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ABSTRACT

The ability to autonomously map sea minefields presents navies with the op

portunity to route a ship more safely through a minefield. We embed a directed 

graph in a representation of a minefield area. Vertices represent waypoints and 

edges denote possible segments for ship transit. We present a model to identify 

an s-t path tha t minimizes the probability that a ship incurrs unacceptable damage. 

Standard shortest-path based methods employ an “edge-additive model” th a t may 

over-accumulate the to tal risk associated with a path and yield poor solutions. Our 

“threat-additive model” avoids these problems. The solution methods include (a) 

two integer programs (IPs) implemented in commercial optimization software, and 

(b) a novel path-enumeration algorithm, M RP A (Minimum-Risk Path  Algorithm), 

implemented in C + + . M R P A identifies an initial solution and bounds the opti

mal solution before implicitly enumerating paths. Computational results indicate 

tha t M R P A solves problems faster than standard IP software in 80% of the 35 test 

problems we consider. These problems contain 963 vertices, 2792 edges, and 30-35 

threats.
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CHAPTER 1 

INTRODUCTION

Unmanned underwater vehicles (UUVs) can map minefields. This provides navies 

with the opportunity to use a model whose solution would allow a ship to transit a 

m apped minefield more safely. We embed a directed graph in a representation of a 

minefield area. Vertices represent waypoints and edges denote possible segments for 

ship transit. Using a “threat-additive” model tha t is more accurate than a standard 

“edge-additive” model, we identify a minimum-risk route, i.e., an s-t path that mini

mizes the probability of a ship incurring unacceptable damage. The solution methods 

include (a) two integer programs implemented in commercial optimization software, 

and (b) an implicit path-enumeration algorithm implemented in C++.

1.1 P rob lem  S tatem en t

Minimizing the risk of threat detection is a recurring objective when optimizing 

routes for military vehicles (Murphey et ah, 2003). We define the minimum-risk 

routing problem as follows: A vehicle must transit from point s to point t in a convex, 

two-dimensional region, i.e., the area of operations (AO). We embed a directed graph 

G(V, E)  in a representation of this region where vertices V  represent waypoints and 

edges E  denote possible segments for ship transit. We refer to this graph as the 

AO network. A two-dimensional AO suffices because a surface ship is restricted to 

maneuvering on a planar surface. A set of threats exists in the plane, or may be 

viewed as existing in the plane, and we wish to identify an s-t path that minimizes 

risk, such a route is optimal. Hereafter, we refer to a vehicle as a ship and a threat 

as a mine.

Risk from a mine to a ship is represented mathematically by a risk function. The 

risk function we use computes risk from the probability of mine actuation. An actua
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tion curve, which transforms the closest point of approach (CPA) into the probability 

of mine actuation, calculates this probability. The closest point of approach is the 

minimum distance between a mine and each edge that falls within the damage radius 

R m of mine m. The damage radius, Rm, is the distance beyond which a ship no longer 

incurs damage from a mine even if it explodes. A mine impinges upon an edge in the 

AO network if the CPA between the edge and the mine is less than  R m. We refer to 

a circle defined by the damage radius as a threat circle.

For initial explanatory purposes, we assume a Cookie-Cutter risk function (Eagle, 

2008). If a ship transits mine m ’s threat circle, the ship incurs risk r m, and 0 otherwise. 

This function causes the risk associated with mine m  to be homogeneous on every 

edge in m ’s threat circle. In Chapter 3, we use a different risk function, which allows 

positive risk from a mine to differ by edge.

An edge-additive (risk) model accumulates risk as follows: Let M e be the set of 

mines that impinge upon edge e. Risk associated with an edge e is rm. The
me Me

total risk associated with transiting an s-t path is r m, where E s_t is the
e S E s - t  m £ M e

set of edges on the s-t path. A shortest-path algorithm, which is com putationally 

inexpensive, can identify a solution to an edge additive-model. However, an edge- 

additive model may over-accumulate risk when a mine impinges upon two or more 

edges on a path. (See Section 3.2.1 for details on the logarithmic transform ation th a t 

linearizes the product of the non-actuation probabilities to derive the additive risk 

measures we use here.)

A threat-additive (risk) model accumulates risk from threats instead of edges. Let 

M s_t be the set of mines on an s-t path. Total risk is computed by summing the risk 

from each mine that impinges upon the s-t path; thus, rT(Es_t) = rm is the
mEMs-t

“true” , i.e., threat-additive, risk associated with path E s.t . An optimal path from 

the threat-additive model minimizes the probability of a ship incurring unacceptable 

damage, assuming independence among actuation events, while the path  obtained

2



from the edge-additive model will not, except under special circumstances.

1.2 M otivation

Mines can cause damage to U.S. naval assets, especially in littoral, i.e., shallow- 

water, regions that must be traversed to accomplish a mission such as an amphibious 

landing. In Desert Storm, the Iraqi military laid over 1150 mines which prohibited any 

amphibious landing on Kuwait’s coast (Cornish, 2003). This minefield also damaged 

the USS Tripoli LPH-10 and the USS Princeton CG-59, causing $27.5 million of 

damage (CNO, 1991; Cornish, 2003). The shallow water in potential conflict areas 

such as the Persian Gulf, the Strait of Hormuz, the Red Sea, the Yellow Sea, and the 

Korean Strait makes these locations excellent for mine laying: mines could prevent 

an amphibious landing in a future conflict (Cornish, 2003).

In order for the U.S. Navy to maintain its current ability to successfully navi

gate minefields, new methods of mine warfare must compensate for the aging and 

down-sizing of the United States mine warfare fleet. Polmar et al. (2005) show that 

beginning in the 1990s, there have been attempts to discard most Mine Countermea

sures (MCM) ships and the MH-53E Sea Dragon MCM helicopters. No new MCM 

ships have been built since 1991. The lack of replacements for the aging MCM ships 

implies that frigates, cruisers, destroyers, and amphibious ships must perform more 

MCM missions.

The U.S. Navy’s ability to traverse minefields safely must increasingly rely on mine 

avoidance, through minefield mapping, instead of minesweeping, i.e., the clearance of 

mines. Although currently ill-equipped for mine warfare missions such as minesweep- 

ing, frigates, cruisers, destroyers, and amphibious ships can carry unmanned under

water vehicles that are mine-hunting capable, i.e., capable of locating and classifying 

mines (Morris, 1997). Using UUVs and other mine warfare equipment carried by sur

face ships and submarines is referred to as organic MCM. Organic MCM give existing
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ships the ability to conduct their own MCM missions through minefield mapping and 

optimal routing. Optimal routing through a mapped minefield minimizes the risk to 

a ship, that is, provides a route with the highest probability of survival.

This thesis limits itself to  the study of routing to minimize risk, and does not 

consider the potential for reducing risk th a t mine clearance could add. Button et al. 

(2009) show th a t UUVs have already dem onstrated mapping capabilities for mine 

detection. However, clearance technology is still under development. Muljowidodo 

et al. (2009) propose expending a remotely operated UUV for mine disposal by ram

ming into a mine. This technology has been installed in minesweepers in Europe. 

Muljowidodo et al. also suggest using UUVs to deliver a payload of explosives to 

the mine, allowing for repeated use of the UUV in mine clearance. Mine clearance 

technology needs further development to reach the same technological level as mine

field mapping. Given th a t the current UUV technology is best suited for minefield 

mapping and not clearance, this thesis concentrates on constructing a model whose 

solution would allow a ship to  transit a mapped minefield more safely without the 

opportunity to clear any mines.

1.3 Thesis C ontributions

This thesis develops a model, and two accompanying solution methods, to iden

tify a minimum-risk route for a ship traversing a mapped minefield. Using a threat- 

additive model that is more accurate than  an edge-additive model, we identify a 

minimum-risk route, i.e., an s-t path  th a t minimizes the probability of a ship incur

ring unacceptable damage. We find solutions through the implementation of integer 

programming formulations in commercial optimization software and a novel implicit 

path enumeration algorithm, M R P A  (Minimum-Risk Path Algorithm), implemented 

in C ++. M R PA  solves problems faster than  standard IP software in 80% of the 35 

test problems we consider and is useful for practical applications in which near-real-



time use is im portant.

1.4 T hesis O utline

The structure of this thesis is as follows: Section 2 describes previous work on 

minimum-risk routing for ships traversing a mapped minefield, and related topics. 

Section 3 describes the model we use to identify minimum-risk routes. Section 

4 presents a novel solution method for a threat-additive model, an implicit path- 

enumeration algorithm, denoted M R PA . Section 5 provides computational results. 

Section 6 concludes.
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CHAPTER 2

MINIMUM-RISK ROUTING FOR SHIPS AND AIRCRAFT: REVIEW

This chapter reviews the literature on identifying a minimum-risk route for a ship 

to transit through a mapped minefield and for an aircraft to traverse a threat environ

ment. Aircraft routing under certain threat scenarios and ship routing to minimize 

risk from sea mines have many similarities. The modeling approaches employed to 

solve these two problems frequently overlap and can be classified as either continuous 

or discrete.

A number of continuous models have been proposed for minimum-risk routing, 

e.g., Inane et al. (2008), Karelahti et al. (2008), Mercer and Sidhu (2007), and 

Zabarankin et al. (2002). These models have theoretical and computational draw

backs (see Inane et ah, 2008; Ruz et ah, 2006; Zabarankin et ah, 2006, 2002). Because 

discrete models avoid these difficulties and their solutions can be made arbitrarily 

close to the solutions from continuous models (Kim and Hespanha, 2003; Muhandi- 

ramge et ah, 2009), the literature indicates that discrete models are better suited for 

practical use. Consequently, this thesis uses a discrete model.

Bekker and Schmid (2006), Boerman (1994), and Li (2009) use a discrete approach, 

embedding a directed graph in a representation of the minefield area, and accumulate 

risk according to an edge-additive model. Li (2009) attem pts to  mitigate risk over

accumulation by using short and long edges. While these edges may ameliorate risk 

over-accumulation because they provide greater flexibility in the routing structure, 

Li demonstrates that the use of short and long edges does not completely prohibit 

risk over-accumulation. This fact motivates the threat-additive model th a t this thesis 

develops.

Another method that mitigates risk over-accumulation only applies to a specific 

case. Carlyle et al. (2009) explain that the severity of risk over-accumulât ion is modest
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when the risk is based on dependent, yet small, probabilities. Although the military 

expects to encounter situations in which risk is based on a small probability, these 

situations cannot be guaranteed. A more accurate risk model is necessary to account 

for this contingency.

We address the modeling omissions described above by developing a threat-additive 

model that accurately accumulates risk to identify a minimum-risk route for a ship 

traversing a mapped minefield. This improvement provides mission commanders 

with superior information about the true risk on a path and may identify lower-risk 

paths. This thesis develops and tests two solution approaches, an integer program 

and an implicit path enumeration algorithm, for the threat-additive model. The 

path-enumeration algorithm may be im portant for practical applications in which 

near-real-time use and independence of licensed optimization software are necessary.



CHAPTER 3

MODELING A MINIMUM-RISK ROUTE IN A MAPPED MINEFIELD

This chapter describes the modeling approach we use to plan a route for a ship to 

transit through a m apped minefield. Section 3.1 describes the AO network structure 

and assumptions. Section 3.2 presents the probabilistic objective function and an 

edge-additive, shortest-path formulation. The probabilistic objective function maxi

mizes the probability of survival. This maximization is equivalent to minimizing the 

probability a ship incurs unacceptable damage. We use this shortest-path formula

tion to explain a shortcoming of edge-additive models: risk over-accumulation when 

a mine impinges upon two or more edges on a path. Section 3.3 describes several 

threat-additive integer programs, which better approximate the risk on a path. Ini

tially, we represent risk from a mine with a Cookie-Cutter risk function. We replace 

this risk function with a Triangle actuation curve, which causes positive risk from a 

mine to differ by edge.

3.1 N etw ork S tru ctu re and A ssum ptions

We use the same basic set of problem specifications and assumptions as Li (2009) to 

model risk on an s-t path. We assume th a t there are no ship navigational errors, that 

the exact location and characteristics of each mine are known, tha t no modifications 

are made to the minefield once it is mapped, and that the minefield area represents 

an entrance to a harbor. The entrance to this harbor is typically rectangular with a 

length and width of several thousand yards (Li, 2009).

We embed a directed graph, G =  (V, E1), in a representation of the minefield area 

to construct the AO network. Vertices, u £ V, represent waypoints at which the 

ship has the opportunity to change its direction, and edges, e E E, denote possible 

segments for ship transit. The area of operations contains the portion of the minefield

9



tha t is traversable by a ship. The remainder of the minefield is not traversable due 

to shallow water. A ship traverses a simple s-t path, which is specified as a subset of 

the edges in E. A ship travels from left to right and can enter and exit the minefield 

at any vertex in the respective, leftmost and rightmost column of vertices. Any 

vertex spacing less than the minimum turn  radius is impractical due to the lack of 

maneuverability for a large ship. Vertex spacing that is too large fails to account for 

all possible routes. To guarantee that the solution we find accurately approximates 

the solution to a continuous model, the angles between neighboring vertices m ust 

approach zero (Kim and Hespanha, 2003; Muhandiramge et al., 2009). Decreasing 

the vertex spacing is one approach th a t reduces these angles. However, the vertex 

spacing in the network we construct is limited to the minimum turn radius of the ship 

transiting the route. We use the same vertex spacing as Li (2009), which corresponds 

to the minimum turn  radius of an 800 ton ship.

Although the magnitude of ship damage can vary with distance, ship type, or any 

other factor, we assume that if a mine actuates, a ship incurs unacceptable damage 

and the mission is a failure. Consequently, the probability of mine actuation models 

the likelihood a ship incurs damage th a t prevents mission accomplishment. We as

sume th a t only one ship transits the specified minefield, that each mine has at m ost 

one chance to actuate because of the network structure, and that previously encoun

tered mines do not influence the actuation probability of a mine. The assumption 

tha t the sensors within different mines do not communicate leads to mine-to-mine 

independence; th a t is, each mine actuation is an independent event. We wish to  

maximize the probability th a t no mines actuate for a given path. Independent actu

ation events permit us to take the product of the probabilities of the non-actuation 

events.
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3.2 E d ge-A d d itive  M odel: Shortest-P ath  Form ulation

This section describes an edge-additive model, which is formulated with a shortest- 

path approach, similar to the approaches that Bekker and Schmid (2006) and Li 

(2009) use. We assume a Cookie-Cutter risk function. Section 3.2.1 explains how 

we linearize the probabilistic objective function that maximizes the probability of 

survival, potentially over-accumulating it. Section 3.2.2 presents the formulation, SP. 

We use SP to dem onstrate risk over-accumulation and to compare its solutions with 

those obtained from the threat-additive models, which accurately accumulate risk, in 

Section 5.

3.2.1 P rob ab ilistic  O b jective Function: Logarithm ic Transformation

This sections applies the logarithmic transformation to the objective function we 

use in the edge-additive model in Section 3.2.2. We assume a Cookie-Cutter risk 

function, which represents risk from a mine as a fixed cost (Eagle, 2008). Let pm 

represent the probability of mine actuation if a ship transits the threat circle. To 

avoid trivial solutions, pm is greater than 0 and less than 1. The objective function 

given below does not accumulate the fixed charge pm for each mine a ship encounters. 

Rather, the objective accumulates pm on each edge a ship traverses in mine m ’s threat 

circle, and the independence assumption among actuation events, fails when a mine 

impinges upon multiple edges on a path.

D E F IN IT IO N S

• M e the set of mines th a t impinges upon edge e

• E s_t the set of edges on an s-t path

• pm the probability of actuation of mine m  (Cookie-Cutter risk function)

• x e a binary variable: 1 if edge e is on the optimal s-t path, 0 otherwise
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We wish to determine a simple s-t path through a mapped minefield th a t m ax

imizes a ship’s probability of survival. To determine this probability, we take the 

product of the non-actuation probabilities of the mines a ship encounters on an s-t 

path, as shown by Objective (3.1).

i 1̂  n  n  (i-pm) (3-1)
eÇ.Es-t \ m E M e J

Objective (3.1) can be incorporated into a formulation that maximizes this ex

pression over the variables x e subject to flow balance Constraints (3.2). Let A  be an 

n x m  m atrix where n  is the number of vertices and m  is the number of edges. The 

values in each row are 1 if an edge is incident to the vertex, —1 if an edge emanates 

from the vertex, and 0 otherwise. Let 6 be an n x 1 vector that equals —1 at vertex 

s, 1 at vertex £, and zero otherwise.

Ax =  b (3.2)

The use of Constraints (3.2) permits the maximization of Objective (3.1) over x, 

the vector of decision variables, with the variables x e appearing in the exponent. This 

expression is Objective (3.3).

n  ( n  (i ) (3-3)max
X

e e E  \ m € M <

Taking the product of the non-actuation probabilities in Objective (3.3) results in 

a nonlinear objective function, which we linearize by applying a logarithmic transfor

mation (Shorack, 1964) to derive Objective (3.4).

max ^ 2  ln(l -  pm) ) x e (3.4)
e e E  \ m e M e J

Because pm is a probability, the expression ln(l — pm) is always non-positive. 

For ease of implementation in a standard shortest-path algorithm, we transform  the 

objective from maximization to minimization by multiplying Objective (3.4) by a
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negative sign. For simplification, let rm — — ln(l — Pm) be the risk associated with 

the impingement of mine m  on an edge.

The antilog of a negated objective function value is the probability of survival for 

a ship transiting a path, P(Survival)= e{-objective Value)̂

W ithout a penalty for distance, the optimal route may be irregularly shaped, and 

consequently, the route is incompatible with the maneuverability of a ship. To find 

routes conducive for ship transit, we apply a small distance penalty to the objective 

(Li, 2009).

3.2.2 S hortest-P ath  Formulation (SP)

SP is a “shortest-path” formulation. The probability of mine actuation for each 

edge a mine impinges upon is pm. (Note: For computational testing in Section 5, 

we use pern instead of pm to account for positive risk that differs by edge.) SP is an 

edge-additive model tha t over-accumulates risk if a ship traverses two or more edges 

in a threat circle. The formulation is given below.

Constraints (3.2) maintain the continuity of a path. The "lengths" on each edge 

are non-negative: rm is greater than or equal to zero because pm G (1,0]. We do not 

define Pm at 1 because the natural log of 1 is negative infinity; instead, we use an 

approximation of 1 — e for 1, where e is the same parameter we use for the distance 

penalty in the objective. Non-negative edge “lengths” permit this formulation to be 

solved by a simple shortest-path algorithm such as Dijkstra’s algorithm. 

PA R A M E T E R S  

de length of edge e

rm =  — ln (l — Pm) risk associated with the impingement of mine m  on an edge 

e edge length penalty (e =  10-7 in this thesis)

e(ê )
eEE \ m E M e /

mm (3.5)
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OBJECTIVE FU N C T IO N

E  ( n  f m 'U  + e E
cÇïE \7?7»G A^e /  eG-E

mm

C O NSTR AINTS

s.t. (3.2)
x e G {0, ij- Ve G E  (3.7)

This shortest path formulation has no structure ' tha t precludes the same mine 

from impinging upon multiple edges in the optim al path, E*s_t . If a mine impinges 

upon two or more edges in E*_t , then  this formulation over-accumuates risk. Let 

m  G Me and m! G Me/, where e, e' G E*_t such th a t e ^  e'. If m =  mz, the formulation 

accumulates risk as follows: rm +  r m/ =  2rm; thus, this sum double counts the risk 

from a mine on a path.

3.3 Threat-A dditive M odels: In teger Program m ing Form ulations

This section describes the threat-additive models th a t are integer programs, which 

better approximate the true risk on a path. Section 3.3.1 describes a formulation, 

TMRO, that uses a Cookie-Cutter risk function. Typically, risk from a mine is not 

the same on every edge it impinges upon. We redefine pm as pem, the probability 

of mine actuation m  on edge e. Section 3.3.2 presents the Triangle actuation curve 

that computes this parameter by transforming the CPA into the probability of mine 

actuation on edge e. Subsequently, this new param eter appears in two integer pro

gramming formulations, TM R1 and TMR2, in which positive risk from a mine differs 

by edge. TMR1 and TMR2 are the two integer programs we use for computational 

testing in Chapter 5. Section 3.3.3 develops an integer program TMR1, a min-max 

formulation. Section 3.3.4 presents a formulation w ith a potentially tighter LP relax

ation than TMR1. The probabilistic objective functions presented in this section are

14



specified in their linear form, after we apply the logarithmic transformation as given 

in Section 3.2.1.

3.3.1 T h reat-A d d itive M in im um -R isk  Formulation 0 (TMRO)

The Threat-Additive Minimum-Risk Formulation (TMRO) uses a Cookie-Cutter 

risk function. The variables ym ensure th a t if a ship transits mine m ’s threat circle, 

the objective incurs the penalty r m. We do not conduct any computational testing on 

TMRO. Constraints (3.2) m aintain the continuity of a path. Constraints (3.9) ensure 

that the objective accumulates risk rm from each mine a ship encounters. 

VARIABLES

ym a binary variable: 1 if a ship traverses mine m ’s threat circle, 0 otherwise. 

O BJEC TIV E F U N C T IO N

3.3.2 H eterogeneous P robab ilities o f M ine Actuation: Triangle Actuation  

Curve R isk Function

We use a Cookie-Cutter risk function in formulations SP and TMRO to explain 

the differences between edge-additive and threat-additive models. However, a Cookie- 

Cutter risk function is an over-simplication of reality. Positive risk from a mine is 

not the same on every edge. To account for this, we add an index e to the actuation 

probability parameter pm to define the actuation probability of mine m  on edge e, 

pem. A Triangle actuation curve transforms the CPA into the probability of mine

mm
x ,y

^   ̂ 'Tm'Dm T   ̂^   ̂de
m £ M e E E

(3.8)

C O N STR A IN T S

s.t. (3.2), (3.7)
%e — Vm 
Vm G {0, 1}

Ve E E, m E M e
Vm E M

(3.9)
(3.10)
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actuation on edge e. (Note: We must also add the index e to rm, which results in 

'T em  l n ( l  P e m } ' )

Actuation curves assume th a t the CPA is measured from a mine to  a ship. A 

lim itation of discrete models is that the CPA, dem, is measured from mine m  to  an 

edge e. Accumulating the actuation probabilities on each edge a ship traverses in a 

m ine’s threat circle does not accurately capture the true CPA, i.e., the CPA from a 

mine and to  a ship. A threat-additive model accurately approximates the true risk on 

a path  by accumulating the maximum risk, which corresponds to the CPA between 

a mine and a ship.

To determine pem, we use a Triangle actuation curve for the risk function (Eagle, 

2008). This actuation curve, A m(dern), renders the probability of mine m  actuating 

for a given CPA, denoted by dem. This actuation curve, Figure 3.1, identifies the new 

param eters pern \/e e  E ,m  £ M e.

P ro b a b ili ty  
o f  Mi ne  
A c tu a tio n

C lo se s t  P o in t o f  
A p p ro a c h

Figure 3.1: Triangle actuation curve. The x-axis is the CPA (dem), and the p-axis is 
the probability of mine actuation (Eagle, 2008).

An actuation curve provides the aggregate probability instead of a cumulative, 

or an incremental, probability of actuation. This curve approximates the probability

16



th a t the sensors in a mine detect a ship and cause mine detonation over a path. 

Detection and detonation do not necessarily occur at the CPA. Actuation curves 

assume an infinitely-long, straight-line approach of a ship to a mine, and are thus 

symmetric about the 2/-axis. Approaches from any direction tha t result in identical 

CPA values yield the same probability of actuation. The solutions we find may violate 

the straight-line assumption since an optimal path, comprised of short-line segments, 

may deviate from an infinitely-long, straight line.

3.3.3 T hreat-A dditive M inimum -Risk Formulation 1 (T M R 1)

The Threat-Additive Minimum-Risk Formulation (TMR1) is a min-max formula

tion that minimizes the maximum risk a mine imposes across the edges on a path. 

This formulation introduces a new variable, wm, which represents the maximum risk 

from mine m. The objective accumulates the variables wm. Constraints (3.2) main

tain  the continuity of a path. Constraints (3.13) ensure the correct accumulation of 

risk by using a min-max construct. The formulation is given below.

A D D IT IO N A L  SETS  

m  G M  set of all mines m  

A D D IT IO N A L  VARIABLES  

wm maximum risk from mine m  on an s-t path 

O BJE C TIV E F U N C T IO N

if <C Rj 
otherwise (3.11)

mm
w ,x

m £ M

(3.12)

C O N ST R A IN T S

s.t. (3.2), (3.7)
Ve G E , in G M e 

Vm G M
(3.13)
(3.14)
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3.3 .4  Threat-Additive M inim um -R isk Form ulation  2 (T M R 2)

Threat-Additive Minimum-Risk Formulation (TMR2) is a formulation with a po

tentially stronger LP relaxation than the relaxation of TMR1. This formulation 

accumulates the maximum risk from a mine on a set of edges. TMR2 is related to 

the model given in Nehme (2009).

E m is the set of all edges e within mine m ’s th rea t circle. We order the set Em 

from the largest risk value, j  = 1, to smallest risk value, j  = \Em\. The risk on edge e 

from mine m, r em, is now represented by r^ ., where k  =  em  and j  denotes a location 

in the ordered set.

Em is the set of all edges e in mine m ’s th reat circle such th a t k  =  em, r* . > 7*fc -+1, 

j  = 1,..., \Em\ +  1, and ^  =  0. We define a set E m for each mine. The addition 

of a second index e to the risk values and the ordering of the edges in a threat circle 

by risk value result in a new definition for the variables th a t TMRO uses. 

A D D ITIO N A L SETS

e € Em set of all edges e within mine m ’s threat circle.

kj G E m set of all edges e in mine m ’s th reat circle such th a t k — em  and >  rkj+1. 

A D D ITIO N A L VARIABLES

Hkj a binary variable: 1 if a ship traverses edge e in m ’s th reat circle {k = em) 

corresponding to index j, 0 otherwise.

TMR2 forms tighter constraints. From the min-max construct of TMR1, recall 

Constraints (3.13).

tUm > remZe Ve G E, m. E Mg

Since indexing over {E  U M e} is equivalent to indexing over {M U  E m}, these 

constraints can be written as follows:

Wm > rem%e Vm G M, e G (3.15)
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We incorporate the variables into the formulation in Constraints (3.16) and

(3.17). All the variables with a larger j  index than the index associated with the 

maximum risk edge are forced to  1. The manner in which Constraints (3.16) and

(3.17) assign values to the variables ^  ensures th a t the objective function correctly 

accumulates the maximum risk.

<  %  Vm G M, G j =  1 , |Em| (3.16)
Vkj — Ukj+i Vm G M, kj G E m, j  = 1,..., |£'m| (3.17)

Each constraint of (3.18) is separable by mine, implying that these constraints

can be written with equalities because we minimize the objective function. To derive

Objective (3.19), we move Constraints (3.18) into the objective of TM R1, substituting 

wm with its equation.

Wm > (?% -  Vm G M (3.18)
£ -Em ~ I. v • ■ > I Em |

Objective (3.19) removes multiple counting. For example, a ship traverses edges 

1, 2, and -3, and the largest risk is on edge 1. The ordering of the risk values is

rkl > r k 2  > 7fc3 > 0 . The objective is:

(^i -  rtjz/ti + (r  ̂-  r^)^2 + (^3 -  O)^

The variables yk2, and y k 3  equal 1, resulting in the correctly accumulated objective 

value of rki: i.e., the maximum risk value from all the edges a ship traverses in mine 

m ’s threat circle.

OBJECTIVE F U N C T IO N

Constraints (3.2) maintain the continuity of a path. Constraints (3.16) and (3.17) 

force the objective function to correctly accumulate risk. Constraints (3.16) ensure

that if a ship travels on an edge in a threat circle, the objective counts the risk.
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Constraints (3.7) and (3.20) restrict the variables to be binary. 

C O N S T R A IN T S

s.t. (3.2),(3.7), (3.16), (3.17)

E {0,1} Vm E M, E j  =  1,..., (3.20)

20



CHAPTER 4

IMPLICIT PATH ENUMERATION FOR MINIMUM-RISK ROUTING

A modeling language such as AMPL and an integer programming solver such as 

CPLEX provide an easy method to model and solve our formulations in Section 3. 

However, software security accreditation, licensing issues, and memory limitations 

make this type of solution method undesirable for certain military applications. Ac

creditation is often at the cost of a company and requires disclosure of its proprietary 

code, which most companies are reluctant to do. Commercial license managers have 

difficulty maintaining licenses on multiple machines on different ships at different lo

cations with limited access and connectivity. Although capable of solving a variety 

of problem types, commercial software is not the most memory efficient software for 

certain military applications.

We present a novel algorithm tha t provides an alternative solution m ethod to 

using the Branch and Bound algorithm that commercial integer programming software 

implements, and is, therefore, better suited for military applications. We develop an 

implicit path-enumeration algorithm that determines a minimum-risk path associated 

with formulations TMR1 and TMR2. We compare our novel algorithm against the 

Branch and Bound algorithm that CPLEX implements in Chapter 5.

We modify the Byers and Waterman (1984) algorithm, which enumerates all un

restricted near-shortest paths (UNSP). UNSP are paths with “loops” that are within 

a factor of 1 +  5 of the shortest path length, where 6 is a small positive number. 

The algorithm we present implicitly enumerates all simple paths to find a minimum- 

risk path  while ensuring the correct accumulation of risk. We provide the algorithm ’s 

pseudocode in Section 4.2, which is modified from Carlyle and Wood (2005). The Car

lyle and Wood (2005) algorithm enumerates all near-shortest simple paths (NSSP). 

For simplicity, we omit distance penalties in the description of our algorithm.
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D E FIN IT IO N S

• n m maximum number of edges tha t mine m  impinges upon in a simple s-t 

path

• E s.u the edges in sub-path s-u

• E s_t the edges in a simple s-t path

• M uv the set of mines that impinge upon edge (w, v)

• M su the set of mines that impinge upon sub-path s-u

• M s_t =  U(U)y)€jE;s_tMUy the set of mines associated with path  E s.t

• rem = — ln(l — Pem) risk associated with mine m  on edge e

• = max {rem} true risk from mine m  on path E s.tCm G Eni C\Es-t

rT(Es.t) — ^ 2  rm the true (threat-additive) risk associated with path E s.t 
m e M s. t

rT(v) the true risk on the “current sub-path” E s.v

• ruv a lower bound on the true risk of traversing (it, u), subject

to the requirement that for any simple s-t path E s.t in G, r uv < rT(Es.t)
( u , v ) e E s-t

4.1 M inim um -R isk Path A lgorithm  (M R PA )

The M R PA  developed here is a type of Branch and Bound (BB) algorithm or A* 

search algorithm. M RPA employs a heuristic H to  identify an initial incumbent so

lution. The true risk associated with the s-t path from the incumbent solution serves 

as an upper bound, f. After executing H, M R PA  uses an implicit path-enumeration 

procedure to update the upper bound f  while lower bounds E(v) limit enumeration. 

When M R PA  identifies a better solution, corresponding to higher probability of sur

vival, the algorithm updates the upper bound and incumbent solution. Backtracking
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occurs when the risk on a sub-path, i.e., a path  from s to any vertex v such that 

u 7̂  t, exceeds the upper bound. (Note: An inverse relationship exists between the 

probability of survival on a path and the upper bound.)

The heuristic H works as follows: A backward shortest-path algorithm identifies

a shortest path from t to s using edge “lengths” of where nm bounds the
“ ■f nm

m € . M uv
maximum number of edges tha t mine m  impinges upon in an s-t path and Muv is 

the set of mines that impinge upon edge e — (u, v). Weighting the risk on an edge 

by the reciprocal of nm ensures tha t the “shortest” path from u to t provides a lower 

bound on the true risk. H  determines an upper bound, f, by calculating the true 

(threat-additive) risk associated with the path  E s.t identified by the shortest-path 

algorithm.

After employing H, M R P A  begins implicitly enumerating paths. We use the 

lower bounds and the current upper bound to determine if a sub-path s-u should be 

extended along edge (u, v). The lower bounds must be recomputed to account for 

mines that impinge upon the sub-path s-u. M su denotes the set of mines that impinge 

upon this sub-path. Recomputing the lower bounds requires the use of a backward 

shortest-path algorithm in which the only mines in the instance are M \M SU and all 

vertices on the current sub-path are forbidden. M R P A  must recompute r'(u) each 

time M su changes to ensure tha t r'(u) is a valid lower bound.

This procedure for updating tha t lower bound differs from the algorithms of Byers 

and Waterman (1984), Carlyle and Wood (2005), and Carlyle et al. (2008). These 

algorithms never recompute the lower bounds. The Byers and Waterman (1984) 

algorithm enumerates unrestricted paths, the Carlyle and Wood (2005) algorithm 

enumerates simple paths, and the Carlyle et al. (2008) algorithm solves constrained 

shortest-path problems using Lagrangian relaxation and enumeration. In M RPA, 

the work spent recomputing the lower bounds r'(u) may or may not be compensated 

by the work saved during enumeration.
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Each time M R P A  extends a sub-path along edge e' =  (w, v) and Muv A Msu ^  0, 

we must update the true risk from mine m, if:

>  m a x  { r e ^ }etzEmCiEs-u

M R PA  replaces the value of max {rem} in r (E s.u) with the value of ry m. ThiseE-E/mnSs.u
replacement procedure ensures tha t M RPA accumulates risk according to a threat- 

additive model.

4.2 M R P A  P seu d o co d e  

A SSU M P T IO N S:

• An s-t p a th  exists in G.

•  Neither vertex s nor vertex t is threatened by mines.

D E S C R IP T IO N  : An algorithm to find a minimum-risk s-t path for a threat- 

additive model. The format and terminology of this algorithm follow 

Carlyle and W ood (2005).

IN PU T : A directed graph G = (V, E)  in adjacency-list format; 

s , t  £ V  w ith s ^  t\ list of mines m  E M; 

list of edges E m mine m  impinges upon Vm E M  ; 

risk values r em Vm E M, e E Em]

in the adjacency-list input of G, “firstEdge(u)” points to the first edge 

in a linked list of edges directed out of v.

O U T PU T : p rin t( “Min-risk path is ” , Es_t, “ and min-risk value for that path is ” , 

e-r). t jg the set of edges th a t comprises the incumbent solution */

{

L u v  H m e M uu  V ( M - y )  €  s

/* Next three steps constitue H  to find a “good” starting path */
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Find a “shortest” s-t path E s.t with respect to edge lengths ruv]

M s-t < ^(u,v)eEs.t^uv]

f  <— 53m6Ms t /*  true risk for heuristic path, i.e., an upper bound */ 

for( all u £ 1/ ){ E{v) <— lower bound on risk from u to t; }

/* The above requires a backward shortest-path solution */ 

for( all u 6 "F ) { next Edge (t;) first Edge (u); } 

vStack <— s; 

eStack <— 0;

rT(s) 4— 0; /*  r T(u) is the true risk on the “current sub-path” Es_v*/

0; /*  These are the mines on the current path */

/* Note: M su may not be a list, but implied by other data structures */ 

isO nPath(s) <— TRUE; for( all u G y  — s ){ isOnPath(u) <— FALSE; } 

w h ile ( vStack is not empty ){

u  <— vertex at the top of theStack; 

w hile( next Edge (u) ^ 0 ) {

(tq v) the edge pointed to by next Edge (u); 

increment next Edge (u);

if( isOnPath(u) =  FALSE and rT (u) +  r uu +  E{v) < f  {

/*  Add (u, v) to current path */ 

isOnPath(u) <— TRUE; 

push v onto vStack; 

push (u, v) onto eStack; 

update M su if necessary;

/*  Compute true risk of current path Es.v */

rT{v) -  rTm ;

if( rT(v) > f  ) { goto Backtrack; }

iï( v = t ){ f  rT (t)] Es_t <— eStack; go to Backtrack; }
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/* We have extended the path “successfully” * /

RECOMPUTE r'(v) values assuming the only mines in the model 

are M \M SU, and assuming that all vertices on the current path 

are forbidden;

}
}
Backtrack: Pop u from vStack; 

isOnPath(w) <— FALSE; 

next Edge (u) <— first Edge(u);

if( eStack is not empty ){ pop (v,u) from eStack; } 

update M su\

RECOMPUTE r'(u) values assuming the only mines in the model are 

M \ M SU, and assuming that all vertices on the current path  are forbidden;

}
print ( “Min risk path is ” , E$_t, “ and min risk value for th a t path  is ” , e- r );

/* Probability of Survival is e~r */

}

4.3 Im provem ents in Efficiency

We add a preprocessing step P (Carlyle et ah, 2008) immediately following the 

heuristic H. Preprocessing removes edges from the graph th a t cannot form part of 

an optimal solution. P identifies a “shortest-path” from s to  t  using a shortest-path 

algorithm in the forward direction with the same edge “lengths” as in H. The forward 

shortest-path algorithm calculates a lower bound rMu) on the true risk of transiting 

from s to u Vu E U. If rMu) +U(u) is greater than or equal to the initial solution’s risk 

value, r, P removes all incoming and outgoing edges at vertex v. P  also removes edges
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th a t have a risk value, r em, tha t is greater than or equal to r. The pseudocode
m e M uv

is as follows:

/*  Begin Preprocessing P  */

{
Identify a shortest path from s to £ with a forward shortest-path algorithm 

using edge “lengths” ruv]

for( all u £ V ){ r!f(v) lower bound on risk from s to u; }

for( all u E V7 ){

if( +  / M  > f) {

E u.v <— 0; /* E u.v is the set of edges emanating from u */

} else  {

nextEdge(w) <— first Edge (u); 

w hile ( next Edge (u) ^  0 ) {

(u,v) the edge pointed to by next Edge (u);

increment nextEdge(w);

if( 'Y l  r em > f) { remove (u,v)\ }
m £ M uv

}
}

}
}

We avoid recomputing the lower bound f ( v )  each time Msu changes by removing 

the check rT(u) +  ruv +  r'(v) > f. During computation, we find that the work 

spent recomputing the lower bounds is greater than the work these bounds save in 

enumeration. We propose two explanations for this occurrence: (1) the lower bounds 

are weak, and (2) the lower bounds in P limit the work spent in enumeration before 

it begins. The version of M R PA  we use for computational testing in Section 5 never
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recomputes the lower bounds. M R P A  uses the lower bounds to extend a sub-path 

from v to t when r z(v) is 0, which indicates that the sub-path v-t is risk free, by 

concatenating the partial path s-v found during enumeration and the sub-path v-t 

found during the calculation of the initial lower bounds.

After P , we execute network reductions R  (Carlyle et ah, 2009). R  eliminates 

vertices tha t are risk free, i.e., no mines impinge upon the inbound and outbound 

edges of the vertex. For example, we are at vertex u and no mines impinge upon any 

edges in the reverse and forward directions. Let i denote a tail vertex of an edge in the 

reverse direction, and j  denote a head vertex of an edge in the forward direction. R  

eliminates edges (z, u) Vz and (u,j)  Vj and constructs edges (z, j )  Vz, j  while ensuring 

that (z, j )  does not already exist in the set of edges E.
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CH APTER 5 

COMPUTATIONAL RESULTS

This chapter presents computational results from M R PA  and the formulations 

SP, TMR1, and TMR2. A shortest path algorithm is able to solve SP and is considered 

the default solution method. TMR1 and TMR2 are solved with an integer program. 

We test our formulations using AMPL 12 as the modeling language and CPLEX

12.1 (IBM, 2010) as the solver on a Dell PowerEdge R410 machine with 12GB of 

RAM and a 2.26GHz processor. We use the default parameters in CPLEX. We 

code the M RPA using C + +  for the language and Xcode 3.1.4 for the Integrated 

Development Environment (IDE). We test the M R P A  using a MacBook Pro with a 

2.26GHz processor and 2GB of RAM.

AMPL scripts generate vertices and edges for a test network and mine locations. 

Node spacing is 100 yards. The length (^-direction) and width (^/-direction) of the 

network is 3000 yards by 3000 yards. Edges exist between immediate neighboring 

vertices in the forward and diagonal directions. Sets of edges, those that connect 

a source vertex to a sink vertex, represent possible paths for ship transit. AMPL 

scripts uniformly distribute the x  and y  coordinates of mines in the minefield. This 

network topology and mine location distribution are representative of that found in 

Bekker and Schmid (2006) and Li (2009). The number of edges and vertices in the 

test network is 2792 and 963, respectively. Threat locations and damage radii in each 

test problem vary. Figure 5.1 shows a minefield constructed by the above procedure.
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Minefield Length in Yards

Figure 5.1: A minefield representative of those we construct for testing. Circles denote 
threat circles. At the center of each circle is a mine. Dots denote vertices. Edges 
exist between immediate neighboring vertices in the forward and diagonal directions 
and are om itted from this figure for clarity.

We construct 35 test problems. The results from instances 1-5 are included in this 

chapter for explanatory purposes. Appendix B presents results from instances 6-35, 

which increases the sample size of our results through testing on 30 minefields with 

the same number of mines and minimum and maximum damage radii. The number 

of mines in each problem is given in Table 5.1. Each mine has a uniformly distributed 

damage radius i?m, which depends upon the instance. The minimum and maximum 

damage radii for each instance are given in Table 5.1. By using mines with various
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damage radii, we can “seed” the minefield with different types of mines, extending 

the previous assumption in the literature that all mines are identical. The damage 

radii given below are similar to the radii given in Bekker and Schmid (2006) and Li 

(2009).

Table 5.1: Problem Instance Mine Specifications. The minimum and maximum dam
age radii ( “Range” ) are the parameters we use in the uniform distribution that gen
erates the damage radius R m of each mine m in a problem instance. Results for 
Problems 6-35 appear in Appendix B.

Problem
Instance

Number 
of Mines

Minimum 
Range (yd)

Maximum 
Range (yd)

1 30 300 400
2 30 300 400
3 30 300 400
4 35 300 425
5 30 300 450

6-35 32 325 425

5.1 S o lu tion  Q uality

.We compare the optimal probability of survival for the paths identified by the 

threat-additive model, solved with integer programming and MRPA, with the prob

ability of survival for the path identified by the edge-additive model, solved with a 

shortest-path algorithm. “Optimal” only refers to the solutions obtained from solv

ing a threat-additive model. Table 5.2 reports the probability of survival values. The 

optimal probability of survival in Problems 3, 4, and 5 is small, i.e., less than 0.7. A 

small probability of survival is undesirable to most decision makers and ship drivers. 

Yet, a situation may arise in which a harbor is mined, and a ship must transit the 

minefield quickly or encounter certain destruction by other threats, such as missiles. 

In this situation, the ship is better off attempting to transit the minimum-risk route 

th a t is provided rather than arbitrarily navigating the minefield. For this reason, we
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conduct testing over instances in which the probability of survival spans the complete 

probability range of zero to one, inclusive.

Table 5.2: Optimal probability of survival computed through M R P A  and through 
the integer programs TMR1 and TMR2. “SP True” is the probability of survival 
of the SP solution evaluated under the threat-additive model. “SP Gap (%)” is the 
percentage difference between “Optimal P(Survival)” and “SP True.” Results for 
Problems 6-35 appear in Table B.2.

Problem
Instance

Optimal
P(Survival)

SP
True

SP 
Gap (%)

1 0.777 0.777 0.00%
2 0.864 0.864 0.00%
3 0.684 0.618 9.65%
4 0.615 0.597 . 2.93%
5 0.584 0.584 0.00%

Although an edge-additive model over-accumulates risk, the path  identified by 

the shortest-path algorithm is often optimal. The optimal routes from solving an 

edge-additive and a threat-additive model correspond to nearly-identical solutions in 

21 of 35 test problems. We define nearly-identical solutions as those in which the 

objective values, evaluated under a threat-additive model, are equal; but, the sets of 

edges comprising the routes may differ. (Note: When the shortest-path is optimal but 

differs from the optimal paths identified by other means, the optim ization problem 

has multiple optimal solutions.)

The solutions to threat-additive and edge-additive models appear to  be identical 

when the set of edges that accumulates risk in an edge-additive model and the edges 

corresponding to the maximum probability of actuation in a threat-additive model 

intersect for each threat on an optimal route. We observe identical solutions in 

Problems 1, 2, and 5. Threat-additive and edge-additive solutions appear to diverge 

when the optimization procedure must choose between penetrating more deeply inside 

a threat circle and penetrating more threat circles. In Problems 3 and 4, this situation
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arises when a ship must transit the intersection of three threat circles. Graphical 

depictions of these two cases are given in Figure 5.6 and Figure 5.7.

A numerical example below explains how solutions to edge-additive and threat- 

additive models diverge. A ship must transit the intersection of three threat circles on 

one of two paths, A  or S. Each of the three edges in Path  A  exists in a distinct threat 

circle; each edge possesses a corresponding probability of survival of 0.9. Two mines 

impinge upon Path S, which consists of an edge, ei, in one threat circle and two edges, 

6 2  and 6 3 , in another threat circle. The probability of survival on edges 6%, e2, and 

e3 is 0.9, 0.9, and 0.85, respectively. The optimization procedure of an edge-additive 

model produces a solution corresponding to transiting Path  A  with a probability 

of survival of 0.93 =  0.729. The corresponding threat-additive solution results from 

minimizing the maximum risk; in this case, a ship transits Path  B  with a probability 

of survival of (0.9) • (0.85) — 0.765. Path B  is sub-optimal in an edge-additive model 

because the probability of survival on this path is (0.9) • (0.9) • (0.85) =  0.689, which 

is over-accumualted by 0.076.

We report the upper and lower bounds on the initial s-t path  tha t heuristic H iden

tifies in Table 5.3 and Table B.l. Frequently, the initial upper bound and incumbent

Table 5.3: We report the upper and lower bounds on the initial s-t path that heuristic 
H identifies. Optimal objective function values obtained by M R P A  are given in 
the third column with the corresponding probability of survival given in the second 
column. The optimality gap is given in the fifth column. Results for problems 6-35 
appear in Table B.l.

Problem Optimal Optimal Lower Upper Optimality
Instance P(Survival) Objective Bound Bound Gap (%)

1 0.777 0.252 0.114 0.252 54.8%
2 0.864 0.146 0.048 0.146 67.1%
3 0.684 0.380 0.178 0.481 63.0%
4 0.615 0.486 0.209 0.516 59.5%
5 0.584 0.538 0.245 0.538 54.5%
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solution are, respectively, the optimal objective function value and solution to the 

threat-additive model. One explanation of this occurrence is th a t SP often identifies 

a path, in terms of true risk, th a t is equivalent to a solution from the threat-additive 

model. H identifies the optimal solution in 21 of the 35 test problems, as shown by 

Table 5.3 and Table B .l when the values in the third and fifth columns equal each 

other. In the other 14 problems, M R P A  identifies the optimal solution in all but 

two instances after 600 seconds of solution time. We define the optimality gap as the 

absolute percent deviation between the initial solution’s objective function value and 

the lower bound. This gap serves as an upper bound on the potential improvement 

that the objective function value may realize during the remainder of the algorithm.

5.2 R un T im e

The threat-additive model produces a minimum-risk route (if it can be solved 

optimally), but at a substantial computational cost compared to  the shortest-path 

heuristic. The default solution m ethod is a shortest path algorithm, which has a neg

ligible run time, implying th a t identifying solutions to edge-additive models requires 

little work. We find th a t the increased computational cost of identifying solutions to 

threat-additive models is minimal; M R P A  typically solves problems in fewer than 

one second and solves them  faster than  CPLEX in 80% of the problems considered.

Table 5.4 and Table B.3 compare run times of the different solution methods for 

Problems 1-5 and 6-35, respectively. Run times from the integer programs depend 

upon the specific formulation. Using CPLEX with default parameters, TMR1 solves 

problems faster than TMR2 86% of the time, although the LP relaxation of TMR2 

is stronger than the relaxation of TMR1 every time (see Table B.4 for LP relaxation 

values). SP performs better than  any other method because shortest path models 

can be solved in polynomial time.

M R PA s run time varies depending upon the number of edges and vertices that
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Table 5.4: The solution time (“Run Time”) of solution methods M RPA and integer 
programs TMR1 and TMR2 on Problems 1-5. No corresponding SP solution time 
exceeds 0.01 seconds. Results for problems 6-35 appear in Table B.3.

Problem
Instance

Run Time (sec)
TMR1 TMR2 M R PA

1 1.27 2.93 0.12
2 .86 2.02 <.01
3 1.48 9.42 0.09
4 2.55 14.56 0.50
5 2.96 45.14 2.28

P  and R  eliminate and the amount of enumeration tha t the upper bound limits. 

Table B.3 displays the number of edges and vertices remaining in Problems 6-35. In 

two of the instances, M R P A  fails to prove optimality after a reasonable length of 

run time, i.e., 600 seconds, but does provide solutions within 0.3% of optimality. The 

number of edges and vertices remaining after preprocessing and reductions in these 

two instances is larger than the number in most other instances.

Thus far, the integer programs and the M R PA  determine solutions using a 0% 

optimality tolerance. We specify a 5% optimality tolerance to analyze its impact 

on the objective value and the solution time. Specifying a 5% optimality tolerance 

does not improve the solution times of the integer programs. However, we find a 

statistically significant reduction, at the 0.01 level, in solution times for MRPA. 

The differences in objective function value, P(Survival), and solution time between 

identifying a near-minimum risk path (NMRP) and the optimal path are given in 

Table B.5 for Problems 1-35. The average reduction in solution time, excluding the 

two problems tha t did not solve, is 0.3 seconds.

Figure 5.2 shows th a t a 5% optimality tolerance reduces the probability of sur

vival by no more than  0.02. This 0.02 reduction occurs when the objective value is 

approximately 1, which corresponds to a probability of survival of 0.4. The reduc

tion in the probability of survival that a 5% tolerance causes may be less than the
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upper bound of 0.02. Most scenarios that the military encounters have an optim al 

probability of survival that is much greater than 0.4. A higher optimal probability of 

survival results in a smaller gap between the NMRP and the optimal pa th  probability 

of survival. Figure 5.2 and Figure 5.3 show the nonlinear relationship between the 

objective function values and the probability of survival. This nonlinear relationship, 

coupled with the probability of survival that the military usually encounters, may 

permit the use of a much larger optimality tolerance in near-minimum risk routing 

than the tolerances used in other applications.
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Figure 5.2: The 2-axis is the objective function value. The %/-axis shows the
gap between the optimal P(Survival)  and the near-minimum risk path , NMRP, 
P(Survival).  The NMRP objective function value is (in the worst-case) 5% more 
than the optimal value. However, the gap between the NMRP P (Surv iva l)  and 
the optimal P(Survival)  is less than 5% because the function relating the objective 
function value to the P(Survival)  is nonlinear.
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Figure 5.3: The ce-axis is the objective function value, and the y-aocis is the probability 
of survival. The solid line shows the P(Survival)  for optimal objective function 
values. The dotted line shows the P(Survival) for the objective function values that 
are (in the worst-case) 5% more than the optimal value.

5.3 Graphical D epiction of Solutions

The minimum-risk routes from solution methods TMR1 and M R P A , in addition 

to the route from SP, are shown in Figure 5.4 - Figure 5.8 for Problems 1-5. Threat 

circles for mines that impinge upon the optimal route are shown in bold black; all 

others are in grey. Diamonds denote mine locations. The deviations in optimal routes 

between TMR1 and M RPA are due to multiple optimal solutions.
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Figure 5.4: Problem Instance 1 - A ship travels from left to right. SP’s route and 
the minimum-risk routes for TMR1 and M R P A  are shown. Threat circles for mines 
that impinge upon the routes are bold black; all others are in grey. Black diamonds 
denote mine locations.
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Figure 5.5: Problem Instance 2 - A ship travels from left to right. SP’s route and 
the minimum-risk routes for TMR1 and M R PA  are shown. Threat circles for mines 
that impinge upon the routes are bold black; all others are in grey. Black diamonds 
denote mine locations. All optimal routes are the same.
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Figure 5.6: Problem Instance 3 - A ship travels from left to right. SP’s route and 
the minimum-risk routes for TMR1 and M R PA are shown. Threat circles for minés 
th a t impinge upon the routes are bold black; all others are in grey. Black diamonds 
denote mine locations.
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Figure 5.7: Problem Instance 4 - A ship travels from left to right. S P ’s route and 
the minimum-risk routes for TMR1 and M RPA are shown. Threat circles for mines 
that impinge upon the routes are bold black; all others are in grey. Black diamonds 
denote mine locations.
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Figure 5.8: Problem Instance 5 - A ship travels from left to right. SP’s route and 
the minimum-risk routes for TMR1 and M R P A  are shown. Threat circles for mines 
that impinge upon the routes are bold black; all others are in grey. Black diamonds 
denote mine locations.
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CHAPTER 6 

SUMMARY AND CONCLUSIONS

This thesis has developed a model, and two accompanying solution methods, 

to identify a minimum-risk route for a ship traversing a mapped minefield. Stan

dard shortest-path based methods employ an edge-additive model th a t may over

accumulate the total risk associated with a path and yield poor solutions. Our 

threat-additive model avoids these problems. The solution methods include (a) two 

integer programs (IPs) implemented in CPLEX, and (b) a novel path-enumeration 

algorithm, M R PA  (Minimum-Risk Path Algorithm). M R P A  may be useful for 

practical applications in which near-real-time use and independence of licensed opti

mization software are necessary.

M R PA  solves problems faster than CPLEX in 80% of our test problems. For the 

instances in which M RPA fails to prove or reach optimality after 600 seconds, the 

probability of survival on the incumbent path is small, less than 0.5. For problem 

instances th a t CPLEX solves faster than M RPA, M R P A  solves them  in 35 seconds 

or fewer, with one exception of 131 seconds of solution time. If near-real-time perfor

mance is required of the algorithm, an implementer may wish to impose a time limit 

and use the incumbent solution if run time exceeds this limit.

Future work can concentrate on improving the efficiency of M R P A  and testing it 

on minefields representing different general shapes. For instance, a long and narrow 

area of operations might realistically represent a harbor entrance, and it would be 

interesting to understand how such a shape affects solution times. The strength of 

the lower bounds influences M RPA s solution time. We use an upper bound, nm, 

on the maximum number of times that mine m  can impinge upon a simple s-t path 

in the calculation of the lower bounds to ensure that they are valid. Strengthening 

these lower bounds by deriving a tighter bound for nm may decrease solution time.
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We focus on routing a ship in a m apped minefield, but M R P A  can be applied to 

other applications such as routing m ilitary aircraft or minefield optimal clearance.
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APPENDIX A - PSEUDOCODE FOR THE BYERS AND WATERMAN 

NEAR-SHORTEST-PATH ENUMERATION ALGORITHM

This pseudocode is from Carlyle and Wood (2005), which modifies the near- 

shortest-path enumeration algorithm of Byers and Waterman (1984), to identify only 

simple paths. This version of the algorithm must recompute the lower bounds d'{v) 

each time an edge is added or removed from the stack. (Note: The d'{v) and d shown 

here are unrelated to the CPA distance dem given in Section 3.3.2.) We modify the 

pseudocode in Steps (z), (zz), and (zzz).

DESC RIPTIO N :

An algorithm to solve near-shortest simple paths, NSSP. The format and 

terminology of this algorithm are from Carlyle and Wood (2005).

INPUT:

A directed graph G =  (V, E)  in adjacency-list format, s, t, c > 0, and <5 > 0.

“firstEdge(u)” points to the first edge in a linked list of edges directed out of v. 

OUTPUT:

All simple s-t paths, whose lengths are within a factor of l -h 5 of being shortest.

t

for( all u E U ){ d'{v) <— shortest-path  distance from u to  t; }

/* The above requires the solution of a single shortest-path problem */

d<— (1 + ô)d'(s)]

for( all z; E U ) { next Edge (u) <— firstEdge(u)- }

theStack <— s; L(s) 0;

isOnPath(s) <— TRUE; for( all u E U — s ){ isOnPath(u) FALSE; }

/* “isOnPathQ” is not used in the Byers and Waterman (1984) algorithm */ 

while ( theStack is not empty ){

u <— vertex at the top of theStack;
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if( next Edge (m) ^  0 ) {

(u, v) <— the edge pointed to by next Edge (%); 

increment nextEdge(w); 

if( isOnPath(y) =  FALSE and 

L(u) +  c(u,v) +  d'(v) < d )  { /*  Step (i) */ 

if( n =  t ){

prin t( theStack U £ );

} else {

push v on theStack; 

isOnPath(i/) <— TRUE;

L(v) L(u) +  c(u, v)\

for( all y E U ){ d'(v) shortest-path distance from v t o t  where 

no vertices v' with isOnPath(U) =  TRUE may be traversed;

/* Step (#) */

}
}

}
} e lse  {

Pop u from theStack; 

isOnPath(w) 4— FALSE; 

next Edge (%) first Edge(^);

for( all y E U ){ d'(v) shortest-path distance from y to £ where 

no vertices v' with isOnPath(y') =  TRUE may be traversed;

/*  Step (#£) */

}
}

}
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}

In M R P A , edge “lengths” represent risk instead of distance. We modify Step 

(i) by replacing L(u) +  c(u, v) +  d'(v) < d with rT(u) +  ruv +  r'(v) < f.  If the true 

risk on a sub-path from s to it, rT(u), plus the lower bound on true risk from u to  t, 

r uu +  r'(u), is less than the upper bound f, then edge (it, v) is added to the stack. We 

modify Step (ii) and Step (in) by replacing the lower bound updates tha t Carlyle and 

Wood (2005) perform with the following procedure: M R P A  performs a backward 

shortest-path algorithm in which the only mines in the instance are M \ M SU and all 

vertices on the current sub-path are forbidden, where M  is the set of all mines and 

M su is the set of mines that impinge upon the sub-path s-u.
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APPENDIX B - ADDITIONAL NUMERICAL RESULTS

We construct Problems 6-35 to test the M R P A  and the integer programming 

formulations on 30 different minefields composed of the same number of mines and 

minimum and maximum damage radii. Results from problems 1-5 are given in Chap

ter 5, except for their LP relaxation objective values. The LP relaxation objective 

values from integer programming formulations TMR1 and TMR2 for Problem 1-35 

are given in Table B.4. CPLEX solves integer programs TMR1 and TMR2 on a Dell 

PowerEdge R410 machine with 12GB of RAM and a 2.26GHz processor. We test 

M RPA on a MacBook Pro with a 2.26GHz processor and 2GB of RAM.

f indicates that M R PA  did not solve the problem in 600 seconds, but it does 

provide an incumbent solution with bounds on the optimal solution.
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Table B .l: We report the upper and lower bounds on the initial s-t path that heuristic 
H identifies for problems 6-35. Optimal objective function values obtained by M R PA  
are given in the th ird  column. The optimality gap is given in the fifth column, f 
indicates th a t M R P A  did not solve the problem in 600 seconds.

Problem
Instance

Optimal
P(Survival)

Optimal
Objective

Lower
Bound

Upper
Bound

Optimality 
Gap (%)

6 0.503 0.687 0.334 0.687 51.4%
7 0.836 0.179 0.070 0.238 70.6%
8 0.473 0.749 0.333 0.749 55.5%
9 0.806 0.216 0.083 0.216 61.6%

10 0.528 0.639 0.475 0.639 25.7%
11 0.892 0.114 0.046 0.114 59.6%
12 0.711 0.341 0.136 0.341 60.1%
13 0.525 0.644 0.374 0.675 44.6%
14 0.544 0.609 0.357 0.609 41.4%
15 0.534 0.627 0.378 0.627 39.7%
16 0.867 0.143 0.065 0.143 54.5%
17 0.446 0.807 0.460 0.844 45.5%
18 0.385 0.955 0.534 1.044 48.9%
19 0.914 0.090 0.040 0.090 55.6%
20 0.749 0.289 0.120 0.289 58.5%
21 t t 0.566 0.901 37.2%
22 0.472 0.751 0.378 0.909 58.4%
23 0.917 0.087 0.028 0.087 67.8%
24 t t 0.319 0.732 56.4%
25 0.842 0.172 0.089 0.195 54.4%
26 0.781 0.247 0.098 0.247 60.3%
27 0.627 0.467 0.274 0.511 46.4%
28 0.757 0.278 0.097 0.293 66.9%
29 0.461 0.774 0.350 0.832 57.9%
30 0.903 0.102 0.031 0.102 69.6%
31 0.917 0.087 0.031 0.087 64.4%
32 0.852 0.160 0.054 0.160 66.3%
33 0.735 0.308 0.167 0.308 45.8%
34 0.509 0.675 0.322 0.764 57.9%
35 0.630 0.462 0.247 0.485 49.1%
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Table B.2: Optimal probability of survival from problems 6-35 computed through 
M R P A  and through the integer programs TMR1 and TMR2. “SP True” is the 
probability of survival of the SP solution evaluated under the threat-additive model. 
“SP Gap (%)” is the percentage difference between “Optimal P[Survival)" and “SP 
True.” The number of mines that impinge upon the optimal route found by M R P A  
is given in the last column.

Problem
Instance

Optimal
P(Survival)

SP
True

SP 
Gap (%)

Number of 
Mines

6 0.503 0.503 0.0% 3
7 0.836 0.789 5.6% 2
8 0.473 0.473 0.0% 4
9 0.806 0.806 0.0% 2

10 0.528 0.528 0.0% 1
11 0.892 0.892 0.0% 1
12 0.711 0.711 0.0% 4
13 0.525 0.510 2.9% 4
14 0.544 0.544 0.0% 3
15 0.534 0.534 0.0% 3
16 0.867 0.867 0.0% 2
17 0.446 0.430 3.6% 2
18 0.385 0.352 8.6% 4
19 0.914 0.914 0.0% 1
20 0.749 0.749 0.0% 2
21 0.406 0.372 8.4% 2
22 0.472 0.472 0.0% 4
23 0.917 0.917 0.0% 2
24 0.482 0.481 0.2% 9
25 0.842 0.824 2.1% 1
26 0.781 0.781 0.0% 2
27 0.627 0.601 4.1% 3
28 0.757 0.747 1.3% 3
29 0.461 0.435 5.6% 8
30 0.903 0.903 0.0% 3
31 0.917 0.917 0.0% 1
32 0.852 0.852 0.0% 2
33 0.735 0.735 0.0% 2
34 0.509 0.466 8.4% 3
35 0.630 0.616 2.2% 1
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Table B.3: Solution times (“Run Time”), network reductions, and number of mines 
for problems 6-35. The number of edges and vertices present after preprocessing P  
and network reductions R  is given in Columns 5 and 6, respectively. The original 
model has 963 vertices and 2792 edges. The number of mines th a t impinge upon the 
optimal route found by M RPA is given in the last column, f indicates th a t M R P A  
did not solve the problem in 600 seconds. No corresponding SP solution time exceeds 
0.01 seconds.

Problem
Instance

Run Times (sec) P  and R  
Edges Vertices

Number of 
MinesTMR1 TMR2 M RPA

6 1.41 39.61 <.01 722 195 3
7 0.67 5.54 1.33 375 118 2
8 2.88 156.57 0.05 706 226 4
9 0.67 1.98 <.01 488 111 2

10 0.63 80.02 <.01 244 76 1
11 0.42 1.00 <.01 186 59 1
12 0.86 2.60 0.01 294 119 4
13 5.65 95.66 127.39 647 266 4
14 1.27 65.11 0.01 493 163 3
15 0.96 61.00 0.18 613 207 3
16 0.51 0.64 0.05 257 79 2
17 1.80 119.16 0.08 492 189 2
18 13.19 167.59 0.06 1053 402 4
19 0.49 0.38 <.01 79 25 1
20 0.99 0.92 <.01 288 97 2
21 13.58 177.97 t 1119 366 2
22 8.06 95.96 33.15 1364 462 4
23 0.60 0.37 <.01 78 32 2
24 7.53 70.59 t 882 295 9
25 1.14 2.46 1.76 375 105 1
26 0.71 2.73 0.01 309 104 2
27 1.15 22.38 <.01 451 158 3
28 0.63 1.46 <.01 512 108 3
29 19.39 154.37 0.34 946 369 8
30 0.61 0.38 <.01 155 50 3
31 0,28 0.34 0.01 167 66 1
32 0.96 0.56 0.01 285 75 2
33 0.81 4.19 0.25 496 151 2
34 2.90 12.40 <.01 383 167 3
35 1.67 58.73 24.66 723 271 1
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Table B.4: LP relaxation objective values from integer programs TMR1 and TMR2. 
TMR2 has a tighter LP relaxation. LP relaxation objective values for TMR1 and 
TMR2 are given in Columns 2 and 3, respectively. These objective values, translated 
into the probability of survival, are given in Columns 5 and 6, respectively. The 
percentage increase (“Gap %”) in the LP relaxation of TMR2 for the objective and 
for the objective translated into a probability is in Columns 4 and 7, respectively.

Problem LP Relaxation Objective LP Relaxation P{Survival)
Instance TMR1 TMR2 Gap % TMR1 TM R 2 Gap %

1 0.063 0.148 57.4% 0.939 0.862 8.2%
2 0.062 0.125 50.6% 0.940 0.883 6.1%
3 0.107 0.233 54.3% 0.899 0.792 11.9%
4 0.229 0.449 49.0% 0.795 0.638 19.7%
5 0.147 0.316 53.6% 0.864 0.729 15.6%
6 0.172 0.340 49.3% 0.842 0.712 15.4%
7 0.077 0.169 54.6% 0.926 0.844 8.8%
8 0.202 0.422 52.1% 0.817 0.656 19.7%
9 0.063 0.131 52.2% 0.939 0.877 6.6%

10 0.192 0.291 33.9% 0.825 0.748 9.4%
11 0.035 0.091 61.2% 0.965 0.913 5.4%
12 0.123 0.269 54.1% 0.884 0.764 13.5%
13 0.149 0.326 54.5% 0.862 0.721 16.3%
14 0.155 0.295 47.3% 0.856 0.745 13.0%
15 0.161 0.274 41.1% 0.851 0.760 10.6%
16 0.074 0.143 48.3% 0.929 0.867 6.7%
17 0.149 0.339 56.1% 0.862 0.712 17.3%
18 0.199 0.403 50.7% 0.820 0.669 18.4%
19 0.037 0.090 59.5% 0.964 0.914 5.2%
20 0.142 0.289 50.8% 0.868 0.749 13.6%
21 0.172 0.336 48.8% 0.842 0.715 15.1%
22 0.151 0.278 45.4% 0.859 0.758 11.9%
23 0.041 0.086 52.9% 0.960 0.917 4.5%
24 0.166 0.331 49.8% 0.847 0.718 15.2%
25 0.058 0.128 54.6% 0.943 0.879 6.8%
26 0.078 0.191 59.3% 0.925 0.826 10.7%
27 0.111 0.242 54.1% 0.895 0.785 12.2%
28 0.075 0.171 55.9% 0.927 0.843 9.1%
29 0.196 0.467 58.0% 0.822 0.627 23.7%
30 0.089 0.102 12.9% 0.915 0.903 1.3%
31 0.048 0.087 44.6% 0.953 0.917 3.8%
32 0.097 0.160 39.4% 0.908 0.852 6.1%
33 0.117 0.220 46.8% 0.889 0.802 9.8%
34 0.200 0.429 53.4% 0.819 0.651 20.5%
35 0.099 0.194 48.7% 0.905 0.824 9.0%
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Table B.5: This table reports results from M R PA  enumerating a near-minimum 
risk path (NMRP) th a t is within 5% of optimality. “Objective Gap” is the percent 
change between the near-minimum risk objective value and the optimal objective 
value. Column 3 is the percent change between the near-minimum risk P(Survival) 
and the optimal P(Survival).  Column 4 ( “Run Time Gap” ) is the number of seconds 
that NMRP enumeration saves, f indicates that M R PA  did not solve the problem 
in 600 seconds.

Problem
Instance

Objective
Gap

P(Survival)
Gap

Run Time 
Gap (sec)

1 0.00% 0.00% 0.01
2 0.00% 0.00% 0.00
3 0.00% 0.00% 0.02
4 0.00% 0.00% 0.12
5 0.00% 0.00% 0.60
6 0.00% 0.00% 0.00
7 0.00% 0.00% 0.28
8 0.00% 0.00% 0.01
9 0.00% 0.00% 0.00

10 0.00% 0.00% 0.00
11 0.00% 0.00% 0.00
12 0.00% 0.00% 0.01
13 4.58% 3.05% 3.09
14 0.00% 0.00% 0.00
15 0.00% 0.00% 0.05
16 0.00% 0.00% 0.00
17 4.33% 3.59% 0.00
18 2.15% 2.08% 0.01
19 0.00% 0.00% 0.00
20 0.00% 0.00% 0.00
21 t t t
22 4.39% 3.39% 2.84
23 0.00% 0.00% 0.00
24 t t f
25 0.00% 0.00% 0.16
26 0.00% 0.00% 0.00
27 0.00% 0.00% 0.00
28 5.00% 1.45% 0.00
29 0.00% 0.00% 0.10
30 3.25% 0.33% 0.00
31 0.00% 0.00% 0.00
32 0.00% 0.00% 0.00
33 0.00% 0.00% 0.09
34 0.00% 0.00% 0.00
35 4.64% 2.22% 1.18
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