging
(3) RBTS Base load + PHEV 

delayed charging

3.5

2.5

1000 2000 3000 6000 6000 9300 9000 

Time [h]
7000

Figure 4.11: Load duration curve o f the RBTS base load (1), base load and PHEV uncontrolled 
charging fleet (2), base load and PHEV delayed charging fleet (3).
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4.5.1 Reliability impact of PHEVs in the RBTS radial system

To evaluate the impact of the new loading with PHEVs on the reliability o f the RBTS 

system, we compute the step-load duration of curve as explained in chapter 2 , section 2 .1.1. 

Figure 4.12 shows the step-load duration curves for the RBTS base load, base load and PHEVs 

for peak shaving and base load and PHEVs for customer benefit.

Curve (1) in Figure 4.12 does not correspond precisely to the step-duration curve 

computed for the RBTS test system in the previous chapter. In this chapter, a more accurate 

representation of office and commercial building daily load profiles has been computed using 

synthetic data presented in Figure 4.5, where the new daily profile of non-residential loads is 

shown in percentage o f the annual peak demand. For that reason, the annual peak demand o f  

office and commercial building load types is the same in Chapter 3 and in Chapter 4; yet, the 

annual average load of non-residential load types is different. The hourly daily data for residential 

loads is computed using the hourly, daily and seasonal characteristics in [145] and reproduced 

earlier in this chapter.

4
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Figure 4.12: Step-load duration curve o f the RBTS test system without PHEVs (base load (1)) 
and with PHEVs optimized for peak shaving (2) and for customer benefit (3).

The new loading characteristics by type of demand are given in Tables 4.9-11. Table 4.9 

shows that the annual average demand per load point for the RBTS system with PHEVs is the 

same for the vehicles optimized for utility peak-saving and for the benefit of the customer, with a 

tolerance o f 10"3. However, with a more accurate representation of the annual demand as in

(1) RBTS Base Load
(2) RBTS Base load + PHEV for peak 
shaving
(3) RBTS Base load + PHEV for 
customer benefit
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Tables 4.10-11, the annual loading characteristics of the RBTS with PHEVs optimized for peak- 

shaving and with TOU pricing are different.

Table 4.9 Annual average demand per load point in the RBTS base load system and the RBTS
with PHEVs

Customer Type Load points i

Annual average load, LALoad [MW]

Base load Base load  + 

PHEVs peak  

shaving

Base load  + 

PHEVs TOU 

pricing

Residential 1, 4-7, 20-24, 32-36 0.4684 0.4939 0.4940

Residential 11, 12, 13, 18, 25 0.4758 0.5011 0.5012

Residential 2, 15, 26, 30 0.4339 0.4606 0.4607

Small Industrial 8, 9 ,10 1.0167 1.0167 1.0167

Commercial 3, 16, 17,19, 28, 
2 9 ,31 ,37 ,38

0.1889 0.2024 0.2024

Office Buildings 14,27 0.3345 0.4778 0.4778

Table 4.10 Annual maximum peak load per load point in the RBTS base load system and the
RBTS with PHEVs

Customer Type Load points i

Max. peak load, Li>PLoadmax [MW]

Base load Base load + PHEVs 

peak shaving

Base load  + PHEVs 

TOU pricing

Residential 1,4-7, 20-24, 32-36 0.8367 0.9143 0.9857

Residential 11, 12, 13,18, 25 0.8500 0.9275 0.9986

Residential . 2, 15,26, 30 0.7750 0.8532 0.9258

Small Industrial 8, 9,10 1.0167 1.0167 1.0167

Commercial 3,16,17, 19,28, 29,31,37,38 0.5222 0.6143 0.6468

Office
Buildings

14,27 0.9250 1.219 1.1976
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Table 4. 11 RBTS load levels in per unit from the step-load duration curves and their respective 
duration in hours (base load and with PHEVs)

Base load Base load + PHEVs peak 

shaving

Base load + PHEVs TOU 

pricing

B Load Level 

M pu)

Afy [hours] Load Level 

As(pu)

A(g [hours] Load Level 

As(pu)

A(g [hours]

1 1 3*10"4 1 3*10"4 1 1

2 0.8546 422 0.8359 249 0.8212 87

3 0.7092 1583 0.6719 2632 0.6424 1992

4 0.5639 1974 0.5078 3235 0.4636 2817

5 0.4185 2531 0.3438 1965 0.2849 2783

6 0.2731 2225 0.1797 654. 0.1061 1056

Computing the ENS with (2.11.a) using annual average demand values to represent the 

loading of the system, the impact o f PHEVs with V2G technology on the reliability o f the RBTS 

system is quantified. Note again that in this chapter, the base load system is computed using 

synthetic data for non-residential load types and thus, the values o f ENS differ from the ones 

obtained in the previous chapter. The results o f ENS for the RBTS base load system and for the 

RBTS with PHEVs are shown in Table 4.13. The annual average demand of the RBTS test 

system with PHEVs optimized for peak-shaving purposes and with TOU pricing is the same and 

thus, the annual ENS of the RBTS test system with PHEVs optimized for peak-shaving purposes 

and with TOU pricing is the same. The annual ENS of the RBTS base load system is 44.52 MWh, 

versus the ENS of 47.45 MWh a year o f the RBTS with PHEVs.

Using (2.1 l.b) to compute the ENS with step-load duration modeling of the RBTS base 

load and the RBTS base load with PHEVs, the impact on the reliability of the RBTS with 30% 

penetration of PHEVs with V2G technology is computed. The results o f the annual ENS are 

shown in Table 4.13 for the RBTS legacy system. In addition, the PNS for each loading level in 

the system is also provided.
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Table 4. 12 ENS of the RBTS radial legacy system with average annual demand

| Base load j  Base load + PHEVs

ENS [MWh] 44.52 47.45

Table 4. 13 PNS per load level in the RBTS radial legacy system and annual ENS

Base load Base load + PHEVs 

peak shaving

Base load + PHEVs 

TOU pricing

B Atfl [hours] PNS [MW] Atfi [hours] PNS [MW] Atp [hours] PNS [MW]

1 3*10"4 23.64 3*10 '4 26.27 1 27.85

2 2225 20.20 249 21.96 87 22.86

3 2531 16.76 2632 17.64 1992 17.88

4 1975 13.32 3235 13.33 2817 12.90

5' 1583 9.88 1965 9.21 2783 7.92

6 422 6.45 654 4.71 1056 2.95

ENS
[MWh]

39.88 45.87 39.26

Using a more accurate representation of the annual load of a distribution system, it is 

observed that the reliability o f the system is not the same for the RBTS radial system with PHEVs 

optimized for peak-shaving and with TOU pricing. The ENS for the RBTS with PHEVs 

optimized for peak shaving purposes is 45.87  MWh a year. The annual ENS increases by 6 MWh 

compared to the ENS of the RBTS base load system, due principally to the increase of the base 

load of the system for peak-shaving purposes. Looking at Figure 4.16, the energy under the step- 

load duration curve (2) is over curve (1) for load levels number 4 and 5, to provide power to help 

balance loads by valley filling (charging at night when demand is low). In lower load level 

numbers (higher loading in the system), curve (2) stays closer to curve (1), which corresponds to 

the peak shaving strategy o f  sending power back to the grid when demand is high. The valley 

filling strategy creates a higher energy demand during the majority o f the time in a year period, in 

detriment of the reliability that decreases. However, in the RBTS radial legacy system with 

PHEVs optimized with TOU pricing rates, the annual reliability o f the system is increased
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compared to the reliability of the RBTS radial system base load. Minimizing the energy bill 

corresponds to minimizing the energy consumption of the system, in particular during on-peak 

price periods. The second decrease observed in the daily load curve during the night with TOU 

price periods in Figure 4.9, does not occur that pronouncedly for valley filling purposes in Figure 

4.7, and reduces the PNS in load levels 4-6. These load levels occur during more than 75% o f the 

hours in a year. The fact that the power demanded during more than 75% of the year is reduced 

with TOU pricing has a direct consequence in increasing the annual reliability of the system. As a 

consequence, the annual reliability o f a radial legacy distribution system may be increased with 

PHEVs if  an adequate charging strategy is in place. Modeling the demand in a distribution system 

with annual average loads may not allow quantifying precisely the impact of different charging 

strategies o f PHEVs to the reliability o f distribution systems. However, using a step-load duration 

curve to represent the annual loading in a distribution system enables to include more detail into 

the study o f the impact o f different charging strategies to the reliability of distribution systems.

4.5.2 Reliability impact o f PHEVs in the RBTS redesigned test system

In this section, the impact o f PHEVs is quantified in the redesign solutions proposed in 

the previous chapter in section 3.3.3, and presented in Table 4.12. Note that the redesign solutions 

proposed in Chapter 3 are obtained with the load data given in [132, 133] and reproduced in 

Table 3.7. However, the PHEV impact is quantified using different load data for non-residential 

type o f loading. The redesign solutions are still valid for the new RBTS base load data. Only 

office building and commercial type o f load data is different. Office buildings are 2 o f the 38 load 

points in the system and their change in annual loading characteristics will not affect the redesign 

solutions. With regard to commercial type of demand, there are 9 load points in the RBTS 

system. Yet, in the data used in Chapter 3, office building load points have the lowest value o f  

demand with respect to the other types of loading and are even lower in the data used in Chapter 

4. This means that if  a redesign involved adding feeder interties and DG between buses with 

office building type o f loading, this was due to the low value of this type of demand, which is 

even lower with the data used in this chapter.

The power output of the DG in the system is sized with respect to the total annual 

average load in the RBTS base load system with synthetic data used for non-residential load 

types. Considering the same design characteristics as in Chapter 3, i.e., the total contribution o f  

DG is 80% o f the total annual average demand in the system, the total DG rating in the RBTS 

system with synthetic data used for non-residential load is 10.33 MW (with the load considered in
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Chapter 3 as in [132], the total rating of DG was sized to 14.24 MW). The ENS of the redesigned 

RBTS test system with base load and with PHEVs is computed in Table 4.14 using (2.14.a), i.e., 

with average annual loads in the system.

Table 4.14 ENS of the RBTS system for redesign solutions o f the RBTS test system

Solution ENS [MWh]

Connections 

from bus-to bus

DG bus location Base load Base load + 

PHEVs

11-17 15 29.10 30.72

1-7 & 11-17 4&  15 2025 21.55

11-17 & 23-29 14& 25 20.35 21.65

11-17 & 23-29 13& 29 19.95 21.19

1-7 & 11-17 & 23-29 2 & 1 5 & 2 5 20.14 21.43

1-7 & 11-17 & 23-29 7 & 1 3 & 2 3 19.69 20.93

The reader can appreciate that the redesigned RBTS system is more reliable than the 

RBTS legacy system by reducing the ENS from 40 to 60 %. However, the algorithm in the 

previous chapter found optimal solutions for the base load of the RBTS system without PHEVs 

and the cost and reliability are directly influenced by the demand per load point which has 

changed. In this chapter, the PHEV distribution per load point is uniform, i.e. every load point has 

increased the demand by a similar amount. Yet, if the distribution is not uniform and different 

penetrations of PHEVs are expected per load point, the ENS of the redesign may be affected in a 

manner different to the results presented in this thesis.

4.5.3 Redesign of the RBTS test system with PHEVs

In this section, we implement the MOGA methodology proposed in Chapter 2 to the 

RBTS system with PHEVs. The redesigned solutions, i.e. feeder interties and DG units to be 

added to the system will be optimized with the new loading with PHEVs occurring in the system. 

DG units are sized in function o f the annual average load in the system as in the previous chapter. 

When compared to the RBTS base load test system, the total annual average demand has
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increased only by 13% from 12.91 MW to 14.54 MW in the RBTS system with PHEVs. This 

increment affects insignificantly the size of the power output o f  the total DG in the redesigned 

system that is increased from 10.33 MW to 11.63 MW, considering the same design 

characteristics as in Chapter 3, that is, the total contribution o f  DG is 80% of the total annual 

average demand in the system. The results o f the MOGA applied to the RBTS test system with 

PHEVs s are shown in Table 4.14. The redesign o f the RBTS system with PHEVs is done using 

annual average loads in the system. As discussed in Chapter 3, the results are very similar to 

modeling the demand with annual average loads as using a step-load duration curve. 

Additionally, the computational time required with step-load duration curve modeling is doubled 

when compared to the annual average load modeling. At last, the annual average loads in the 

RBTS test system with PHEVs optimized for peak-shaving and with TOU pricing are the same, 

and therefore, the redesign solutions with annual average loads are valid for both charging 

strategies.

Hence, the MOGA with annual average loads modeled in the system is used for the 

redesign of the RBTS test system with PHEVs. The solutions are shown in Table 4.15. Once the 

redesign solutions are obtained, the ENS of such solutions is computed using (2.1 l.b), with step- 

load duration curve representation of the annual demand, in order to obtain a more accurate value 

o f the ENS for the solutions and is presented in Table 4.16.

Concerning the solutions proposed by the MOGA, they follow the same criteria as the 

redesigns of the RBTS base load system. Again, DG units are placed on feeders with higher rated 

loads -  i.e., feeders 1 and 3 in RBTS - and those that cannot be connected by closing an open tie- 

switch. Within a feeder, the location that improves the reliability o f the system the most is the bus 

where the higher rated loads are connected. The rated loads connected have changed but are 

classified in the same decreasing order o f demand in the RBTS with PHEVs as in the RBTS base 

load system, with the exception of the second residential load type. As a consequence, buses with 

low connected demand such as 14 and 15 appear as possible locations for DG in Solutions No.

1,2 and 4 in the redesign solutions of the RBTS base load and the RBTS with PHEVs because 

they corresponds to the lowest demands in both systems. However, bus 11 in Solutions No. 3 and 

5, where load points 11 and 12 are located and correspond to the second residential load type, is 

the new highest load connected in feeder 3. As a consequence, bus 11 is chosen over bus 13 in the 

RBTS redesign solutions with PHEVs.
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Again, the redesign solutions proposed by the MOGA in this section are considering a 

uniform distribution o f PHEVs per load point and different results would be obtained if  a non- 

uniform distribution of PHEVs per load point is expected.

Table 4.15 Redesign solutions of the MOGA applied to the RBTS test system with PHEVs and 
annual average demand modeled in the system.

Solution # Connection (s) DG (s) bus location # Cost [106 US $] ENS [MWh]

Line 11-17 17.60 30.72

2 Line 1-7 

Line 11-17
5 & 14 17.70 21.55

3 Line 1-7 

Line 11-17

17.87 21.31

4 Line 1-7 

Line 11-17 

Line 23-29

4 & 14& 23 18.64 21.62

5

Line W

Line 11-17 

Line 17-24

5 & 11 & 19 18.33 21.00
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK

This chapter is organized as follows: first, conclusions derived from the research done in 

this thesis are presented, and secondly, avenues o f future work are described.

5.1 Conclusions

At first, conclusions derived from implementing the expanded MOGA presented in 

Chapter 2 and applied to tests systems in Chapter 3 are discussed. Next, conclusions from the 

study of the impact o f PHEVs to the reliability o f distribution systems are presented.

5.1.1 Conclusions to the extended MOGA

An extended methodology to design emerging distribution systems under islanded mode 

of operation proposed in [20] is presented in the first part o f this thesis, Chapters 2 and 3. The 

additions are on the one hand, to simultaneously co-locate feeder interties and DG in a legacy 

radial distribution system in order to improve the reliability under islanded mode of operation, 

and on the other hand, to explore a more accurate modeling o f the annual load o f the distribution 

system with a step-load duration curve and analyze its impact on the planning o f such systems.

Primarily, as a consequence o f increasing the complexity o f the problem to 

simultaneously co-locate DG and feeder interties in a given radial distribution system, the number 

of generation required by the MOGA is considerably increased from 15 to at least 25. For that 

reason, the computational time is increased. The exact values of the time required for the MOGA 

in [20] and the expanded MOGA in this thesis are not comparable because the algorithms were 

run on different machines. Secondly, a more accurate representation of the annual load in the 

system to be designed leads to very similar redesign solutions o f a given distribution system. 

However, the computational time required by modeling the demand with a step-load duration 

curve representation versus one unique annual load level (annual average demand) is at least 

doubled. In addition, the value o f the annual ENS with annual average loads modeled in the 

system is over-estimated when compared to a more accurate representation of the demand. This 

consideration is not an issue for the planning stage o f a distribution system.

ARTHUR LAKES LIBRARY  
COLORADO SCHOOL OF MINES 

GOLDEN, CO 80401



5.1.2 Conclusions to the study of the impact of PHEV s

First, the conclusions to the impact of PHEVs in distributions systems are valid under the 

assumptions considered in Chapter 4, subsection 4.1.2, concerning the percentage o f PHEV 

penetration, charging locations, charging levels and operational and design characteristics o f  

PHEVs. However, the methodology proposed in Chapter 4 can be adjusted to modifications made 

in the assumptions.

The impact o f 30% of penetration of PHEVs in the RBTS radial legacy system using 

synthetic data for non-residential load types is:

•  Under peak shaving and TOU pricing charging strategies, the daily peak demand 

is shifted to 3-5 am and increased from 8-25% depending on the charging 

strategy with respect to the RBTS without PHEVs.

• Under delayed charging strategy o f PHEVs without V2G, the peak demand is 

insignificantly increased and shifted to 3-4 am.

• Under uncontrolled charging o f PHEVs without V2G, the peak demand increases 

37% with respect to the RBTS without PHEVs.

e PHEVs with V2G increase the annual energy consumption of the RBTS test

system by 13%, compared to PHEVs without V2G that increase the annual 

energy consumption to 16%

• TOU pricing rates can significantly increase the peak demand if no “demand 

charges” are applied.

The impact o f 30% of PHEV penetration to the reliability and design of the RBTS test 

systems is:

•  Step-load duration modeling o f the annual load allows depicting differences in 

the impact o f distinct charging strategies to the reliability of distributions systems 

under islanded mode o f operation. However, annual average load modeling o f the 

demand does not reveal such differences in the annual reliability o f the new 

loading of the RBTS test system with PHEVs optimized with different 

objectives.

102



• Charging strategy for utility peak shaving purposes increases the energy 

consumption for valley filling purposes and thus, decreases the annual Energy 

Not Supplied o f distribution systems.

• Charging strategy with TOU pricing periods for the benefit o f the customer 

increases the annual reliability of distribution systems under islanded mode o f  

operation due to the decrease in energy consumption to reduce the energy bill.

• RBTS redesign solutions without considering PHEVs increases the reliability o f 

the system with PHEV penetration

• The redesign solutions of the RBTS system considering PHEVs in the system 

may vary with respect to the solutions proposed without PHEVs and it depends 

on the probability distribution used to model PHEVs in a test system

5.2 Future work

Several open topics for further exploration are available from the research presented in 

this thesis.

With regards to the modeling of DG, time dependency on the power output o f such 

machines can be explored. In this thesis, DG is modeled using the capacity factor o f  the different 

types o f DG contributing to the total rating. However, as it has been explored in this thesis with 

the respect to the annual load, the time dependency of the power output o f DG throughout a year 

may or may not affect the redesign solutions of radial legacy distribution systems. Considering 

the large computational time required by the extended MOGA to converge into Pareto-optimality, 

a pre-conditioned search methodology to cut down the computation time can be explored. For 

instance, an acceleration technique for filtering potentially infeasible and/or suboptimal inputs, 

based on machine learning may potentially reduce the number of input candidate solutions that 

require a power flow evaluation. If a significant fraction of the inputs tested, it is possible that the 

input from that fraction is either infeasible or the values for the objective functions are sub- 

optimal, a filter based on machine learning can potentially alleviate the number o f power flow  

evaluations, by identifying features of inputs that will lead to infeasibility or sub-optimal 

objective values [153].

Concerning the methodology proposed to quantify the impact o f PHEVs with V2G  

capabilities in distributions systems, potential expansions are: first, develop a study a survey on 

how a future vehicle fleet in distributions systems will look like, and secondly, run software 

simulations with the results from the first study to obtain an accurate model o f a PHEV fleet.
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Pertaining to the LP algorithms, the modeling o f a vehicle battery can be extended and more 

detail on the operation of such devices included. Finally, a probabilistic based methodology can 

be developed to model the distribution o f PHEVs throughout the load points o f a medium voltage 

system.
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APPENDIX

This appendix contains additional information on the sizing o f the components of the 

3FDR and RBTS test systems. After that, the programming information for all presented case 

studies in the first and second parts of this thesis is described. First, the programming information 

of the MOGA is described for the 3FDR test system example and for both RBTS case studies. 

Secondly, the codes for the evaluation of the impact o f PHEVs are described including the 

probabilistic simulation methodology and the LP algorithms. The programs in their entirety are 

found in the electronic appendix.

A. 1 Components of the 3FDR and RBTS system

Tables a.l and a.2 contain the impedance characteristics o f  the existing lines in the 3FDR 

system and of the possible connections to be added in the 3FDR system respectively.

Table A 1.1 Line data of the existing connections in the 3FDR test system, reproduced from [20].

Connection Length [mi.] R (pu) X(pu)
Line 2-3 0.2841 0.0066 0.0175
Line 4-5 0.3314 0.0002 0.0006
Line 8-9 0.4213 0.0059 0.0153

Transformer 1-2 N/A 0.0100 0.0600
Transformer 5-6 N/A 0.0100 0.0600
Transformer 7-8 N/A 0.0100 0.0600

Calculation of the distance between buses in the absence of topographical information

Reference [20] proposed the calculation repeated below to estimate the distance between 

buses for the possible connections in the absence o f topographical information o f a test system. A 

fixed distance is assumed between feeders and the length o f a possible connection is given by,

= (Vd2 + ( f - A) 2 , f
£ = 1 d , f  =  A (A-1-»

where d, the distance between feeders; t, the distance o f  the ‘to’ bus to the slack bus on the ‘to’ 

feeder; and À the distance of the ‘from’ bus to the slack bus on the ‘from’ feeder. Equation (a.l) is 

directly taken from [20].
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Table A 1.2 Line data o f the possible connections to be added in the 3FDR system reproduced
from [20].

Connection i R (pu) X (pu)
Line 1-4 0 .0.001 0.0093
Line 1-5 0.002 0.0186
Line 1-6 0.0159 0.0420
Line 1-7 0.0042 0.0558
Line 1-8 0.0055 0.0144
Line 1-9 0.0079 0.0209
Line 2-4 0.0060 0.0257
Line 2-5 0.0040 0.0105
Line 2-6 0.0046 0.0121
Line 2-7 0.0046 0.0120
Line 2-8 0.0050 0.0131
Line 2-9 0.0083 0.0219
Line 3-4 0.0126 0.0332
Line 3-5 0.0106 0.0280
Line 3-6 0.0050 0.0156
Line 3-7 0.0146 0.0386
Line 3-8 0.0140 0.0369
Line 3-9 0.0200 0.0529
Line 4-7 0.0001 0.0003
Line 4-8 0.0024 0.0063
Line 4-9 0.0064 0.0168
Line 5-7 0.0002 0.0007
Line 5-8 0.0055 0.0145
Line 5-9 0.0081 0.0213
Line 6-7 0.0080 0.0210
Line 6-8 0.0058 0.0153
Line 6-9 0.0054 0.0142

A.2 Electronic appendix

The electronic appendix included in this thesis is organized in two main folders. The first 

one named ‘MOGA’, contains the programming codes and the data related to the extended 

MOGA methodology proposed in Chapter 2 to be applied to the two test systems presented in 

Chapter 3. In this section, the “Readme_MOGA.txt” is presented. The second main folder 

‘PHEVs’ contains the programming codes for the probabilistic simulation methodology and the 

LP algorithms described in Chapter 4 and implemented in the RBTS test system. The 

“Readme PHEVs.txt” file is also included in this section.
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Contents of "MOGA"

This folder contains two main functions RunMOGA and RunMOGADGs codes for 

running optimizations on the RBTS Bus 3 distribution system and on the 3FDR test system 

respectively. It contains all the sub-functions called by those codes. This folder also contains the 

PowerWorld files used in the simulations o f the test systems. Finally, it contains 6 subfolders 

named after the objective functions used, with the outputs of the MOGA. The extended MOGA 

proposed in this thesis is based on the methodology proposed in [], and thus this folder contains 

functions directly taken from [], functions that are modifications to the code proposed in [], and 

functions programmed by the author o f this thesis particular to the problem addresses.

• Preparation files for the RBTS

PrepFile.m ... used for component sizing and creating the .aux file of possible 

connections between buses.

PrepFile TessGonnections.m ...used for component sizing and creating the .aux file of 

possible connections between buses no longer than 3km

• Optimization files

RBTS: RunMOGA.m ... used to specify the settings and the objective function for the 

multi-objective optimization of cost and reliability using a genetic algorithm function 

from Matlab, gamultiobj(). Then, the output o f the algorithm is printed to the command 

line.

3FDR:RunMOGADGs.m ... used to specify the settings and the objective function for the 

multi-objective optimization of cost and reliability using a genetic algorithm function 

from Matlab, gamultiobj(). Then, the output o f the algorithm is printed to the command 

line.

• Subfunctions

objeval_DGs() ... a function is to evaluate the cost and reliability for the multi-objective 

GA process with annual average loads in the 3FDR test system.

I: x (an individual from the G A)
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O: f  (the objective function values [cost; rel])

ASUQ ... a function to extract information programmed at Arizona State University for 

the RBTS Bus 3 Distribution System

I: pmt

O: L line, LP, Peak Avg, fdr lens

CreateAux()... a function to create the .aux file of the possible connections between 

feeders in the RBTS Bus 3distribution system

I: writefile, feeders, fdr lens, d, bus names, lims, r_per_km, x_per_km, cost inc

O: cost, (writefile.aux in current directory)

CreateAux LessConnections ()... a function to create the .aux file o f the possible 

connections between feeders no longer than 3km in the RBTS Bus 3distribution system

I: writefile, feeders, fdr lens, d, bus names, lims, r_per_km, x_per_km, cost inc

O: cost, (writefile.aux in current directory)

Exfunc ()... a function to switch data types before writing information to the .aux file

LP line () ... a function that links the load points to the line that serves them. Output in 

format [load point; line serving]

I: none

O: L line

RBTS lines() ... a function establishing the physical connection between buses in the

system

I: N B, N LINES 

O: LINE, y
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RBTSobjeval_AV() ... a function is to evaluate the cost and reliability for the multi­

objective GA process with annual average loads in the RBTS test system.

I: x (an individual from the GA)

O: f  (the objective function values [cost; rel]

RBTSobjeval_AV_LessConnections() ... a function is to evaluate the cost and reliability 

for the multi-objective GA process with annual average loads, and connections no longer 

than 3km in the RBTS test system.

I: x (an individual from the GA)

O: f  (the objective function values [cost; rel]

RBTSobjeval_LD() ... a function is to evaluate the cost and reliability for the multi­

objective GA process with step-load duration curve representation in the RBTS test 

system.

I: x (an individual from the GA)

O: f  (the objective function values [cost; rel]

RBTSobjeval_LD_LessConnections() ... a function is to evaluate the cost and reliability 

for the multi-objective GA process with step-load duration curve representation and 

connections no longer than 3km in the RBTS test system.

I: x (an individual from the GA)

O: f  (the objective function values [cost; rel]

DevListDispReducedQ ... a function to extract bus and branch info

I: A, pmt (T/F value to print results)

O: basic bus & branch info

branchEXreduced()... a function to extract the branch information

I: A, output branch, branchflds
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O: chng_branch

BranchFormat() ... a function to arrange the branch information into a the format 

recognized by SimAuto

I: chng branch

O: valuelist, num elems

EENSreducedDGs_LD() ... a function to determine the power not supplied

I: A, T, genflds, output gen, slack buses

O: PNS

DG_sizing()... a function to extract the annual avrage load information to size DG

I: A,output_gen, genfields,slack buses)

O: L average, tot load

genEXredùcedDG 1 ()... a function to extract the information about system generators and 

slack buses

I: A, output gen, genflds, slack buses

O: slackgen, regen, reqdinf_re, reqdinf

GenFormatQ ... a function to arrange the information into a format recognized by 

Simauto functions

I: reqdinf_re

O: valuegenlist, num genelems 

Load BusDGQ ... a function to obtain a vector o f connected loads in the buses o f the

system

I: loads,regen 

O: L
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LoadFormatQ ... a function to arrange the information into a format recognized by 

Simauto functions

I: loads Beta

O: valueloadlist, num loadelems

flatstart() ... a function to reset the system generators to the flat start condition of 1 pu at 

an angle o f 0 deg.

I: A

O: none

runmode() ... a function to enter SimAuto "Run" mode 

I: A

O: none

editmodeQ ... a function to enter SimAuto "Edit" mode 

I: A

O: none

resetslackQ... a function to reset buses that are no longer slack to zero output 

I: A, reqd gen, slack buses, reqdGENfields 

O: none

loading() ... a function to extract the branch loading information 

I: A, output branch, branchflds 

O: maxpercent

v levelQ ... a function to extract the bus voltage information 

I: A, output bus, busflds
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O: puvolt

penaltyQ ... a function to create the penalty scaling variable for line and voltage 

contraint violations

I: maxpercent, puvolt

O: p scale

•  PowerWorld files

RBTS_Bus3Dist.pwb (.pwd) - power world simulator file and display file o f the 

base system. This has no DGs.

RBTS_Bus3DistFull.pwb - power world simulator file of the base system, plus 

the possible connection lines as open lines. This has no DG.

RBTS_Bus3Dist_ALLDGs.pwb - power world simulator file o f the bas system. 

This has DGs in all the buses with zero power output and average annual loads in 

the load points.

RBTS_Bus3 Dist FullALLDGs .pwb - power world simulator file o f the base 

system, plus the possible connection lines as open lines. This has DGs in all the 

buses with zero power output and average annual loads in the load points.

RBTS_Bus3Dist_ALLDGs_PeakLoad.pwb - power world simulator file o f the 

base system. This has DGs in all the buses with zero power output and annual 

peak loads in the load points.

RBTS_Bus3Dist_FullALLDGs_PeakLoad.pwb - power world simulator file o f  

the base system, plus the possible connection lines as open lines. This has DGs in 

all the buses with zero power output and peak annual loads in the load points.

RBTS Bus3Dist_ALLDGs PeakLoadPS.pwb - power world simulator file o f  

the base system. This has DGs in all the buses with zero power output and annual 

peak loads with PHEVs for Peak-shaving in the load points.
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RBT S_Bus3 Di st_FullALLDGs PeakLoadP S .pwb - power world simulator file 

of the base system, plus the possible connection lines as open lines. This has DGs 

in all the buses with zero power output and peak annual loads with PHEVs for 

Peak-shaving in the load points.

RBTS_Bus3Dist_ALLDGs_PeakLoadTOU.pwb - power world simulator file 

of the base system. This has DGs in all the buses with zero power output and 

annual peak loads with PHEVs with TOU pricing in the load points.

RBTS_Bus3Dist_FullALLDGs_PeakLoadTOU.pwb - power world simulator 

file of the base system, plus the possible connection lines as open lines. This has 

DGs in all the buses with zero power output and peak annual loads with PHEVs 

with TOU pricing in the load points.

RBTS_Bus3Dist_ALLDGs_PHEV.pwb - power world simulator file o f the 

base system. This has DGs in all the buses with zero power output annual 

average loads with PHEVs in the load points.

RBTS Bus3Dist FullAEEDGs PHEV.pwb - power world simulator file o f the 

base system, plus the possible connection lines as open lines. This has DGs in all 

the buses with zero power output and average annual loads with PHEVs in the 

load points.

RBTS Bus3Dist AEEDGs HewAv.pwb - power world simulator file o f the 

base system. This has DGs in all the buses with zero power output and annual 

average loads using synthetic data presented in Chapter 4 in the load points.

RBTS_Bus3Dist_FullALLDGs_NewAv.pwb - power world simulator file o f  

the base system, plus the possible connection lines as open lines. This has DGs in 

all the buses with zero power output and annual average loads using synthetic 

data presented in Chapter 4 in the load points.

• Subfolders:

The following subfolders contain the output to the MOGA and are named after 

the objective function used.

@obj eval_DGs(3FDR) 

@RBTSobjeval_AVLessConections,

@RBTSobj eval_AV, 

@RB T S obj eva lL D ,
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@RBTSobejval_LDLessConnections

@RBTSObjeval_AVLessConections_PHEV

and

Contents of “PHEVs”

This folder is organized in 3 subfolders: ‘ProbSimMethod’, ‘LPs’, and ‘RBTSChapter4’. 

Each of these subfolders contains a R eadm e' subfolder name’.txt file in which the contents o f  the 

subfolder is explained and repeated below.

Readme_ProbSimMethod. txt

‘ProbSimMethod’ contains the main function PHEVSimQ to generate the required PHEV data for 

the LPs and the subfunctions of PHEVSimQ, which are listed below.

• Main function:

PHEVSim () ... a function generating the design and behavioural characteristcis o f a 

PHEV fleet for the RBTS test system and required by the LPs.

I: none

O: B, HE res, HE com, HE off, Arr res, Arr_com, Arr off, Hep res, Hep com, 

H ep off

• Subfunctions used:

PHEVsClass Q ... use to compute the PHEV population size per class 

I: Nt_res, Pphev, p 

O: Nphev

Besign_param() ... use to compute design and performance characteristics per vehicle

class

I: BC range, kphev range, ro, aE, bE 

O: B, kphev, E
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Daily_paramRES_LPformat () ... this function returns the daily energy required and time 

parameters for each vehicle for a year in a residential load type

I: N_phev_tot_res, u rn, r_m, u_dt, u_at, r_dt, r at

O: Arr res, Dep res, DE res

Daily_paramOff_LPformat () this function returns the daily energy required and time 

parameters for each vehicle for a year in an office building load type

I: N_phev_tot_off, u_m, r_m, u_dt, u_at, r_dt, r at

0:Arr_off, Dep off, DE off

Daily_paramCom_LPformat () ... this function returns the daily energy required and time 

parameters for each vehicle for a year in a commercial load type

I: N_phev_tot_com, u_m, r_m, u_dt, u_at, r_dt, r at

O: Arr com, Dep com, DE com

SNV() ... used to compute a standard normal value of dimension n

I: n

0 :N

ReadmeJLPs

‘LPs’ contains the files necessary to run the LP algorithm with the objective of utility 

peak-shaving actions and with the objective o f minimizing the customer energy bill with TOU 

pricing rates (‘LP TOU’). Peak-shaving purpose is numbered objective number 7and reducing 

the energy bill is objective number 2. Recall that the LPs are solved separately for residential load 

types and one vehicle class at a time (there are a total o f 4 classes), for office building load type 

and all vehicle classes, and for commercial demand type and all vehicle classes at a time.

• Files:
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phev_L 123_c'class number'_o'objective number'.dat ... contains the data for running the 

LP for 3 residential load types for vehicle class 'class number' and for 'objective number' 

purposes.

phev_L123_c'class number' o'objective number'.run ... is the run file for running the LP 

for 3 residential load types for vehicle class 'class number' and for 'objective number' 

purposes.

phev Lcom 'objective number'.dat ... contains the data for running the LP for 

commercial load type for vehicle all vehicle classes and for 'objective number' purposes.

phev_Loff_'objective number'.dat ... contains the data for running the LP for office 

building load type for vehicle all vehicle classes and for 'objective number' purposes.

p h evL com 'ob j ective number'.run ... is the run file for the LP for commercial load type 

for vehicle all vehicle classes and for 'objective number' purposes.

phev Loff 'objective number'.run ... is the run file for the LP for office building load 

type for vehicle all vehicle classes and for 'objective number' purposes.

phev o'objective number' cmin.mod ... is the model file for running the LP with 

objective fimction 'objective number' and for vehicle classes 1 and 2

phevo'obj ective number'cmax.mod ... is the model file for running the LP with 

objective function 'objective number' and for vehicle classes 3 and 4

• Subfolder 'phev out' contains the output files o f the solving the LPs with Cplex solver

Readme_RBTSChapter4

This folder contains the codes used to compute the demand of the RBTS with 

uncontrolled charging strategy o f the PHEV fleet and delayed charging strategy in a subfolder 

named ‘Uncontrolled+Delayed charging’. ‘Load duration curves’ is a subfolder with the 

functions used to obtain the load duration curves presented in Chapter 4 for the RBTS test 

system.
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• Subfolder ‘Uncontrolled+Delayed_charging’: contains the functions 

Uncontrolled_phev() and Delayed_phev() and the data necessary to compute the 8736 

hourly load of the RBTS system

• Subfolder 'Load duration curves' : contains the necessary functions and data to compute 

the load duration and step-load duration curves of the RBTS system base load and with 

PHEVs

Load totPSQ ... plots the load duration and step-load duration curves for the RBTS base 

load and with PHEVs optimized with LP Peakshaving

Load totTOUQ ... plots the load duration and step-load duration curves for the RBTS 

base load and with PHEVs optimized with LP TOU

Load_totUNC() ... plots the load duration and step-load duration curves for the RBTS 

base load and with PHEVs with uncontrolled charging

Load totDELQ ... plots the load duration and step-load duration curves for the RBTS 

base load and with PHEVs optimized with delayed charging
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