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ABSTRACT

In the residential sector, there is considerable growth in smart, interactive devices

including thermostats, water heaters, electric vehicle chargers, solar panels, and battery

systems. These devices can all provide the electric grid with additional flexibility, which is

a valuable resource for grid operators and helps reduce system costs and emissions.

However, it is difficult to control these devices because there is considerable diversity in the

residential housing stock and because the controls depend on stochastic variables such as

weather and occupant behavior.

We present a stochastic control framework for home energy management systems that

can control these devices while accounting for multiple sources of uncertainty. To do this,

we first develop an integrated residential energy model that can simulate multiple

controllable devices with high resolution and can interface with external controllers. We

then design a control framework with a linear residential energy model, a forecast

generator that provides realistic estimates of weather and occupancy variables, and a

control objective that captures energy costs and occupant comfort. The control framework

is used to evaluate the performance of heuristic, deterministic, and stochastic control

methods, primarily model predictive control.

We show that the stochastic model predictive control performs best in scenarios with

realistic levels of uncertainty. We also validate the residential energy models and show the

benefits of high-fidelity modeling for building-to-grid co-simulation studies. The results

shown in this dissertation provide a deeper understanding of residential load flexibility in

uncertain conditions, and the frameworks developed enable future research for evaluating

flexible loads in a broad set of applications.
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CHAPTER 1

INTRODUCTION

The electric grid provides continuous, reliable energy to our homes that is essential to

our safety and well-being. This energy costs money and resources to produce, and

contributes to environmental issues including pollution and climate change. Reducing

residential energy consumption through energy efficiency lowers energy costs for

homeowners, alleviates the need for grid upgrades, and reduces carbon emissions and

pollution.

While the importance of energy efficiency has been well understood for a long time,

there has been a recent focus on shifting the timing of electricity usage. At times when

electricity demand is high, more expensive—and often more polluting—power generators

must be turned on. During these “peak” times, electricity becomes more expensive, and

reductions in energy consumption becomes more valuable. For example, many areas of the

U.S. with warm climates experience a peak in demand during hot summer afternoons when

buildings require more energy for air conditioning. In these areas, energy savings from air

conditioning is more valuable than an equivalent amount of savings from, for example,

efficient lighting, because the air conditioning consumption is more coincident with the

peak period when electricity is expensive.

Electricity prices are also becoming more variable due to the emergence of variable

renewable energy resources including solar photovoltaics (PV) and wind turbines. These

resources can only operate at certain times—when the sun is shining or the wind is

blowing—and cannot store energy for other times. This can lead to an oversupply of

energy at certain times, which may not be coincident with the peak demand. The “Duck

Curve” in Figure 1.1, originally created in 2013 by the California grid operator CAISO,

shows that solar PV reduces net demand (i.e., demand minus variable renewable

generation) during the day and leads to a sharp increase in net demand in the evening [1].
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Figure 1.1 shows CAISO data from March 2021, validating the net demand estimates from

2013 and showing that the variability is even larger than expected for some days. As solar

and wind resources grow over time, this variation in net demand increases, which leads to

larger variations in the temporal value of electricity.

As the variability in net load increases, electricity market prices and rate structures

have become more variable as well. At the transmission level, electricity prices are set

using day-ahead and real-time wholesale energy markets that often lead to price

fluctuations and sometimes create negative energy prices [3]. Other components, including

capacity markets and demand response programs, also help manage electricity prices and

balance supply and demand. At the retail level, residential electricity rates have started

becoming more complex, adding time-based features such as time-of-use (TOU) pricing,

real-time prices, and demand charges. Rates for customers with rooftop solar may include

net-energy metering, feed-in tariffs, or non-export agreements, which impact energy costs

and encourage customers to self-consume on-site generation.

The traditional paradigm of grid operations uses flexible generation sources to match

inflexible demand. The changes in electricity demand, generation resources, and electricity

rate structures make it clear that this paradigm is being challenged. There is a growing

need for demand flexibility, and residential energy sector is capable of providing some of

that flexibility. However, in order to fully utilize flexible resources, we must understand

their capabilities, limitations, and impacts on residential occupants’ comfort and energy

costs.

This dissertation aims to use residential energy modeling and controls to better

understand how load flexibility impacts occupant comfort, energy costs, and grid

operations, with a focus on the effects of uncertainty and limited information. The

remainder of this introduction provides a background on recent residential energy trends,

load flexibility, and residential energy modeling and controls. It concludes with a list of

research questions and the potential impacts of the research.

2



(a) Original “Duck Curve”

(b) CAISO Demand and Net Demand from a day in March 2021

Figure 1.1 The “Duck Curve”, past and present. Variations in net electricity demand
increase as renewable sources grow and the afternoon peak increases [1, 2].
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1.1 Trends in Residential Energy Consumption

The latest data from the U.S. Energy Information Agency (EIA) states that residential

buildings account for about 21% of all energy consumption and 36% of all electricity

consumption in the U.S. [4]. Figure 1.2 shows the breakdown of residential electricity

consumption by end use [5].

Figure 1.2 Residential electricity consumption by end use from the 2015 EIA Residential
Energy Consumption Survey [5].

There is an opportunity to shift the way residential buildings use energy. More efficient

equipment, improved controls, and tighter building envelopes can all reduce overall energy

usage in residential buildings. Controls can further reduce costs by shifting when energy is

consumed. Transitioning from fossil fuel-based to electricity-based equipment will lower the

carbon footprint of residential buildings. These opportunities are already leading to

multiple observable trends in building energy usage and in market adoption.

One major trend is electrification, or the shift toward electric equipment in residential

buildings. Multiple papers have shown significant changes in the current and expected

future adoption of electric equipment. Air source heat pumps (ASHP) are currently used
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for space heating in about 10% of homes; reference estimates have heating electrification

market share from 5-10% by 2030 and 18-35% by 2050, although many studies also run

scenarios with much high electrification rates in which ASHP exceed 50% of the market

[6, 7]. Electric vehicles accounted for about 1 million cars (about 0.5% of all cars) on the

road in the U.S. in 2018. Projections for EV sales vary considerably, but reasonable

estimates show 7-12% adoption by 2030 and 11-48% adoption by 2050. Scenarios with high

penetration show adoption at 66-88% in 2050 [6–9]. Other equipment, including heat pump

water heaters, ground source heat pumps, and electric cooking appliances and also

expected to contribute to residential electrification [7, 9].

Another trend is the adoption of distributed energy resources (DERs) in residential

buildings. We use the definition of DERs from [10]:

“A DER is a resource sited close to customers that can provide all or some of

their immediate electric and power needs and can also be used by the system to

either reduce demand (such as energy efficiency) or provide supply to satisfy

the energy, capacity, or ancillary service needs of the distribution grid. The

resources, if providing electricity or thermal energy, are small in scale,

connected to the distribution system, and close to load.”

With this definition, DERs include rooftop solar PV and other on-site generation

equipment, electrical storage systems (i.e., batteries), thermostatically controlled loads

(TCLs), and other flexible loads. Thermostatically controlled loads refer to heating,

ventilation, and air conditioning (HVAC) and water heating end uses. Other flexible loads

include appliances and electric vehicles that have the capability to change when they

consume energy.

Most DER markets are growing considerably. Rooftop PV in the U.S. has grown

significantly from 6 GW cumulative installed capacity in 2015 to 16 GW in 2019, and it is

expected to increase by 3-4 GW per year from 2020 to 2025 [11]. Some areas of the

country, including California, have instituted policies that all new residential construction
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include PV [12]. The U.S. residential battery market more than doubled in 2019 [13].

About 200 MW of residential batteries were installed in both 2019 and 2020, and total

deployments are estimated at about 1 GW by 2025 [14]. Globally from 2020 to 2030, the

EV market share of new car sales is projected to increase from 2.7% to 28%, and total EVs

on the road are projected to increase from 8.5 to 116 million vehicles [15].

Equipment controls are generally a niche topic, but controls are at the core of smart

technologies and the Internet of Things (IoT). Advances in information and communication

technologies have created opportunities for many smart devices, including for energy

applications. We define a “smart” energy device as a device that can communicate with

any external controller and can change its energy demand based on a control signal. Smart

thermostats accounted for 28 GW of flexible demand in 2019 and are expected to reach

about 43 GW (43 million devices) by 2025 [16]. Smart water heaters are expected to grow

from 300 MW to about 3 GW of flexible demand by 2025 [16]. Level 2 chargers, which can

be a proxy for smart EV charging, are expected to increase from 50% of U.S. residential

chargers in 2019 to 77% in 2030 [17]. Many commercially available devices and appliances

are now wifi-enabled and can be controlled by an external system. Individually, each of

these controllers can improve device efficiency, lower customer costs, and/or lower carbon

emissions by changing how and when the device operates.

A home energy management system (HEMS) aggregates these individual device

controllers into a single system, allowing for additional control benefits and easier

integration and operation for the user. HEMS typically integrate with other smart home

devices, including smart speakers and entertainment systems. Voice assistant devices have

grown dramatically from 6 million households in 2015, to 39 million in 2018, and an

expected 65 million in 2023 [18]. However, the HEMS component is still in development

and is not widely used. Wood Mackenzie estimates smart home platform penetration at 14

million households in 2018 and an expected 48 million in 2023 [18]. The main benefits of

HEMS are in the integration of information from sensor measurements, occupant
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preferences, and external signals like electricity costs and weather. The HEMS can

determine each device’s usage with all this information, leading to more optimal outcomes

for the occupant than if the controls had been executed separately within each device.

1.2 Load Flexibility

Electricity generation is becoming less flexible, mainly due to variable renewable

sources, at the same time that residential energy consumption is becoming more flexible.

Many of the devices described above—including batteries, smart devices, and

HEMS—enable load flexibility for residential customers. We define load flexibility as the

ability to change energy consumption for a given time period while maintaining a

reasonable level of customer comfort and convenience. In many cases, a flexible load will

shift energy consumption from one time to another while maintaining a similar level of

overall energy consumption. Short-term load reductions, known as load shedding or

demand response (DR), as well as energy storage, are included in the definition of load

flexibility.

A wide range of residential energy-consuming devices can be considered flexible loads.

HVAC loads are the most commonly considered flexible loads given their relatively large

energy consumption and ease of control. Batteries, water heaters, appliances, EV chargers,

and PV all have the ability to shift their energy usage as well. In order to shift load, a

device must be able to respond to a control signal. Typically, a device also needs a

communication method such as Wi-Fi to relay sensor information and to receive the

control signal [19]. While some devices include manual controls—for example a dimming

switch or a delay button on a dishwasher—it is much more convenient to control devices

automatically via a HEMS or a cloud-based control hub.

As discussed in Section 1.1, many of these end uses are growing and incorporating more

advanced control and communication technologies. These trends lead to an increase in the

potential for the residential sector to serve as a source of load flexibility. The Brattle

Group estimates approximately 200 GW of cost-effective demand flexibility potential in the
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United States by 2030, with much of the increase coming from residential loads, including

smart thermostats, smart water heaters, electric vehicle (EV) chargers, and

behind-the-meter batteries [20]. The economic viability of these devices is driven by

technology improvements, cost reductions, and an increase in the value of load flexibility.

To concentrate research and industry efforts in this area, the U.S. Department of

Energy Building Technologies Office created the Grid-Interactive Efficient Buildings (GEB)

Initiative [21]. Their work highlights ongoing research, best practices, and research gaps in

load flexibility and other related areas. Current research needs include determining the

potential value of load flexibility by end use, understanding the interactions between

flexibility strategies, and assessing the impacts of flexibility on occupant preferences.

Notably, they emphasize that GEB controls should have no negative impact on occupant

comfort and in some cases can improve occupant comfort [22].

In addition to building and occupant impacts, load flexibility is expected to have

considerable impacts on electric grid operations and planning. Grid resource planning at

the transmission and distribution levels requires accurate forecasting of peak demand so

that the grid has enough capacity to always meet demand. Most existing load flexibility

services are used during grid contingency events (e.g., a large generator outage) to improve

grid reliability. Many proposed load flexibility strategies are primarily used to reduce peak

demand, thereby reducing the need for capacity expansion [23]. Flexible loads can also give

grid operators a new tool to adjust demand, which can improve grid operations during

normal conditions. However, depending on their implementation, they can also make load

forecasting less predictable, making grid operations more difficult [24].

1.3 Residential Modeling and Model-Based Controls

Load flexibility presents a large opportunity to reduce energy consumption, costs, and

pollution. Researchers use models to better understand the impacts of load flexibility on

the energy system and on occupant well-being. Many models have been developed for

residential energy systems; these models incorporate parameters for energy-consuming

8



devices, building insulation, weather, and occupant preferences and activities. More details

are provided in Section 2.1.

An ideal residential energy model would be accurate and useful in a broad context of

applications. Given the broad range of devices and inputs required, it is difficult and

expensive to design an accurate residential energy model for an individual building.

Instead, most models are designed to resemble a typical building or a typical set of

buildings in a community or region. For models with this goal in mind, we suggest that

ideal models should be:

• Occupancy-based: Connect energy usage to a range of occupant activities and

capture occupant stochasticity

• Physics-based: Include white-box thermal models that incorporate weather data and

building envelope properties

• Interdependent: Capture the co-dependencies between thermal systems, electrical

systems, and occupant behavior and their effects on energy usage

• Controllable: Modify energy usage based on external control signals and provide

state information to external controllers

• Diversified: Handle a diverse set of input parameters (e.g., building envelope,

occupant schedules, equipment types) in order to produce diversified outputs (e.g.,

diverse load profiles)

• Integrated: Leverage state-of-the-art resources and tools, including weather data, and

building stock data, and device models

• Modular: Integrate into co-simulation frameworks for applications that involve

multiple modeling frameworks, for example buildings, distribution grids, energy

markets, and urban energy systems
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• Accurate: Produce results that have low systemic error with respect to field data and

survey data

• High-fidelity: Capture high-resolution patterns and features (e.g., equipment cycling)

• Computationally efficient: For running large-scale analyses with many buildings

• Transparent and reproducible: For industry adoption and acceptance in the scientific

community

We denote a model with these features as an “integrated residential energy model”.

These features are necessary for understanding the impacts of load flexibility because of its

interactions with occupant preferences, device controllers, and the electric grid. Flexible

loads depend on thermal systems (e.g., HVAC loads) and on occupant activities (e.g., EV

charging), both of which should be incorporated in the model to fully capture the impact

of load controls.

Models that are controllable and computationally efficient can also be used for

model-based controls. Model-based controls use an underlying model to determine an

optimal control strategy. While these control methods can be very useful, they rely on

accurate models and state information to work well. An integrated residential energy

model can be used within a model-based control framework for residential applications, for

example a HEMS.

As discussed in Section 2.3, one of the difficulties with model-based controls is that

model inputs and parameters are difficult to estimate and can vary significantly based on

occupancy and geographic location. Uncertainty can lead to suboptimal control decisions,

which can limit the value of load flexibility and potentially cause occupant discomfort or

inconveniences. Uncertainty in residential energy applications primarily arises from

weather and occupant activity forecasts, which are needed to quantify the amount of

flexibility that can be provided.
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1.4 Research Objectives

The goal of this dissertation is to use residential energy modeling and controls

techniques to better understand how load flexibility can be utilized in real-world scenarios.

We focus on techniques that are robust when used with limited or uncertain information.

This is especially critical for residential applications, as energy usage depends on stochastic

variables including occupant activities and weather. The research questions for this

dissertation are:

1. How can integrated residential energy models accurately capture the impacts of load

flexibility on house power usage and occupant comfort?

2. How do integrated residential energy models compare against existing state-of-the-art

models?

3. How can integrated residential energy models capture the impacts of distributed

control strategies on grid services?

4. How can uncertainty from weather and occupancy behavior be incorporated in

model-based controls for residential energy systems?

5. Do model-based controls perform better than rule-based controls for residential

energy systems with flexible loads when weather and occupancy forecasts are

uncertain?

Answering these questions will provide a holistic understanding of load flexibility under

uncertain conditions. An integrated residential energy model and robust control techniques

are necessary components of an effective model-based controller operating in real-world

conditions. This research can serve as a guide for developing tools for home energy

management systems and as a foundation for future studies in residential load flexibility.
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The dissertation is organized as follows. Chapter 2 provides a background and

literature review on residential modeling and controls. Chapter 3 develops a residential
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energy model that can simulate flexible loads and can serve as an underlying model in a

control framework. Chapter 4 develops a stochastic model predictive control framework for

HEMS that includes model linearization techniques and forecasting methods. Chapter 5

validates the model against existing state-of-the-art models. Chapter 6 applies the model

to building-to-grid co-simulation applications. Chapter 7 presents case studies that assess

the performance of heuristic, deterministic, and stochastic control methods using this

HEMS control framework. Finally, Chapter 8 summarizes the key findings of the

dissertation and provides recommendations for future work.

13



CHAPTER 2

LITERATURE REVIEW

This chapter provides a review of literature related to the research topics of this

dissertation. The literature review is divided into sections on residential energy modeling,

home energy management systems, and uncertainty considerations in HEMS applications.

2.1 Residential Energy Modeling

This section reviews the existing literature related to residential energy modeling. A

comprehensive residential energy model accounts for all on-site energy usage, including

from HVAC, water heating, appliances, lighting, miscellaneous loads, distributed

generation, and storage. Significant attention is paid to the building envelope and HVAC

device models, as HVAC accounts for 46% of residential energy consumption [25] and 32%

of residential electricity consumption (see Figure 1.2).

2.1.1 Building Envelope

Building envelope models describe the thermal interactions between a building and its

environment. Reviews of building envelope models show that they vary considerably in

their complexity and their design [26, 27]. Specifically, many envelope models are white

box models, which are designed using a bottom-up, physics-based approach that uses

thermodynamic equations and material properties to determine the model parameters.

Black box models are designed by fitting data to a model, and grey box models are hybrid

models that combine physics-based and data-driven techniques [28].

White box models commonly use an equivalent circuit model (i.e., a Resistor Capacitor

or RC model) to model thermal convection and conduction, in which the resistors and

capacitors correspond to heat transfer coefficients and thermal masses, respectively. Many

papers that do not focus in detail on the envelope model use an RC model with few nodes,

where each node is defined by a capacitor [29–33]. More complex models include more RC
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parameters and other methods of heat transfer. Henze et al. describe models that vary in

size from 5 to 21 nodes and include solar radiation [34]. Models calculate resistances using

material properties and air film coefficients [35, 36]. Fateh et al. uses a multi-node state

space model that includes long wave radiation (LWR); they also model each individual

boundary of the building (e.g. walls, roof) with multiple nodes and with an internal and

external film resistance [37]. Other models include infiltration and ventilation of ambient

air [38], and the ability to include an arbitrary number of nodes based on the type and

shape of the building [39].

EnergyPlus, the U.S. Department of Energy’s flagship building model, contains the

most popular and thoroughly validated building envelope model in the literature [40].

EnergyPlus uses a comprehensive set of “fundamental heat balance principles” to model a

building’s thermal dynamics [41]; it includes modules for multi-zone heat balance, surface

temperature heat balance, air flow between zones, sky temperature, shading, daylighting,

window transmittance, and humidity. Multiple papers rely on EnergyPlus to develop their

own building envelope models [27, 42, 43]. It has been validated against industry standard

tests and field data in multiple studies [44–46]

Black box and grey box approaches to building modeling often result in more simplified

models. Jimenez et al. use the Auto-regressive Moving Average Exogenous (ARMAX)

method for system identification to develop a 2-node state space building model [47]. A

similar model is used with a linear least squares approach in [48]. Grey box approaches are

effective at evaluating the performance of varying model complexity [49]. They can also be

used with a Kalman Filter or other estimation techniques to improve model accuracy over

time [50, 51]. More complex models have been fitted to data using a genetic algorithm

approach [35, 52].

2.1.2 HVAC Equipment

HVAC equipment models use information from the building envelope model to calculate

heat flows and energy consumption for space heating and space cooling. HVAC equipment
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control the indoor air temperature, which is an output of envelope models [29, 31, 34].

Some multi-zone models include multiple areas with separate temperatures that are

controllable with HVAC equipment, although this is much more common for commercial

buildings than for residential buildings [37, 39]. Many HVAC models also use signals for

outdoor temperature and indoor and outdoor humidity to determine heating and cooling

requirements and equipment efficiency [41, 53].

HVAC equipment models can be characterized by the type of equipment modeled and

by the algorithm for determining the equipment capacity, which we define as the

instantaneous amount of heating or cooling delivered by the HVAC equipment. Models can

be generalized and used for many types of HVAC equipment [54, 55]. Some models use a

constant (i.e. static) capacity for the HVAC equipment and allow the equipment to turn on

and off using a thermostat control with a deadband. This method is often used for

simplified models and for equipment with limited controllability like electric baseboard

heaters, and electric and gas furnaces and boilers. Some models for heat pumps, air

conditioners, and other equipment with a compressor cycle use a dynamic algorithm in

which the equipment capacity depends on indoor and outdoor temperatures, humidity, and

air flow rates [41, 53]. These models use a biquadratic equation to update the capacity and

efficiency of the HVAC equipment at each time step to capture the impacts of indoor and

ambient conditions.

Some HVAC models use an “ideal” capacity algorithm to perfectly achieve a given

setpoint temperature. These models do not account for equipment cycling and are more

commonly used for simulations with a low time resolution [41]. When using a state space

building envelope model, the ideal HVAC capacity can be computed with a linear function

using the state equation to solve for the HVAC capacity input [55].

Air source heat pumps are particularly important to model given their high efficiency

and importance in electrification trends. While ASHPs in cooling mode are the same as air

conditioners, modeling ASHP heating is challenging. ASHPs usually include a heat pump
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to extract heat from ambient air as well as an electric resistance heating element that is

less efficient and used when outdoor conditions are very cold. The heat pump and electric

resistance elements can be on separately or simultaneously. Defrost requirements are also

critical to modeling an ASHP’s capacity and efficiency during cold outdoor conditions [41].

Many commercial HVAC systems use variable air volume systems that can vary the

flow rate and temperature of conditioned air to multiple zones within the building. While

commercial HVAC models often include variables for controlling flow rates [34, 56–58],

residential models rarely do and instead model the HVAC capacity without calculating the

flow rate or supply temperature. However, detailed residential models include parameters

for air flow rates and fan power, which can vary with capacity and influence the efficiency

and energy consumption of the equipment [41].

HVAC models rely on a variety of inputs and parameters, including the building

envelope parameters, equipment capacity and efficiency, and weather conditions. In

particular, HVAC models depend on the heating and cooling setpoint temperatures, which

may depend on occupancy, occupant comfort preferences, time of day, or time of year

[59, 60].

2.1.3 Water Heater Equipment

Compared the HVAC equipment, there is significantly less literature on models for

water heating and other energy end uses, and these models tend to be simpler. Water

heating models often follow the same logic as HVAC models, where a water tank model is

the equivalent of the building envelope, and the water heater capacity and controls depend

on the water tank temperature. Hao et al. suggest that any TCL, including HVAC, water

heating, and refrigeration, can be modeled like a battery, with the temperature state

modeled equivalently to a battery state of charge (SOC) [55].

The water tank model accounts for heat injected by the water heater, convection losses,

and heat transfer due to hot water draws. Most water tank models use a single node

[32, 61] or two nodes [29]. Multi-node models have been shown to improve accuracy [62].
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Simpler models do not use a thermal model and instead use data or a water draw profile to

determine energy usage [63].

Electric resistance water heaters and gas water heaters are the most common

equipment types and are typically modeled as static capacity equipment. Thermostat

control logic based on the water tank temperature (and sometimes the rate of change of

these temperature) determines when the equipment turns on and off [61]. When modeling

a water tank with two or more nodes, electric resistance water heater models usually

include an upper and a lower heating element to accurately represent real products. These

models require additional logic to control both elements, as most systems do not allow

both elements to be on at the same time [64].

Heat pump water heaters (HPWH) share many features with air source heat pumps,

including higher efficiency levels and additional control logic due to multiple methods of

heating. HPWH products typically have a heat pump element as well as an upper and

lower electric resistance heating element. Manufacturer control logic is typically very

complex and only turns one element on at a time to reduce the maximum power output.

HPWH models include up to 12 thermal nodes for improved accuracy and to model the

heat gains of the heat pump element [65]. Lab testing has shown complex control logic is

required to accurately model HPWH modes for some products [64].

The frequency, timing, and quantity of hot water draws are key inputs in a water heater

model. Models tend to use real or simulated water draw profiles that represent a

combination of hot water uses in a residential building. Simulated data are typically taken

from a Markov chain-based occupancy model [66] or from the Domestic How Water Event

Schedule Generator [67].

2.1.4 Electric Vehicles

While most residential building models focus on HVAC and other traditional loads,

many studies have started considering electric vehicles (EVs) as a key component of

residential energy consumption. The simplest models treat electric vehicles like most other
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miscellaneous loads, using a static load profile that is not controllable. Other models treat

the EV as a battery and track the EV SOC and the energy consumption used to charge the

EV.

More advanced EV models account for variability in occupant schedules, driving needs,

and weather conditions. One such model, EVI-Pro [68], uses survey data to build a

database of residential EV charging events that include the parking start time, parking

duration, and initial SOC of the EV. These parameters vary based on the type of EV

(battery vs. plug-in hybrid), the EV range, and the charging level (Level 1 or Level 2).

They also vary by day of the week, which impacts driving patterns, and the ambient

temperature, which impacts the efficiency of driving.

2.1.5 Appliances, Lighting, and Other Loads

Appliances, lighting, and miscellaneous laods typically consume less energy than HVAC

and water heating in residential buildings as shown in Figure 1.2. Most building models

treat these loads as uncontrollable and prescribe an energy consumption schedule [30, 69],

or do not consider them at all. Some papers include freezers and refrigerators as

thermostatically controlled loads [55, 63]. McKenna and Keane use a 1-node model for

these loads to model their controllability [29].

More detailed appliance and lighting models rely heavily on occupancy-based methods.

Richardson et al. describe appliance and lighting models that use a stochastic assignment

method to map activities to appliance use and house location [66, 70]. They use a Markov

chain occupancy model for determining occupant activity, including the impacts of

multiple occupants and correlations between activities. Switch-on probabilities are used for

both lighting and appliances, and the lighting model accounts for natural light, efficiency

levels, and the sharing of lit indoor spaces. These and other papers rely on time-use survey

data to develop their occupancy models [29, 71].
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2.1.6 Distributed Generation and Storage

Distributed Generation: As with EVs, holistic residential energy models have started

incorporating distributed generation (DG) models to better understand their impact on net

residential energy usage. Rooftop PV is the most common DG technology to include. As

with appliances and lighting, many PV models are simple and rely on a prescribed schedule

[30] or are proportional to solar irradiance [33]. Li and Wen include a PV model from

Sandia National Laboratory that accounts for irradiance and temperature [26, 72]. Other

papers use specific tools for generating PV generation profiles, including PVwatts

[43, 73, 74] and SAM [75]. Other modeled distributed generation technologies include wind

[30] and backup generators [33].

Batteries: Despite small adoption rates in residential buildings, electrical and thermal

storage systems are included in many residential energy models. Battery models typically

account for the battery SOC and efficiency [33]. More complex models may incorporate the

battery terminal voltage [26, 76] or degradation [77]. Batteries may have a prescribed

charge and discharge schedule [30], a controller to lower customer energy costs [77, 78], or

more complicated controllers as discussed in the next section.

Battery models may include the impacts of battery cycling, temperature, and other

conditions on battery performance and degradation. Detailed models for specific battery

chemistries and configurations include many chemical, electrical, and thermal parameters

[76, 79]. Many papers use lumped models for packaged battery products and general

applications. Some models include a one- or two-node thermal model to track internal

battery temperatures [78, 80, 81]. Battery temperatures and cycling behavior lead to

capacity degradation, which may be more significant when batteries are installed outside or

in unconditioned spaces [82].

Thermal Storage: Thermal storage may be considered a separate element of a building

model or a feature of the building envelope or water tank model [69]. Fateh et al. study

the effects of phase-change materials by incorporating their additional thermal mass into
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their RC thermal model [37].

2.1.7 Integrated Residential Energy Modeling

As discussed in Section 1.3, building models are often split between models that focus

on a specific building and models that resemble a typical set of buildings within a region.

Few residential models are designed for a specific building due to the difficulty in collecting

building parameters. For typical building models, McKenna and Thomson provide a

comprehensive list of model requirements [31]:

• High temporal resolution

• Demand diversity (across multiple buildings)

• Dependency within and between buildings (e.g. occupancy and weather)

• Stochastic modeling

• Activity-based models

• Accuracy and computational efficiency

• Low-order thermal models

• Transparency and reproducibility

• Urban energy system modeling (e.g. water, transportation)

Other papers include additional requirements and features for residential energy

models. Good et al. add key features of separating energy services and inputs (e.g.

electricity and fuel) and estimating thermal storage capabilities [69]. McKenna and Keane

add the need for controllable device models and a time-variant electrical load model for

demand response applications [29].

There are a few tools used in the literature for integrating residential energy models

with other simulators and controllers. The Building Control Virtual Test Bed is used to
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integrate EnergyPlus building models with various types of controllers [83–85].

Spawn-of-EnergyPlus is another control framework under development by the Department

of Energy Building Technologies Office [86]. GridLab-D [87] is a distribution system

simulator that includes a simple building model and can co-simulate building and

distribution grid systems. HELICS [88] is a new co-simulation platform that has been used

to integrate OpenDSS [89] grid models, DER models, and controllers [90].

2.1.8 State Space Model Techniques

Many of the device models described above use linear, time-invariant state space

models of the form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.1)

where x is the state vector, u is the input vector, y is the output vector, and A, B, and C

are the state space matrices.

Building envelope and water heater tank models have temperatures as states, while

battery and EV models have battery SOC as a state. Other state variables include the

current status of appliances or occupant activities, although models with these states are

often nonlinear, for example Markov chain-based models.

Linear state space models offer useful techniques for simplification and estimation.

Model reduction is a common technique that reduces the number of states in a model while

minimizing the difference in the norm of the Hankel operator between the reduced and

original model [91]. Balanced model reduction is a common method used in reducing

building models for model predictive control [39, 84].

Another common technique for model simplification involves linearization. Models often

include bilinear terms due to HVAC heat flows [34, 56–58, 69] and solar irradiance through

window blinds [92]. Equipment with discrete operating states (e.g., on and off) or with

requirements for minimum on-time or off-time are sometimes modeled without these

features [32, 93]. Other nonlinearities arise from long wave radiation [39], infiltration [38],
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battery degradation [33], and device efficiency [43].

Building modeling research leverages the large field of research using state space models

for state estimation and parameter estimation (i.e., system identification) [26]. State

estimation usually involves a version of Kalman filtering [94], including linear Kalman

filtering [83, 92, 95] for linear systems, and Extended Kalman filtering [26, 50] or unscented

Kalman filtering [51, 96] for nonlinear systems. Maasoumy et al. show that unscented

Kalman filtering outperforms extended Kalman filtering for some building modeling

applications [97]. Parameter estimation methods tend to be grey box methods [98],

including using a genetic algorithm [35, 52], and Kalman filters [49, 51, 96].

2.2 Home Energy Management Systems

One of the primary reasons for modeling energy usage in residential buildings is to use

these models in residential building controls to enable load flexibility. Beaudin and

Zareipour provide a comprehensive review of Home Energy Management Systems (HEMS),

which they describe as a “demand response tool that shifts and curtails demand to improve

the energy consumption and production profile of a house according to electricity price and

consumer comfort” [99]. This section broadly describes the main methods for HEMS,

individual device controls, and related control applications, and reviews the current

limitations for HEMS.

2.2.1 HEMS Control Methods

According to [99], model predictive control (MPC) is by far the most common

methodology for HEMS. MPC determines an optimal control strategy given a model,

constraints on model states and inputs, and a forecast of future inputs for a finite horizon.

MPC is typically solved in a “receding-horizon manner” in which only the current control

strategy is implemented, and the optimization is re-solved at the next time step with an

equally long forecast horizon [100]. While there are many techniques within MPC, the

most common usage within HEMS applications include [99]:
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• Pricing scheme: Time-of-use (TOU), Real-time dynamic pricing

• Objectives: Energy cost, energy consumption, emissions, occupant comfort or

well-being

• Uncertainty: None, robust optimization, stochastic optimization (see Section 2.3.4 for

details)

• Optimization type: Mixed-integer linear programming (MILP), linear programming

(LP), quadratic programming (QP), heuristic methods

• Time resolution: 24-hour horizon with 1-hour, 15-minute, or 6-minute time steps

Objective functions used in HEMS optimization vary considerably in the literature and

have a significant impact on the control strategy and outcomes. Energy cost and occupant

comfort are the most common objectives to consider. Energy costs include electricity costs,

gas costs, peak demand charges, and carbon emissions [59, 101]. Comfort objectives

include air temperature and hot water temperature [32, 102]. Other objectives involve

equipment degradation [103], load flexibility [104], PV curtailment [105], and

self-consumption of DG or the amount of grid imports or exports [32, 106]. Most papers

use a multi-objective approach, either using a weighted sum of objectives or by bounding

objectives by converting them into optimization constraints [99]. Studies on survey

methods have shown that relative weighting of objectives can effectively align the

optimization with customer preferences [59, 107].

The complexity of the objective function and underlying building and device models

greatly impact the optimization type and the computational needs for solving the control

problem. Linear models are a necessary condition for most optimization types including

LP, MILP, and QP. Objectives with linear terms for energy costs and thermal comfort

enable LP optimization, which is the fastest optimization type. Some papers use QP to

enable a quadratic relationship with thermal comfort for air temperature and water
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temperature [32, 59, 104]. LP and QP are convex optimization types, which guarantee that

an optimal solution is globally optimal [108]. MILP is necessary for equipment models with

Boolean constraints due to on/off characteristics, fixed cycle durations, or minimum and

maximum on-times; these features are often used for appliances and sometimes used for

HVAC, water heating, or EV charging [102, 103, 106]. Computational requirements depend

heavily on the optimization type, as well as the horizon time and time resolution, which

can be a factor in determining the MPC objective in some applications [99].

Non-MPC control methods for HEMS include heuristic methods and optimization

methods that do not involve a forecast horizon. Some optimization methods are very

similar to MPC but do not use a receding time horizon [102].

2.2.2 Device Controllers

As more residential energy devices develop capabilities for control, there is a larger need

to integrate a diverse set of models and controllers in a HEMS framework. We discuss here

the literature on individual control strategies for HVAC, water heaters, PV, batteries, EVs,

and smart appliances.

HVAC and Thermostats: Most HEMS controllers involve space heating and/or cooling

control, and many papers only consider HVAC and no other equipment [28]. Most

controllers assume a continuous HVAC capacity [84, 96], although some assume on/off

behavior that leads to a mixed-integer optimization [109]. It is rare for residential HVAC

controllers to consider non-linearities in HVAC capacity or efficiency based on temperature

or flow rate. Most papers include energy costs and air temperature comfort in the objective

[59]. Temperature comfort is sometimes considered a soft constraint to prevent

optimization failures in extreme conditions [51, 96].

HVAC control signals depend on the type of HVAC models used. Most HEMS papers

do not specify the exact control signal sent to the HVAC model. Some controls send a

temperature setpoint signal, which “ideal” capacity HVAC models will follow exactly, if

feasible [56, 110]. Others send a direct load control signal to turn the equipment off
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[55, 109], or a duty cycle control to fix the energy consumption of the equipment rather

than the temperature [104, 105]. Real HVAC products have been shown to follow direct

load control signals and thermostat setpoints, but not duty cycles.

Smart Water Heaters: Water heater controls are often similar to HVAC controls. Water

heaters are either modeled with a continuous capacity (for linear models) or a fixed

capacity with on/off behavior (for mixed-integer optimization). Water temperature is

sometimes included in the objective [59, 109] or in the constraints to account for occupant

comfort. Water heater control signals can be temperature setpoints, duty cycles, or a direct

load control signal, although the exact control signal is often not specified.

PV and Batteries: There has been extensive literature on PV and battery controls

(both separate and combined), mostly focused on commercial-, industrial-, or utility-scale

systems. On-site commercial and industrial systems are often used to save money for the

asset owner by arbitraging energy prices and reducing peak demand. Others incorporate

value streams for grid services including demand response, resource adequacy, and voltage

regulation [111–113].

Residential PV and battery systems within HEMS are often controlled to reduce energy

costs and to maximize PV self-consumption [59]. They have also been used to provide load

flexibility services to a DER aggregator [104, 106]. PVs with smart inverters can also

provide reactive power for voltage regulation services [114, 115]. Control signals tend to be

real and reactive power setpoints for the PV and battery models to follow.

Electric Vehicles: Many studies have shown the benefits of residential EV charging

control coupled with other controllable devices. Some papers use a coordinated approach

for an aggregation of EVs within a region to reduce peak demand or provide ancillary

services to the grid [116, 117]. Others include similar control strategies for commercial

charging stations with multiple EV chargers [118–120]. Studies that focus on a single

household tend to use MILP optimization to dispatch flexible devices and a hard constraint

for the EV SOC at the departure time [73, 121–123]. Mirakhorli and Dong [124] use MILP
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for a HEMS that considers energy costs as well as soft constraints for EV SOC.

Mixed-integer optimization techniques are also used to enforce discrete charging levels for

EVs [125].

Smart Appliances: Similar to EVs, smart appliances are less common in MPC

frameworks and are often optimized using mixed-integer techniques. Most papers use

mixed-integer constraints to ensure that appliances are on for a certain duration and do

not cycle [122, 126]. Others allow for cycling [127] or require a minimum on-time and

minimum down-time [101].

2.2.3 Related Control Applications

Compared to other energy-related controls applications, there is relatively little

literature on HEMS. There is more literature in the related areas of commercial building

energy management systems [56, 128, 129] and demand side management (DSM) strategies

for the electric grid [121, 130–133]. There is also some overlap with distributed energy

resource management systems (DERMS) and utility-scale PV and battery controls.

Although HEMS focuses on the objectives of the homeowner rather than commercial

building owners and operators, utilities, DER aggregators, or power producers, there are

many similarities across these control areas and insights from these areas can be leveraged

to expand understanding in HEMS controls.

2.2.4 HEMS Limitations

While many studies have shown that MPC is an effective control strategy for HEMS,

limitations exist that few studies have addressed. Beaudin and Zareipour identify

difficulties in controlling a diverse set of devices, in handling multiple objectives, in

handling forecast uncertainty, and in implementation in hardware [99]. We discuss device

diversity and uncertainty in the sections 2.2.2 and 2.3, respectively.

The U.S. Department of Energy’s Building Technologies Office presents additional

limitations around underlying building models for MPC. They write that models “are
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unable to represent and simulate the performance of actual control sequences because they

model buildings under idealized conditions instead of actual operations, and with

deterministic rather than stochastic outputs.” MPC requires models that are “simple

enough” to enable optimization with limited computational resources and that are

sufficiently accurate. White box models tend to be overly complicated, while grey- and

black-box models depend on the quality and quantity of training data and may not be able

to handle extreme conditions. Model generation is a time- and resource-intensive process

that is difficult to scale. Finally, MPC has only been “demonstrated in buildings for

limited conditions,” primarily for HVAC [86].

2.3 Uncertainty Considerations in HEMS

Residential energy modeling requires a variety of inputs and parameters, including

weather inputs, building envelope parameters, equipment parameters, and occupant

behavior and preferences. These parameters can vary significantly for different homes and

can be difficult or expensive to estimate. Weather and occupant behavior are especially

important in estimating energy consumption, and both are stochastic and difficult to

forecast. Given these challenges, it is inevitable that uncertainty exists when modeling and

controlling residential systems. Incorporating uncertainty often leads to more conservative

control strategies that reduces the risk of high energy costs or occupant discomfort, but

that also reduces the amount of available flexibility. In this section, we describe the sources

of uncertainty in HEMS applications.

2.3.1 Forecast Uncertainty

Forecasts for weather and occupant behavior likely have the largest amount of

uncertainty in residential applications due to their stochastic nature. Residential energy

consumption is highly dependent on both occupant activity and weather, making these

forecasts critical pieces of information when optimizing for future control decisions. For

example, preconditioning air to shift HVAC consumption away from a peak demand period
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requires knowledge of weather variables that are used to calculate required HVAC loads

[56, 105]. Other examples include preheating a water heater before a large water draw

event [134] or charging an EV such that it is fully charged before the occupant leaves [120].

Weather Modeling: HEMS algorithms without uncertainty use a deterministic weather

forecast, meaning the optimization assumes that the weather forecast is exact. Most papers

use the same weather data in the forecast and in the building model. Some papers adjust

the forecast data with random noise to account for forecasting errors [51].

Some HEMS papers use more advanced weather models. Zhang et al. use forecast data

and an auto-regressive model to create a more realistic weather forecast [58]. Another

paper uses a similar method for commercial building controls [92]. Pedersen and Petersen

use detailed weather data including multiple weather forecast ensembles to forecast and

determine the uncertainty of weather variables [83]. Other models are discussed in [26].

State-of-the-art weather forecasting techniques tend to have either high reliability and

low resolution or low reliability and high resolution [135]. Numerical weather prediction

ensembles offer high resolution and low reliability and are typically used for weather

forecasts. The National Weather Service and the European Centre for Medium-Range

Weather Forecasts include datasets that may be useful for evaluating algorithms that use

weather forecasts [136, 137].

Occupant Modeling: Similar to weather forecasting, most HEMS algorithms assume a

deterministic occupant forecast, or they do not consider the effects of occupancy at all.

Some papers use a low-resolution profile or a time-average profile for loads and internal

heat gains to estimate an occupancy forecast [58]. Others use an exact profile that is

unreasonable to use in real systems given the uncertainty in occupant behavior.

Many papers use Markov chain techniques to estimate occupant behavior, although the

complexity of these models varies considerably. Most papers use a first-order [29, 71, 138]

or higher order [83] time-inhomogenous Markov chain that varies by time of day and day of

week. Others use related methods for modeling specific activities [73, 139]. The Markov
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process can incorporate occupant presence (i.e. present or absent) [71], specific occupant

activities [29, 70], or an aggregation of “other” energy consumption [32]. It is also effective

in modeling discrete and discontinuous occupancy patterns, for example, hot water draws

or discrete activity changes such as plugging in an EV or turning on an oven [140]. Most

papers cite time-use surveys for underlying data of the occupancy model [138].

Other methods for occupancy modeling use occupancy measurement data. Multiple

studies use occupancy sensor data to develop models and estimators for commercial

buildings [28]. A review on occupancy and comfort describes many dimensions of occupant

comfort that are not typically considered in HEMS controls [60].

In many papers, forecast uncertainty is quantified using heuristics [123] or is not defined

at all. Auto-regressive moving average models have been used to estimate uncertainty for

weather variables [132, 141, 142] as well as for occupancy variables [60]. Other forecasting

methods usually do not quantify uncertainty, for example, sophisticated weather forecasts

[73, 92] and Markov chain-based stochastic occupancy models [71, 141].

2.3.2 Model Uncertainty

An MPC framework requires an underlying model that represents the system, but it is

often an imperfect approximation of the system. Many MPC frameworks use a linear

model, which is required to use fast and convex optimization methods, including linear

programming, quadratic programming, and mixed-integer linear programming methods

[99, 143, 144]. Linear models must either simplify or ignore nonlinearities such as device

efficiency parameters, device degradation, and radiative thermal processes. Models for

specific homes often lack detailed data, including envelope and equipment parameters as

well as training data for black box models, which can lead to inaccurate model parameters

[71, 96]. Because every house is different, it can be very time consuming and costly to

create an accurate model representation [145].

Another key source of uncertainty is the time resolution of the model and the MPC

controller. Time resolutions may be constrained by the time resolution or update frequency
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of the forecast, by measurement or actuator update rates, or by the computational

complexity of the MPC algorithm. Time resolution may also be purposefully reduced to

eliminate the need to consider fast system dynamics, for example, equipment cycling

behavior or high-resolution occupant activities [31]. Although low-resolution controllers

might work well for some objectives—for example, reducing energy costs with an hourly

electricity price—they are likely to reduce the performance of any objective with real-time

impacts on the occupant, for example, thermal comfort or convenience associated with EV

charging.

2.3.3 Measurement Uncertainty

Uncertainty can also arise from sensor measurements [97, 146]. Sensor noise is not

typically an issue, but sensors can have low time resolution or low precision, which leads to

reduced control performance. Sensors can also be biased, especially if the sensor is not

directly capturing the variable of interest. For example, a thermostat located near a vent

or a sunny window might report a temperature that is not accurately representing the

house temperature [60]. Some sensors might also have limited communication abilities, for

example, an EV charger that can only measure the EV SOC when the vehicle is parked

and plugged in.

2.3.4 Control Methods that Incorporate Uncertainty

As mentioned in Section 2.2.1, many HEMS frameworks do not incorporate uncertainty

in their optimization function. Uncertainty is most commonly included for HVAC

controllers. Robust optimization is the most common method for incorporating uncertainty

in HEMS, likely due to its relative simplicity. Robust optimization minimizes the cost of

the “worst-case scenario” by using the worst-case value of uncertain parameters. While

beneficial for risk-averse problems, this method may not be the most cost-effective solution

[99].
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Maasoumy et al. use robust control to handle model uncertainties, and use an

Unscented Kalman Filter to estimate model parameters and states at a slower rate than

the MPC [96]. A related paper shows that robust MPC outperforms deterministic MPC

and rule-based controls for moderate levels of uncertainty [57]. Robust control has also

been shown to handle uncertainty in weather [147].

In contrast, stochastic optimization considers the probability distribution of uncertain

variables to reduce the risk of exceeding certain limits. Stochastic model predictive control

(SMPC) (also referred to as chance-constrained optimization [99] and conditional value at

risk [122, 127]) optimizes to minimize costs at a chosen risk tolerance level. SMPC also

includes “chance constraints” that ensure hard constraints are met with a certain

probability.

SMPC is often used with scenario-based methods to determine the probability

distribution of uncertain variables [148]. Pederson and Peterson use stochastic control and

scenario-based (i.e. ensemble) Kalman Filtering to control HVAC with uncertainty in the

outdoor air temperature, solar irradiance, and energy use due to occupancy [83]. Stochastic

dynamic optimization and other multistage optimization methods optimize over a set of

discrete state transitions, which can greatly increase the computational complexity of the

controller [73, 99].

Some papers assume a probability distribution rather than using scenario-based

methods. Multiple papers assume a Gaussian distribution in uncertain inputs including

irradiance and dry and wet bulb temperature [92, 123]. Other distributions are used for PV

irradiance [122]. Zhang et al. show that scenario-based MPC outperforms deterministic

MPC as well as SMPC with Gaussian assumptions [58].

Papers on HEMS often focus on novel control architectures and their performance

benefits over existing strategies, but they pay little attention to quantifying uncertainty in

their simulations or to assessing its impact on their findings. A study on commercial

building heating, ventilating, and air-conditioning (HVAC) controls found that DMPC

32



performed best at low levels of uncertainty, robust MPC performed best at intermediate

levels, and heuristic controls performed best at high levels [57]. The authors are not aware

of any similar studies on residential buildings or on non-HVAC devices.
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CHAPTER 3

INTEGRATED RESIDENTIAL ENERGY MODELING

This chapter presents the Object-oriented, Controllable, High-resolution Residential

Energy (OCHRE) model, a Python-based framework for simulating residential energy

systems. OCHRE includes a building envelope model, models for individual

energy-consuming devices, and a voltage-dependency model. The author’s contributions to

the OCHRE model include conceptualization, software development, testing, and

validation.

Section 3.1 outlines the components of the OCHRE model. In Section 3.2, we show case

study results for a sample building. Finally, we summarize the benefits of the model for

grid studies, and additional use cases for the model. Note that additional case studies are

shown in Chapter 6.

3.1 OCHRE Model Description

In this section, we describe the components of the OCHRE model, including the

building envelope, HVAC system, water heater, EV, other loads, PV, and battery.

Figure 3.1 and Figure 3.2 show a schematic of the building envelope, and Table 3.1

provides an overview of the equipment models and their key parameters.

3.1.1 Building Envelope

OCHRE represents the residential building envelope using an equivalent circuit model

(i.e., an RC model) as shown in Figure 3.2. Capacitors represent the thermal mass of a

node, which is either an air zone (e.g., garage) or a physical boundary between zones (e.g.,

walls, floor). Resistances correspond to thermal resistances between different masses and

include the effects of conduction and convection. All parameters are calculated from the

dimensions and thermal properties of building materials, making the envelope a fully

white-box model.
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To improve the accuracy of the thermal model, most boundaries have multiple nodes

similar to the model in [37]. We use up to six resistors and four capacitors for some

boundaries, including for the external walls, the foundation, and the roof. These

parameters allow the model to account for temperature gradients and different heat

transfer coefficients from different materials within a boundary. Two resistances at the

edge of the boundary account for the film resistance and are critical in accurately modeling

the solar and long-wave radiation gains injected into the building’s surfaces. Figure 3.3

shows a schematic of the reduced-order external wall boundary with four materials and

separate film coefficients on the interior and exterior of the wall.

Figure 3.1 Schematic of the OCHRE envelope model showing the main thermal zones and
main heat transfer mechanisms.
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Figure 3.2 Schematic of the OCHRE envelope RC model showing all conduction/convention
pathways. See Figure 3.3 for more details on an individual boundary.

Figure 3.3 Schematic of a boundary in the envelope model. Ta is the ambient temperature,
and Tm is the main indoor temperature.
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We define a thermal model with nx interior nodes and next exterior nodes. Interior

nodes are within the building envelope and have a corresponding thermal mass; exterior

nodes do not have a thermal mass and are prescribed by a time-series schedule (e.g.,

outdoor temperature). The heat equation for the interior node i is:

Ci
dTi
dt

=
nx+next∑
j=1

Tj − Ti
Rij

+Hi (3.1)

where Ti is the temperature at node i, Tj is the temperature at node j, Ci is the thermal

mass of node i, Rij is the thermal resistance between nodes i and j, and Hi is the sensible

heat injection into node i. If necessary, resistances are combined in series to determine Rij

(see Figure 3.3). Note that the thermal resistance between disconnected nodes is

considered to be infinite, and Rii ≡ 1.

We reconfigure the thermal model into a linear, discrete-time state space system with

state equation:

x(k + 1) = Ax(k) +Bu(k) (3.2)

where the states x and inputs u are defined as:

x =

 T1...
Tnx

 u =



Tnx+1
...

Tnx+next

H1
...

Hnx


(3.3)

where the index i ∈ [1, nx] corresponds to an interior node, and i ∈ [nx + 1, nx + next]

corresponds to an exterior node. The continuous time matrices A(c) ∈ Rnx×nx and

B(c) ∈ Rnx×(nx+nu) are derived from Equation (3.1) and then used to discretize the system

at a given time step:

A = eA
(c)Ts

B = A(c)−1(A− I)B(c)
(3.4)
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As shown in Figure 3.1, sensible heat injections arise from solar radiation, heating or

cooling delivered from HVAC, air infiltration and ventilation, long-wave radiation, and heat

gains from occupants and energy-consuming equipment. Solar radiation heat gains depend

on absorptivity parameters (or transmittance for windows) and are assumed to be injected

into the outermost node of the external boundaries. Solar radiation through windows is

injected into the interior walls and the floor nodes.

Long wave radiation is considered at each exterior and interior boundary surface. The

radiation equation for the surface of boundary material i is:

Hiz,rad = εiσai(T
4
z,rad − T 4

s,i) (3.5)

where Hiz,rad is the heat transfer away from boundary i, εi is the emissivity of material i, ai

is the area of the material i, Tz,rad is the effective zone temperature, Ts,i is the surface

temperature, and σ is the Stefan-Boltzmann constant. For exterior surfaces, the effective

zone temperature accounts for the ambient and sky temperature [41]. For interior surfaces,

the effective zone temperature is a weighted average of all surface temperatures within the

zone, weighted by their respective area. OCHRE uses an iterative nonlinear equation solver

to calculate the surface temperatures and the radiation heat transfer.

We use the Sherman-Grimsrud model [38] to determine the heat gains from infiltration

and ventilation in the living space, garage, and attic. We use a constant flow rate

infiltration model for crawl spaces and basements.

Moisture is also tracked using a mass balance to determine indoor humidity and

wet-bulb temperature, which is an important variable for simulating heat pump-based

HVAC equipment. Occupant and equipment heat injections use constant sensible and

latent heat gain fractions and hourly schedules taken from the Building America House

Simulation Protocols [149].

OCHRE can simulate multiple zones, including an unfinished attic, a basement or crawl

space, and an attached garage. When an attached zone is included, the RC network is

expanded to include any additional boundaries. These zones have their own space
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temperature, thermal mass, and heat injections. Modeling unconditioned zones captures

interactions between the zone and any equipment within it, such as a water heater in a

basement. In the most complete case where all of these unconditioned zones are included,

the full network will include 50 resistors and 41 capacitors.

3.1.2 HVAC Model

OCHRE can model many HVAC equipment types, including electric and gas furnaces,

boilers, electric baseboard heaters, and air source heat pumps (ASHPs). We describe the

single-speed ASHP model in detail. We note that the other models follow a similar logic.

The model used here is based on the model used in EnergyPlus [41].

The capacity and efficiency of ASHPs vary with the indoor temperature, outdoor

dry-bulb temperature, and the HVAC air flow rate. We use a biquadratic model from [53]

to calculate the instantaneous HVAC capacity κhvac and energy intensity ratio (EIR) 1
ηhvac

:

κhvac = κhvac,0(a0 + a1Tm + a2T
2
m+

a3Ta + a4T
2
a + a5TmTa)

1

ηhvac
=

1

ηhvac,0
(b0 + b1Tm + b2T

2
m+

b3Ta + b4T
2
a + b5TmTa)

(3.6)

where κhvac,0 is the rated HVAC capacity, ηhvac,0 is the rated coefficient of performance

(COP), Tm is the indoor temperature (wet-bulb for cooling, dry-bulb for heating), Ta is the

ambient dry-bulb temperature, and ai and bi are coefficients taken from [53]. Different

parameters are used in Equation (3.6) for heating and cooling modes, including the rated

capacity and rated EIR. Note that EIR is the ratio of electrical energy input to heating or

cooling delivered, or the inverse of the COP.

When the HVAC system is on, the heating or cooling delivered to the living space

Hhvac,m is equal in magnitude to κhvac and is positive when heating and negative when

cooling. When operating in cooling mode, the sensible heat ratio (SHR) splits κhvac into

sensible and latent components, and it is dynamically calculated using the apparatus dew

point/bypass factor methodology [53].
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The heating model captures the performance impacts of low outdoor air temperatures.

It includes a reverse cycle defrost and a supplemental electric resistance element that turns

on if the ASHP does not have enough capacity to maintain the indoor air temperature. We

refer readers to [41] for details.

We use a thermostat control with a deadband to determine when the HVAC equipment

turns on and off. The thermostat control uses the main indoor dry-bulb temperature Tm

from the building envelope system state. We also enforce a minimum on and off time to

reduce equipment cycling.

The thermostat control breaks down at low time resolutions when the time step

discretization results in large temperature changes. We define an alternative model for

HVAC consumption that solves Equation (3.2) for Hhvac,m (a component of u) and enforces

a house temperature within the thermostat deadband [41]:

Hhvac,m = max(Hheat,m, 0) + min(Hcool,m, 0)

Hheat,m =
1

Bmm

(Theat − Amx−Bmu)

Hcool,m =
1

Bmm

(Tcool − Amx−Bmu)

(3.7)

where Theat and Tcool are the heating and cooling setpoints, Am and Bm are the rows of A

and B corresponding to Tm, and Bmm is the element of B that relates Tm and Hm. Note

that the u does not include Hhvac,m in this equation. The heating and cooling systems will

not be on simultaneously as long as Theat ≤ Tcool, which is strictly enforced in OCHRE.

In both models, the power output is:

Phvac(k) =
1

ηhvac(k)
|Hhvac,m(k)| (3.8)

The HVAC model can be externally controlled either by directly setting the delivered

heat Hhvac,m through a duty cycle or by setting the thermostat setpoints Theat and Tcool.

3.1.3 Water Heater Model

The water heater is modeled similarly to the HVAC and building envelope. A two-node

RC thermal model is used to track the water tank temperature, representing the upper and
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lower volumes of the tank. This model is converted to a linear state space system using

equations similar to (3.1–3.3). The external temperature is set to the temperature Tz

where z is the envelope node corresponding to the zone where the water heater is located.

Heat losses from the tank are included in the building envelope model as injections into

zone z (Hz).

Heat injections into the water tank model come from the water heating element and

from water displacement caused by hot water draws [62]. OCHRE can model gas and

electric tank and tankless water heaters as well as heat pump water heaters. The electric

resistance water heater model has upper and lower heating elements and a constant heating

capacity. The heat injection into node i in the water heater model is:

Hwh,i = Mwh,iκwh,i + Vdrawcpρ(θi+1 − θi), i ∈ {1, 2} (3.9)

where κwh,i is the water heater rated capacity, Mwh,i is the water heating mode, Vdraw is the

water draw volume, cp is the heat capacity of water, ρ is the density of water, and θi is the

temperature of water node i. The water heater mode Mwh,i is 1 when the heating element

in node i is on and 0 otherwise. Note that in the two-node model, i = 1 corresponds to the

top of the tank, and θ3 = θwm is the incoming mains water temperature. For heat pump

water heaters, ηwh,1 corresponds to the electric resistance backup element and ηwh,2

corresponds to the heat pump element. Additionally, an inversion mixing rule captures

buoyancy effects and ensures that θ1 ≥ θ2 by transferring heat to the top node when

necessary.

Water draw schedules were generated using the Building America Domestic Hot Water

Event Schedule Generator [67] at a 1-minute time resolution. The incoming cold water

temperature is calculated using a correlation based on climate [150].

The water heater operates using a thermostat control with a single-sided deadband for

both the upper and lower elements [61]. The two elements cannot be on at the same time;

if both node temperatures are less than the deadband, the upper element is prioritized and

will stay on until the top node reaches the setpoint, then the bottom element will turn on.
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Similar to the HVAC model, we use an alternative water heater model for simulations

with a large time step. This model uses a single-node water tank model, and it uses a

method similar to Equation (3.7), although without a cooling mode.

The power output of the water heater (for a two node tank model) is:

Pwh(k) =
2∑
i=1

Mwh,iκwh,iηwh,i (3.10)

where ηwh,i is the efficiency of the water heating element at node i.

The water heater can be externally controlled by directly setting the mode with Mwh,i

through a duty cycle or by setting the water heater thermostat deadband limits.

3.1.4 EV Model

The EV model combines a standard battery model with a random parking event

generator using residential parking survey data. The data set is taken from EVI-Pro [68]

based on a vehicle travel study in California [151]. A parking event e is characterized by

three parameters: the arrival time ke,0, departure time ke,end, and arrival state of charge

sev,e,0. Events are sampled by day, with at least one event occurring on each day. EVI-Pro

assumes that the EV is fully charged at the beginning of each day (i.e., the first departure

time of the day). The set of events used for the random sampling varies by day according

to the following parameters [68]:

• EV Type: Plug-in hybrid (PHEV) or Battery (BEV) options. PHEVs tend to deplete

a larger percentage of their battery than BEVs, leading to lower values for sev,e,0.

• EV Battery Capacity: EVs with larger batteries can drive further, but tend to use

less energy relative to the battery capacity, leading to higher values for sev,e,0. PHEVs

are split into small and large sizes based on a threshold of 35 mile range (or 11.4

kWh capacity). BEVs are split based on a threshold of 175 mile range (or 56.9 kWh).

• Charging Level: Level 1 (1.4 kW) or Level 2 (3.6 kW for PHEV, 9.0 kW for BEV)

options. EVs with Level 1 chargers tend to charge more often, leading to more
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parking events per day compared to the same EV with a Level 2 charger.

• Average Daily Temperature: EVs tend to use more energy on days with very high

temperatures (due to air conditioning use) and days with very low temperatures (due

to lower battery efficiency), leading to lower values for sev,e,0. The data are split into

5◦C increments from -20◦C to 40◦C.

• Day of Week: Weekday and weekend options. EV parking times follow different

patterns for weekdays and weekends. Weekdays tend to have fewer parking events.

Figure 3.4, Figure 3.5, and Figure 3.6 show the distribution of parking events in the

EVI-Pro data set for a large PHEV on weekdays, and a small BEV on weekdays, and a

small BEV on weekends, respectively. All vehicles have about 34,000 days of parking events

in the data set. The majority of events are overnight events that start in the evening and

end in the morning of the next day. The arrival SOC is typically greater than 70% for

BEVs; for PHEVs, the arrival SOC is significantly more variable, and 9% of events have an

arrival SOC of 0%. Weekend events tend to be more distributed than weekday events.

The EV model tracks the EV battery SOC using:

s(k + 1) = s(k) +
tsηev
κev

Pev(k)

s(ke,0) = sev,e,0∀e ∈ E
(3.11)

where ts is the time resolution, ηev is the efficiency of charging, κev is the battery energy

capacity, and Pev is the AC power input to the EV charger. When charging without any

external control, the EV begins charging at ke,0 at its maximum power, accounting for the

power limits and SOC limits. The EV input power is calculated as:

Pev(k) =

{
min( κev

tsηev
(1− s(k)), Pev) ke,0 ≤ k < ke,end

0 otherwise
(3.12)

where Pev is the maximum EV charging power. Note that the maximum SOC is assumed

to be 100%.
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Figure 3.4 Heatmap of parking events for a large PHEV with Level 1 charging on
weekdays. Shows the distribution of arrival time with (a) departure time (events in the
bottom right half correspond to overnight events), and (b) arrival SOC. c©2021 IEEE
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Figure 3.5 Heatmap of parking events for a small BEV with Level 1 charging on weekdays.
Shows the distribution of arrival time with (a) departure time (events in the bottom right
half correspond to overnight events), and (b) arrival SOC. c©2021 IEEE
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Figure 3.6 Heatmap of parking events for a small BEV with Level 1 charging on weekends.
Shows the distribution of arrival time with (a) departure time (event in the bottom right
half correspond to overnight events), and (b) arrival SOC.
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The EV model can be controlled by directly setting Pev or by updating ke,0 in Equation

(3.12), which leads to a delay in the EV charging start time. Level 1 charge controllers can

update ke,0, and Level 2 chargers can update ke,0 or directly set Pev.

Each day of parking events is considered to be independent of the events before and

after it. However, in some instances the departure time of one parking event is very close

to, and may overlap with, the arrival time of the next event. The model checks for these

overlaps and, when necessary, will move the departure time of a parking event earlier to

ensure at least a 1-hour gap between each parking event.

The arrival SOC of the EV is also impacted by the previous charging event if a control

signal impacts the SOC on departure. When the departure SOC is less that the maximum

departure SOC, the arrival SOC is reduced by the same amount, if possible:

sev,e,end = min(sev,e,0 +
tsηev
κev

(ke,end − ke,0)Pev, 1)

s′ev,e+1,0 = max(sev,e+1,0 − (sev,e,end − sev,e,end), 0)
(3.13)

where sev,e,end is the maximum possible departure SOC from event e, sev,e,end is the actual

departure SOC from event e, and s′ev,e+1,0 is the updated arrival SOC for the next event.

The full procedure for the EV model is outlined in Figure 3.7.

3.1.5 Other Loads

Other energy-consuming equipment are modeled using an hourly schedule. Schedules

can be generated from the Building America House Simulation Protocols [67] or from

ResStock’s stochastic occupancy model [152]. This equipment includes appliances (e.g.,

refrigerator, cooking range, clothes washer, clothes dryer, and dishwasher), lighting, and

miscellaneous electric loads. Each piece of equipment has a corresponding heat gain that is

injected into the zone containing the equipment:

Hl,z(k) = Pl(k)gl (3.14)

where Hl,z is the heat injection into zone z, Pl is the equipment power, and gl is the

sensible heat gain fraction for equipment l.
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Figure 3.7 Flow chart for EV model initialization and simulation. c©2021 IEEE
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Most equipment are located in the main indoor zone m, but lighting is modeled in

multiple zones, including the garage and basement. Most equipment also include a latent

heat gain fraction that is incorporated in the humidity model.

3.1.6 Voltage-Dependent Load Model

The HVAC, water heater, and other load models use a “ZIP” model to account for the

load’s power dependence on voltage [29]. Each load has prescribed parameters for constant

impedance (Z), constant current (I), and constant power (P), as well as a prescribed power

factor to calculate the load’s reactive power. The real and reactive power of each load is:

P ′l (k) = Pl(k)(Zp,lv(k)2 + Ip,lv(k) + Πp,l)

Q′l(k) = Pl(k) tan(φ)(Zq,lv(k)2 + Iq,lv(k) + Πq,l)
(3.15)

where v is the per-unit house voltage; cos(φ) is the power factor; Zp,l, Ip,l, and Πp,l are the

ZIP parameters for real power; and Zq,l, Iq,l, and Πq,l are the ZIP parameters for reactive

power for load l. For EVs and other loads without defined ZIP parameters, P ′l = Pl and

Q′l = 0. ZIP parameter values are taken from [153–156].

The total house load power is:

Pload =
∑

P ′l

Qload =
∑

Q′l
(3.16)

3.1.7 PV Model

The rooftop PV model uses the System Advisor Model (SAM) [75] and a controllable

inverter model to determine PV generation. We run SAM within OCHRE to generate an

AC power profile, which incorporates weather data, the PV capacity, the inverter efficiency,

a tilt angle equal to the roof pitch, and an orientation aligned with the building orientation.

Typical or default values are used for other required parameters in the SAM model.

Without control, the PV power is defined as:

Ppv(k) = −min(Pirr(k), Pinv) (3.17)
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where Pirr is the AC electric power from the PV profile generated by SAM, and Pinv is the

inverter capacity. Note that Ppv is negative, indicating power generation. There are no

heat injections from the PV model.

Real power Ppv and reactive power Qpv can be controlled through direct setpoint

control, with options for watt and volt ampere reactive (VAR) priority. This enables many

other control strategies including constant power factor and volt-VAR control.

Automated reactive power control from smart PV inverters is not considered in

OCHRE. Although voltage-dependent reactive power controls, such as Volt-VAR control,

may be incorporated into this model, these controls might not perform well when the

simulation time step is much larger than the control loop period of the smart inverter.

Studies have shown that additional convergence loops are critical when large numbers of

smart inverters are added to a distribution system [114, 115].

3.1.8 Battery Model

A stationary battery energy storage system (BESS) is modeled in OCHRE. The model

tracks the SOC of the BESS as:

s(k + 1) = s(k) +
ts
κbatt

(ηchgPchg −
1

ηdis
Pdis) (3.18)

where Pbatt = Pchg − Pdis is the AC BESS power, κbatt is the battery energy capacity, ηchg is

the charging efficiency, and ηdis is the discharging efficiency. Efficiencies account for battery

losses as well as power electronic losses. The model includes minimum and maximum limits

for s and Pbatt and ensures that the battery cannot be charging and discharging

simultaneously.

OCHRE can optionally track the battery temperature as well. The thermal model is a

lumped model based on [78] that tracks the battery internal temperature as:

dTbatt
dt

=
1

Cbatt

(
Tz − Tbatt
Rbatt,z

+ (1− ηbatt,th)Pchg +
1− ηbatt,th
ηbatt,th

Pdis

)
(3.19)
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where Tbatt is the battery temperature, Tz is the temperature of the envelope zone where

the battery is located, Rbatt,z is the thermal resistance, Cbatt is the thermal mass, and

ηbatt,th is the efficiency associated with the heat losses to the battery. Heat gains from the

battery are not included in OCHRE. The BESS model is discretized in a similar way to the

building envelope model.

The BESS model can follow a daily schedule, operate in self-consumption mode, or

follow an external control signal. All control modes directly set Pbatt. We note that the

BESS and PV equipment are modeled as an AC-coupled system. Reactive power from

smart battery inverters is not presently considered.

Table 3.1 Overview of equipment used in OCHRE, including control options and main
input parameters

Equipment Control Options Time-Varying Inputs Static Inputs

HVAC Temperature setpoint, Indoor and outdoor Capacity, COP, SHR
duty cycle temperature, humidity

Water heater Temperature setpoint, Water draw profile, Capacity, efficiency
duty cycle indoor temperature

EV Power setpoint, Outdoor temperature, Range, charging level
delayed charge day of week

PV Power setpoint Weather data Capacity, inverter size
Battery Power setpoint, self- Total load power, Capacity, SOC limits

consumption mode PV power thermal parameters
Other loads None Occupancy profile Rated power

3.2 New Construction Case Study

In this section, we run OCHRE for individual houses to demonstrate the features and

benefits of OCHRE. We show the differences in simulation results when using 1-minute and

15-minute time resolutions and when sending control signals to multiple controllable device

models. Results show the impacts on the house demand profile and on occupant comfort.

We develop a model for a new single family home in Fort Collins, CO. The home

contains all electric, efficient equipment and is designed to be eligible for the U.S.
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Department of Energy’s Zero Energy Ready program [157]. For more details on simulation

inputs, see Section 6.2.1.

Figure 3.8 shows the results for a single-family home with an EV and a battery at 1

minute time resolution. The HVAC and water heating loads lead to considerable variability

in the net power. EV begins charging in the evening when the occupants arrive home. The

battery charges in the morning when PV power exceeds load power, until the battery

achieves 100% SOC. During the critical peak period, the battery discharges to reduce the

net load.

The house power profile looks much smoother at 15 minute time resolution as shown in

Figure 3.9. The HVAC and water heater models use the alternative methods to exactly

match setpoint temperatures. This smooths the power profile and reduces the variability in

the air temperature and hot water temperature.

We apply a basic load shifting control to the home before and during the critical peak

period (see Section 6.2 for details). Figure 3.10 shows that control shifted the HVAC, water

heater, EV, and battery profiles to reduce net demand during the critical peak period. The

temperature and SOC states also adjust to provide more load flexibility during that time.

3.3 Chapter Summary

In this chapter, we presented the OCHRE model, an object-oriented, controllable,

high-resolution, residential energy model for use in dynamic integration studies. The model

combines valuable features of existing building models and grid load models, including a

validated building envelope model that can include multiple zones, controllable device

models for multiple DERs, and a voltage-dependency ZIP model. The model outputs

high-resolution outputs for power usage, air temperature, water temperature, battery and

EV SOC, and many other time-series data. These detailed results are critical in controls

applications and in evaluating system performance in terms of energy consumption, costs,

and occupant comfort.
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Figure 3.8 Single home simulation results at 1-minute resolution, including power by end
use (a), air temperature (b), hot water temperature (c), and battery SOC (d). The critical
peak period is shaded.
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Figure 3.9 Single home simulation results at 15-minute resolution, including power by end
use (a), air temperature (b), hot water temperature (c), and battery SOC (d). The critical
peak period is shaded.
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Figure 3.10 Simulation results with a load shifting controller at 1-minute time resolution,
including power by end use (a), air temperature (b), hot water temperature (c), and
battery SOC (d). The critical peak period is shaded.
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The OCHRE model meets the requirements for an integrated residential energy model

as described in Section 1.3. This chapter addresses Research Question 1 by showing that

OCHRE can accurately capture the impacts of load flexibility on power usage and

occupant comfort. This ability is especially useful in assessing control applications, for

example in distributed control strategies as shown in Chapter 6.
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CHAPTER 4

A STOCHASTIC CONTROL FRAMEWORK FOR HOME ENERGY MANAGEMENT

SYSTEMS

This chapter presents a control framework for HEMS that incorporates uncertainties

related to the prediction forecast, control model, and sensor measurements. The framework

integrates the OCHRE model from Section 3 and multiple control components, including a

reduced-order linear model, an MPC optimization, and a forecast generator. The

framework can incorporate a wide variety of objective functions, and is designed to

evaluate heuristic, deterministic, and stochastic control methods in conditions with

significant amounts of uncertainty.

As described in Section 2.3, most studies on HEMS do not consider the impact of

uncertainty on control performance. When MPC methods are tested in a hypothetical

scenario with exact forecasts, simplified models, and little or no noise in communication

signals, they are nearly always shown to be optimal strategies that perform better than

heuristic or other methods; however, real systems are not so simple, and we argue that

HEMS control strategies should be evaluated in conditions with realistic uncertainty to

truly understand their value.

Figure 4.1 shows a schematic of an MPC algorithm and highlights the data that are

likely to be stochastic due to uncertainty or noise. MPC requires forecasts for model inputs

in the horizon window that often cannot be estimated with high accuracy at the controller

run time. The MPC control model is not a perfect representation of the system model

because of simplifications required for computational speed, which causes the predicted

states and outputs to deviate from the actual model states. Finally, sensor measurements

from the system model can be noisy or biased, leading to uncertainty in the current state

of the system.
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Figure 4.1 Schematic of an MPC algorithm with uncertainty, highlighting the data that are
likely to be noisy or stochastic.

4.1 Control Model Description

To simulate model uncertainty in the control framework, we define two models for each

end use: one is used for the building system, and the other is used as the underlying

control model for the MPC as shown in Figure 4.3. The system models for each load are

from OCHRE as described in Section 3.1. The MPC device models are derived from the

OCHRE models. This section describes the linearization and other techniques used to

derive the MPC models.

4.1.1 Linear Controllable Load Model

In general, a linear model is defined for each controllable load l ∈ L in state space form:

xl(k + 1) = Alxl(k) +Blul(k) +Glzl(k)

yl(k) = Clxl(k)
(4.1)

where xl is the state vector, ul is the controllable input vector, zl is the uncontrollable input

vector, yl is the output vector, and Al, Bl, Gl, and Cl are state space system matrices.

The set of controllable loads L = [hvac, wh, ev, batt] corresponds to an air conditioner,

water heater, electric vehicle, and battery, respectively. Each load model contains at least

one state and at least one controllable input that corresponds to the load power. Most

models include at least one uncontrollable input that corresponds to an uncertain variable
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that must be forecasted. If the output vector yl is not defined, it is assumed that yl = xl,

and Cl is the identity matrix. The following sections describe the individual control models

in detail.

4.1.2 HVAC and Envelope

To develop a linear envelope model for the MPC, we linearize OCHRE’s envelope

model, which includes nonlinear components for infiltration, interior long-wave radiation,

and exterior long-wave radiation. We linearize each heat transfer pathway separately. For

each pathway, we add resistors to OCHRE’s equivalent circuit model (see Figure 3.2 and

Figure 3.3), as shown in Figure 4.2. In the figure, Ta is the ambient temperature, Tz is the

temperature of an interior zone, Ts,i is the surface temperature of boundary i, and

subscripts 1, 2, and 3 correspond to boundary materials connected to either the ambient or

an interior zone.

Figure 4.2 A linear envelope model with infiltration and interior and exterior radiation
elements.

For infiltration (and mechanical ventilation), we add a resistance Raz,inf between an

interior air zone and the ambient air zone. We calculate the resistance value by linearizing
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the heat gain at an operating point:

Raz,inf =
∆Top
Haz,inf

(4.2)

where ∆Top is the temperature difference between zone z and ambient at the operating

point, and Haz,inf is the infiltration and ventilation heat gains to zone i at the operating

point. Haz,inf also depends on wind speed, which must also be defined in the operating

point. This resistance value gets incorporated into the linear envelope model before

calculating the state space matrices.

We use a similar approach to linearize the interior and exterior radiation. The radiation

equation for the surface of boundary material i is:

Hiz,rad = εiσai(T
4
z,rad − T 4

s,i) (4.3)

where εi is the emissivity of material i, ai is the area of the material i, and σ is the

Stefan-Boltzmann constant. For the ambient zone, we assume Tz,rad = Ta, ignoring effects

of the sky radiation temperature. For interior zones, Tz,rad depends on the surface

temperatures of all boundaries facing the zone. Linearizing with the operating point

Tz,rad = Ts,i = Top,rad gives:

1

Riz,rad

=
dHiz,rad

d(Tz,rad − Ts,i)
= 4εiσaiT

3
op,rad (4.4)

where Riz,rad is a resistance value that accounts for radiation effects. For exterior radiation,

the resistor is applied in parallel with an exterior film resistance that models the effects of

convection (see Figure 4.2, Ra1,film).

For interior radiation, the resistor is applied between the boundary surface and a

fictional node Tz,rad representing all of the radiation within an interior zone. Using

Kirchoff’s Current Law, this network topology ensures that all radiative heat within a zone

sums to zero. The fictional node and all boundary surface nodes are eliminated by using

the star-mesh transform to generate resistance values between each boundary surface

within an interior zone [158].
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The envelope model is converted into a linear, discrete-time state space model using

equations (3.2–3.3). OCHRE’s envelope model includes many interior nodes (30–45 for a

typical home), which can lead to slow computational speed when used within an MPC

framework. We use balanced truncated model reduction to reduce the number of states of

the envelope model [159, 160]. In the use cases in Chapter 7, the reduced order model has

seven states.

Before the model reduction, we eliminate inputs and outputs from Equation 3.3 that

are not relevant to the control model and normalize inputs based on typical variability.

The main indoor temperature is the only output, and the HVAC power is the only

controllable input, i.e., yhvac = Tm and uhvac = Phvac. The uncontrollable inputs are

zhvac = [Ta, Tg, Hint, H
T
s ]T , where Tg is the ground temperature, Hint is the internal heat

gains in the main zone, and Hs is a vector of the heat gains from solar radiation on each

exterior surface (e.g., walls, roof, attic walls). The state vector xhvac is an output of the

model reduction algorithm and has no physical meaning.

Internal heat gains include heat from occupants, other equipment, and solar radiation

from windows. The total heat gain to the main zone Hm is a combination of the internal

heat gains and the heat from the HVAC equipment. When an air conditioner is used:

Hm(k) = −ηhvacPhvac(k) +Hint(k) (4.5)

where ηhvac is the HVAC COP and is assumed to be constant.

4.1.3 Water Heater

We use OCHRE’s heat pump water heater and 2-node water tank models for the

system model. The 2-node tank model includes nonlinearities due to heat transfer from

water draws. Similar to the HVAC model, OCHRE’s water heater model uses a thermostat

with deadband control that converts a temperature setpoint into an on/off power signal.

The temperature setpoint can be controlled externally, but the thermostat ensures that the

deadband remains within the thermal comfort region.
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We define a 1-node linear model for the control model that accounts for convection and

conduction similarly to the envelope model described in Section 4.1.2. Heat injections into

the tank come from water heater power and water draws:

Hwh(k) =ηwhPwh(k) + Vdrawcpρ(θwm − θ1(k)) (4.6)

where ηwh is the nominal coefficient of performance of the heat pump water heater, θ1 is

the tank temperature, θwm is the water mains temperature, Vdraw is the water draw

volumetric flow rate, cp is the heat capacity of water, and ρ is the density of water. To

linearize the biquadratic term for water draws, we assume constant temperature

differences. We note that this formulation does not include a backup heating element for

the heat pump water heater, which is included in OCHRE’s model.

The linear state space equation for the water heater has one state for the water tank

temperature, xwh = θ1, and one controllable input, uwh = Pwh. The uncontrollable inputs

are zwh = [Vdraw, θa]
T , and we assume that the water mains temperature is known and

constant.

4.1.4 Electric Vehicle

OCHRE’s EV model tracks EV charging but does not model battery discharging during

driving. To account for discharging, we add a term that decreases the EV SOC when the

EV is driving:

sev(k + 1) = sev(k) +
ηev
Eev

(Pev(k)− Pdrivepdrive(k)) (4.7)

where sev is the EV SOC, Eev is the EV energy capacity, ηev is the charge efficiency, Pev is

the EV charging power, Pdrive is the power lost while driving, and pdrive is the percentage

of time that the EV is driving.

The linear state space equation for the EV has one state for the EV SOC, xev = sev.

The only uncontrollable input is zwh = pdrive.
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4.1.5 Battery

We use OCHRE’s linear battery model to track the battery SOC (Equation 3.18) and,

optionally, battery temperature (Equation 3.19). Due to separate charging and discharging

efficiencies, the controllable input is split into two variables, i.e., ubatt = [Pchg, Pdis]
T , and

we define Pbatt = Pchg − Pdis. The battery model has two states for the battery SOC and

temperature, xbatt = [sbatt, Tbatt]. The only uncontrollable input for the battery model

zbatt = Ta, which only impacts the battery temperature, not the SOC. We note that the

battery SOC and temperature equations are fully separable.

4.1.6 Combined House Model

The four controllable equipment models are combined in parallel create a linear model

for the house:

x(k + 1) = Ax(k) +Bu(k) +Gz(k)

y(k) = Cx(k)
(4.8)

where:

x = [xThvac, θ1, sev, sbatt, Tbatt]
T

u = [Phvac, Pwh, Pev, Pchg, Pdis]
T

z = [Ta, Tg, Hint, H
T
s , Vdraw, θa, pdrive]

T

y = [Tm, θ1, sev, sbatt]
T

A = diag([Ahvac, Awh, Aev, Abatt])

and the other matrices are defined similarly to A. We define the whole house power as:

Phouse(k) =
∑
l∈L

Pl(k) + Punc(k) (4.9)

where Punc is the power from all uncontrollable house loads. The uncontrollable load power

is considered as an uncertain input, similar to the inputs in z.

For scenarios with a demand charge, we track the peak house power:

Ppeak(k) = max(Phouse(k), Ppeak(k − 1)) (4.10)
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4.1.7 Uncertainty Model

The control model in (4.8) can be used directly in a deterministic control framework.

For SMPC, the uncontrollable inputs become random variables, and noise ṽ is added to the

outputs. The stochastic model becomes:

x̃(k + 1) = Ax̃(k) +Bu(k) +Gz̃(k)

ỹ(k) = Cx̃(k) + ṽ
(4.11)

where:

x̃(k) ∼ N (x̂(k),Σx(k))

z̃(k) ∼ N (ẑ(k),Σz(k))

ỹ(k) ∼ N (ŷ(k),Σy(k))

ṽ ∼ N (0,Σv)

are all Gaussian random vectors, and N (x̂,Σx) defines a Gaussian vector distribution with

mean x̂ and covariance matrix Σx. The mean and variance of all the uncontrollable inputs

distributions z̃(k) are based on forecast estimates (see Section 4.3), and we assume that

there is no covariance between any of the inputs. The diagonals of the covariance matrices

correspond to the variance of individual input or output variables, which we denote as σ2
xi

,

for example, diag(Σy) = [σ2
Tm
, σ2

θ1
, σ2

sev , σ
2
sbatt

]. The probability distributions of the state and

output matrices are calculated using a Kalman filter [94]:

x̂(k) = x̂(−)(k) +K(y(−)(k)− Cx̂(−)(k))

Σx(k) = (I −KC)Σ(−)
x (k)

ŷ(k) = Cx̂(k)

Σy(k) = CΣx(k)CT

(4.12)

where y(−)(k) is the house status received from OCHRE, and:

K = Σ(−)
x (k)CT (CΣ(−)

x (k)CT + Σv)
−1

x̂(−)(k + 1) = Ax̂(k) +Bu(k) +Gẑ(k)

Σ(−)
x (k + 1) = AΣx(k)AT +GΣz(k)GT

(4.13)

The equations above can be used directly when k is the current time. When calculating

the state and output distributions in the future, y(−)(k) is unknown and we set

x̂(k) = x̂(−)(k). We also assume a closed-loop control strategy that accounts for past
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disturbances and reduces the expected uncertainty in future states. This is achieved by

ignoring the Σx(k) term when calculating Σ
(−)
x (k + 1).

Assuming Gaussian distributions for all uncontrollable inputs enables the use of a basic

Kalman Filter and simplifies the calculation of future probability distributions. However,

Gaussian distributions are unlikely to be a good approximation to many variables including

solar irradiance, categorical variables (e.g., driving state) and bimodal variables (e.g., hot

water draws). In these cases, the Gaussian approximation is likely to overestimate the

uncertainty of the variable, leading to a more conservative control strategy. This issue can

be reduced by tuning risk tolerance parameters as described in Section 4.2.3. However, it is

likely that more accurate probability distributions can lead to better uncertainty estimates

and better control performance.

Figure 4.3 Flow diagram of the HEMS controller and OCHRE showing the inputs and
outputs of each component.

4.1.8 Model Implementation

The implementation of the HEMS controller and OCHRE is described in Figure 4.3. At

time k, the HEMS controller receives the most recent house status y(−)(k) from OCHRE. It

receives forecasts from a forecast generator of the form

Z(k) = {z(k, h) : h ∈ [k, k + nh − 1]}, where z(k, h) is the forecast at time h evaluated at
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time k, and nh is the number of steps in the MPC horizon. The HEMS controller uses an

MPC optimization to solve for u(h), and the control model predicts the future states

x(h+ 1) and outputs throughout the forecast horizon. The controller sends the optimal set

points, which correspond to the future output y(k + 1), to OCHRE, which implements the

controls at 1-minute resolution. This process repeats every 30 minutes throughout the

simulation.

Note that the HEMS controller sends the temperature and SOC set points y(k + 1), not

the power set points u(k), to OCHRE. This allows OCHRE’s device controllers to

determine the device power at 1-minute resolution, which enables equipment cycling for the

air conditioner and the water heater. Providing OCHRE with these set points reduces the

effects of model and forecast uncertainty in achieving the desired set points, but it could

cause the device power to deviate from the power expected by the MPC. This control

signal works best for the MPC formulation in this paper; however, power set points might

be more appropriate if a demand charge or a demand response event is involved and precise

power controls are desired.

We also note that the HEMS controller receives all state variables x(k) from OCHRE in

the deterministic case. This gives the DMPC perfect knowledge of the initial system state.

In the SMPC case, the house status only includes output variables and the Kalman filter is

used to estimate the states.

4.2 Control Formulation

We include three types of HEMS controls in the control framework: heuristic controls,

DMPC, and SMPC. In this section, we outline these three control strategies for each

controllable device. All controllers operate at a 30 minute time resolution.

For multiple equipment types, a soft constraint is used to limit discomfort or

inconvenience costs. Soft constraints were chosen to more easily compare the different

control strategies and to define how to quantify the costs when constraints are exceeded

[161].
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4.2.1 Heuristic Controls

The heuristic controls for HVAC and water heating use a thermostat control with a

deadband and a precooling strategy designed around a time-of-use rate. The top of the

HVAC deadband defines the comfort temperature Tm that is used to evaluate all of the

HVAC control strategies, with a comfort cost incurred when that threshold is exceeded.

The water heater control uses a minimum comfort temperature, θ1 = 46.1◦C, which is also

used to evaluate all control strategies [67].

The heuristic controller charges the EV at its maximum power immediately upon

arrival. This control strategy ensures that the EV SOC will be at its maximum possible

value when the EV leaves, but it disregards the variable cost of charging at different times

of day.

The heuristic battery controller performs energy arbitrage based on a time-of-use rate.

The battery begins charging at 10 AM and begins discharging at the start of the peak

period.

4.2.2 Deterministic MPC

The DMPC formulation uses the linear house model described in Section 4.1.6 to

optimize energy costs and occupant comfort and convenience. All terms in the objective

function include a “cost coefficient” λ that normalizes the term into units of dollars. The

first term defines energy costs for a TOU rate:

Jtou(k) = λtou(k)tsPhouse(k) (4.14)

where λtou is a time-varying price of electricity, and ts is the control time resolution. We

assume that electricity exports are allowed with net energy metering. For scenarios with a

demand charge, we include a term for the demand charge cost:

Jpeak(k) = λpeak max
h∈[k,k+nh−1]

|Phouse(h)− Ppeak(k)|+ (4.15)
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where λpeak is the demand charge rate, nk is the number of steps in the MPC horizon, and

| · |+ = max(·, 0). We note that the cost term only accounts for the incremental increase in

the demand charge across the horizon.

The objective includes occupant comfort and convenience costs for HVAC, water

heating, and EV charging, which depend on air temperature, hot water temperature, and

EV SOC, respectively. The EV control is designed to minimize any inconvenience

associated with a low SOC at the time the EV leaves, similar to the control in Section

6.3.3. The costs are defined as:

Jhvac(k) = λhvac|Tm(k)− Tm|+
Jwh(k) = λwhVdraw|θ1 − θ1(k)|+
Jev(k) = (λev(1− sev(k)) + λev,low(sev,low − sev(k))) pleave(k)

(4.16)

where λl is a cost coefficient associated with each device, sev,low is a low cutoff for EV SOC,

and pleave(k) = pdrive(k)− pdrive(k− 1) is the probability that the EV is leaving during time

step k. The cost coefficients convert all cost terms to units of dollars so that all of the terms

can be combined into a single objective function; for example, λwh has units of $/◦C-L. The

values of these cost coefficients can be estimated by assessing an occupant’s willingness to

pay for a typical level of comfort, and they can be adjusted based on trial and error.

For simplicity and computational efficiency, we choose piece-wise linear equations for

each of the comfort cost functions above. The HVAC comfort increases linearly as the

indoor temperature exceeds Tm. The hot water comfort increases linearly as the hot water

temperature drops below θ1 and is proportional to the water draw flow rate Vdraw. The EV

comfort cost includes two intervals; there is a linear cost of λev when the EV SOC is

between sev,low and 100%, and a larger linear cost of λev + λev,low when the SOC is below

sev,low.

For the battery, we include cost terms to minimize degradation based on battery power

and temperature:

Jbatt,P (k) = λbatt,P (P 2
chg(k) + P 2

dis(k))

Jbatt,T (k) = λbatt,T |Tbatt(k)− Tbatt|2+
(4.17)
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where λbatt,P and λbatt,T are cost coefficients for battery power and temperature,

respectively, and Tbatt is a high battery temperature that would start to induce degradation.

In addition, we include a terminal cost term that is designed to make the battery

control indifferent to discharging at the end of the horizon by valuing the remaining charge

in the battery based on the electricity rate:

Jbatt(k) = −λ̂tou(k)Ebattηdissbatt(k + nh) (4.18)

where λ̂tou is the average cost of electricity over the forecast horizon, and Ebatt is the

battery energy capacity. Note that this objective only depends on the battery SOC at the

end of the horizon, i.e., at time k + nh.

We also include a term to smooth the power profile of each controllable device. This

term can help reduce device degradation and reduce the set of optimal solutions, which

improves the solver’s consistency across multiple scenarios. The peak cost term is:

Jsmooth(k) = λsmooth
∑
l∈L

max
h∈[k,k+nh−1]

|Pl(h)| (4.19)

where λsmooth is a small positive number.

When all cost terms are included, the DMPC objective function at current time k with

nh steps in the horizon is:

J(k) =

k+nh−1∑
h=k

(
Jtou(h) + Jpeak(h) + Jhvac(h+ 1) + Jwh(h+ 1)

+ Jev(h+ 1) + Jbatt,P (h) + Jbatt,T (h+ 1)
)

+ Jbatt(k) + Jsmooth(k)

(4.20)
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The deterministic optimization problem is defined as:

(P1) min
u(h)

: J(k)

s.t. x(h+ 1) = Ax(h) +Bu(h) +Gz(h)

y(h) = Cx(h)

0 ≤ u(h) ≤ u

sbatt ≤ sbatt(h+ 1) ≤ sbatt

sev(h+ 1) ≤ 1

0 ≤ Pev(k) ≤ Pev(1− pdrive(k))

∀h ∈ [k, k + nh − 1]

(4.21)

where, in general, · and · are the minimum and maximum values of a given variable. Note

that there is no minimum SOC constraint for the EV because of the uncertainty due to

driving loss. Because pdrive is either 0 or 1, the maximum EV power is constrained to zero

when the EV is driving and to the maximum charging power when the EV is parked.

All constraints are linear, and the objective function is strictly convex (when assuming

reasonable values for some parameters, e.g., all λ > 0). This makes P1 a convex

optimization problem that guarantees a globally optimum solution and can be solved

efficiently. The formulation also ensures that Pchg and Pdis are never non-zero at the same

time step when λtou > 0 and 0 < ηchg, ηdis < 1 (see [162]).

4.2.3 Stochastic MPC

Under stochastic conditions, all uncontrollable inputs and all outputs are Gaussian

random variables. The stochastic optimization incorporates uncertainty in these variables

by using back-off magnitudes based on the standard deviation σxi of each scalar variable xi

and a probability εxi of exceeding a constraint [100]:

Pr(x̃i ≤ xi) ≥ 1− εxi → βxi = Φ−1(1− εxi) (4.22)

where Φ−1 is the inverse cumulative distribution function of the normal distribution and

βxi is the number of standard deviations between the mean and the probability 1− εxi . As

the tolerance for risk decreases, εxi decreases and βxi increases.

70



The back-off magnitude is the product of βxi and σxi . As risk tolerance decreases or as

uncertainty increases, the back-off magnitude increases, leading to more conservative

control behavior. In addition, the βxi parameter can be tuned to offset any bias in the

estimated uncertainty. Back-off magnitudes are included in most cost terms from

Equations (4.15), (4.16) and (4.17). The updated costs for the SMPC formulation are:

Jpeak(k) = λpeak max
h∈[k,k+nh−1]

|P̂house(h)− Ppeak(k) + βPuncσPunc(k)|+

Jhvac(k) = λhvac|T̂m(k)− Tm + βTmσTm(k)|+
Jwh(k) = λwhV̂draw|θ1 − θ̂1(k)− βθ1σθ1(k)|+
Jev(k) = λev(1− ŝev(k))(pleave(k) + βpleaveσpleave(k))

Jbatt,T (k) = λbatt,T |T̂batt(k)− Tbatt + βTbattσTbatt(k)|2+

(4.23)

where σPunc is the standard deviation of P̃unc, and σpleave is the standard deviation of p̃leave.

The SMPC optimization problem is very similar to Problem P1. The only changes are

updating the cost terms in Equation (4.23) and using the mean values of each random

variable throughout the formulation. The stochastic control formulation is:

(P2) min
u(h)

:

k+nh−1∑
h=k

Jtou(h) + Jpeak(h) + Jhvac(h+ 1) + Jwh(h+ 1) + Jev(h+ 1)

+ Jbatt(k) + Jsmooth(k)

s.t. x̂(h+ 1) = Ax̂(h) +Bu(h) +Gẑ(h)

ŷ(h) = Cx̂(h)

0 ≤ u(h) ≤ u

sbatt ≤ ŝbatt(h+ 1) ≤ sbatt

ŝev(h+ 1) ≤ 1

0 ≤ Pev(k) ≤ Pev(1− p̂drive(k))

∀h ∈ [k, k + nh − 1]

(4.24)

We note that pdrive is no longer a Boolean input. No back-off magnitude is used in the

maximum battery or EV SOC constraints because battery SOC and EV charging are fully

deterministic.
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4.2.4 Control Objective Extensions

There are many extensions to the MPC objective functions described in equations

(4.20) and (4.24). Objective cost terms can be removed if unnecessary, or new terms can be

added. New cost terms to add include energy resilience in case of an outage as a function

of battery SOC, an HVAC comfort cost due to cold temperatures in the winter, or a hot

water comfort cost that only applies to showers.

Both the deterministic and stochastic objective functions are composed of linear

functions, making both optimization problems linear programs. Modifying the objectives

to include quadratic or other nonlinear convex functions maintain the convexity of the

problems, which keeps the problems computationally efficient and ensures a global optimum

solution as long as the problem is feasible. In particular, extending the comfort cost terms

to include quadratics may more accurately model the true comfort cost of occupants.

Finally, many parameters in the formulation are assumed to be constant, including the

comfort cost coefficients λl and the risk tolerance parameters βxi . While constant values

are easier to define, there is no restriction to vary these and other parameters over time,

depending on occupant preferences, current conditions, or past events. For example,

occupants may have a stronger preference for comfort at certain times of day or when

performing certain activities, which could indicate an increase in comfort cost coefficients.

Risk tolerance parameters can increase if recent events have caused significant discomfort

conditions to ensure that such events are unlikely to occur again. Parameters could also

adjust based on real-time feedback from the occupant, for example if they know they will

be away or if they need a fully charged EV. These considerations may be particularly

important when deploying HEMS in the field to provide the user with many options and

features that ensure the user feels in control of their energy decisions.
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4.3 Forecast Generators

Realistic forecasts were developed for uncertain inputs z, including weather data and

occupancy schedules. Multiple forecasts were derived from the same underlying data, but

with varying levels of complexity and accuracy. Common forecast methods from practice

and from research literature were chosen, although we note that more sophisticated

forecast methods can lead to forecasts with lower uncertainty.

4.3.1 Weather Forecast

Weather data is required to calculate forecasts for uncertain inputs Ta and Hs.

Historical weather and current weather forecasts are widely available, and we assume the

forecast generator has access to these datasets.

Weather forecasts typically do not provide an estimate of the uncertainty in the

forecast; we estimate the uncertainty using historical weather data and historical forecasts.

The ambient temperature distribution is calculated using the difference between the actual

historical temperature and the forecast, aggregated by the time difference between the

current time k and the prediction time h, denoted ∆k = h− k:

T (b)
a (∆k) =

1

nk

nk∑
k=1

(
T (f)
a (k, h)− Ta(h)

)
σ2
Ta(∆k) =

1

nk − 1

nk∑
k=1

(
T (f)
a (k, h)− Ta(h)− T (b)

a (∆k)
)2 (4.25)

where, T
(f)
a (k, h) is the forecasted temperature at time h evaluated at time k, and nk is the

number of time steps with valid data. The ambient temperature distribution is:

T̃a(k, h) ∼ N (T (f)
a (k, h)− T (b)

a (h− k), σ2
Ta(h− k)) (4.26)

Figure 4.4 shows a temperature forecast at noon for summer day in Denver, CO. The

shaded region shows the 95% confidence interval. The standard deviation of the

temperature forecast with a time difference of 1 hour was 0.6◦C. The uncertainty increases

for the first 3 hours of the forecast and then remains stable near 2◦C. We note that this
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analysis covers only temporal uncertainty; there could also be locational uncertainty

because of weather differences between the weather station and the house.

Figure 4.4 An example temperature forecast, created at noon on a summer day in Denver,
CO.

The solar heat gain distribution is calculated using a slightly different method to keep

uncertainty low when solar irradiance is low, for example, at night. The standard deviation

of global horizontal irradiance (GHI) is calculated in the same way as (4.25) and was used

to calculate the solar heat gain standard deviation:

σHs(k, h) = H(f)
s (k, h)

σGHI(h− k)

µGHI(h− k)
(4.27)

where H
(f)
s (k, h) is the forecasted solar gain vector, and µGHI(∆k) is the average forecasted

GHI.

Figure 4.5 shows the GHI forecast for the same time as Figure 4.4. The uncertainty

follows a similar pattern to temperature; the standard deviation increases during the first

few hours of the forecast and then remains stable. For a typical GHI of 500 W/m2, the
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standard deviation is about 100 W/m2. When irradiance is very low, the standard

deviation is also low.

Figure 4.5 An example solar irradiance forecast, created at noon on a summer day in
Denver, CO.

4.3.2 Occupant Forecast

Historical occupancy behavior is needed to calculate occupant forecasts. Forecasts are

required for driving state (for pdrive and pleave), total hot water draws, total uncontrollable

load power, and internal heat gains. Uncontrollable power includes appliances, lighting,

and other electrical equipment that are not modeled in the MPC framework. Internal heat

gains incorporate heat gains from occupants, equipment, radiation from windows, and

infiltration.

Three types of forecasts are generated from the historical data. All forecasts define the

uncertainty of the random variable by assuming a Gaussian distribution at each time step.

An exact forecast directly uses the results of the simulation as the mean and sets the
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standard deviation of the variable to zero:

z̃i,exact(k, h) ∼ N (zi(h), 0) (4.28)

where zi(h) is the exact value of zi at the prediction time h.

A second forecast uses a backward-looking 30-day moving horizon to estimate random

variables based on the time of day. For example, the water draw at noon on July 1 is

estimated using the water draw values at noon from the month of June. The sample mean

and sample variance are used to define the random variable distribution at that time.

A third forecast uses an autoregressive integrated moving average exogenous

(ARIMAX) filter to estimate random variable distributions. The 30-day horizon forecast is

used as the exogenous component. The ARIMAX filter is best run at 30-minute resolution

using an order of (2, 1, 1) for autoregressive, difference, and moving average parameters

[163].

It is very difficult to measure internal gains in a real environment, and it would be

impossible to use an ARIMAX forecast without data measurements. For this reason, we do

not calculate an ARIMAX forecast for internal gains; instead, we use the 30-day horizon

forecast for internal gains.

Figure 4.6 and Figure 4.7 show the three forecast options at a single simulation time

step for the water draw and EV driving variables, respectively. The forecasts were

calculated using annual occupancy data at a time resolution of 30 minutes. The figures

show the mean and the 95% confidence interval for the 30-day horizon and ARIMAX

forecasts. Both variables have a considerable amount of uncertainty using these forecasts.

In the near term, the ARIMAX forecast does a better job of estimating the EV driving

state and reducing its uncertainty by using current and past data in its prediction;

however, the two long-term estimates perform about the same, with the ARIMAX

predicting larger uncertainty. The ARIMAX method also does not significantly impact the

water draw forecast; this implies that the recent water draw data does not help improve

the forecast, which is understandable given the highly stochastic nature of water draws.
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Figure 4.6 An example water draw forecast for a sample occupant profile at a single time
step.

Figure 4.7 An example EV driving forecast for a sample occupant profile at a single time
step.
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As noted in Section 4.1.7, Gaussian distributions may not be accurate representations

of some occupancy variables, including the EV driving state. However, the mean and

standard deviation of the forecast distribution is required in the control formulation, so

Gaussian forecasts are appropriate in this case. Future control improvements that

incorporate other parameters for uncertainty could use different types of forecasts, for

example classifiers or ensemble-based methods.

4.4 Chapter Summary

In this chapter, we develop a control framework for HEMS that can account for

multiple sources of uncertainty. We linearize device models from Chapter 3 and create

deterministic and stochastic house models for use in MPC. We define heuristic,

deterministic, and stochastic control strategies that account for energy and demand

charges, occupant comfort and convenience, and device degradation. We also define

multiple forecasting methods to predict the expected value and distribution of weather and

occupancy variables. The framework enables researchers to evaluate the control strategies

against each other under various conditions.

This chapter addresses Research Question 4 by incorporating uncertainty from multiple

sources in a model-based control framework for residential buildings. The forecasting

methods quantify the uncertainty in weather and occupant behavior, and the stochastic

MPC implementation accounts for this uncertainty in its objective function. The

framework also incorporates uncertainty from the control model and from errors in sensor

measurements.
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CHAPTER 5

MODEL VALIDATION

This chapter contains preliminary model validation results for OCHRE, the residential

energy model presented in Chapter 3, and for the linear model presented in Chapter 4. We

first validate OCHRE’s building envelope, HVAC, and water heater models against

EnergyPlus and OCHRE’s EV model against EVI-pro. We show preliminary results using

a software-to-software validation method comparing OCHRE and EnergyPlus with

multiple test cases. We then validate the linear model against OCHRE. Results show

reasonable agreement between OCHRE and the other models.

5.1 EnergyPlus Model Validation

OCHRE and EnergyPlus are two energy models that have different modeling goals,

different features, and different benefits for certain use cases. EnergyPlus is a very detailed

model that is designed to model an individual building with very high accuracy. OCHRE

focuses less on model accuracy and specificity in building parameters and more on other

features of an integrated residential energy model including controllability, modularity, and

computational efficiency. Many of OCHRE’s components—including the building envelope,

HVAC equipment, and water heating—use algorithms that are derived from EnergyPlus,

making it a useful tool for validating OCHRE.

We validate the OCHRE model against EnergyPlus using one of the house models

described in Section 6.2. The house model represents an energy efficient all-electric single

family home in Fort Collins. It includes an ASHP and an electric resistance water heater.

Weather data from Fort Collins was used from 2018.

Annual simulations were performed at a 1-minute resolution in OCHRE and a

10-minute resolution in EnergyPlus. The alternative methods for modeling HVAC and

water heating at a lower time resolution (as discussed in sections 3.1.2 and 3.1.3) were also

tested at a 10-minute resolution.
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Figure 5.1, Figure 5.2, and Figure 5.3 show the hourly validation results for three days

in the summer, winter, and shoulder seasons, respectively. HVAC power is shifted slightly

earlier in the day compared to EnergyPlus; this may be caused by differences between the

models with regard to the thermal mass of the interior space or the solar transmitted

through the windows. Water heating energy is about equal, but the timing of consumption

is different, likely because of small differences in the water tank temperatures.

Figure 5.1 Validation results for a summer day comparing hourly energy consumption by
end use from OCHRE (solid) and EnergyPlus (dashed).

Table 5.1 shows the validation results across a full year of simulation. Compared to

EnergyPlus, OCHRE underestimates HVAC heating energy and slightly overestimates

HVAC cooling energy. Differences in HVAC-delivered heating and cooling are small,

indicating that the majority of the difference is caused by an overestimation in ASHP

efficiency. Differences in solar radiation heat transfer through the windows might

contribute to more heating and less cooling in OCHRE.
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Figure 5.2 Validation results for a winter day comparing hourly energy consumption by end
use from OCHRE (solid) and EnergyPlus (dashed).

Figure 5.3 Validation results for a shoulder season day comparing hourly energy
consumption by end use from OCHRE (solid) and EnergyPlus (dashed).
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Table 5.1 Annual validation results comparing energy consumption by end use.

End Use OCHRE EnergyPlus Percentage
(kWh) (kWh) Error

HVAC heating 2,795 3,063 -8.7%
HVAC cooling 739 733 0.8%
Water heating 4,369 4,199 4.1%
Other loads 4,832 4,786 1.0%

Total 12,736 12,781 -0.4%

5.2 EV Model Validation

We validate the OCHRE EV model to ensure that the daily load profile is similar to the

profile from EVI-Pro. The OCHRE and EVI-pro models are very similar because they

both use the same underlying data for EV driving and charging parameters. However,

EVI-pro does not create multi-day time-series profiles. The primary differences in the

models are due to issues with overlapping parking events that occur overnight. OCHRE’s

assumption may lead to small differences in EV arrival and departure times, which can

influence the EV load profile.

Profiles are generated for each vehicle type and size, charging level, ambient

temperature bin, and day of week option (see Section 3.1.4 for details). OCHRE was run

for 1000 days at 1-minute resolution. The weekday and ambient temperature were held

constant for validation purposes.

Figure 5.4 and Figure 5.5 show the daily load profiles for a 50-mile PHEV with a Level

1 charger and a 100-mile BEV with a Level 2 charger during weekdays at 15◦C,

respectively. OCHRE estimates a slightly larger peak for both profiles, which is likely due

to the effects of random sampling. The root-mean-square error is about 0.02 kW for the

PHEV and 0.05 kW for the BEV.
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Figure 5.4 Daily load profile comparison for a 50-mile PHEV with a Level 1 charger.
c©2021 IEEE

Figure 5.5 Daily load profile comparison for a 100-mile BEV with a Level 2 charger.
c©2021 IEEE
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5.3 Minimal Building Validation

We have begun a more extensive validation process that evaluates individual

components of OCHRE’s envelope model. We use software-to-software validation methods

that have been used to evaluate many building modeling tools [36, 164].

Software-to-software methods allow model developers to quickly and easily compare

building models with different insulation levels and different climates. Using modeling tools

with detailed outputs enables faster and easier debugging and refining to align the model

with existing models.

We validate OCHRE against EnergyPlus using a method that includes a test suite of

“minimal” buildings with very high insulation and few heat transfer pathways [165]. The

test cases are created using OpenStudio to generate Home Performance eXtensible Markup

Language (HPXML) files that contain all of the building parameters [166]. One test case is

used as a baseline with nearly zero heat transfer and minimal internal heat gains. Every

other test case changes one envelope feature and evaluates the difference in HVAC

consumption from that change. This method helps to isolate model features to identify

differences in the modeling tools.

The baseline case models a single family home with a superinsulated building envelope

with R-500 walls, ceiling, and floor. There are no windows and negligible infiltration or

ventilation. The only internal heat gains are due to HVAC and a single occupant. The

house includes an unvented attic with an uninsulated roof and attic walls. Interior wall and

furniture mass is included. The house is 2700 square feet (251 m2), with one floor and

three bedrooms. The house includes an oversized electric resistance heater and a SEER 13

central air conditioner that is autosized using Manual J [167]. No other equipment is

included, although there are internal gains from a single occupant.

Test suite cases are run for a full year at 10 minute resolution. We run each case in two

locations: Denver, Colorado and Phoenix, Arizona. Both locations use Typical

Meteorological Year (TMY3) weather data. Both locations use thermostat setpoints of
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71◦F (21.67◦C) for heating and 76◦F (24.44◦C) for cooling. Occupant schedules are

included, which only account for heat gains due to occupancy.

Table 5.2 and Table 5.3 show the results from infiltration and wall insulation test cases

in two locations. We compare the total annual heat delivered and the root mean squared

error (RMSE) of heat delivered for both heating and cooling loads at hourly resolution.

The absolute error and percent errors are reported for annual energy consumption, with

positive values indicating that OCHRE overestimates the metric when compared to

EnergyPlus. The percent error for RMSE is the RMSE divided by the variance of the time

series data from EnergyPlus.

Most cases have HVAC delivered errors less than 200 kWh/year or less than 10%.

RMSE values are typically less than 0.1 kW or 20%. Cases with less insulation or more

infiltration tend to have more heat delivered and lower percentage errors than cases that

are closer to the baseline case. This indicates that OCHRE’s envelope converges with

EnergyPlus as insulation decreases and infiltration increases. For real homes, HVAC

delivered is usually higher than in these test cases. For this reason, we expect that

differences in HVAC delivered and in HVAC consumption to be smaller in more realistic

cases.

Figure 5.6, Figure 5.7, and Figure 5.8 show the validation results for hourly HVAC

delivered heating and cooling across multiple days in the winter, summer, and shoulder

seasons, respectively. The figures are generated from the minimal test suite case with R-7

wall insulation in Denver. The delivered heat profile shapes from OCHRE and EnergyPlus

match very closely, but the magnitude differs. The largest errors occur during the shoulder

season, when the indoor temperature floats from the heating setpoint to the cooling

setpoint. OCHRE and EnergyPlus use different approaches for modeling thermal mass—in

particular as it relates to radiation heat transfer—which can lead to large changes in

HVAC cooling delivered during the shoulder season; however, these differences do not

contribute significantly to the annual energy consumption.
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Table 5.2 Validation of HVAC heating delivered for multiple locations and scenarios in the test suite.

OCHRE EnergyPlus Difference Hourly RMSE
Location Name Annual (kWh) Annual (kWh) Annual (kWh) (kW)

Denver

Baseline Minimal Building 425.3 343.7 81.65 (23.8%) 0.02 (34.9%)
Infiltration - 1 ACH 1027.6 920.4 107.25 (11.7%) 0.03 (23.9%)
Infiltration - 7 ACH 4359.2 4468.9 -109.62 (-2.5%) 0.11 (20.6%)
Infiltration - 50 ACH 31275.5 30435.1 840.46 (2.8%) 0.79 (21.9%)
Wall Insulation - Uninsulated 14874.0 14755.2 118.80 (0.8%) 0.29 (15.4%)
Wall Insulation - R-7 6926.9 6843.8 83.15 (1.2%) 0.10 (11.8%)
Wall Insulation - R-11 5963.3 5911.9 51.34 (0.9%) 0.09 (11.4%)
Wall Insulation - R-19 4133.9 4149.4 -15.46 (-0.4%) 0.05 (9.8%)

Phoenix

Baseline Minimal Building 37.1 5.1 32.00 (632.2%) 0.01 (294.6%)
Infiltration - 1 ACH 54.6 85.4 -30.82 (-36.1%) 0.01 (45.8%)
Infiltration - 7 ACH 716.7 734.2 -17.52 (-2.4%) 0.04 (22.4%)
Infiltration - 50 ACH 5829.0 5764.4 64.63 (1.1%) 0.26 (21.1%)
Wall Insulation - Uninsulated 2963.7 2521.1 442.63 (17.6%) 0.16 (23.1%)
Wall Insulation - R-7 1206.2 1023.3 182.87 (17.9%) 0.07 (22.1%)
Wall Insulation - R-11 1014.5 862.2 152.31 (17.7%) 0.06 (22.2%)
Wall Insulation - R-19 662.1 569.7 92.47 (16.2%) 0.04 (20.7%)
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Table 5.3 Validation of HVAC cooling delivered for multiple locations and scenarios in the test suite.

OCHRE EnergyPlus Difference Hourly RMSE
Location Name Annual (kWh) Annual (kWh) Annual (kWh) (kW)

Denver

Baseline Minimal Building 119.6 186.0 -66.37 (-35.7%) 0.02 (47.3%)
Infiltration - 1 ACH 97.5 152.5 -55.01 (-36.1%) 0.02 (49.4%)
Infiltration - 7 ACH 54.7 98.7 -43.92 (-44.5%) 0.03 (58.0%)
Infiltration - 50 ACH 418.4 398.4 20.06 (5.0%) 0.13 (51.3%)
Wall Insulation - Uninsulated 1711.1 1923.7 -212.58 (-11.1%) 0.19 (29.5%)
Wall Insulation - R-7 670.2 803.3 -133.06 (-16.6%) 0.07 (25.1%)
Wall Insulation - R-11 572.4 697.7 -125.28 (-18.0%) 0.06 (24.6%)
Wall Insulation - R-19 402.4 505.8 -103.39 (-20.4%) 0.04 (25.1%)

Phoenix

Baseline Minimal Building 508.7 650.0 -141.29 (-21.7%) 0.02 (36.3%)
Infiltration - 1 ACH 511.1 751.2 -240.04 (-32.0%) 0.04 (47.1%)
Infiltration - 7 ACH 1349.0 1581.5 -232.42 (-14.7%) 0.07 (27.1%)
Infiltration - 50 ACH 7649.6 7810.1 -160.47 (-2.1%) 0.36 (25.5%)
Wall Insulation - Uninsulated 9693.5 10613.5 -919.93 (-8.7%) 0.35 (22.8%)
Wall Insulation - R-7 4610.2 5009.2 -399.05 (-8.0%) 0.12 (17.5%)
Wall Insulation - R-11 4010.4 4376.2 -365.87 (-8.4%) 0.10 (17.1%)
Wall Insulation - R-19 2870.3 3161.1 -290.73 (-9.2%) 0.06 (15.0%)
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We also note that there are significant differences in the attic temperature, with

EnergyPlus simulating much higher temperatures in the summer season. This difference

does not affect the HVAC delivered in this case because the ceiling is superinsulated.

However, in other test cases and in real systems, this may cause OCHRE to underestimate

the HVAC delivered heat requirements due to less conduction through the ceiling. Ongoing

validation efforts are addressing this issue in attics as well as in foundations and garages.

Figure 5.6 Minimal building validation results in the summer in Denver, comparing hourly
HVAC delivered heat from OCHRE (solid) and EnergyPlus (dashed).

5.4 Control Model Validation

The control model developed in Section 4.1 was derived from the OCHRE models of

individual devices. All device models are nearly identical except for the HVAC and

envelope model. Here, we show the validate the model by showing the impact of the model

reduction and linearization on the envelope model. The validation simulations use the

same parameters as the case study in Section 7.2.
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Figure 5.7 Minimal building validation results in the winter in Denver, comparing hourly
HVAC delivered heat from OCHRE (solid) and EnergyPlus (dashed).

Figure 5.8 Minimal building validation results in the shoulder season in Denver, comparing
hourly HVAC delivered heat from OCHRE (solid) and EnergyPlus (dashed).
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The impacts of the model reduction and linearization of radiation and infiltration are

shown in figures Figure 5.9 and Figure 5.10. Figure 5.9 shows the difference in the modeled

indoor air temperature between the full OCHRE model and the linearized model described

in Section 4.1.2. In both models, the air conditioner turns on around midday and cycles

according to the deadband control with a constant set point. At night, the air conditioner

turns off, and the temperature floats below the set point. During a 10- to 15-hour window

each night, the maximum temperature deviation between the simulations is less than 1◦C.

Figure 5.10 compares the air-conditioning energy consumption during the peak period

under different modeling conditions to assess the impacts of linearization and model

reduction. Three models—OCHRE, a full-order linear model, and the reduced-order linear

model—were run with a constant HVAC set point and the heuristic precooling control.

The linear models overestimate the HVAC consumption compared to the OCHRE model,

and they underestimate the energy savings due to precooling controls. The reduced linear

model underestimates the difference by 14%, indicating that the MPC might undervalue

precooling controls in this use case.

5.5 Chapter Summary

This chapter provides validation results for the OCHRE model and the linear model for

MPC. EnergyPlus is used to validate OCHRE’s thermal models for HVAC and water

heating equipment, EVI-pro is used to validate the EV model. The envelope linearization

and model reduction are compared against OCHRE to ensure that the impact on

temperature and HVAC consumption were small.

These results address Research Question 2 concerning the comparison between

integrated residential energy models, such as OCHRE, and existing state-of-the-art models.

We show that OCHRE performs similarly to EnergyPlus when comparing time-series data

and aggregated metrics. For the control model validation, the linearization and model

reduction lead to modeling errors, but the impact on HVAC consumption is within

expected limits and is unlikely to significantly affect model-based control performance.

90



Figure 5.9 Indoor temperature using the full and linearized models

Figure 5.10 HVAC energy consumption during peak hours using various models and
controls.
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CHAPTER 6

COMMUNITY CO-SIMULATION MODELING

This chapter presents a co-simulation framework for integrating residential energy

models, controllers, and a distribution system simulator. Section 6.1 describes the

co-simulation framework, including the communication methods between models and

controllers. Section 6.2 shows the benefits of using high-resolution models for simulating a

demand response event using a community-level co-simulation; although we highlight

multiple features of the model, we focus on the impact of time resolution on demand

response magnitude and on power and voltage fluctuations. Section 6.3 shows results when

coupling OCHRE with foresee [32], an existing HEMS controller.

6.1 Co-simulation Framework Description

In this section, we outline the methods for integrating OCHRE in an agent-based

co-simulation framework. The framework contains three types of agents: controllers, house

models, and a community grid model. A schematic of this framework is shown in

Figure 6.1. The house models receive control signals from the controller and local voltage

data from the grid model, solve for the net power of each house, and then send that power

to the grid model. The framework is designed to be modular so that multiple control and

modeling tools can be used interchangeably.

6.1.1 House Models

The model components described in Section 3.1 are combined in an object-oriented

framework for simpler integration in a co-simulation. Each piece of equipment is

represented by an object, and each has the ability to accept a control signal, consume

energy, and contribute to internal heat gains. This framework allows for modular house

models that can easily be modified by adding or replacing equipment.
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Figure 6.1 Schematic for the OCHRE model in a co-simulation framework.

Multiple house models are launched in parallel to simulate a residential community. In

each house, the equipment powers are aggregated to determine the total house real and

reactive power at each time step:

Pnet,d(k) = Pload,d(k) + Ppv,d(k) + Pbatt,d(k)

Qnet,d(k) = Qload,d(k)
(6.1)

where k is the time step and d is the house index. Note that the power for equipment that

does not exist is set to 0. The real and reactive powers for each house are sent to the

community grid model at each time step.

6.1.2 Distribution Grid Model

The distribution grid model considers each house as a load with time-varying real and

reactive power. The grid model solves the power flow equation to calculate the voltages at

each house. The co-simulation passes each house voltage back to the voltage-dependent

load model at the next time step.

The distribution model may contain additional loads and other features external to the

house models—for example, distributed generation resources, capacitor banks, and
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commercial and industrial loads. These components are assumed to be uncontrollable in

the co-simulation framework.

6.1.3 House Controllers

Controllers integrated in the co-simulation framework have access to a wide variety of

information that could feasibly be measured from sensors in the home or on the

distribution network. This includes house state information—for example, air temperature,

water temperature, battery SOC, and energy consumption for each equipment. The

controller can also receive grid state information—for example, the house voltage—and

external parameters, such as utility rates and weather.

Control signals to the house model are modular and device-specific, i.e., each piece of

equipment receives a different signal. This framework allows for the control of different sets

of equipment at different times and for the use of multiple device-level controllers in the

same building. Controllers can send the same signal to all houses or send a unique signal to

each house.

6.2 New Construction Case Study

In this section, we run OCHRE and the co-simulation framework to demonstrate the

features and benefits of OCHRE. We show the differences in simulation results when using

1-minute and 15-minute time resolutions and when sending control signals to multiple

controllable device models. Results show that the time resolution can have a significant

effect on measured load flexibility.

Each scenario uses the same 498-home, all-electric, zero energy-ready community based

in Fort Collins, Colorado, during a 24-hour period on a hot summer day. A zero energy

community of this size can present a challenge to grid operators because of the potential

for substantial back-feeding. Scenarios show the community power during baseline

conditions and during a demand response event with two types of control strategies: load

shedding and load shifting.
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6.2.1 Simulation Inputs

The house and grid models require a wide variety of inputs, including weather data,

building properties, equipment properties, and distribution system inputs. We leverage a

wide range of other models and tools to generate these inputs. Because of the variability

and the large number of inputs, we do not provide values for each one; however, below are

brief summaries of each input category:

• Weather data: Weather data are actual meteorological year data taken from Fort

Collins, Colorado, in 2018 at hourly resolution.

• Building properties: The community model was developed based on plans from a

high-efficiency home builder in Fort Collins for an actual community planned in the

area. Based on the builder specifications, the buildings were modeled as being eligible

for the U.S. Department of Energy’s Zero Energy Ready program [157]. The National

Renewable Energy Laboratory’s (NREL’s) BEoptTM[168] tool was used to generate

the building models. The community comprises 201 small single-family homes, 79

large single-family homes, 30 duplexes, and 48 townhomes with 2–6 units each.

Homes are modeled in various orientations to more accurately model load diversity.

• Equipment properties: All 498 homes have an ASHP and an electric resistance water

heater. Equipment capacity depends on the building type, with the HVAC sized

according to ACCA Manual J [167]. All homes have a PV system with capacities

ranging from 3–19 kW. The total community PV capacity is 3.4 MW. Fifty homes

have an EV (25 battery EV and 25 plug-in hybrid EV), and the same 50 homes have

a 3 kW, 6 kWh battery.

• Distribution system properties: The distribution grid model was developed in

collaboration with the City of Fort Collins Utilities. It includes an existing

medium-voltage feeder as well as a new secondary network for the proposed
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all-electric community. The secondary network combines typical practices of

distribution design in the area with necessary upgrades for an all-electric community.

AMI data at 15-minute resolution are used to simulate existing buildings on the

medium-voltage feeder to set up realistic grid conditions for the community system

under study. The new community adds approximately 2 MW of peak load to the

existing 6 MW feeder.

For most equipment controls in this section, we employ an open-loop, schedule-based

control strategy that sends the same signal to all houses. However, batteries are operated

such that they charge only from solar and discharge to load when the total load is larger

than the PV generation. The BESS power is defined by control logic:

Pchg(k) = min(− Ppv(k), Pbatt,
κbatt
tsηchg

(SOC − SOC(k))

Pdis(k) = min( max(Pload(k) + Ppv(k), 0), Pbatt,
κbattηdis
ts

(SOC(k)− SOC)
(6.2)

where Pload and Ppv are described in sections 3.1.6 and 3.1.7, Pbatt is the battery power

capacity, and SOC and SOC are the SOC battery limits. When both Pchg and Pdis are

non-zero, their values are reduced until one equals zero. This self-consumption control logic

was chosen to reduce battery discharge power when there is some PV generation.

6.2.2 Simulation Engine

We use the Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS)

platform [88] to run the scenarios. Separate agents are used for each of the 498 house

models and for the grid model. The OCHRE models are coded in Python using standard

libraries. We use the Python package OpenDSSDirect.py to connect the co-simulation

framework to an OpenDSS distribution grid model [89, 169].

The scenarios were run using NREL’s high-performance computing system [170]. The

498 homes ran in parallel on 5 nodes. The 24-hour simulations with 1-minute time

resolution took 239 seconds total, with an individual home taking 1.83 seconds on a single
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node. The simulations with 15-minute resolution took 126 seconds total.

6.2.3 Baseline Results

The results of the baseline scenarios show the community power output without any

control signals under varying time resolutions. The aggregated community power by end

use for the 1-minute and 15-minute baseline simulations are shown in figures Figure 6.2

and Figure 6.3, respectively. Most end uses show a similar profile in these two scenarios,

although the HVAC cooling has much more variability in the 1-minute scenario. The

community power does not have as much variability as the individual units because of

diversity in the house models.

Figure 6.4 shows the total community power and minimum and maximum voltages for

the 1- and 15-minute time resolution simulations. The 1-minute simulation results have

noticeably more variability than the 15-minute results, including a much larger peak power

(1605 kW compared to 807 kW) and minimum voltage (0.975 p.u. compared to 0.987 p.u.)

near 6 PM. The percentage of voltage violations (accounting for duration and quantity of

violations) greater than 1.05 p.u. increased by 59% in the 15-minute resolution simulation.

The increased variability in the 1-minute simulation is primarily caused by the HVAC

and water heater models because these models include realistic equipment cycling, but the

models in the 15-minute simulations do not. This cycling directly leads to variability in

distribution power and voltages; therefore, it is very likely that distribution studies that do

not include high-resolution load models with equipment cycling will underestimate voltage

variations. This finding is important for utilities and regulators to consider when

evaluating distribution simulation studies.

6.2.4 Load-Shedding and Load-Shifting Control

The load-shedding controller is called to perform a demand response event in which

loads should be reduced from 5 PM to 9 PM. The controller modifies all of the house

models in the following ways during the demand response event:
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Figure 6.2 Total community power by end use for the baseline scenario at 1-minute time
resolution.

Figure 6.3 Total community power by end use for the baseline scenario at 15-minute time
resolution.
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Figure 6.4 Community power and voltages for baseline scenarios at 1- and 15-minute time
resolution. Subplots show community total power (a) and maximum and minimum voltage
(b).
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• Cooling set point Tc increases from 72◦F to 75◦F

• Water heater set point decreases from 125◦F to 120◦F

• Battery power set to fully discharge at a constant rate by 9 PM

• EV charging delayed until 9 PM, if necessary

The load-shifting controller assumes the same demand response event, uses the same

load-shedding controls, and modifies all of the house models from 2 PM to 5 PM, before

the event, in the following ways:

• Cooling set point Tc decreases from 72◦F to 69◦F

• Water heater set point increases from 125◦F to 130◦F

• Battery power set to fully charge at a constant rate by 5 PM

Because there are similar results from the two controllers, we show detailed results only

for the load-shifting controller in Figure 6.5. The controller reduces loads during the

critical peak period, but it also causes large spikes in community power at 2 PM and 9 PM,

due to the control logic that synchronizes equipment cycles in many homes. The effects of

synchronized cycles can also be seen in the smaller spikes after 2 PM and after 9 PM.

These spikes can cause voltage violations and overloaded equipment. OCHRE can be used

to evaluate the ability for more advanced control strategies—for example, DER aggregation

or market-based dispatch—to solve these issues.

The community power for all six scenarios is shown in Figure 6.6. All of the controlled

scenarios show lower total community power during the critical peak period, and the

load-shifting control has slightly lower community power than the load-shedding control.

Both controllers have a power spike at 9 PM, and the load-shifting control has a spike at

2 PM. The magnitude of the spike is smaller when using the load-shifting controller,

showing that the controller successfully moved some of the load ahead of the peak period.
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Figure 6.5 Total community power by end use for the load-shifting scenario at 1-minute
time resolution.

Figure 6.6 Total community power for all scenarios.
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All 1-minute scenarios have more power variability and larger power spikes than their

corresponding 15-minute scenario, which led to a larger peak demand reduction during the

critical peak period. After averaging power in all scenarios to 15-minute resolution, the

load-shedding controller reduced peak demand by 755 kW (60%) in the 1-minute simulation

but by only 324 kW (40%) in the 15-minute simulation. Similarly, the load-shifting

controller reduced peak demand by 930 kW (73%) in the 1-minute simulation but by only

506 kW (63%) in the 15-minute simulation. These results show that low-resolution load

models may underestimate the benefits of load-reduction strategies in distribution systems.

It is also interesting to note the difference in peak demand reduction by end use. For

the load-shifting controller in the 1-minute scenario, the average power reduction during

the critical peak period was 298 kW for HVAC, 104 kW for water heating, 45 kW for EV,

and 11 kW for batteries. However, this result may not be generalizeable because it is

highly dependent on timing, weather conditions, building properties, and equipment

adoption rates.

6.3 Case Study with foresee

This section presents results using OCHRE with foresee, an existing HEMS controller.

We show simulation results for an existing community with additional DERs including PV,

batteries, and EVs. We compare scenarios with multiple control strategies to show their

impacts on peak load reduction with a focus on EV peak demand.

foresee is a HEMS capable of coordinating various behind-the-meter resources in

residential homes including PV, batteries, HVAC equipment, and water heaters in response

to a time-varying tariff or utility signal. foresee is formulated as a multi-objective MPC

problem and determines the optimal schedule for all resources simultaneously. The details

regarding the formulation of foresee can be found in [32] and [104].
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6.3.1 Simulation Inputs

We simulate a community with high EV penetration under multiple control strategies

to reduce peak demand from EVs. Simulations were run for one week at a 1-minute time

resolution. The HEMS operated at a 15-minute time resolution.

The simulated community consists of 50 residential homes, each with a different level of

insulation and a different set of equipment. The house models were generated using

ResStockTM[171], which contains probability distributions of residential building

characteristics across the entire U.S. We use the distributions for an area near Washington

D.C. to come up with a series of typical building models to represent the community. Each

day of the simulation had an average daily temperature between 25 and 30 ◦C.

We assume the 50-home community includes 13 PHEV with Level 1 chargers and 12

BEV with Level 2 chargers. PHEV size ranges from 20 to 50 miles, and BEV size ranges

from 100 to 250 miles. For the control scenarios with foresee, the Level 1 chargers were

turned off when Pev <
Pmax

2
and on when Pev ≥ Pmax

2
. The Level 2 chargers followed the

control signal exactly.

PV and battery sizes were designed to simulate a community with high levels of DERs

and minimal community-level grid export. The community includes a total of 162 kW of

PV, split among 30 of the 50 homes. Batteries are included in 20 homes; 10 homes have a

3kW/6kWh battery and 10 homes have a 6kW/12kWh battery.

6.3.2 Baseline Results

A baseline scenario was run to show the community power with no controls. Figure 6.7

shows the total community power by end use for three simulation days, two weekdays

followed by one weekend day. Air conditioning accounts for most of the load, and PV

generation significantly reduces daytime load, but not enough to cause net export of the

community.
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Figure 6.8 shows the total community power with a basic delayed EV charge control.

The EV charging was delayed by up to 5 hours to reduce load during the peak period from

2 P.M. to 7 P.M. The EV power shifted from the afternoon to the evening to reduce the

peak load. The on-peak maximum demand (averaged across all days of the simulation)

reduced from 178 kW to 156 kW. However, the average daily EV peak demand increased

from 43 kW to 45 kW (see Figure 6.10), indicating that this control scheme may lead to a

spike in demand in the evening.

Figure 6.7 Total community power by end use for the baseline scenario. c©2021 IEEE

6.3.3 HEMS Control

Next, we run a scenario with the same community, using foresee as the control system.

The HEMS uses a time-of-use (TOU) rate from the local area with a peak period from

2 P.M. to 7 P.M on weekdays and a peak-to-off-peak price ratio of 4.875 [172]. Regarding

the user-preferences in foresee, cost-saving had highest preference, followed by EV

discomfort, air temperature discomfort, hot water discomfort, and battery degradation.
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Figure 6.8 Total community power for the EV delay scenario. c©2021 IEEE

Figure 6.9 shows the results of this scenario for the same three days. The HVAC and

battery profiles change considerably, and the EV profile shifts to later in the evening. The

EV tends to charge when the HVAC and other load powers are low to reduce any demand

spikes. The peak demand increases due to HVAC load before the peak period, but the

on-peak maximum demand decreases considerably, from 178 kW in the baseline case to

120 kW in the HEMS case.

A comparison of the EV profiles from all scenarios is shown in Figure 6.10. The

baseline scenario has a considerable EV usage during the peak period, and all control

scenarios are able to shift that consumption to later in the day. The HEMS scenarios

(TOU and Demand) shift the consumption later than the basic delay control, and are able

to reduce the daily average on-peak maximum demand from 12 kW (in the basic control

case) to 1.2 kW.

The HEMS scenarios also reduce the average daily peak demand due to EVs (at

15-minute resolution) from 45 kW to 34 kW, a 23% reduction. This reduction is critical

when considering an increase in residential EV adoption. As EV charging becomes a
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significant portion of residential energy consumption, smoother EV charging profiles will

reduce peak demand and allow for more efficient grid operations.

Figure 6.9 Total community power for the HEMS control scenario with foresee controls and
a TOU rate. c©2021 IEEE

6.3.4 Demand Charge Control

We run a fourth scenario with foresee controls using an additional demand charge term

similar to Equation (4.15). We use the same TOU rate and a demand charge of $10 per

kW. As shown in Figure 6.10, the EV profile is very similar to the profile from the HEMS

scenario without a demand charge.

The demand charge does not have a significant effect on the EV controls because EV

consumption does not often coincide with the peak demand. Residential peak demand

tends to occur in the afternoon in the summer when air conditioning loads are high, and

EV charging tends to occur later in the evening. It is likely that this control would have a

larger effect on EV charging when EV loads contribute more to the peak demand, for

example during times and locations with less HVAC demand.
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Figure 6.10 Total EV power in the community for all scenarios. c©2021 IEEE

6.4 Chapter Summary

In this chapter, we describe a co-simulation framework that incorporates multiple

OCHRE models with controllers and a distribution system simulator. We show two case

studies that simulate a new, all-electric community and an existing community with high

DER penetration. The case studies show OCHRE’s ability to handle various control

signals. The first case study highlights the importance of high-resolution load modeling

when evaluating peak demand strategies. The second shows the benefits of device-level

outputs to analyze the impacts of a control strategy on different types of DERs.

This chapter addresses Research Question 3 by describing a co-simulation framework

that captures the impacts of flexible load control strategies on grid services, including

distribution system peak demand reduction and voltage regulation. The framework enables

OCHRE to integrate with external controllers and a distribution system simulator and

combines the results to show the effects of control strategies on energy usage, grid services,

and occupant well-being.
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CHAPTER 7

ASSESSMENT OF STOCHASTIC CONTROL METHODS FOR HOME ENERGY

MANAGEMENT SYSTEMS

This chapter applies the stochastic control framework described in Chapter 4 to two

case studies. Both case studies evaluate the control performance of heuristic, deterministic,

and stochastic control strategies. The first case study evaluates battery controls for a tariff

with a demand charge in conditions with very high ambient temperatures. The second case

study evaluates a full HEMS in a typical building in Denver, CO. In both cases, the SMPC

strategy is shown to perform best under conditions with uncertainty.

7.1 Battery Control with Demand Charge

This case study assesses the control performance for customer-sited, behind-the-meter

batteries that incorporates uncertainty in customer load and ambient temperature. We use

residential customer AMI data to show the benefits of the controller and the importance of

understanding risk and uncertainty in this application. The key contributions of this case

study include the integration of:

• a thermo-electric battery model

• a stochastic model predictive controller to minimize customer energy costs and

battery degradation

• a demand charge in the SMPC optimization

7.1.1 Simulation Inputs

The battery model from Section 3.1.8 is used for this case study, including the battery

internal temperature model. The same model was used for the system and the MPC, i.e.,

no model uncertainty was considered. The battery was the only controllable load
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considered, and all other residential loads were grouped into the uncontrollable load profile

Punc.

The objective function used in this case study includes a subset of the terms in

Equation (4.20): Jtou, Jpeak, Jbatt,P , Jbatt,T , and Jbatt. The first two terms capture costs

associated with a time-based rate and a demand charge, respectively. The second two

terms capture lifetime degradation costs associated with high power and high temperature.

The final term captures the future benefit for maintaining charge in the battery at the end

of the horizon.

We test the battery model and controller and assess the control performance in multiple

scenarios. Two reference scenarios test an MPC controller with a perfect forecast and with

a forecast with high uncertainty. SMPC scenarios test the control performance by varying

the level of risk and forecast uncertainty. All scenarios are run for a single residential

customer with high PV generation over a 1-month period. The simulations are run at

30-minute time intervals, and the horizon is 24 hours, or 48 time steps.

All scenarios use parameter values described in Table 7.1 unless otherwise noted. The

load profile was taken from an open-source dataset of residential customers with rooftop

PV near Sydney, Australia [173]. We used data over a month for a single customer with

high energy consumption, a high PV capacity of 4.5 kW, and no controllable loads. The

temperature profile was taken from the Sydney airport for the corresponding month and

year [174]. Figure 7.1 shows the load and temperature profiles as well as their mean and

variance across the month. Note that the battery is assumed to be installed outside and

subjected to the ambient temperature and no direct solar radiation.

The TOU rate and demand charge are taken from [175]. The TOU rate has a peak to

off-peak ratio of about 5-to-1, which is larger than most TOU rates [176]. The demand

charge uses 30-minute average demand and, in our formulation, is not restricted to the

on-peak period. Battery electrical parameters were taken or derived from [177–180]. We

assume the battery is AC-coupled, and do not consider inverter power limits. Thermal
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parameters were estimated from [79, 179, 180]. Other values were estimated using the

previous sources to achieve reasonable values for a typical residential battery.

Table 7.1 Model and Control Parameters Used for Scenarios

Parameter Value

Punc and σ2
Punc

(k) varies, see Figure 7.1
Ta and σ2

Ta
(k) varies, see Figure 7.1

ηchg 95 %
ηchg 95 %
ηbatt,th 98 %
Cbatt 90 kJ/K
Rbatt,a 60 K/kW

Σv

[
0.05 kW 0

0 1◦C

]
ts 30 minutes
nh 48

Off-peak: 0.012376 $/kWh
λtou Shoulder: 0.026377 $/kWh

On-peak: 0.123296 $/kWh
λpeak 8.5674 $/kW
λP 0.001
λT 0.002
βPunc 2.33 (99th percentile)
βTbatt 2.33 (99th percentile)

Tbatt,high 30 ◦C
Tbatt 40 ◦C
sbatt 0 kWh
sbatt 10 kWh

The controller performance was assessed using the cost function from Equation (4.20).

To determine the actual cost to the customer across the entire month, we replace nh with

the total number of time steps throughout the simulation, use the actual total power

Phouse(k) instead of P̂house(k), and set σPunc = 0.

7.1.2 MPC Reference Scenarios

Reference scenarios are run using the MPC framework proposed in Section 4.2.2. The

same objective is used for the MPC framework with all variance parameters (σTa , σPunc ,
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and σTbatt) set to zero. The Perfect Forecast scenario uses the exact load and temperature

as the forecasts for the MPC optimization. The MPC Baseline uses the same forecast as

the SMPC Baseline scenario.

Table 7.2 shows the results of all the scenarios. The TOU and demand costs are taken

from the first two terms in the objective, and other costs include costs due to degradation.

As expected, the MPC with a perfect forecast performs very well, significantly lowering the

total cost. The baseline MPC run performs poorly, especially considering the demand

charge cost, since there are significant deviations between the baseline forecast and the

actual power.

7.1.3 Baseline Scenario

The SMPC Baseline scenario uses the mean and variance of the load and temperature

profiles calculated on an hourly basis as shown in Figure 7.1. Note that the ẑ ± 2σz interval

contains the majority of the data, although a few days of the month have very high powers

and high temperatures. The two days with the largest load correspond to the two days

with the highest temperatures.

The controller successfully reduces the total cost to the customer across the month from

$19.94 (from the MPC Baseline scenario) to $15.01 as shown in Table 7.2. This

improvement primarily comes from a reduction in peak demand that is enabled by the

controller’s load forecast. The energy cost increased slightly, likely due to the focus of the

SMPC control on the demand charge; for example, if there is a risk of approaching the

peak power, the controller will reduce the chance of exceeding it by discharging more or

charging less, even if that leads to increased energy costs.

Figure 7.2 shows the results of the baseline scenario for the peak load day of the month.

The battery charged during night-time hours when electricity prices are low and

uncertainty in load is low. It waits to discharge the battery until about 16:00 during the

on-peak period, which is about when the load power increases and becomes more variable.

It successfully lowered the peak demand before 20:00. However, the controller did not
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expect the load power to remain high after 20:00, and it almost fully discharged during the

on-peak period. Right after 20:00, the battery stopped discharging and the net load

increased dramatically, which led to a large increase in the peak power, and the largest

peak of the month.

Figure 7.1 Battery case study daily profiles for (a) Customer Load Punc and (b) Ambient
Temperature Ta for each day of simulation. Shaded region shows ẑ ± 2σz. c©2020 IEEE

The baseline controller had no information about the high demand or high temperature

of this day; it was only provided the expected value and variance shown in Figure 7.1.

Therefore, it could not have predicted the high load power, nor the high ambient

temperature late in the day.

The simulation ran in 45 seconds, or 31 ms per time step, on a Dell PC with a 1.9 GHz

Intel Core i7 processor and 16 GB of RAM. The simulation is run in Python with a

publicly available convex optimization solver [181].
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Figure 7.2 Results for SMPC Baseline Scenario on the Peak Load Day. c©2020 IEEE
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7.1.4 Impacts of Varying Risk

One method to improve the performance of the baseline controller is to increase the risk

tolerance for high peak demand and high battery temperatures by decreasing the back-off

magnitudes βPunc and βTbatt . Decreasing βPunc will decrease the value of the demand charge

term in the objective for time steps when there is a risk of exceeding the previous peak

demand, leading to more charging or less discharging when the load is estimated to be high

or is more uncertain. Decreasing βTbatt will reduce the cost of Equation (4.17), which will

increase the battery charge and discharge power when the battery temperature is close to

Tbatt. Both of these changes will make the controller behave more aggressively during times

when the load power and the ambient temperature is high.

We run the controller with High Risk conditions βPunc = 1.28 and βTbatt = 1.28,

corresponding to the 90th percentile of a Gaussian distribution. The performance results are

shown in Table 7.2 and are slightly improved over the SMPC baseline scenario. The more

aggressive control was able to reduce the energy cost without increasing the demand charge

cost. The peak time and day was the same for this scenario and for the baseline scenario.

We note that lower risk tolerance and more aggressive control behavior will not improve

performance in all instances. The nature of the data used in these scenarios, and in

particular the load profile on the peak day, cause the higher risk scenarios to lower the

total costs.

7.1.5 Impacts of Varying Uncertainty

A preferable method to improve the controller performance, when possible, is to provide

a more accurate prediction of load and temperature forecasts to the controller. Using the

monthly load data and a publicly available model estimation tool, we develop an

auto-regressive exogenous (ARX) model of the load power to reduce the uncertainty of the

load forecast [163]. While more complex methods can create more accurate forecasts, we
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chose a first order ARX model for simplicity. The load power is estimated as:

Punc(k) = P̂unc(k) + PAR(k)

PAR(k) = 0.7977PAR(k − 1) + εAR(k)
(7.1)

where PAR(k) is the difference between the actual load power and the mean load power.

The mean load power P̂unc(k) is the same as in the original formulation, but the variance of

Punc(k) is now defined by εAR(k) ∼ N (0, σ2
PAR(k)). We note that σPAR(k) < σPunc(k) for all

hours of the day.

The ARX Model scenario reduces total cost relative the the previous SMPC scenarios.

Table 7.2 shows the energy cost increases while the demand cost decreases. The improved

demand forecast allows the controller to predict high consumption in the future, which

greatly reduces the peak demand and the demand cost. It is likely that the conservative

back-off parameter βTbatt causes the controller to reduce discharge power during the hot

afternoons, which then increases the energy cost since that is when the on-peak period

occurs.

The final scenario tests the ARX model with a higher risk tolerance by reducing the β

parameters. The combination of these effects lowers the total cost to $9.56 for the month.

The addition of higher risk and more aggressive controls leads to lower energy costs and

higher demand costs.

Figure 7.3 shows the results of the scenario with the ARX model and a higher risk

tolerance for the peak load day of the month. Compared to the SMPC baseline scenario,

the battery discharges more slowly during the on-peak period to conserve battery charge.

It is able to more closely follow the peak power and limit the peak power increase during

the peak period. It is also able to keep the battery temperature lower than the baseline

SMPC controller did. The peak power still achieves its maximum value around 22:00, but

at a lower value than in previous scenarios.
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Figure 7.3 Results for SMPC Scenario with ARX Model and High Risk Tolerance on the
Peak Load Day. c©2020 IEEE
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Table 7.2 Performance Results for All Scenarios

Scenario Energy cost Demand Cost Other Costs Total Cost

No Battery -$2.01 $40.47 $0 $38.47
Perfect Forecast -$26.62 $14.74 $10.81 -$1.07
MPC Baseline -$33.20 $41.64 $11.50 $19.94

SMPC Baseline -$31.17 $35.07 $11.10 $15.01
SMPC, High Risk -$32.89 $35.07 $11.23 $13.41

SMPC, ARX Model -$23.62 $25.96 $10.49 $12.83
ARX + High Risk -$30.65 $29.52 $10.69 $9.56

7.1.6 Case Study Summary

In this case study, we use a thermo-electric battery model and a stochastic MPC

controller that optimizes battery cycling over a TOU and demand charge rate structure.

The controller accounts for uncertainty in the load forecast and ambient temperature

forecast, maintains low battery temperatures, and maintains low charge and discharge rates

to minimize the effects of degradation. Simulation results show that all SMPC scenarios

perform better than the MPC when there is uncertainty in the forecast. We show that

reducing forecast uncertainty improves the performance of the SMPC controller. Increasing

risk tolerance to force a more aggressive control strategy also improves performance,

although that result may not be generalizable to other scenarios.

7.2 HEMS Control for a Typical Building

This case study evaluates multiple control strategies for a HEMS for a typical building.

The HEMS controls four controllable loads: an air conditioner, a water heater, an EV, and

a battery. Simulations are run with different control strategies and different forecasting

methods to determine the effect of uncertainty on the control performance. The results

show that the SMPC has the best performance when using uncertain forecasts.
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7.2.1 Simulation Inputs

All simulations were performed using measured weather data from Denver, CO.

Weather data were collected in real time in July 2021 using an online application

programming interface (API) [182]. The same weather API was used to get weather

forecast data. The weather data and forecast were collected every 1 hour, and the forecast

had a duration of 48 hours and a time resolution of 1 hour.

Weather data used in the simulation include ambient temperature, pressure, relative

humidity, cloud cover, and wind speed. Cloud cover data were converted to irradiance

values using a clear-sky scaling method [183]. Irradiance data was combined with the area

and absorptivity of each exterior house surface to determine the solar heat gains.

A single-occupant schedule was used for all simulations. The schedule was generated

using the ResStockTMstochastic occupancy generator for a typical single-family home with

a single occupant in Denver, CO [152]. The schedule has 1-minute resolution profiles for

occupancy, power usage for uncontrollable loads, and hot water draws for appliances and

fixtures. The EV schedule was generated from OCHRE using parking event data from

EVI-Pro [68]. Note that because the EV schedule came from a different data source, the

occupancy and EV schedules do not directly match.

The OCHRE model was run with the occupant schedule for a full year with typical

meteorological year weather data. The annual profile was used to create forecasts for water

draws, EV parking status, uncontrollable loads, and internal heat gains as described in

Section 4.3.2. All forecasts use a time resolution of 30 minutes.

All simulations were run with the same house model, equipment characteristics,

weather data, and occupancy schedules. Scenarios without MPC were run for 14 days in

July, and scenarios with MPC were run for 13 days. Key simulation parameters are shown

in Table 7.3. The electricity price λtou was taken from Xcel Energy Colorado’s summer

time-of-use rate [184], which includes an off-peak rate of $0.10/kWh, a shoulder period

from 1–3 PM at $0.19/kWh, and a peak period from 3–7 PM at $0.27/kWh.
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Table 7.3 Key simulation parameter values

Model Parameter Value Control Parameter Value

∆Top 10◦C nh 48
Top,rad 20◦C λtou $0.10–0.27/kWh
ηhvac 3.8 λhvac $0.125/◦C-hr
(θ1 − θwm)op 33.1◦C λwh $0.01/◦C-L
ηwh 4.5 λev $1/kWh
Pdrive 0.65 kW λev,low $2/kWh
Eev 32.5 kWh λpeak $10−5/kW
Ebatt 12 kWh Tm 22.7◦C

θ1 46.1◦C
εxi (all) 20%

The values of the cost coefficients associated with occupant comfort were estimated

using assumptions for a typical person’s willingness to pay for the desired comfort metric.

The air temperature comfort cost λhvac was based on an occupant willing to pay $1 for a

2◦C increase in air temperature for 4 hours. The water heater cost assumed a $5 cost for a

65 L shower at 10◦C colder than the typical setpoint. The EV cost was set at $1/kWh to

achieve 100% SOC, and at a higher cost of $3/kWh (λev + λev,low) to achieve 50% SOC.

The MPC formulation includes all models from Section 4.1.6 except for the battery

thermal model. It includes all objective terms in P1 except for the battery degradation

terms and the demand charge cost term.

7.2.2 Deterministic MPC

We next compare the control performance between the baseline heuristic controls and

the DMPC with an exact forecast. Although this DMPC case does not include forecast or

measurement uncertainty, there is still some model uncertainty due to the model

linearization and the difference in time resolution between OCHRE and the control model.

Figure 7.4 shows the state of each controllable equipment and the total house power for

these two cases for a subset of the simulation time. Both controllers adjust the HVAC set
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point before the peak period, but the air temperature is very similar for the rest of the day.

The baseline heuristic control maintains a constant hot water set point, whereas the

DMPC keeps the set point very low except when large water draws are expected during the

peak period. The DMPC EV controller delays charging until after the peak period and

slowly reaches full SOC right before the EV leaves. It also charges the battery more slowly

than the scheduled heuristic controller.

Note that the heat pump water heater temperature stays very close to the set point

temperature in the DMPC control because the deadband size reduces as the set point

approaches the minimum comfort temperature. Although this helps achieve low energy

costs and low water discomfort, it leads to a lot of equipment cycling, which can degrade

the equipment.

Imperfect forecasts reduce the DMPC performance, particularly for the water heater

controls. Figure 7.5 shows the difference in water heater results from the DMPC cases with

an exact forecast and the ARIMAX forecast. The ARIMAX case tends to have a lower set

point temperature because the forecast expects more frequent but smaller water draws.

The forecast error leads to more discomfort due to low water temperatures, but it also

slightly reduces the water heater energy cost. Both controls cycle the water heater

frequently when no draws are expected.

The DMPC forecasts also impact the EV controls as shown in Figure 7.6. The baseline

controller always charges the EV as fast a possible, and the DMPC with an exact forecast

always charges the EV as slow as possible while achieving full charge before the EV leaves.

The DMPC with the ARIMAX forecast often charges in between these two cases, delaying

charging during the peak period but charging more quickly after that. We note that the

energy cost due to EV charging was identical for all MPC cases. The low SOC cost λev,low

did not significantly impact the results, as the EV SOC was rarely as low as the sev,low

threshold.
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Figure 7.4 HEMS results for DMPC cases with exact forecasts and heuristic controls
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Figure 7.5 Water heater results for DMPC cases with exact and ARIMAX forecasts

Figure 7.6 EV results for heuristic controls and DMPC cases with exact and ARIMAX
forecasts
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7.2.3 Stochastic MPC

Compared to the DMPC cases with imperfect forecasts, the SMPC is able to improve

water comfort as well as reduce water heater cycling. Figure 7.7 shows the water

temperature for the DMPC and SMPC cases with the ARIMAX forecast. The SMPC case

maintains a higher set point most of the time, leading to less water discomfort, less water

heater cycling, and slightly higher energy costs. The SMPC water heater set point depends

on the distribution of water draw volume for the next MPC time step. The set point

temperature increases when either the mean value increases or when the variance increases.

The set point also increases significantly before the peak demand periods.

Figure 7.7 Water heater results for DMPC and SMPC cases with ARIMAX forecasts

The SMPC led to small differences in the HVAC controls as shown in Figure 7.8.

Although both the DMPC and SMPC controls precool the space before the peak period,
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the SMPC case reduces the cooling set point by approximately 0.1◦C for the rest of the

day. This has little impact on the nighttime air temperature, but it does reduce the

temperature while the air conditioner is on. This leads to a small increase in energy costs

and a very small decrease in air comfort as quantified by the cost Jhvac.

Figure 7.8 HVAC simulation results for the DMPC and SMPC cases with ARIMAX
forecasts.

We note that there is no change in the DMPC and SMPC controls for the EV and

battery. In theory, the SMPC EV controls should be more conservative and might charge

the EV sooner to ensure a low EV inconvenience cost Jev; however, this behavior was not

shown in the simulation results.
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Table 7.4 Control performance results for each simulation

Control Forecast Jtou Jwh WH Cycles
Type Type ($/mo) ($/mo) (1/day)

Heuristic N/A 119.4 1.1 2.0
DMPC Exact 94.6 2.4 27.9
DMPC 30-day 94.2 9.2 24.5
DMPC ARIMAX 94.2 7.6 22.3
SMPC 30-day 96.9 1.4 4.0
SMPC ARIMAX 97.0 1.0 4.2

7.2.4 Control Performance

The control performance for all the simulations is shown in Table 7.4. The energy cost

Jtou and water heater comfort cost Jwh were the only costs from the MPC objective that

significantly contributed to the overall cost. All other costs were exactly zero except for

Jhvac, which was as large as $0.04/mo for some scenarios due to small temperature

deviations that exceeded the comfort range. Costs were calculated using the power and

states from the system model in OCHRE. The costs were aggregated over the full

simulation time of 13 days and then scaled to show monthly costs. We also report the

average number of water heating (WH) heat pump cycles per day from OCHRE. We note

that the electric resistance element was not turned on in any of the cases.

As expected, the DMPC with the exact forecast performs best when considering only

the objective function costs and not the water heater cycles. All MPC cases outperform

the heuristic case, primarily because of the delayed EV charging after the peak period. The

30-day horizon forecasts perform very similarly to the ARIMAX forecasts and had very

similar control strategies.

The SMPC cases outperform all other cases excluding the case with an exact forecast.

Compared to the heuristic control, they significantly reduce the energy cost and slightly

increase the number of water heater cycles. Compared to the DMPC cases, they have

slightly higher energy costs, much lower water discomfort costs, and much less water
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heating cycling.

The SMPC control had the largest impact on the device with the highest uncertainty in

the control variable: the water heater. Due to difficulty in forecasting water draws, the

water heater model inputs and outputs had significant uncertainty, which caused a large

difference between the DMPC and SMPC set points. The improvements in the SMPC

performance highlights the importance of stochastic controls, especially in systems with

high levels of uncertainty.

There is an interesting parallel between the differences in set points between the DMPC

and SMPC cases and the deadband of the heuristic control. The SMPC back-off

magnitudes act as a deadband that buffers the control variable from exceeding its

constraints. In this sense, the SMPC algorithm combines the best features of the heuristic

control and the DMPC control. In addition, the SMPC improves upon the heuristic control

by varying the size of the “deadband” based on the uncertainty in the control variable. We

also note that the back-off magnitudes are easily adjustable by updating the risk tolerance

of exceeding a constraint εxi .

7.2.5 Pareto Optimality Analysis

The cost coefficients that quantify the cost of occupant discomfort or inconvenience are

difficult to define in practice. Costs would vary considerably for different occupants, and

self-reported data may not reflect occupants’ actual preferences. For this reason, we

conduct a Pareto optimality analysis to assess the impact of these cost coefficients on the

control strategy. We focus on the hot water comfort cost coefficient because that cost term

contributed to the total control cost more than all other comfort costs, combined.

We vary the hot water cost coefficient λwh above and below the nominal value of

$0.01/◦C-L. We run 7 simulations with cost coefficient values from $3 × 10−5/◦C-L to

$0.03/◦C-L with logarithmic increments of approximately 3x. For each case, we solve the

SMPC and DMPC optimization problems for a single time step and record the energy cost

and the hot water discomfort amount for the horizon time. We note that this methodology
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is equivalent to weighted goal programming by setting the target costs to zero and varying

the weights of the two objective functions.

Figure 7.9 shows the Pareto front resulting from this analysis. Both the SMPC and

DMPC curves show that energy costs do not change significantly (less than $0.20/day),

while the hot water discomfort costs increase dramatically when the hot water cost

coefficient is small. There are multiple points on the left side of the figure, indicating that

there is a wide range of values for the cost coefficient that have a very small impact on the

control strategy. We note that the SMPC costs are much larger than the DMPC costs

because the SMPC uses conservative estimates for the water draws that lead to an

overestimation of costs.

Figure 7.9 Pareto front for water heater energy and discomfort costs for SMPC and DMPC
optimizations.

We find that there is a simple breakeven cost coefficient at which the control strategy

changes and hot water discomfort increases. This cost corresponds to the peak electricity

cost of the TOU rate, which in this case is $0.27/kWh. The heat capacity of water can be

written as 0.00116 kWh/◦C-L. Using the heat capacity and the water heater COP of 4.5,

the ideal breakeven cost would be about $7 × 10−5/◦C-L. This cost roughly corresponds to

being willing to pay $0.05 to have a standard 65-L shower that is 10◦C hotter. We believe
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that occupants are willing to pay more than this threshold in most cases.

7.2.6 Case Study Summary

This case study uses the full stochastic control framework from Chapter 4 to evaluate

multiple control strategies for a HEMS in a typical residential building under uncertain

conditions. We find that the SMPC algorithm performs best when using common forecasts

methods that incorporate uncertainty. While the results of this case study may not be

generalizeable to scenarios with other building properties, weather data, or occupant

schedules, we find that SMPC is able to incorporate the features of both MPC and

heuristic controls and is likely to provide benefits for systems with high levels of

uncertainty. We also use Pareto optimality analysis to show that the control strategy is not

dependent on the cost coefficient for water heating for reasonable parameter values.

7.3 Chapter Summary

This chapter presents two case studies that apply the stochastic control framework from

Chapter 4 to residential control applications with uncertain conditions. Both case studies

show that stochastic control methods improve control performance under conditions with

uncertainty. The first case study shows the benefits of stochastic battery controls when

optimizing for a demand charge and battery degradation. The second case study shows the

full functionality of the control framework for a HEMS in a typical building, and finds that

stochastic controls combine the best features of heuristic and deterministic control

strategies.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents the development of novel modeling and control methods for

residential applications. It provides a background on load flexibility and a literature review

of residential energy modeling and control research and best practices. It combines the

research and results of the author’s contributions in many publications to present a novel

residential energy model and a SMPC framework for controlling residential devices through

a HEMS. Modeling results for individual buildings and a community highlight the key

features of the model, and comparisons with other modeling techniques validate the

methods used. Case studies using the stochastic control framework highlight the

importance of incorporating modeling uncertainty in residential control applications and

show that stochastic methods outperform heuristic and deterministic methods under

uncertain conditions.

8.1 Key Findings

This section highlights the key findings of the dissertation and answers the five research

questions posed in Chapter 1. Key findings are categorized using the research questions,

which roughly correspond to the previous chapters of the dissertation.

8.1.1 Integrated Residential Energy Modeling

This section summarizes the key findings of Chapter 3 and answers the research

question:

1. How can integrated residential energy models accurately capture the impacts of load

flexibility on house power usage and occupant comfort?

We present the OCHRE model, a high-resolution, controllable, integrated residential

energy model. OCHRE models multiple controllable devices as DERs and can quantify

load flexibility for a residential building. The device models track power as well as state
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variables including temperature and state of charge. OCHRE includes a multi-node,

multi-zone building envelope model for accurate HVAC modeling, as well as a

voltage-dependency model for accurate modeling within distribution systems. These

detailed methods are essential components of an integrated residential energy model and

allow OCHRE to evaluate system performance in terms of energy consumption, costs, and

occupant comfort.

The proposed model captures the impacts of load flexibility on power usage and

occupant comfort. Simulation results show the impacts of various control strategies on

residential buildings using the OCHRE model. Time series analysis shows that common

control strategies, for example preconditioning and daily battery schedules, can shift DER

load profiles. This impacts the energy costs of the building and multiple occupant comfort

metrics, including air comfort, hot water comfort, and convenience associated with a fully

charged EV.

8.1.2 Model Validation

This section summarizes the key findings of Chapter 5 and answers the research

question:

2. How do integrated residential energy models compare against existing

state-of-the-art models?

Validation results show that OCHRE closely matches state-of-the-art models when

comparing time-series data and annual energy metrics. We compare the HVAC and water

heating models against EnergyPlus, and the EV model against EVI-pro. Different

modeling techniques lead to differences in energy consumption, particularly due to thermal

mass estimates, HVAC efficiency methods, and solar radiation through windows. The

models include similar output metrics for device power and occupant comfort. Ongoing

validation efforts will continue to improve these results.

Linearizing the OCHRE model for use in computationally efficient model-based control

methods creates small modeling errors. The model described in Chapter 4 uses
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linearization and model reduction techniques on the OCHRE envelope model, which allow

the linear model to be used efficiently in model-based controls. We show that these changes

lead to small errors in temperature and HVAC consumption that are unlikely to

significantly impact control performance.

8.1.3 Distributed Control Strategies

This section summarizes the key findings of Chapter 6 and answers the research

question:

3. How can integrated residential energy models capture the impacts of distributed

control strategies on grid services?

Community-scale co-simulation platforms are able to evaluate the grid impacts of

distributed control strategies. We develop a co-simulation framework that incorporates

multiple OCHRE building models, building-level controllers, and a distribution system

simulator. Two case studies show that flexible building loads are capable of shifting system

demand to reduce peak demand and to achieve a smoother community load profile. The

distribution system model also enabled the evaluation of local grid services including

distribution voltage regulation.

Many features of integrated residential energy models were critical in testing

distributed control strategies. Models needed to be modular, integrated, and

computationally efficient to work well in a co-simulation environment. Using physics-based

models that can measure occupant comfort allowed for additional metrics for evaluation.

Using diversified, occupant-based, and high-fidelity models allowed the co-simulation to

run at a high time resolution and led to finer resolution results to evaluate grid impacts.

8.1.4 Uncertainty in HEMS Controls

This section summarizes the key findings of Chapter 4 and answers the research

question:
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4. How can uncertainty from weather and occupancy behavior be incorporated in

model-based controls for residential energy systems?

Multiple forecasting methods quantify the uncertainty in weather and occupancy

behavior for use in model-based controls. These inputs are critical in residential energy

controls, and we show that their forecasts can have a significant amount of uncertainty. By

developing forecasts for these inputs, we can test control strategies with inputs that closely

match the information that would be available in real systems. Common forecasting

methods, including ARX, ARIMAX, and moving horizon methods, were used to show that

incorporating uncertainty in controls is feasible with inputs that are typically available.

Stochastic model predictive control is able to incorporate uncertain forecasts into the

control objective. The proposed control framework uses SMPC to optimize a control

objective while accounting for uncertainty in the model inputs and states. Forecasts with

uncertainty provide the input distributions, and a Kalman Filter is used to propagate the

uncertainty throughout the control horizon. The framework uses chance constraints to

ensure that metrics associated with occupant comfort are met with high probability.

The control framework incorporates other sources of uncertainty as well. While forecast

uncertainty from weather and occupant behavior is often the most important source,

uncertainty can also arise from the control model and from sensor measurements. SMPC

requires a linear control model to maintain computational efficiency and solvability, but

linearization creates modeling errors. Sensors can be noisy or biased or have low resolution,

leading to errors in state estimation. All of these sources can be incorporated in the control

framework.

8.1.5 HEMS Control Performance

This section summarizes the key findings of Chapter 7 and answers the research

question:

5. Do model-based controls perform better than rule-based controls for residential

energy systems with DERs when weather and occupancy forecasts are uncertain?
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Stochastic model predictive control performs better than deterministic or heuristic

methods in multiple case studies. The SMPC lead to more conservative control signals that

reduce the risk of incurring high costs from the impacts of uncertain variables. We show

that overall control preformance improves for a wide range of control applications,

including mitigating demand charge costs and occupant discomfort due to low hot water

temperatures.

Stochastic controls combine useful features of common deterministic and heuristic

control strategies. SMPC is an extension of deterministic MPC, which is the most common

control method for HEMS. Stochastic formulations include back-off magnitudes that mimic

deadbands that are often used in heuristic controls. These deadbands can vary over time

based on the uncertainty in the system variables and the risk tolerance of the user.

The forecast accuracy and the distribution of uncertain inputs can have a large impact

on the stochastic control performance. The highest costs are often incurred at times when

inputs—for example, peak demand or water draws—are at their maximum value. The

stochastic control is more likely to perform well if the forecast can accurately predict these

events. Because events like these are often infrequent and hard to predict, we do not

conclude that SMPC is the optimal strategy in all circumstances.

User-specified parameters can impact the performance of SMPC. Each objective with

an uncertain variable includes a parameter that quantifies the risk tolerance of the user.

Adjusting the parameter value leads to more conservative or aggressive controls and

impacts the control performance. Objective costs associated with occupant comfort also

include a coefficient that quantifies the cost of discomfort, which must be defined by the

user.

8.2 Future Work

Future work in both the modeling and control methods developed in this dissertation

can help make this work relevant to a broader range of applications.
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The OCHRE model can be a useful tool for residential energy modeling of communities,

single buildings, or individual devices. Additional validation work will enhance the validity

of the model, especially for use in a wider range of climates. Incorporating smart appliances

including refrigerators, clothes washers, and dryers, will enable more load diversity and

controllability. We plan to make the OCHRE model open source to make the model more

transparent and encourage more development and use from the research community.

The stochastic control framework for HEMS has many potential extensions. More

sophisticated forecasting and estimation methods, including those that use non-Gaussian

probability distributions, can more accurately quantify uncertainty and might improve

control performance. Time-varying or parameter-varying models can reduce model

uncertainty, and incorporating nonlinear models in the MPC framework with an Extended

Kalman Filter might also improve performance. Asynchronous control methods that

respond to real-time signals would be able to respond faster in real systems.

The control framework can also be used with additional objectives or in different

applications. Control objectives can include more complex rate structures and additional

costs associated with device degradation and cycling. Comfort cost objectives could use

quadratic or other convex functions to more accurately represent occupant preferences.

The control framework can also be used for related energy management problems for

commercial buildings or for an aggregation of many DERs. We recommend evaluating the

control framework under a more diverse set of scenarios and in laboratory testing before

conducting field demonstration pilots.
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