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ABSTRACT

Two drainage surveys conducted in southwestern Sumbawa, Indonesia, are used to 

compare four different multivariate data analysis techniques. The first drainage survey is 

an orientation survey conducted by Moedjiarto (1994) in 1993. The second drainage 

survey is a reconnaissance survey conducted by P.T. Newmont Nusa Tenggara in 1987. 

Both surveys contain geochemical, lithological, stream order, and drainage area data. 

Both survey areas also contain documented known mineral occurrences.

Factor analysis, discriminant analysis, cluster analysis, and neural networks 

techniques are all examined, compared and evaluated. R-mode factor analysis provides 

information on the element associations, or the associations of any variables. These 

associations can then be examined and mapped spatially to determine which associations 

represent mineralization and where to follow up.

Discriminant analysis creates a function that can be used to classify unknown 

samples. The only disadvantages to discriminant analysis are that the method needs 

enough training data to create the function and that the training data must meet three 

assumptions. If the data fail to the meet the assumptions, the method can still work; 

however, it may not be as reliable.
Cluster analysis, originally presented by Sjoekri (1997), was also useful in selecting 

drainages for future study. Sjoekri (1997) created exploration target classes from the 

results of the final orientation survey and applied them to the results from the 

reconnaissance survey. As a result, several drainages were selected for potential follow- 

up.
Neural networks work much the same way as discriminant analysis, by classifying 

objects (samples); however, neural networks do not require that the same three



assumptions be met for the data as discriminant analysis. However, the quantity of 

training patterns provided to the network can significantly influence the results.

Comparisons of the methods were made based upon three factors. The first is 

reliability, such that a method is deemed reliable if it correctly identifies nearly all of the 

drainages with known mineral occurrences. The second is ease-of-use, which considers 

the time and experience required to prepare for and run each technique. The third is cost- 

effectiveness, which incorporates both reliability and ease-of-use, and also examines the 

cost o f running each technique, in both time and money.

Overall, for the two data sets used, factor analysis was the most reliable and cost- 

effective and took the least amount of time. Cluster analysis was the second most reliable 

and is estimated to be the third most cost-effective, based upon the description of all of 

the steps taken to complete the analysis. Discriminant analysis was the third most 

reliable, for these two data sets, as two out of the three assumptions were violated.

Neural networks analysis was the least reliable o f the four methods as there were not 

enough training patterns available.
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CHAPTER 1 

INTRODUCTION

1.1 Purpose and Obi ectives

Mineral exploration is an interdisciplinary process aimed at locating economically 

viable mineral deposits. It is in this interdisciplinary nature that geological, geophysical, 

geochemical, and sometimes biogeochemical characteristics o f a study area’s 

environment are collected. Rocks, stream sediment, soil, water, and sometimes plant 

matter are all media that can be sampled during a mineral exploration program. For the 

geochemist, one principal phase of an exploration project is the interpretation of the data 

collected during the various stages o f the program, e.g. orientation and reconnaissance 

surveys, to establish the presence or absence of mineralization. The resulting large 

volume o f data that can be produced, along with economic criteria imparted by the 

investor, makes timely, reliable, and accurate interpretation of the data critical for success 

of an exploration program.

In mineral exploration, multivariate data analysis techniques enable the geochemist to 

evaluate each sample site for the presence or absence of mineralization by allowing the 

investigator to examine the relationships between variables, groups o f variables, or 

samples, which often reveal significant information about geological and geochemical 

processes at work in the environment (Rose et al., 1979). Multivariate statistical
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techniques such as principal component and factor analysis, discriminant analysis, cluster 

analysis, and linear regression have been widely used in the past to interpret large 

volumes o f exploration data. Neural network analysis, a data mining technique, has 

recently received attention in the mining and mineral exploration fields as an interpretive 

tool for exploration data.

The identification o f potentially mineralized areas relies on the relative accuracy of 

locating anomalous sample sites as well as the presence of diagnostic geochemical 

associations of elements; for example, Ag, As, Au, Cu, Mo, Pb, and Zn in porphyry 

copper deposits (Rose et al., 1979). To locate anomalous samples (e.g. typically samples 

with unusually high concentrations of elements), it is important to establish, or at least 

estimate, the relative background concentrations of elements for each sample site. 

Estimation of background concentrations of elements in many types of geological and 

environmental studies is a controversial issue. A first approximation can be made by 

selecting threshold values from histograms. The method proposed in Carranza and Hale 

(1997) is utilized to provide another approach. Their procedure takes into consideration 

the drainage area and the lithology, both of which significantly affect background 

geochemistry.

In this study, drainage geochemistry data from an orientation survey and a 

reconnaissance survey conducted in southwest Sumbawa, Indonesia, are examined and 

evaluated using four interpretive techniques: factor analysis, discriminant analysis, 

cluster analysis, and neural networks techniques. Each technique will first be assessed
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independently. The results from each o f these techniques are then compared on the basis 

of their reliability, ease o f use, and cost-effectiveness. For this study a technique is 

deemed reliable if  it correctly identifies at least 80 to 90% of the drainages with known 

mineral occurrences. Ease o f use criteria includes the time and experience required to 

prepare for and run each technique and interpret the results. Techniques are cost- 

effective if  the overall time to run and interpret each technique is matched by reliable 

output and a low overhead cost, such as purchase of software or purchase of experience. 

The goal is to provide recommendations as to which technique or techniques are most 

effective as aids for mineral exploration projects in environmental settings similar to 

southwestern Sumbawa, Indonesia.

1.2. Location of Study Area

The island of Sumbawa is one of the two major islands in the Province of West Nusa 

Tenggara in the Lesser Sunda Islands (Figure 1.1a), which comprise the south-central to 

southeastern segment of Indonesia (van Leeuwen, 1994; Electronic Information 

Management Unit (PPED), 1998). Both the orientation and reconnaissance surveys were 

conducted within the study area denoted on Figure 1.1b.
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1.3 Previous Work

The original data sets consist o f an orientation survey conducted by Moedjiarto in 

1993 and a reconnaissance survey conducted by P.T. Newmont Nusa Tenggara (NNT) in 

1987 (Sjoekri, 1997). Both surveys contain stream sediment drainage geochemical data. 

Initial data organization, presentation, and cluster analysis was presented by Sjoekri 

(1997). These data sets were chosen because they contain well-documented areas of 

known mineralization, including the Batu Hijau porphyry copper-gold deposit.

Multivariate data analysis is often used to aid data interpretation. The four methods 

that are addressed in this study, factor analysis, discriminant analysis, cluster analysis, 

and neural networks techniques, all have been used in the past for interpreting 

geochemical exploration data. Each method has something different to offer the 

exploration geochemist.

1.3.1 Factor Analysis

Factor analysis is a derivative of principal components analysis (PCA). Both 

methods are forms of multivariate techniques that reveal underlying patterns or processes 

in data by examining the interrelationships o f the variables (Davis, 1986; Swan and 

Sandilands, 1995). Principal components analysis retains all of the variability of the 

variables (Davis, 1986). Factor analysis, in contrast, is based on the assumption that the 

majority of the variability within a data set can be represented by a smaller number of 

uncorrelated underlying factors (Davis, 1986). Furthermore, it is anticipated that these
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factors or element associations can be interpreted as geological or geochemical features 

present in the survey area, including bedrock geology, surficial processes, and 

mineralization. It is this feature that is most useful in establishing the underlying 

processes in an area and thereby assessing if  the area has potential for mineral 

exploration.

Both principal components and factor analysis have been used extensively in the past 

for mineral and petroleum exploration (Howarth and Sinding-Larsen, 1983). Closs and 

Nichol (1975) examined the application of R-mode factor analysis in determining the 

principal metal associations related to both bedrock and surficial processes at work in the 

Notre Dame Bay district of Newfoundland. The principal assumption was that different 

lithologies and mineral occurrences are characterized by different element associations. 

Closs and Nichol (1975) proposed that factor analysis can aid in recognizing these 

element associations that can sometimes be hidden within the structure of the data. 

Therefore, various lithological signatures, potential mineral occurrences, and surficial 

processes can be identified more reliably using factor analysis than when examining 

single-element data.

Halfpenny and Mazzucchilli (1999) provide a recent example of the use of factor 

analysis in evaluation of stream sediment drainage survey data in the Himalayan 

mountains of northern Pakistan. The authors found that the dispersion patterns of a 

number of elements closely reflected the regional geology; however, five of the 10 

factors were believed to represent mineralization in the region. Additional factors
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contained associations of elements that share weathering characteristics, suggesting that 

some factors reflect the geochemical weathering environment as well.

Regment and Joreskog (1993) have noted the use of factor analysis in petrology, 

mineralogy, geochemistry of magmas, and distribution of heavy minerals. They also 

noted that factor analysis used to study the distribution of heavy minerals from the Gulf 

of California and the Orinoco-Guyana shelf provided results that were significantly 

different and more meaningful than those obtained from simple inspection of the raw 

data.

1.3.2 Discriminant Analysis

Discriminant analysis is a form of classification that requires a priori knowledge of  

the problem to create a function by which unknown samples can be classified (Davis,

1986). In this method multivariate data are combined in such a way to create a linear 

relationship which optimizes the separation of two or more populations (Rose et al.,

1979). This method has been used extensively in mineral exploration because it allows 

for the discrimination between mineralized and nonmineralized areas. It is also used 

rather frequently to establish background geochemistry within a study area (Carranza and 

Hale, 1997). One principal benefit is that this method is statistical and, as such, the 

alternative solutions can be tested for their statistical significance in addition to 

evaluating the percentage o f correctly classified objects.
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Conradsen et al. (1991) utilized discriminant analysis on a data set consisting of 

Landsat, radiometric, geophysical, and geochemical data to investigate possible uranium 

mineralization in southern Greenland. While the study was not specifically drainage 

geochemistry, a parallel is drawn between the pixel size and the drainage basin as they 

were evaluating the pixels based upon their associated stream geochemistry. Conradsen 

et al. (1991) were successful in locating potential uranium mineralization using the 

discriminant analysis method on the combined data set.

Fedikow et al. (1991) used a step-wise discriminant analysis method which only 

retained those variables that were most valuable to the discrimination between 

mineralized and nonmineralized areas. They tested the discriminant function by 

classifying their original training data set to determine the percentage of misclassified 

samples. Their study led to the location o f five potentially mineralized areas, only two of  

which showed elevated gold values in the single element data analysis.

Clark et al. (1989) used discriminant analysis on tourmaline compositions as a tool 

for mineral exploration because o f the extensive solid solution within the tourmaline 

structure and tourmaline’s relation with hydrothermal deposits. While the authors’ 

findings depended upon the origin o f the deposit from which the tourmaline was sampled, 

they were successful in correctly classifying greater than 72% of the samples as being 

from a non-granite mineralized, granite-related mineralized, and granite-related barren 

deposits, depending on the variables that they used to define the discriminant function.
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1.3.3 Cluster Analysis

Cluster analysis is a classification scheme that, ideally, forms separate relatively 

homogeneous groups from an originally heterogeneous data set (Davis, 1986). The 

principle behind cluster analysis is that the similarities or dissimilarities between samples, 

as evident from their characteristics (i.e. measured variables, such as geochemistry, 

lithology, or geophysics data), can be used to group together samples that are the most 

similar thereby forming clusters. The characteristics o f the samples within each cluster 

can then be examined for potential indications of the target mineralization.

Several studies in the mineral exploration field have utilized cluster analysis, for 

example, Hesp and Rigby (1973), Obial and James (1973), Rose et al. (1979), and 

Sjoekri (1997). Rose et al. (1979) noted that for mineral exploration the “goal of cluster 

analysis might be recognition of separate ore and background clusters” (page 533).

Sjoekri (1997) used the technique to produce a classification scheme for mineral 

exploration in Sumbawa, Indonesia (discussed further in Chapter 7).

Hesp and Rigby (1973) examined the application of cluster analysis to major and 

trace element concentrations of rock samples from the New England igneous complex in 

New South Wales, Australia. The authors found that cluster analysis improves the 

mapping resolution and geochemical characterization of rocks that had been previously 

mapped. Furthermore, the clusters may reveal information related to processes of ore 

formation and exploration.
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Obial and James (1973) used cluster analysis on stream sediments in Derbyshire, 

England, to classify catchments into groups based upon their geochemical signatures. 

Three clusters were produced, the first two included sediments from limestone and shale 

drainages, respectively. The third group showed indications of Pb-Zn mineralization.

1.3.4 Neural Networks

Neural networks consist o f a category o f computer applications that use pattern 

recognition to classify objects. Neural networks, modeled after the human brain, were 

first developed in the biological and psychological sciences as experiments to better 

understand observations in behavior and brain construction (Eberhart and Dobbins,

1990). Over the past forty years of development, several variations of neural network 

applications have been utilized in many different fields including financial, 

psychological, biological, and more recently geological and petroleum exploration 

projects for classification, pattern recognition, and predictions (Brown et al., 2000).

Neural networks, like discriminant analysis techniques, require a priori knowledge of 

the problem so that adequate training data can be selected, although there are versions 

which do not require a priori knowledge. The ultimate goal o f neural networks 

applications in mineral exploration is to classify unknown objects as either relating to 

mineralized or barren areas. Neural networks techniques, unlike discriminant analysis, 

do not require a normalized data set as the techniques are designed to look for patterns 

rather than perform regression.
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Neural networks techniques are, once trained, supposed to save time and produce 

more precise results (Wong et al., 1995; Singer and Kouda, 1997; Brown et al., 2000). 

Both o f these aspects are critical to mineral exploration, where inaccurate prospecting can 

be extremely costly and time consuming. In this respect, a neural network application 

will be compared with previously mentioned techniques to see if  the technique is as 

useful as it appears to be.

Wu and Zhou (1993) evaluated the application of neural network techniques for ore 

grade estimation. The authors found that the neural network solution was more reliable 

and universally applicable to any spatial grade distribution than conventional techniques 

because the network “learns” the pattern o f the ore grade variation. Wu and Zhou (1993) 

further noted that neural networks work very well with highly variable data. The authors 

also caution that neural networks should be used in conjunction with traditional methods 

as the neural networks can produce excellent pattern recognition and the traditional 

methods can be used for more precise calculations.

Clare and Cohen (2001) evaluated the use o f unsupervised neural networks to 

organize multivariate stream sediment data into classes without a priori knowledge. The 

principal benefit of using the modified form o f the unsupervised Kohonen self-organizing 

map is that it works well with nonlinear, nonparametric data. The authors found that the 

unsupervised techniques provide a viable alternative to other multivariate statistical 

methods as it was able to identify both outlier anomalies, those with higher values for
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some elements, and nonoutlier anomalies, those within the common spread of values for 

each element.

1.3.5 Previous Comparative Studies

Comparative studies between multivariate statistical techniques abound, however, 

relatively few are specifically related to mineral exploration. Several authors have 

compared various multivariate statistical techniques for interpreting geochemical data. 

Chattel]ee and Strong (1984) compared discriminant analysis and factor analysis methods 

for identifying characteristic element associations related to uranium mineralization. 

Brown et al. (2000) compared neural networks and principal component analysis to 

produce gold prospectivity maps. Wong et al. (1995) compared neural networks and 

discriminant analysis to predict lithofacies properties for genetic reservoir 

characterization.

1.3.5.1 Chatteriee and Strong (1984)

Chattel]ee and Strong (1984) compared discriminant analysis and factor analysis as 

tools for recognizing and identifying associations of elements indicative of 

mineralization. The authors examined the Millet Brook uranium prospect in Nova Scotia, 

using a data set of approximately 128 samples from diamond drill cores through 

unaltered, altered and mineralized granodiorite.
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Discriminant analysis was used to develop a function that could distinguish between 

altered and unaltered granodiorite, as the altered granodiorites were associated with 

mineralization within the prospect. Chatterjee and Strong (1984) describe one basic 

criterion for the evaluation of a discriminant function, which states that the difference 

between the value of the discriminant scores for each group must be greater than the 

variation within each group. Their discriminant function failed this criterion, even 

though the two groups showed a distinct separation, because the altered group, showing 

four separate subgroups contained a much larger within-group variance compared with 

the unaltered group. Chatteijee and Strong (1984) examined the samples within the 

subgroups and noted that they corresponded to different alteration assemblages, e.g. 

silicification versus potassic, and then created discriminant functions which would 

differentiate between the unaltered and each type of alteration assemblage separately, for 

example, unaltered versus silicified granodiorites. When the discriminant score from the 

first function was plotted against the score for the second function, the different groups — 

unaltered, silicified, etc -  were in clearly separate groupings.

The discriminant analysis needed a priori information, i.e. the authors initially 

grouped the samples as either altered or unaltered granodiorites based upon pétrographie 

descriptions of the samples. For comparison, factor analysis was used to examine if the 

same grouping of the samples could occur without a priori knowledge. The authors used 

an R-mode factor analysis technique that began with principal components analysis 

followed by varimax rotation. Different factors were interpreted to represent separate
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geological and geochemical processes. The authors concluded that the factors "reveal a 

range of important element associates and patterns which can be associated with the 

different alteration and mineralization effects, and which may prove to have broader 

métallogénie and exploration significance” (p. 304). Chatteijee and Strong (1984) stated 

the difference between discriminant analysis and factor analysis is evident in the need for 

a priori knowledge, which factor analysis did not need. Both multivariate statistical 

techniques provided the authors with essentially the same information, although in 

different interpretive ways.

1.3.5.2 Wong et al. (T995i

Wong et al. (1995) compared the application of discriminant analysis with neural 

network techniques for predicting lithofacies, porosity and permeability for genetic 

reservoir characterization. Wong et al. (1995) used two well logs, one as a training data 

set and the other as a validation or testing data set. The authors described discriminant 

analysis as a "powerful and robust classification technique” (p. 192), which requires 

normal or multinormal data distribution for each class to be established. In contrast, 

Wong et al. (1995) described neural networks techniques as a computer model designed 

to learn from examples, much like the human brain, which does not require normally 

distributed data.

Wong et al. (1995) stated that while discriminant analysis is an established reliable 

method for estimating lithofacies, porosity, and permeability, back-propagating neural
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networks performed as well if  not better. They suggested that, while the training time for 

neural networks can be more intensive than with discriminant analysis, that once the 

training patterns are in place, the analysis time is substantially reduced. In addition, 

neural networks techniques work better with nonnormally distributed or extremely 

complex data. The authors noted that both methods performed equally well in lithofacies 

classification, but neural networks techniques provided better estimates of porosity and 

permeability.

1.3.5.3 Brown et al. 12000)

Brown et al. (2000) compared neural networks to various data analysis techniques, 

including weights o f evidence and principal components analysis, for the purpose of 

producing prospectivity maps for gold exploration in the Timbarra -  Poverty Point 

goldfield in New South Wales, Australia. The authors stated that neural network 

applications allow data sets to be combined without the “loss o f information” that can 

occur as a result o f combining information and converting it into statistically uncorrelated 

components as in principal component or factor analysis. In contrast, it is not the “loss of 

information” that could occur during factor analysis, but rather the loss o f nonessential 

variance. The premise of factor analysis is that the loss of variance, not necessarily 

information, may bring out the underlying patterns or associations within the data that 

could be representative o f significant geological or geochemical processes.
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Brown et al. (2000) suggest a key benefit of neural network applications being that 

the networks can respond in a nonlinear way when assigning high favorability to an 

output. In mineral exploration, high favorability might correspond to a “most likely” 

mineralized rating, e.g. an area that should be further investigated for mineralization. For 

example, if three parameters are required for the prediction of gold favorability, one of 

which is essential, the neural network will only assign the highest favorability if the 

essential one is present, thus assigning a lower favorability if only the other two required 

parameters are present. This contrasts with other interpretive methods that work on more 

of an additive model, so that even if  the one essential parameter is missing, the locality 

would still receive a high favorability because two of the three parameters are present.

Brown et al. (2000) cite several advantages to neural networks techniques, compared 

with standard multivariate statistical methods: (1) they can function without pre-existing 

knowledge; (2) they can extract patterns which are not visible by single element or many 

of the standard statistical techniques; (3) they can have acceptable accuracy even if  data 

are noisy or contains outliers; and (4) they can perform well when input parameters are 

interdependent and exhibit significant nonlinearity (p. 758). Thus Brown et al. (2000) 

confirmed that the properties of neural networks can adequately recognize underlying 

patterns and classify geochemical data. The authors noted, however, that setting up a 

neural network is an iterative process. In many, but not all neural networks, the network 

is trained by adjusting the weights o f the connections between nodes to reduce the error 

between the given output and the desired output, iteratively until the error between the



17

two outputs reaches an acceptable level. In this process the network learns to recognize 

underlying patterns in the data set that correspond with the characteristics o f known 

mineral occurrences for correct classification. This can increase the initial set up time for 

the network; however, processing data through the network will be much more efficient 

than for more conventional multivariate statistical techniques. In conclusion. Brown et 

al. (2000) noted that through “statistical measures used to compare map quality 

indicate[d] that the neural network method performs as well as or better than existing 

methods” (p. 766).

1.4. Outline of Thesis

The geology of southwest Sumbawa and the characteristics o f the known mineral 

occurrences in the survey areas are discussed in Chapter 2. The characteristics of each 

drainage survey, along with a general synopsis o f drainage surveys and how they are 

useful in mineral exploration are presented in Chapter 3. In Chapter 4, the initial 

univariate data analysis is presented to aid the interpretation and discussion of the results 

of the multivariate data analysis techniques that are used in this study.

Chapters 5 through 8 contain more detailed descriptions of each multivariate method, 

along with the methodology used and results for each survey. A discussion of the 

individual results for each method is provided at the end of its respective chapter.

Chapter 5 addresses factor analysis. Chapter 6 addresses discriminant analysis. Chapter 

7 describes the methodology and results from Sjoekri (1997) cluster analysis. Chapter 8
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addresses neural networks techniques. Chapter 9 contains the discussion and comparison 

for the different multivariate techniques examined in this study, along with 

recommendations for future study.
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CHAPTER 2 

GEOLOGY OF SOUTHWEST SUBAWA

2.1 Geography

The study area is located in rural southwestern Sumbawa, Indonesia. Sumbawa is 

generally sparsely populated, with the largest city at Raba in the eastern portion of the 

island (Figure 1.1b). The island is accessible by boat or local aircraft from neighboring 

islands.

Sumbawa has a tropical climate with high humidity, averaging 82%, and high 

temperatures, ranging from 68° to 86° F (20° to 30° C) (Sjoekri, 1997; Electronic 

Information Management Unit (PPED), 1998). Southwest Sumbawa experiences high 

rainfall averaging 39 to 51 inches (100 to 130 cm) per year, while localized rainfall at 

Batu Hijau has been approximated at 86.6 inches (220 cm) per year (DeJong-Boers,

2001; DeMull et al., 2001). A narrow coastal plain along the south and western coasts is 

cut by river valleys, rising steeply to mountainous terrain (DeMull et al., 2001). The 

topographic relief o f southwestern Sumbawa is dominantly hilly to mountainous with a 

well-developed drainage system. Plate I is a topographic map of southwest Sumbawa, 

Indonesia. Southwest Sumbawa contains dense vegetation, ranging from grasses and low 

scrub brush at lower elevations through deciduous forest into evergreen rain forests in 

high mountainous terrain (DeJong-Boers, 2001).
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2.2 Regional and Local Geology

Sumbawa Island is located within the Sunda — Banda arc system, on the eastern edge 

of Sunda Shelf (Sillitoe, 1994; Sjoekri, 1997). The Sunda -  Banda arc system extends 

from northern Sumatra to north o f the Banda sea, some 3,726 miles (6,000 km) in length 

(Figure 2.1). The arc system forms the south and southeastern border o f Indonesia 

marking a zone of convergence of three major tectonic plates: the Indian-Australian, the 

Eurasian and the Pacific plates (Foden and Vame, 1980). While the Sunda — Banda arc 

system is typically referred to as one system, it is actually comprised of multiple arc 

systems. The islands in the province of Nusa Tenggara, including Sumbawa, are located 

at the transition zone between the Sunda arc to the west and the Banda arc to the east 

(Sjoekri, 1997). At Sumbawa, the northward-moving Indian-Australian plate is being 

orthogonally subducted beneath the south-facing Banda arc (Cardwell and Isacks, 1981). 

To the immediate east o f this region the Banda arc makes a bend back to the west due to 

intersection with the westward moving Pacific plate (Barber et al., 1981).

The regional geology o f Sumbawa consists of Tertiary and Quaternary volcanic and 

sedimentary rocks and Tertiary intrusive rocks. Northern parts o f Sumbawa are covered 

by Quaternary andesitic volcanic rocks, erupted from Tambora, an active volcano on the 

northern portion of Sumbawa (Meldrum et al., 1994). Tambora’s most recent eruption 

was in 1985 and covered Sumbawa with ash up to 24 inches (60 cm) thick. Cardwell



21

A
'S

S
$

i
cd

î
co
I
i

g>II ?
O h O s-, o\

îî
u  -g
^  cd 
cd <u k-1 no
o i

<L>

â

1

I
S3

s ï  
- %
<N g

il
Oh T)



22

and Isacks (1981) described the regional characteristics o f the calc-alkaline basaltic to 

andesitic rocks as generally glassy, containing strongly zoned plagioclase (Ango to A n5o), 

augite, hypersthene and accessory ilmenite and magnetite. Nishimura et al. (1981) 

provided a range of 23.7 to 5.3 Ma for tuff samples in the central portion of western 

Sumbawa, just northeast of the study area.

The oldest exposed rocks in southwestern Sumbawa are Tertiary andesitic pyroclastic 

flows and intermediate intrusion with minor shallow marine sedimentary rocks (Meldrum 

et al, 1994; Sjoekri, 1997). Intrusive rocks are distributed along an east-west trend 

(Figure 2.2 and Plate II). Older diorite and microdiorite intrusions occur as dikes and 

stocks within the volcanic and sedimentary rocks. Younger intrusive rocks consist of 

quartz diorites and tonalités, which host the Batu Hijau porphyry copper-gold deposit 

(Sjoekri, 1997).

2.3 Mineralization

Several mineral deposit types have been identified throughout Indonesia, including: 

(1) porphyry copper-gold; (2) porphyry molybdenum; (3) skam copper-gold; (4) low- 

sulfidation epithermal gold; (5) high-sulfrdation epithermal gold-copper; and (6) 

volcanogenic massive sulfide gold (Sillitoe, 1994). Porphyry copper-gold and low- 

sulfidation epithermal gold deposits are known in southwestern Sumbawa (Figure 2.3) 

(Sjoekri, 1997). The most famous of the porphyry copper-gold deposits in this region is 

the Batu Hijau deposit.
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2.3.1 Porphyry Copper-Gold Deposits

Porphyry copper-gold deposits are frequently found along the circum-Pacific ring in 

island-arc volcanic settings (Cox and Singer, 1992) with ages ranging between 

Cretaceous and Quaternary, the most common being Tertiary (Edwards and Atkinson, 

1986; Cox, 1992). Porphyry copper-gold deposits are high tonnage, low-grade ore 

deposits (Edwards and Atkinson, 1986) related to igneous activity along subduction 

zones. Porphyry copper-gold deposits are typically found in felsic plutonic host rocks, 

such as tonalité, monzogranite, and various other felsic rocks (Cox, 1992; Sjoekri, 1997). 

Mineralization typically consists of disseminated ore bodies, controlled on the local scale 

by structures such as fractures (Sutulov, 1975; Edwards and Atkinson, 1986; Cox, 1992; 

Corbett and Leach, 1998).

Extensive hydrothermal alteration of the host intrusion and surrounding country rocks 

accompanies formation o f these deposits (Cox and Singer, 1992; Sjoekri, 1997). 

Alteration zones, therefore, are important characteristics o f porphyry copper-gold 

deposits. Sutulov (1975), Edwards and Atkinson (1986), Guilbert and Park (1986) and 

Cox (1992) describe four general alteration zones common to most porphyry copper-gold 

deposits:

1) Potassic -  this zone is typically central to the ore and 

consists o f primarily biotite, orthoclase and quartz.

Additionally, accessory albite, sericite, anhydrite, apatite,
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magnetite, chalcopyrite, bomite and pyrite may also be 

present.

2) Phyllic — this zone is generally gradational outward from 

and commonly overprints the potassic zone and consists 

primarily of quartz, sericite and pyrite, and possibly chlorite 

if  Mg is present.

3) Argillic -  this zone is also gradational outward from phyllic 

and/or potassic alteration zones; however, overprinting o f  

original alteration zones such as potassic or propylitic is 

common. This zone consists primarily of quartz, pyrite, and 

clays. Intermediate argillic alteration is characterized by 

montmorillonite, illite, chlorite, and possibly kaolinite.

Advanced argillic alteration is characterized by kaolinite, 

quartz or amorphous silica, and possibly corundum.

4) Propylitic -  this zone typically forms the outer halo of 

alteration and can be quite extensive. It is characterized by 

chlorite, epidote and calcite. Additional accessory minerals 

may include sericite, apatite, hematite, anhydrite and 

ankerite, pyrite and chalcopyrite.

These alteration zones can be, collectively, quite large and extend more than 2,500 feet 

(762 m) beyond the main ore body (Sutulov, 1975). Propylitic alteration, while one of 

the general types of alteration characteristic o f porphyry copper-gold deposits, is not 

always related to mineralization, as the mineral assemblage is commonly found in 

nonmineralized metamorphic terranes.
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Porphyry copper-gold deposits located in southwestern Sumbawa include the 

Batu Hijau and Dodo-Elang deposits. Both deposits are located in andesitic volcanic 

terranes which are intruded by igneous complexes. The intrusive igneous complexes may 

contain shallow granodiorites, diorites, feldspar porphyries and tonalités (van Leeuwen, 

1994). Both the Batu Hijau and Dodo-Elang deposits were discovered during regional 

exploration for gold mineralization (van Leeuwen, 1994). The Dodo-Elang deposit is 

located east o f the study area and is not discussed further in this study.

2.3.1.1 Batu Hiiau Deposit

The Batu Hijau deposit is a porphyry copper-gold deposit that is currently in 

production under PT. Newmont Nusa Tenggara (NNT) (Figure 2.3). It is located 

approximately 6.2 miles (10 km) from the southern coast in the southwest comer of  

Sumbawa at the headwaters o f the Sejorang and Tongoloka drainages (Meldrum et al, 

1994; Sjoekri, 1997). The top of the deposit is at 1640 ft (500 m) above sea level in 

mountainous terrain having well-developed drainage (Sjoekri, 1997; Rendu, 1998; De 

Mull et al., 2001).

The Batu Hijau deposit is Late Tertiary in age, estimated to be between 4.9 to 5.1 Ma 

(Sillitoe, 2000). Most o f the mineralization is located within an intrusive complex within 

andesitic metavolcanic terrane (Meldrum et al., 1994; Sjoekri, 1997; DeMull et al, 2001). 

The intrusive complex consists of an early intrusion of hornblende microdiorite, followed 

by two subsequent intrusions of tonalité. The first tonalité intrusion, here called “old
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tonalité,” is light gray and porphyritic, containing quartz, plagioclase, hornblende and 

primary biotite within a matrix o f the same mineralogy and hosts the main portion of the 

mineralization (Meldrum et ah, 1994; DeMull et al., 2001). The second intrusion of 

tonalité, here called “young tonalité,” has similar mineralogy; however, it is more quartz 

rich with fewer mafic minerals. Figure 2.4 is a geological cross section through the Batu 

Hijau deposit looking northeast, which displays the cross-cutting relationships o f the 

multiple intrusions as well as their relationship to ore mineralization.

Figure 2.5 is a map of the alteration zones at Batu Hijau, which are similar to the 

general descriptions given in section 2.3.1; however, the spatial relationships are 

somewhat different. The potassic zone, which is located central to the ore body and hosts 

the majority of the copper-gold mineralization (van Leeuwen, 1994), consists of quartz, 

magnetite, and biotite. Epidote has been found below 2,133 feet (650 m) (Meldrum et al, 

1994). Propylitic alteration is peripheral to the potassic alteration zone, consisting of 

chlorite, epidote, magnetite, calcite, and pyrite (Meldrum et al, 1994). Intermediate 

argillic alteration, characterized by sericite, chlorite, specular hematite and, in places, 

pyrite overprints the potassic and propylitic alteration zones. The overprinting is 

controlled by fractures and veins (Meldrum et al, 1994). Advanced argillic alteration 

zone, characterized by kaolinite, quartz, alunite, pyrophyllite, and tourmaline, is located 

within the main argillic alteration zone (Meldrum et al, 1994). The main argillic 

alteration, including sericite, kaolinite, and pyrite borders the potassic alteration zone on 

both the east and west sides. Phyllic alteration is nearly absent at the surface of Batu
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Figure 2.5. Alteration zones about Batu Hijau. Intermediate argillic alteration overprints 
propylitic alteration. All o f the potassic alteration is also overprinted by intermediate 
argillic alteration (redrawn from Meldrum et al., 1994)
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Hijau deposit, but is present at depth. It is best developed in the young tonalité where it 

overprints the central portion of the potassic alteration (Meldrum et ah, 1994).

2.3.1.2 Other Porphyry Copper-Gold Occurrences

Several other porphyry copper-gold occurrences are located in southwestern 

Sumbawa, along a west-northwest to east-southeast trend (Figure 2.3). The Air Merah 

and Katala prospects are the two most closely resembling Batu Hijau. Located 0.6 miles 

(1 km) northwest and 1.2 miles (2 km) northeast o f Batu Hijau, respectively, the two 

occur in hornblende microdiorite, hornblende biotite diorite, and feldspar hornblende 

quartz porphyry intruded into propylitically altered andesitic volcanic rocks (Sjoekri, 

1997). Pyrite is the predominant mineral phase at Air Merah. Both prospects contain 

"weaker" geochemical signatures compared with that at Batu Hijau. Sjoekri (1997) notes 

that mineralization at Katala is subeconomic.

The Arung Arak prospect, located 2.2 miles (3.5 km) west of Batu Hijau, occurs in 

hornblende biotite diorite and feldspar porphyry intruding propylitically altered andesitic 

porphyry (Sjoekri, 1997). Potassic alteration occurs within the hornblende biotite diorite 

intrusion, which also hosts the bulk of the mineralization (Sjoekri, 1997).

The Tongoloka and Sekongkang prospects are located 3.1 miles (5 km) southeast and

4.3 miles (7 km) northwest from Batu Hijau, respectively. The Tongoloka prospect 

occurs in consists o f a diorite intrusion with intermittent quartz veins within andesitic 

volcanic rocks (Sjoekri, 1997). Potassic alteration zones are present within the
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Tongoloka prospect; however, the distribution is associated with a narrow quartz diorite 

dike (Sjoekri, 1997). The Sekongkang prospect occurs in quartz diorite and andésite 

porphyry which intrudes multiple altered quartz porphyry stocks within andesitic 

metavolcanic country rock (Sjoekri, 1997). Sjoekri (1997) also noted a significant 

molybdenum content at the Sekongkang prospect, with molybdenum values greater than 

10 ppm in soils. Both prospects exhibit weak copper mineralization.

2.3.2 Low-Sulfidation Epithermal Gold Deposits

Low-sulfidation epithermal gold occurrences are common within southwest 

Sumbawa, with vein systems described as the crystalline-quartz-illite type (Sjoekri, 

1997). Vein breccias are found within the study area (Sillitoe, 1994). Figure 2.6 depicts 

the spatial and potentially genetic relationship between low-sulfidation epithermal gold 

deposits and porphyry copper-gold deposits. Not all of the deposits shown in Figure 2.3 

are discussed in the text as information was unobtainable.

2.3.2.1 Gold Ridge Prospect

The Gold Ridge prospect is an example of a low-sulfidation epithermal gold 

mineralization within the study area. Located approximately 1.9 miles (3 km) west- 

northwest from the Batu Hijau deposit, it occurs within metavolcanic rocks intruded by 

diorite and feldspar porphyry dikes (Sjoekri, 1997). Mineralization is structurally
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controlled, mainly by fractures trending northeast. The northeast-trending structures, 

mostly faults, are argillized with pyrite and minor silica (Sjoekri, 1997). A diatreme 

breccia has been mapped in this area by NNT geologists.

2.3.2.2 Jereweh Prospect

The Jereweh prospect, located approximately 6.2 miles (10 km) northwest of Batu 

Hijau, is comprised of four mineralized areas: The Chicken vein, the Liang anomaly, the 

Cosong vein, and Bedening silicified zone (Sjoekri, 1997). The prospect occurs in 

andésites with minor diorite intrusions that occur in a north-south trend (Sjoekri, 1997). 

Limestone and clastic sediment overlay the andésites and are unconformably overlain by 

laharic sediment.

The Chicken vein is oriented northeast-southwest and is highly silicified and 

brecciated. The Liang anomaly, consisting of argillized andesitic tuffs, is centered about 

an area where a major east-west-trending structure is cut by a north-south trending 

structure (Sjoekri, 1997, page 32). The Cosong vein contains clasts of silicified 

limestone within a gossan at the contact of dacite lavas and overlying limestone (Sjoekri, 

1997). The Bedening zone comprises a silicified zone along contacts between carbonate 

sedimentary rocks and volcanic units.
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2.3.2.3 Other Low-Sulfidation Epithermal Gold Occurrences

Located 3.1 miles (5 km) southwest o f Batu Hijau, the Bambu prospect, contains 

mineralization within a multiple vein system hosted by andesitic lava with bedded 

limestone, calcareous siltstone and shale (Sjoekri, 1997). Propylitic and weak argillic 

alteration are present within the prospect. Veins measured roughly 7 to 16 feet (2 to 5 

meters) wide with some colloform banding and 3% to 10 % sulfide content.

The Teluk Puna prospect, located 3.1 miles (5 km) southeast of Batu Hijau, contains 

several strong north-northeast and north-northwest structures. Quartz veining is 

podiform and discontinuous (Sjoekri, 1997).

2.3.3 Alluvial Style Gold Occurrence

Elevated gold concentrations have been documented in the tributaries entering the 

Lower Sejorang prospect; however, follow-up studies to date have not discovered the 

source of the anomalies (Sjoekri, 1997). This occurrence could simply be the 

accumulation of gold within the Sejorang River basin due to weathering of the numerous 

deposits upstream.
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CHAPTER 3 

DRAINAGE SURVEYS

3.1 Drainage Surveys

Drainage surveys are commonly used in mineral exploration programs as a means of 

collecting composite samples representative of their respective drainage areas. Data 

collected during drainage surveys can contain the elemental concentrations of stream 

sediment and water. One sample, or a small number of samples, can be used to evaluate 

large areas for possible mineralization. It is for this reason that many reconnaissance 

programs start with or include stream sediment geochemistry (Rose et al., 1979).

Two main types o f drainage surveys are commonly used in mineral exploration: 

orientation surveys and reconnaissance surveys. Orientation surveys are detailed surveys 

of areas with known mineralization. They provide technical specifications to guide the 

design o f routine reconnaissance surveys used to locate similar mineralization within a 

search area o f interest (Rose et al., 1979). Reconnaissance surveys typically have a 

sample density o f one sample per 1 to 100 km2, covering thousands of square kilometers 

(Rose et al., 1979), with the purpose of identifying potentially mineralized areas for more 

specific follow-up surveys.

Stream sediment sampling is the most common sampling method used in drainage 

surveys for three reasons. First, the collection and analysis o f stream sediment is easier
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than for water samples because it doesn’t involve special containers that won’t react with 

the water or the debate about acidification of samples. Second, at least initially, stream 

sediment was preferable to water samples because detection limits for elements in water 

were very high. Even as the detection limits for elements in solution have become lower 

via improvements in instrumental analysis, stream sediment is still preferred simply 

because it is easier to sample and can be done by people with minimal training. Third, 

stream sediment can provide useful results in most climatic regions and terrains provided 

the area is covered by well-developed drainage systems (Rose et al., 1979; Plant and 

Hale, 1994). Stream sediment data allow the exploration geochemist to evaluate 

extensive areas for possible mineral occurrences because o f the way in which weathering 

products are transported in the surficial environment (Rose et al., 1979). For example, 

samples o f stream sediment are representative of all Ethologies upstream, with the 

assumption that they represent the same proportion as the Ethologies in the corresponding 

drainage area. This assumption is true for drainages that contain Ethologies with similar 

weathering rates, however, it is not true for drainages containing Ethologies with 

significantly different weathering rates (Stallard and Edmond, 1987). For this study, it is 

assumed that the majority o f drainages contain Ethologies with approximately the same 

weathering rate.

Another important characteristic o f stream sediment data is the incorporation of 

effects from processes present between the aqueous environment in contact with the 

stream sediment. For example, a drainage contains 85% andesitic volcanic rocks and
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15% hornblende microdiorite, in an ideal world or a situation of purely mechanical 

weathering, the sample representing that drainage would have sediment representing the 

same ratio of andesitic volcanics to hornblende microdiorite. This is, however, far from 

reality, as many different processes in the aqueous environment can cause the ratio to 

change. For example, highly acidic, oxidizing conditions commonly cause many 

elements to go into solution, and once in solution different ions behave differently thus 

changing the ratio of the parent rock types, especially in the fine-gained portion of stream 

sediment.

The general behavior o f chemical components within the environment, and 

specifically with relation to stream sediment, is an important part of interpreting the 

results o f the multivariate statistical techniques that are compared in this study. Macro- 

environmental factors such as topology, climate (which includes temperature and 

rainfall), vegetation, and anthropogenic processes must be kept in mind when interpreting 

results as these factors affect the degree and predominant type of weathering.

Intermediate environmental factors affecting an element’s geoavailability in the stream 

environment include the physical and chemical weathering characteristics o f the source 

material and how that material moves downstream (Smith and Huyck, 1999). At the 

micro-environmental level, the interactions between water and stream sediments are 

dominated by changes in pH and Eh of the water and the overall sediment content of 

clays, Fe- and Mn-oxides, and organic matter. Geochemical barriers represent significant 

changes in the micro-environment over short distances and can be used to better
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understand where an element might be placed within the system (Perel’man, 1986). 

Appendix A contains a more thorough discussion of drainage geochemistry and Table 

A.l which outlines the characteristics of the more common geochemical barriers. 

Appendix B contains selected geochemical characteristics o f the elements used in this 

study.

3.1.1 Orientation Survey

Sjoekri (1997) used data collected in 1993 from an orientation survey conducted 

within the Sejorang and Tongoloka drainages by Moedjiarto. The orientation survey was 

designed to examine the dispersion characteristics of metals weathered from the Batu 

Hijau deposit (Sjoekri, 1997). Figure 3.1 is the outline of sampled drainages in the two 

main drainages for the Batu Hijau deposit, Sejorang and Tongoloka. Plate III is a map of 

the drainages and corresponding sample locations along with a table with the data set.

Traditionally, orientation surveys are conducted prior to reconnaissance surveys; 

however, the Batu Hijau deposit was not discovered until after the reconnaissance survey 

in 1987. The discovery of Batu Hijau led to the need for more information on dispersion 

of weathered material from the Batu Hijau deposit (Sjoekri, 1997). This information 

could then be used to search for other porphyry copper-gold deposits on Sumbawa or it’s 

neighboring islands.
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Forty-nine stream sediment samples were collected. Near the Batu Hijau deposit, 

samples were collected at 1640 ft (500 m) intervals. The last seven samples in the 

Sejorang drainage and last eight in the Tongoloka drainage were collected in the lower 

reaches at 3,281 ft (1,000 m) intervals. The orientation survey includes analytical data 

for -30  mesh (#) + 40#, -40# + 80#, -80# + 140#, -140# + 200#, and -200# grain size 

fractions of stream sediment for the elements Au, Cu, Pb, Zn, As, Sb, and Mo.

Moedjiarto (1994) used dry sieving techniques to isolate the -30# + 40#, -40# + 80#, and 

-80# + 140# fractions and wet sieving for separation of the —140# + 200# and —200# 

fractions. Figure 3.2 is a flow chart for the sample collection methods used in the 

orientation survey. Gold was determined by AAS after a portion of each sample was 

subjected to fire assay, followed by aqua regia digestion (Sjoekri, 1997). The Cu, Pb, and 

Zn were obtained by AAS after acid digestion. Concentrations for As, Sb, and Mo were 

obtained via pressed pellet XRF techniques. Drainage area outlines were automatically 

generated using the ARC/INFO hydrologie function on digital DEM data obtained from 

aerial photography (Sjoekri, 1997). The automatically generated drainage boundaries 

closely matched those obtained manually employing traditional air photographic 

interpretive procedures, especially in high relief areas (Sjoekri, 1997).

3.1.2 Reconnaissance Survey

In 1987 P.T. Newmont Nusa Tenggara (NNT) carried out the reconnaissance survey. 

The principal target was gold mineralization since previous studies suggested
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that the regional geology was favorable for epithermal precious metal deposits (Sjoekri,

1997, page 65). The survey was also designed to detect copper and other base-metal 

mineral occurrences (Meldrum et al., 1994; Sjoekri, 1997). The reconnaissance survey 

was conducted in the southwest region of Sumbawa after Newmont staff found 

disseminated copper sulfides in float samples o f altered diorite at the coastal areas of the 

Sejorang drainage basin (Meldrum et al., 1994). The reconnaissance stream sediment 

survey revealed anomalous Au and Cu concentrations within the Sejorang and Tongolka 

drainages, which lead to the discovery of the Batu Hijau deposit. In addition to the 

stream sediment geochemical data, information on drainage basin characteristics such as 

drainage area and lithologie composition, were also collected.

Sample sites were selected to reflect a 3.9 mi2 (10 km2) maximum drainage area. The 

average area sampled was 2.3 mi2 (6 km2). Figure 3.3 provides an outline of the 

drainage areas in the reconnaissance survey. Plate IV contains the labeled sample 

drainages for the reconnaissance survey. As with the reconnaissance survey, Sjoekri 

(1997) used automated methods to produce the drainage basin outlines for the orientation 

survey. The lithology information collected during the reconnaissance survey was used 

in connection with the drainage outlines to determine the lithologie composition for each 

drainage.

Lithologie information was collected in stages (Sjoekri, 1997). The first stage 

involved photo geological interpretation at 1:60,000 scale plotted on a 1:50,000 scale
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base map. Through field work and ridge and spur mapping, information was added to 

update the base map. This increased the scale of survey coverage between 1:10,000 and 

1:5,000 within the regions around Batu Hijau (Sjoekri, 1997). During the establishment 

of Batu Hijau as a prospect, geological map compilation improved again to 1:1,000 scale 

(Sjoekri, 1997, page 67). The geologic composition of each drainage was determined by 

overlaying the drainage outlines onto the geologic map and calculating the area of each 

lithologie unit in each drainage.

Samples were collected from active stream sediment and were wet sieved through 

40# and 80# sieves (Sjoekri, 1997). Figure 3.4 is a depiction of the sampling procedure 

used during the reconnaissance survey. The -40# samples were analyzed using bulk 

leached extractable gold (BLEG) techniques followed by determination of Au, Ag, and 

Cu by atomic absorption spectroscopy (AAS). The —80# silt samples were split: one 

portion was used to determine Au content by aqua regia digestion and carbon rod 

techniques (Sjoekri, 1997); the second portion was used to determine Ag, Cu, Pb, and Zn 

data by acid digestion and AAS procedures; and the third portion was used to determine 

As, Sb, and Mo concentrations using pressed pellet X-ray fluorescence (XRF) methods. 

Silver data for the -80# samples were not included in the data sets accompanying Sjoekri 

(1997), thus could not be used for this study.
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3.1.3 Stream Ordering. Lithology and Drainage Area Treatment

Strahler (1981) defines a drainage basin as an organized stream network that is 

bounded by a drainage divide and has only one exit point. The smallest unit within a 

drainage basin is a first order basin, which is the aerial extent of the land that is drained 

by a first order stream, and is also known as a catchment (University of Delaware Water 

Resources Agency, 2001). The term drainage area is used to denote the area upstream 

from a sample site which can consist of a set o f catchments or drainages. It is important 

to note that a drainage may in fact only be comprised o f one sampled catchment.

Stream orders were established using the Strahler stream ordering method as presented 

by Sjoekri (1997). Figure 3.5 is an example of a hypothetical stream network with each 

stream’s corresponding stream order. The Strahler (1981) method denotes a stream 

without tributaries as a first order stream and involves the addition o f like numbered 

streams in order to increase a stream’s order. For example, two first order streams 

combine to form a second order stream, and two second order streams combine to form a 

third order stream; however, a first order stream combined with a second order stream 

will not increase to a third order stream, instead it remains at the highest level of the join, 

a second order stream.

Areas were calculated for individual drainages in each data set using the automated 

method described in section 3.1.1. Those drainages that are comprised of more than one 

catchment or drainage resulted in the addition o f all catchment and drainage areas 

upstream from the sample point (Figure 3.6). For this, drainage divides were outlined
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Figure 3.5 Schematic depiction of Strahler’s stream ordering method and drainage basin 
nomenclature. (Based upon Strahler, 1981).
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Figure 3.6. Schematic drawing of a drainage basin with more than one 
catchment. The area and lithology corresponding to the sample taken in drainage 
D will include the area and lithology of D in addition to the areas and lithologies 
of catchments A, B, and C.
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and the sequence of catchments and drainages from the border of the divide to the main 

mouth of the drainage basin were recorded. Then the individual areas were recalculated 

to represent the total area drained at each sample point.

The geologic composition of each catchment and drainage were determined as 

described in section 3.1.2. The drainage basins that were comprised of more than one 

catchment or drainage resulted in the recalculation of the total upstream lithologie 

composition at each sample site. For example, the lithologies from catchments A, B, and 

C on Figure 3.6 were added to the lithologie composition o f drainage D in order to 

adequately represent the geology in the entire area upstream from sample site D. This 

was done by taking the individual catchment (A, B, and C) and drainage (D) areas within 

the overall drainage basin and multiplying by the percent lithologie unit. The resulting 

number represents the area of each lithology in each individual catchment (A, B, and C) 

or drainage (D). The sums of the total area o f each lithologie unit were calculated and 

divided by the sum of the entire area drained at sample site D to create the correct percent 

of each lithology present.

3.2 Data Quality

Information on quality control measures, such as duplicate sample analyses, precision 

of the analytical instruments used, and evaluation of the sampling and analytical 

variability during data collection, for both surveys is unavailable. Initially it was 

proposed that estimates of the sample variance might be feasible by comparing the results
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for the —80# fraction samples for drainages that overlap between the two surveys. These 

early attempts to estimate the sampling variability were abandoned for the several 

reasons. First, the subset o f the reconnaissance survey which overlapped the orientation 

survey does not fully represent the reconnaissance data set as a whole due to the 

difference in the number of “barren” drainage basins found in the overall data set as 

compared with the subset. Second, the methods of selecting the sample sites were 

different for the two surveys. In many cases reconnaissance survey samples were 

collected from tributaries and main streams, rather than only along main streams as in the 

orientation survey. Thus, the catchment outlines for sampling in the two surveys do not 

always correspond. Third, the samples were collected at different time periods by 

different people and thus the sampling variability, which evaluates the variability at a 

given sample site either in the geological material or due to human error at the sample 

site, cannot be calculated. Sjoekri (1997) reassured that:

The data represent current accepted practice during mineral exploration 

programs... Geochemical surveys were conducted using accepted field 

practices to determine appropriate sample locations. Analytical processes 

in geochemical laboratories were undertaken so that appropriate standards 

of accuracy and precision were assured. Different geochemical elements 

had different standards o f accuracy and precision depending on the method 

of analysis used. (p. 84)
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It is assumed that the overall proportion of total data variability related to regional 

variation, as opposed to that related to sampling or analytical variation, is greater than 

50% for each survey. Therefore, the patterns generated from the survey data would 

represent the regional variation o f the elements rather than site specific (sampling) 

variance or possible human-induced (analytical) error.

3.3 Summary o f Data for This Study

Plant and Hale (1994) state that the -80# fraction of stream sediments is well suited 

for exploration in areas of predominantly chemical weathering, which typifies the main 

form o f weathering in southwestern Sumbawa. Grain size fractions between 80 and 

200# show the maximum contrast between background and anomalous values (Rose et 

ah, 1979). Thus, for the purpose o f this study, only the -80# fraction in the 

reconnaissance survey and the —80# + 140# fraction in the orientation survey are used.

It is important to note that the overall size range for the sediment fractions at the -80#  

level are slightly different between the two surveys. For the reconnaissance survey, the 

-80# fraction includes all grains less than 177 pm. In comparison, the -80# + 140# 

fraction of sediment in the orientation survey contains grains from 177 to 107 pm 

(Boggs, 1995). Lithology, drainage area and stream order data will also be used since 

these parameters influence stream sediment geochemistry and are valuable for 

interpretation of the results from the multivariate statistical techniques.
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CHAPTER 4 

INITIAL GEOCHEMICAL DATA ANALYSIS

4.1 Objectives

It is important to understand the univariate characteristics of the data sets used in this 

study to better interpret the results from the multivariate data analysis techniques that are 

described in subsequent chapters (Swan and Sandilands, 1995). Univariate elementary 

statistics provide measurements of central tendency (mean, median, mode) and 

distribution (variance, standard deviation, skewness) and contribute to the initial data 

interpretation. To further understand the distribution of the data within the drainage 

survey, subgroups based upon stream order, drainage area, and lithologie composition are 

also evaluated for possible trends, such as decreased overall composition within increased 

drainage area possibly suggesting downstream dilution. The estimation o f thresholds, the 

upper limit o f background, and thus the background levels, assists the interpreter when 

examining the data for true anomalies, i.e. samples with abnormal concentrations o f one 

or more elements related to mineralization (Rose et al., 1979).

The first objective of examining the univariate characteristics is to become better 

oriented with respect to the range of possible values and the possible correlations 

between different variables. The second objective of examining the univariate 

characteristics is to gain insight into the geochemical environment by comparing data
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between two groups. For example, if  the average concentration of Zn and Cu in stream 

sediment suddenly increased from third order streams to fourth order streams, it might be 

due to adsorption onto clay minerals or other factors that bring the elements out of 

solution or the presence o f mineralization (Rose et ah, 1979; Perel’man, 1986;

Horowitz, 1991). The third objective is to aid in the selection of the multivariate 

statistical approach which might work best, considering the properties of a given data set.

4.2 Methodology

For the initial data analysis the structure of each data set is examined to determine if  

any pretreatment might be warranted. Subgroups of each data set are made based upon 

stream order, drainage area, and lithologie composition. Univariate statistics are 

computed for each survey as a whole and for the subgroups. The /-test is used to 

compare the two surveys overall and the subgroups within each survey. Finally, 

thresholds and background concentrations are estimated for each element for each survey.

4.2.1 Data Pretreatment

The data for the orientation survey contains 49 sample points arranged in progression 

down the Sejorang and Tongoloka drainages. The orientation survey contains element 

concentrations for As, Au, Cu, Mo, Pb, Sb, and Zn on the -80# + 140# (177 to 107 pm) 

size fraction along with stream order, drainage area, and lithologie composition. All 

elements were analyzed for each sample site. The orientation survey did not require any
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data pretreatment prior to the univariate, /-test, and background calculations. Plate III 

contains a table of the data set for the orientation survey.

The reconnaissance survey contains data for 261 catchments. Of the 261 catchments, 

258 contain values for Au, 255 contain values for As, Cu, Pb, Sb, and Zn, and 79 contain 

values for Mo for the -80# (less than 177 pm) size fraction. Unlike the orientation 

survey, several sample sites contained Au, As, Mo, Pb, and Sb concentrations that were 

below the detection limit; denoted by -33333 values in the original file that accompanied 

Sjoekri (1997). For Mo and Sb, 60% and 62% respectively, o f the data were below 

detection limit, while 65% of the Au values were below detection limit. Copper and Zn 

values were all above detection limits. To avoid the problem of “censored data,” as 

described by Gilbert (1987), one half o f the detection limit was used in place o f the 

-33333 value noted above. “Censored data” refers to data sets that contain large numbers 

of sample points with values below detection limits, thus the information for very low 

concentrations (below detection limit) is missing (Miesch, 1976; Gilbert, 1987). Plate V 

contains a table o f the data set for the reconnaissance survey.

As information on the actual detection limits for the instruments used during the 

collection of the geochemical data was not available, published values from Varma 

(1984) and Haswell (1991) for AAS and Van Grieken and Markowicz (1993) for XRF 

are used to provide an estimate of the detection limits for each element. Then one half of 

the published detection limits were substituted into the data set for the -33333 values to 

maintain a value greater than zero, but less than the estimated detection limit. This is
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important because if  a value is below detection it can be suggested that, in most cases, it 

is not anomalous. Table 4.1 contains the published values for detection limits for each 

element, along with the values used in this study.

Table 4.1 Published detection limits for elements used in this study based upon the 
analytical instrument used to collect the data, along with the corresponding value used in 
this study to represent concentrations below the detection limit. (Compiled from Varma, 
1984; Haswell, 1991; and Van Grieken and Markowicz, 1993).

Method/Element Published Detection Limit Corresponding Value Used
AAS/
Au (ppb) 5.0 2.5
Pb (ppm) 0.03 0.015

XRF/
As (ppm) 0.04 0.02
Mo (ppm) 0.05 0.025
Sb (ppm) 0.08 0.04

4.2.2 Subgroups of Survey Data

Each survey was subdivided into groups according to stream order, drainage area, and 

lithologie composition. The average element concentrations by stream order are 

examined for trends which might indicate changes in geochemical environment with 

changing stream order. Such trends, like dilution, can also be loosely correlated to 

drainage area. The average element concentrations by drainage basins with respect to 

changes in lithologie composition, such as 70% andésite volcanic rocks versus 85%



57

andésite volcanic rocks, are examined for correlation between overall changes in 

concentration with changing predominant lithology.

4.2.3 Univariate Statistics

Univariate elementary statistics, such as mean, median, range, standard deviation, 

variance, and skewness were calculated for elements for each survey as a whole and for 

each survey subgroup. Histograms and cumulative frequency plots for each element in 

each survey were used to assess the possibility of multiple populations, data distribution 

(skewed versus normal), and to estimate threshold values (Appendix C). Multiple 

populations are suggested by more than one peak or an elongated tail on a histogram and 

by inflection points on cumulative frequency plots. Histograms exhibiting elongated tails 

towards high (potentially anomalous) values indicate positively skewed data. Skewed 

data distributions indicate nonnormally distributed data (Swan and Sandilands, 1995).

Threshold values represent the upper limit of background and signify the break 

between background and anomalous concentrations (Rose et al., 1979). Thresholds were 

estimated by evaluating histograms for natural breaks between the mean and upper limit 

of the range, the upper quartile, the value corresponding to the highest value representing 

the lower 80% of data, and the published average concentrations of mafic and granitic 

rocks for each element. While the prominent lithologies in the southwestern Sumbawa 

region are intermediate, rather than mafic or granitic, these values provide a possible 

range.
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4.2.4 /-tests

The t-test is used to test the equivalence of means between two groups (Davis, 1986). 

The standard /-test assumes equivalence of variance between two groups. This 

assumption is tested using the T-test. If the variances are not equal, a modified /-test is 

used (Davis, 1986). Data from the orientation survey is compared with data from the 

reconnaissance survey, along with several subgroups within each survey, were tested 

using the /-test to determine if  the groups represent statistically similar samples, i.e. they 

represent the same population (Davis, 1986).

The /-tests were used to evaluate the effect of different stream orders upon element 

concentrations. The tests were used to determine if  comparisons o f drainages with 

different stream orders within each survey are statistically similar, thus representing 

similar populations. For example, the environmental geochemistry within a first stream 

order (no tributaries) and a fourth order stream, are probably significantly different and 

thus would not be statistically similar.

The /-tests were also used to evaluate the effect o f differences in drainage area to 

determine if drainages with different areas might not be statistically similar, possibly 

indicating diluted geochemical signatures. For example, the effect o f dilution might be 

more prevalent in drainages with large areas as opposed to drainages with significantly 

smaller areas, which might be reflected in the two groups being statistically dissimilar.

The /-tests were also used to compare drainages o f different lithologie compositions 

to evaluate if drainages with different dominant lithologies produced statistically similar
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(or dissimilar) element concentrations, i.e. are the dominant lithologies different enough, 

geochemically, to produce a statistically significant difference in element signatures.

4.2.5 Estimating Background

Background is a controversial issue and its value and calculation is highly dependent 

upon its intended use (Bunnells, 1998). To establish the “barren” or non-mineralized 

class, i.e. background class, for the discriminant analysis and neural networks techniques, 

it is important to understand what average values indicate drainages with potentially 

background signatures. It is noted, however, that a drainage can be “barren” even if it 

has elevated concentrations (values above background) for one or more elements.

Several methods of determining background levels have been suggested and debated 

(Hawkes, 1976; Bunnells et al., 1992; Carranza and Hale, 1997; Bunnells, 1998; 

Bunnells et al., 1999; Kesar and Asti, 1999; Matschullat et al., 2000).

The estimated thresholds established during the univariate analysis and a method for 

estimating background concentrations which takes into account changes in lithology and 

drainage area presented by Carranza and Hale (1997) were used to estimate the average 

background concentrations for this region. The Carranza and Hale (1997) method is 

outlined in Appendix D.



4.3 Initial Data Analysis Results

The results of the initial data analysis for the orientation survey are presented first, 

followed by the results o f the reconnaissance survey, and then the t-test results for the 

comparison between the orientation survey and the reconnaissance survey as a whole are 

presented. Appendix E contains plots o f each element’s distribution by drainage for each 

survey. Within each survey, the univariate statistics as a whole are presented followed by 

the breakdown for each subgroup. Then t-test results for the subgroups are presented. 

Thresholds, although established during the univariate analysis, are presented with the 

background calculations from the Carranza and Hale (1997) method for comparison.

4.3.1 Orientation Survey

The orientation survey was subdivided into four stream order groups: a) second and 

third order streams (which only contains three data points); b) fourth order streams; c) 

fifth order streams; and d) sixth order streams. Subdivision into six drainage area groups 

was based upon 10 km2 intervals from 0 to 60 km2.

The first breakdown by lithology is according to the two most predominant 

lithologies, andesitic volcanic rocks and hornblende microdiorite. The data range for 

andésite volcanic rocks is predominantly between 75 to 95% of the drainage area, with 

two sample sites having values of 7 and 54%. The next most abundant lithology in the 

study area was hornblende microdiorite, which hosts the old tonalité intrusion containing 

the Batu Hijau deposit. This lithology was also subdivided into three groups so that
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number o f samples would be at least 1/3 of the data to maintain some of the original 

structure of the data. It is important to note that 13 of the 16 samples in the greater or 

equal to 85% andesitic volcanic rocks also contained between 6 and 10% hornblende 

microdiorite. The second breakdown by lithology, involves the occurrence of greater 

than 1% diatreme breccia, and the presence of quartz veins, which might be related to 

low-sulfidation epithermal gold deposits in the area. Also, the presence of greater than 

0.25% old tonalité was examined, as old tonalité hosts the Batu Hijau deposit.

4.3.1.1 Orientation Survey: Univariate Statistics

Table 4.2 is a summary o f the elementary statistics for the orientation data set. The 

histograms showed positively skewed data (Appendix C), thus the data were transformed 

to log normal distribution using the natural logarithm (In) to reduce the skewness. The 

skewness of distributions for Pb and Zn actually increased slightly with transformation. 

Both elements had near normal distributions in the nontransformed data (zero skewness 

being normal).

Cumulative frequency plots for As, Au, Cu, and Mo contain multiple inflection 

points, suggesting several possible populations (Appendix C). The cumulative frequency 

plot for Pb has two inflection points, suggesting three possible populations, while Zn 

does not have any inflection points, indicating one population. Approximately 90% of  

the data for Sb are at the 4 ppm concentration. The cumulative frequency plot for Sb has 

one inflection point at 5 ppm, which represents the break in the data from 4 ppm.
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Table 4.2 Summary of the univariate statistics for the orientation survey.

Orientation Survey Results
Parameter Au

(PPb)
Cu

(ppm)
Pb

(ppm)
Zn

(ppm)
As

(ppm)
Sb

(ppm)
Mo

(ppm)
n 49 49 49 49 49 49 49
Mean 0.27 457.22 27.31 153.10 25.88 4.16 4.90
Median 0.06 161.00 27.00 157.00 25.00 4.00 4.00
Mode(s) 0.01,

0.03
77.00,
99.00, 
135.00

25.00 138.00, 
157.11,
164.00,
182.00, 
189.00

25.00 4.00 2.00

Min - Max 0.01-
2.79

68.00-
2740.00

11. 00-

43.00
102.00-
211.00

10.00-
49.00

4.00-
7.00

2.00-
22.00

Variance 0.27 488844.26 38.47 768.22 79.53 0.31 15.59
Std. Dev. 0.52 699.17 6.20 27.72 8.92 0.55 3.95
Skewness 3.39 2.35 -0.14 -0.03 0.54 3.92 2.61
Skewness 
after In- 
transformation

0.45 1.21 -1.12 -0.34 -0.44 3.60 0.82
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Arsenic, Au, Pb, and Zn concentrations all increase with increasing stream order and 

drainage area, while average concentrations for Cu and Mo decrease with increasing 

stream order. The breakdown by stream order and area contained nearly identical trends. 

Figure 4.1 shows the average drainage area with respect to corresponding stream order. 

Table 4.3 contains the average concentrations for elements by stream order and drainage 

area.

Average element concentrations for subgroups based on lithology are provided in 

Table 4.4. Overall, the average concentration for the greater than 80% andésite volcanic 

rocks are greater for As, Au, Pb and Zn, while the greater than 11% hornblende 

microdiorite group contains greater average concentrations for Cu and Mo. This may be 

due to the association of porphyry copper-gold with the intrusive felsic rocks (Cox,

1992). The greatest average concentration of Cu and Mo is in the greater than 0.25% old 

tonalité, which corresponds to the Batu Hijau porphyry copper-gold deposit. The greatest 

average concentrations of As, Pb, Sb and Zn for the groups examined are in the greater 

than 1% diatreme breccia group, which may be related to low-sulfidation epithermal gold 

deposits, such as at Gold Hill. Arsenic, Au, Pb and Zn have greater average 

concentrations for the drainages with quartz veins present and for drainages with greater 

than 1% diatreme breccia, but are lower for drainages with less than 0.25% old tonalité.
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Table 4.3 Average concentration for elements grouped by stream order and drainage area 
for the orientation survey. Groups with less than ten data points have been denoted with 
alpha superscripts.

Grouping
Element

As
(ppm)

Cu
(ppm)

Mo
(ppm)

Pb
(ppm)

Sb
(ppm)

Zn
(ppm)

Stream No. Average Concentration
2&3* 12 0.04 1,183 16 24 4 107

4 24 0.19 793 8 25 4 160
5 29 0.37 324 3 28 4 157
6b 24 0.37 173 2 28 4 147

Area (km2)
< 10 20 0.16 1,013 9 23 4 144

11-20" 24 0.08 600 4 27 4 137
2 1 -3 0 ° 31 0.53 131 4 33 5 169
31 - 4 0 “ 26 0.25 171 3 27 4 152Oin1 29 0.47 110 3 30 4 163
51 - 6 0 d 31 0.25 28 3 28 4 165
a. Only contains three data points. b. Only contains eight data points.
c. Only contains seven data points. d. Only contains six data points.
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Table 4.4 Average concentration for elements grouped by lithology for the orientation 
survey.

Grouping
Element

As
(ppm)

Au
(PPb)

Cu
(ppm)

Mo
(ppm)

Pb
(ppm)

Sb
(ppm)

Zn
(ppm)

Andésite
Volcanic

Rocks

Average Concentration

>85% 21 0.13 723 4 27 4 135
80 -  85% 29 0.38 453 5 25 4 165

<80% 28 0.29 179 7 30 4 159

Hornblende
Microdiorite

<5% 29 0.44 418 4 30 4 161
6 -1 0 % 24 0.11 317 3 27 4 146
>11% 23 0.15 705 9 23 4 148

Quartz Veins
Present 32 0.41 120 4 30 4 173
Absent 21 0.14 756 6 25 4 135

Old Tonalité
> 0.25% 19 0.11 1,471 6 24 4 122
< 0.25% 28 0.31 164 5 28 4 162

Diatreme
Breccia

> 1% 33 0.40 146 4 31 5 177
<1% 24 0.24 537 5 26 4 147
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4.3.1.2 Orientation Survey: /-tests

Table 4.5 contains the results o f the /-tests for the stream order and drainage area 

subgroups within the orientation survey. For subgroups based upon stream order. Mo is 

the only element which is consistently different between the groups, while Au, Pb, and 

Sb are consistently similar. Copper is statistically similar between groups with only one 

order change, e.g. fifth versus fourth order streams. For subgroups based upon drainage 

area. Au and Sb were consistently similar. All elements for comparisons between 

drainage areas greater than 31 km2 were statistically similar. The greatest variation in 

behavior is seen in the comparison between the smaller drainages, those less than 20 km2.

Table 4.6 contains the results of the /-tests for the lithology subgroups within the 

orientation survey. Gold, Pb, and Sb are all statistically similar despite the change in 

percent andésite volcanic rocks, while only Au and Sb are statistically similar throughout 

the change in percent hornblende microdiorite. Arsenic, Cu, Pb, and Zn are all 

statistically different between the drainage with greater than 0.25% old tonalité, greater 

than 1% diatreme breccia, and the presence o f quartz veins than those without those 

properties.

4.3.1.3 Orientation Survey: Background

Table 4.7 contains the published values for average concentrations of elements in 

mafic and granitic rocks, the estimated thresholds from examination of histograms and
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Table 4.5 Results of /-tests for stream order and drainage area subgroups within the 
orientation survey. S indicates statistically similar, D indicates statistically different.

Element
Comparison As Au Cu Mo Pb Sb Zn
Stream Orders
6 vs. 2/3 D S s D S S D
6 vs. 4 S S D D S S S
6 vs. 5 S S s D S s s
5 vs. 2/3 D S D D s s D
5 vs. 4 S s s D s s S
4 vs. 2/3 s s s D s s D

Drainage Area (km2)
< 10 vs. 11-20 s s s D s s S
< 10 vs. 21-30 D s D D D s D
< 10 vs. 31-40 s s D D s s S
< 10 vs. 41-50 D s D D D s S
< 10 vs. 51-60 D s D D D s s
11-20 vs. 21-30 D s D S D s D
11-20 vs. 31-40 S s D s S s s
11-20 vs. 41-50 s s D s s s D
11-20 vs. 51-60 s s D s s s D
21-30 vs. 31-40 s s S s D s D
21-30 vs. 41-50 s s s s s s S
21-30 vs. 51-60 s s s s D s s
31-40 vs. 41-50 s s s s S s s
31 -40 vs. 51 -60 s s s s s s s
41-50 vs. 51-60 s s s s s s s
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Table 4.6 Results o f f-tests for lithology subgroups within the orientation survey. 
S indicates statistically similar, D indicates statistically different.

Element
Comparison As Au Cu Mo Pb Sb Zn
Andésite Volcanic 
Rocks
< 80% vs. 80-85% S S S S S S S
< 80% vs. > 85% S S D D S S D
80-85% vs. > 85% D S S S S S D

Hornblende
Microdiorite
< 5% vs. 6-10% S S s D S S S
< 5% vs. > 11% D S D D D s s
6-10% vs. > 11% S S S D S s s

Quartz Veins
Present vs. Absent D S D S D s D

Old Tonalité
> 0.25% vs. < 0.25% D S D s D s D

Diatreme Breccia
> 1% vs. < 1% D S D s D s D
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Table 4.7 Published average concentrations, estimated thresholds based upon 
examination of histograms, and average estimated contribution of lithology to 
background using the Carranza and Hale (1997) method for the orientation survey.

Element
Average

Concentration*
Estimated
Thresholds

Estimated Contribution due to 
Lithology via Carranza and Hale 

(1997) method
Mafic Granitic Avg. Rz

As
(ppm)

1.0-1.5 2.1-3.0 29 26 0.99

Au
(ppb)

2.0-3.2 2.0-2.3 0.4 0.1 0.75

Cu
(ppm)

72-80 12 480 451 0.98

Mo
(ppm)

1.2-1.5 1.3-1.5 6 4 0.90

Pb
(ppm)

4 18-20 32 27 0.98

Sb
(ppm)

0.1-0.2 0.2-0.3 4 4 0.98

Zn
(ppm)

94-120 51-200 180 166 0.99

* from Rose et al. ( 979) and Reimann and de Caritat (1998)
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the calculated average background using the Carranza and Hale (1997) method. Table 

4.7 also contains the R2 value, as it relates to the goodness of fit o f the multiple linear 

regression that was used in the Carranza and Hale (1997) method. All estimated 

threshold values are similar but slightly above the value computed using the Carranza and 

Hale (1997) method. Furthermore, all R2 values are above 0.9 except for Au. Thus the 

regression used in the Carranza and Hale (1997) method fits 90% of the data except for 

Au, which only fits 75% of the data.

4.3.2. Reconnaissance Survey

The reconnaissance survey was subdivided into six stream order groups according to 

the occurrence of first, second, third, fourth, fifth, and sixth order streams. The sixth 

order stream group only contains two samples. Subdivision by drainage area was a bit 

more complicated. The average drainage area is 6 km2, however, it ranges from less than 

1 km2 to 185 km2, with only five o f the drainages having areas greater than 50 km2. The 

groups were selected to reflect intervals which might represent different geochemical 

properties, such as increased downstream dilution for drainages above 15 km2.

The first breakdown for lithologie subgroups is based upon the dominant overall 

geology, such as percentage of andésite volcanic rocks and hornblende microdiorite, and 

the presence of limestone, which can create at geochemical barrier (see discussion on 

geochemical barriers in section A.4). The second breakdown for lithologie subgroups is 

based on the presence versus absence of old tonalité, quartz veins, and diatreme breccia.
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which have all been documented to occur with either porphyry copper-gold or low- 

sulfidation epithermal deposits.

4.3.2.1 Reconnaissance Survey: Univariate Statistics

Table 4.8 is a summary o f the univariate statistics for the reconnaissance survey as a 

whole. The histograms for each element were positively skewed (Appendix C), as 

evident by the positive skewness values for all elements in Table 4.8. The data were 

transformed using the natural logarithm (In) to provide a more normal distribution since 

discriminant analysis methods require normally distributed data due to the regression 

procedures. Sjoekri (1997) also noted a positive skewness in the data and thus log- 

transformed the data prior to manipulation by cluster analysis.

Cumulative frequency plots for Cu and Zn contained only one inflection point, 

suggesting two populations, while plots for As, Au, Mo, Pb, and Sb contained multiple 

inflection points (Appendix C). The histogram for Zn also contained a second peak on 

the right-side o f the bell curve suggesting a second population overlapping the first. The 

second peak could be representative o f an anomalous population overlapping the 

background population.

Table 4.9 contains the average element concentrations for groups based upon stream 

order and drainage area. Figure 4.2 shows the correlation of increasing drainage area 

with increasing stream order. Gold, Sb and Mo increase, overall, with increasing stream
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Table 4.8 Summary of the univariate statistics for the reconnaissance survey.

Reconnaissance Survey Results
Parameter Au

(PPb)
Cu

(ppm)
Pb

(ppm)
Zn

(ppm)
As

(ppm)
Sb

(ppm)
Mo

(ppm)
n 258 255 255 255 255 255 79
Mean 16.50 54.57 18.24 140.71 15.32 2.85 2.03
Median 2.50 42.00 12.00 118.00 12.00 0.04 0.03
Mode 2.50 44.00 10.00 105.00 8.00,

16.00
0.04 0.03

Min - Max 0.13-
800.00

8.00-
1400.00

0.02-
1140.00

5.00-
670.00

0.02-
440.00

0.04-
74.00

0.03-
38.00

Variance 4365.22 9085.57 5076.69 6204.99 827.92 34.44 30.00
Std. Dev. 66.07 95.32 71.25 78.77 28.77 5.87 5.48
Skewness 9.48 11.89 15.49 1.88 12.85 7.40 5.47
Skewness 
after In- 
transformation

1.62 1.45 -3.69 -0.61 -2.59 0.55 0.51
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Table 4.9 Average concentrations for elements grouped by stream order and drainage 
area for the reconnaissance survey. Groups with less than ten data points have been 
denoted with alpha superscripts.

Grouping
Element

As
(ppm)

Au
(PPb)

Cu
(ppm)

Mo
(ppm)

Pb
(ppm)

Sb
(ppm)

Zn
(ppm)

Stream No. Mean
1 21 7 46 2 12 1 96
2 14 23 48 1 18 2 158
3 12 11 66 2 25 3 138
4 21 11 51 4 13 3 148
5 14 13 42 ——— 10 4 143
6a 11 401 33 --------- 9 6 95

Area (km2)
< 1 16 18 68 2 16 2 135

1 -2 .9 12 11 49 2 26 3 140
3 - 4 .9 11 6 43 1 11 3 154

5 -1 4 .9 30 13 48 8b 11 5 138
1 5 -  185° 15 60 40 --- 9 6 155

— Not represented in group
a. Only contains two data points.
b. Only contains four data points.
c. Only five of the 18 data points have areas greater than 50 km2.
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order and drainage area. Copper and Pb both increase overall with decreasing stream 

order and drainage area, reaching a peak in third order streams and in groups with less 

than 2.9 km2. Zinc and As do not show a specific pattern, although Zn is greatest in 

second and fourth order streams, while As is greatest in first and fourth order streams.

Table 4.10 contains the average composition of samples grouped by lithology. The 

greatest average concentrations for Au and Cu are found in the group with old tonalité 

present. The group where diatreme breccia is present contains the greatest average 

concentration for As and second highest concentration of Au, probably due to its 

association with the Gold Hill low-sulfidation epithermal gold deposit. Drainages with 

greater than 0.01% limestone contain the greatest concentration o f Mo, Pb, and Zn.

In general, average concentrations for the 100% andésite volcanic rocks group contained 

lower average concentrations than the 50 to 100% hornblende microdiorite group, except 

for Zn which has an average concentration nearly twice that o f the hornblende 

microdiorite group.

4.3.2.2 Reconnaissance Survey: /-tests

Table 4.11 contains the results of the f-tests for the stream order and drainage area 

subgroups within the reconnaissance survey. In general, Cu and Au are statistically 

similar throughout the stream orders. Also, changes in one magnitude of stream order, 

e.g. from fifth to fourth, were statistically similar, with the exception for the first, second
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Table 4.10 Average concentrations for elements grouped by lithology for the 
reconnaissance survey. Groups with less than ten data points have been denoted with 
alpha superscripts.

Grouping
Element

Au
(PPb)

Cu
(ppm)

Mo
(ppm)

Pb
(ppm)

Sb
(ppm)

Zn
(ppm)

Andésite 
Volcanic Rocks

Average Concentration

100% 13 13 44 1 14 2 134
85 -  99% 21 29 45 1 15 3 156
70 -  84% 16 11 113 2a 55 3 149
55 -  69% 12 7 42 1D 10 10 120
25 -  54% 17 9 78 2a 15 2 140
0 -  24% 12 16 50 5 12 2 133

Hornblende
Microdiorite
50 -  100%° 20 86 116 --- 21 5 62
20-49% 17 12 109 2d 11 11 91
10-19% 18 15 175 2d 13 2 110

1 -  9% 15 37 50 Ie 14 4 124
0 -  0.9% 15 13 44 2 20 2 150

Limestone
5 -  94%e 19 9 28 7d 14 3 183

0.01 -4.9% 18 19 41 2d 86 3 189
0% 15 18 58 2 13 3 134

Quartz Veins
Present* 23 38 72 --- 22 5 181
Absent 15 16 54 2 18 3 139

Old Tonalité
Present* 12 115 227 --- 14 5 82
Absent 15 13 48 2 18 3 143

Diatreme
Breccia
Present3 26 47 88 --- 26 5 154
Absent 15 16 54 2 18 3 140

— Not represented in group
a. Only contains six data points. b. Only contains three data points,
c. Only contains four data points. d. Only contains two data points.
e. Only four of the 18 data points are above 30% limestone.
f. Only contains nine data points.
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Table 4.11 Results o f /-tests for stream order and drainage area subgroups within the 
reconnaissance survey. S indicates statistically similar, D indicates statistically different, 
NA indicates that one or both of the groups compared did not contain data for the 
element.

Element
Comparison As Au Cu Mo Pb Sb Zn
Stream Orders
6a vs. 1 S s s NA S D S
6* vs. 2 S s s NA S D s
6* vs. 3 s s s NA S S s
6a vs. 4 s s s NA s S s
6a vs. 5 s s s NA s s s
5 vs. 1 s s s NA s D D
5 vs. 2 s s s NA D D s
5 vs. 3 D s s NA s S s
5 vs. 4 s s s NA s s s
4 vs. 1 D s s S s D D
4 vs. 2 S s s S s S s
4 vs. 3 s s s s s s s
3 vs. 1 s s s s s s s
3 vs. 2 D s s D s s D
2 vs. 1 D s s D s s D

Drainage Area (km2)
< 1 vs. 1 — 2.9 S s s S s s S
< 1 vs. 3 -  4.9 s s s s s s s
< 1 vs. 5 — 14.9 s s s s s D s
< 1 vs. 1 5 -1 8 5 s s D NA D D D
1 -  2.9 vs. 3 - 4 .9 s s s S s s s
1 -  2.9 vs. 5 -  14.9 s s s s s D s
1 - 2 .9  vs. 1 5 -1 8 5 D s s NA s D s
3 -  4.9 vs. 5 -  14.9 s s s S s D s
3 - 4 .9  vs. 1 5 -1 8 5 s s s NA s D s
5 -  14.9 vs. 15 -  185 s s s NA s S s
a) Only contains two data points.
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and third stream orders. For subgroups by drainage area. Au was statistically similar 

throughout. Copper, Pb and Zn were only statistically different for the less than 1 km2 

versus 15 to 185 km2 groups. Antimony was statistically similar in groups of less than 5 

km2 compared with similar sized groups, but statistically different when compared with 

groups greater than 5 km2.

Table 4.12 contains the results o f the Mests for lithology subgroups within the 

reconnaissance survey. For the andésite volcanic rocks groupings, only Au and Pb were 

statistically different for drainages o f 100% andésite volcanic rocks versus less than 

100% andésite volcanic rocks. Molybdenum and Pb were statistically similar throughout 

the hornblende microdiorite groups. Gold, Mo, and Sb were statistically similar 

throughout the limestone groupings. All elements displayed the same pattern for the 

presence versus absence of quartz veins and presence versus absence of diatreme breccia, 

notably that only Sb and Zn were statistically similar. The presence versus absence of  

old tonalité resulted in statistically different means for Au, Sb, and Zn.

4.3.2.3 Reconnaissance Survey: Background

Table 4.13 contains the published values for average concentrations of elements in 

mafic and granitic rocks, estimated thresholds, and the calculated average contribution 

due to lithology, or background, using the Carranza and Hale (1997) method. Table 4.13 

also contains the R2 values from the regression equation for the Carranza and Hale (1997) 

method. The greatest R2 value is 0.22, meaning that the equation fits 22% of the data.
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Table 4.12 Results o f Mests for lithology subgroups within the reconnaissance survey.
S indicates statistically similar, D indicates statistically different, NA indicates that one or 
both of the groups compared did not contain data for the element.

Element
Comparison As Au Cu Mo Pb Sb Zn
Andésite Volcanic Rocks (%)
100 vs. 0 - 2 4 S S S s D s s
100 vs. 25 -  54 S s S s s s s
100 vs. 55 -  69 S s S s D s s
100 vs. 7 0 -8 4 S D S s S s s
100 vs. 8 5 -9 9 S D S s s s s
85 -  99 vs. 0 - 2 4 S S s s s s s
85 -  99 vs. 25 -  54 s s s s s s s
85 -  99 vs. 55 -  69 s s s s s s s
85 -  99 vs. 70 -  84 s s s s s s s
70 -  84 vs. 0 - 2 4 s s s s s s s
70 -  84 vs. 25 -  54 s s s s s s s
70 — 84 vs. 55 — 69 s s s s s s s
55 — 69 vs. 0 - 2 4 s s s s s s s
55 — 69 vs. 25 -  54 s s s s s s s
25 -  54 vs. 0 - 2 4 s s s s s s s
Hornblende Microdiorite (%)
20 -  100a vs. 0 - 0 .9 D D D s s s D
2 0 - 1 00a vs. 1 - 9 s s D s s s D
20-100=  vs. 1 0 -1 9 s s s s s s s
1 0 -1 9  vs. 0 - 0 .9 D D s s s s s
10 -  19 vs. 1 -  9 s s s s s s s
1 — 9 vs. 0 -  0.9 s D s s s D s
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Table 4.12 (continued)

Element
Comparison As Au Cu Mo Pb Sb Zn
Limestone (%)
5 - 9 4  vs. 0 .0 1 -4 .9 S S D S S S S
5 - 9 4  vs. 0 S s D S S S D
0.01 - 4 .9  vs. 0 D s S S D S D

Quartz Veins
Present vs. Absent D D D NA D S S

Old Tonalité
Present vs. Absent S D S NA S D D

Diatreme Breccia
Present vs. Absent D D D NA D S S
a) Only six of the data points are above 50% hornblende microdiorite and so the 20 — 40% and 50 — 100% 
were combined for the Mests.
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Table 4.13. Published average concentrations, estimated thresholds based upon 
examination o f histograms, and average estimated contribution of lithology to 
background using the Carranza and Hale (1997) method for reconnaissance survey.

Element
Average

Concentration* Estimated
Threshold

Estimated Contribution due to 
Lithology via Carranza and Hale 

(1997) method
Mafic Granitic Avg. R2

As
(ppm)

1.0-1.5 2.1-3.0 19 5 0.16

Au
(Ppb)

2.0-3.2 2.0-2.3 12 4 0.22

Cu
(ppm)

72-80 12 90 38 0.17

Mo
(ppm)

1.2-1.5 1.3-1.5 3 1 0.25

Pb
(ppm)

4 18-20 22 3 0.15

Sb
(ppm)

0.1-0.2 0.2-0.3 5 1 0.06

Zn
(ppm)

94-120 51-200 200 454 0.18

* from Rose et al. (1979) and Reimann and de Caritat (1998)
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which implies a poor fit to the data and probably less reliable results from the Carranza 

and Hale (1997) method. The estimated threshold values are also well above the values 

computed using the Carranza and Hale (1997) method, with the exception of Zn.

4.3.3 Orientation Survey versus Reconnaissance Survey: Mests

All of the elements were not statistically similar between the orientation and 

reconnaissance survey as a whole. The /-test revealed that while the difference between 

some of the means and variances are not substantial (Tables 4.2 and 4.8), the two surveys 

do not represent the same population.

4.4 Discussion o f Results

The results presented in the previous sections lead to interesting insight into the 

structure and behavior of each data set and the geochemical environment in place during 

the data collection. Furthermore, the interpretation of the multivariate statistical 

techniques discussed in subsequent chapters is improved by understanding some of the 

factors, other than mineralization, that may affect the data.

4.4.1 Orientation Survey

The results o f the univariate statistics from subgroups within the orientation survey 

suggest that the greatest concentration of Zn, contained in fourth order streams, could be 

due to zinc’s initial mobility in highly acidic conditions such as would be expected about
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Batu Hijau and then subsequent precipitation and possibly sorption once the pH increased 

(Rose et al., 1979; PereVman, 1986; Smith and Huyck, 1999). Arsenic, Au, and Pb are 

greatest in the fifth order streams, also probably due to changes in the geochemical 

environment that cause these to either precipitate or otherwise be removed from the 

suspended load. The second and third order stream group contained the highest value for 

Cu and Mo because the three data points are in the immediate vicinity of the Batu Hijau 

deposit.

The results from the univariate statistics for the lithology subgroups suggest that, at 

least for the orientation survey, elevated Cu and Mo might be better pathfinders of 

porphyry copper-gold mineralization, as they occur in samples with greater than 0.25% 

old tonalité, less than 1% diatreme breccia, and the absence of quartz veins. In contrast, 

elevated As, Au, Pb and Zn might be better pathfinders, at least for the orientation 

survey, for low-sulfidation epithermal gold mineralization since these elements are 

enriched in drainages with greater than 1% diatreme breccia and the presence of quartz 

veins, and are depleted in drainages with greater than 0.25% old tonalité. This contrasts 

with Rose et al. (1979), who listed Cu as an indicator and Mo, Au, As, Pb and Zn as 

pathfinders for porphyry copper deposits, and Au as an indicator and Sb and As (of the 

elements used in this study) as pathfinders for epithermal precious metal mineralization.

The results of the /-tests for different stream order subgroups revealed that Mo was 

statistically different for all combinations possibly reflecting molybdenum’s highly 

variable behavior in the geochemical environment. With the exception of Mo, changes in
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one level of stream order, e.g. fourth to fifth, were statistically similar, while changes in 

two or more levels of stream order had statistically different characteristics. This may 

reflect the different geochemical environments associated with increases in stream orders. 

Copper is enriched in lower stream orders, which is probably due to proximity of Batu 

Hijau which occurs within or near all o f these drainages. Zinc and As, however, are 

depleted in the second and third order streams and enriched in fifth order streams, 

suggesting that the two elements are taken into solution better in the low stream order 

group and cross a geochemical barrier, thus coming out of solution by the fifth order 

streams.

The results o f the Mests for different drainage areas suggest that Cu and Mo are both 

enriched in small drainages, less than 20 km2 and 10 km2, respectively. This 

characteristic can probably be best attributed to downstream dilution. Arsenic and Pb 

show similar patterns to Cu and Mo. Overall, the chemistry for drainage above 31 km2 

compared with drainage above 41 km2 all have statistically similar means. Thus the 

effect o f downstream dilution, either by increased water flow or increased "background" 

lithologie material, is most variable in drainages of less than 31 km2.

The results o f the Mests for changes in lithology reveal that Au and Sb are 

statistically similar throughout all groups, probably related to their low overall variance 

for the survey as a whole. Arsenic and Pb have statistically lower concentrations in the 

greater than 11% hornblende microdiorite. Compared to the less than 5% hornblende 

microdiorite. In contrast, Cu and Mo are statistically greater in the greater than 11%
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versus less than 5% hornblende microdiorite, probably related to the old tonalité intrusion 

within the hornblende microdiorite unit which hosts the Batu Hijau deposit.

4.4.2 Reconnaissance Survey

The overall univariate trends for stream order and drainage area subgroups in the 

reconnaissance survey appear to generally follow the mobility characteristics o f each 

element in the environment. Appendix B contains a summary of the mobility 

characteristics for each element used in this survey. For example, Sb which travels most 

readily in solution under normal conditions (Horowitz, 1991), increases with increasing 

stream order, along with Mo, which is also mobile in neutral to alkaline conditions 

(Smith and Huyck, 1999). The increased mobility for Sb and Mo result in potential 

anomalies being dispersed further downstream, which correspond with increasing stream 

order. The peak values in third order streams for Cu and Pb could be due to changes in 

pH and stream chemistry between second and third order streams that cause Cu to come 

out of solution, such as a complex alkaline-adhesion geochemical barriers (PereVman, 

1986; Smith and Huyck, 1999). Zinc is a fairly immobile element and will only go into 

solutions under oxidizing, strongly acidic conditions (Smith and Huyck, 1999), which can 

occur at sulfide-rich ore deposits (PereVman, 1986). As such, it is not surprising to see 

an increase in average composition from first order streams to second order streams, 

which might indicate a change in aqueous environment such as an alkaline barrier 

(PereVman, 1986; Smith and Huyck, 1999).
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Drainages with 100% andésite volcanic rocks contain relatively low concentrations of 

all elements compared with the other andésite volcanic rocks subgroups. This suggests 

that other lithologie units exert a greater degree o f variability on element concentration 

than the percent andésite volcanic rocks. Drainages with greater than 0.01% limestone 

contain the greatest concentration of Mo, Pb, and Zn. This may be due to the 

development of alkaline geochemical barriers that cause Pb and Zn to precipitate as 

carbonates or adsorb onto hydrous Fe- and Mn-oxides (PereVman, 1986; Plumlee and 

Nash, 1995; Smith and Huyck, 1999). The presence o f quartz veins and diatreme breccia 

corresponds to increased concentrations of As, Au, Cu, Pb, Sb, and Zn. The presence of 

old tonalité results in substantial increases in Au and Cu, which is probably due to the 

Batu Hijau deposit.

Comparisons of the stream order subgroups by /-tests reveal that, as with the 

orientation survey, one level change in streams does not create statistically different data. 

The only exceptions are from first to second and second to third order streams. This 

reflects the geochemical environment, such that low order streams can have different 

geochemical properties compared with higher order streams. In contrast, streams of third 

order or greater reflect more gradual changes in geochemical environment possibly due to 

downstream dilution effects.

Comparisons of the drainage area subgroups by /-tests reveal a significant difference 

between conditions in the 15 to 185 km2 group versus the groups with less than 5 km2.

The greatest concentrations of Cu and Pb appear upstream, in the smaller drainages, and



88

become statistically smaller as the drainage area increases, suggesting downstream 

dilution. Samples from the larger (greater than 15 km2) drainages are associated with 

reduced variability in Zn and As, and increased Au and Pb variability. This could be due 

to more neutral to alkaline conditions that favor immobility for Zn and As. Local 

occurrences o f mineralization within the larger groups might cause fluctuations in Au and 

Pb concentrations, thus increasing variability.

Statistical comparisons for subgroups broken down by lithology indicate that the 

average concentrations for elements based upon their percent andésite volcanic rocks 

generally have statistically similar means. The exceptions are that o f Au and Pb (Table 

4.12), which probably correspond to the presence of other lithologie units. The 

subgroups in percent hornblende microdiorite reveal that Mo and Pb are statistically 

similar throughout, while Au has statistically smaller average concentrations for 

drainages in the 0 to 0.9% than for those in the greater than 1% group. Copper is 

statistically greater in the greater than 20% group versus the less than 9% hornblende 

microdiorite group. Zinc is inversely related to Cu. The inverse relationship between Cu 

and Zn and the statistically greater concentration of Au in drainages with greater than 1% 

hornblende microdiorite suggest that the presence of hornblende microdiorite might be 

related to porphyry copper-gold mineralization.

The presence o f limestone in a drainage can buffer acidic conditions and result in an 

alkaline geochemical barrier. The average composition of Cu is statistically greater in 

drainages with less then 5% limestone, relative to drainages with greater than 5%
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limestone. Average concentrations of Zn, however, are statistically greater for drainages 

with greater than 0.1% limestone. This is probably due to the presence of an alkaline 

geochemical barrier, which Zn is more sensitive to than Cu. Gold, Mo, and Sb are 

statistically unaffected by the presence of limestone for this data. Molybdenum tends to 

be affected by limestone, however, only two to three data points were available that 

contain Mo data for each limestone group.

In drainages where quartz veins that might be host or related to low-sulfidation 

epithermal gold deposits are present, mean concentrations for Zn and Sb are statistically 

similar to drainages without quartz veins. Average concentrations for As, Au, Cu, and Pb 

are all statistically greater for those drainages with quartz veins as opposed to those 

without. Therefore, associations which might represent epithermal gold mineralization 

include As, Au, Cu, and Pb.

Drainages containing old tonalité have average concentrations of As, Cu, and Pb that 

are statistically similar to drainages without old tonalité. Gold and Sb concentration are 

statistically higher, and Zn concentrations statistically lower than drainages without old 

tonalité. The Batu Hijau deposit is hosted in old tonalité.

Drainages containing diatreme breccia, which has been documented at the low- 

sulfidation epithermal gold deposit at Gold Ridge, have average concentrations for Zn 

and Sb that are statistically similar to drainages without diatreme breccia. Average 

concentrations for As, Au, Cu, and Pb are all statistically greater for drainages with 

diatreme breccia present than for drainages without diatreme breccia.
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4.4.3 Orientation Survey versus Reconnaissance Survey

The results o f the /-test comparison between the two surveys revealed that they do not 

represent the same population. This is consistent with the observation that the 

reconnaissance survey contains a larger proportion of background, or “barren,” 

catchments in comparison to the orientation survey. For example, the orientation survey 

contains nine known mineral occurrences in a total o f two drainages covering 42 mi2 (109 

km2). In comparison, the reconnaissance survey contains 17 known mineral occurrences 

in a total o f 19 complex drainages, covering 211 mi2 (548 km2).

It is expected that average background concentrations will be elevated in this region 

due to the high number of mineral occurrences in the area (Runnells et al., 1992). This is 

evident in the substantial differences in estimated thresholds between the two surveys 

(Tables 4.7 and 4.13). The thresholds for As, Cu, Mo, and Pb are all greater for the 

orientation survey relative to the reconnaissance survey, which is probably related to the 

substantial presence of known porphyry copper-gold occurrences per area in the 

orientation survey. The threshold for Au is substantially lower for the orientation 

compared to the reconnaissance survey, which may be due to the different ways in which 

the samples were collected and processed or the different size fractions collected.

As a result, the orientation data set is not used as the training data set for the 

discriminant analysis and neural network techniques. Instead a subset o f the drainages 

for each survey was selected for training sets and the two surveys were treated separately. 

The drainages selected for the training sets consist of drainages with known mineral
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occurrences and “barren” drainages. “Barren” drainages were selected by looking for 

drainages that were more than four drainages removed from those with known mineral 

occurrences or contained element concentrations similar to the estimated threshold values 

discussed in section 4.3.1.3 and 4.3.2.3.
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CHAPTER 5 

FACTOR ANALYSIS

5.1 Introduction

Factor analysis, as described in section 1.3.1, is a derivative of principal components 

analysis. The R-mode factor analysis allows the investigator to examine the relationships 

between variables, such as element concentrations. The relationships between variables 

might reflect certain geological or geochemical aspects o f the environment, such as 

bedrock geology, surficial processes and mineralization. The goal for geochemical 

exploration is to identify and map factors that reflect mineralization.

5.2 Methodology

Factor analysis can be done utilizing either Q-mode or R-mode techniques. Q-mode 

techniques focus on the similarities between individuals or sample sites, whereas R-mode 

techniques focus on the similarities or correlations among the variables, e.g. elements 

(Jackson, 1983; Davis, 1986). The R-mode techniques are used in this study to evaluate 

the relationships among the geochemical variables in hopes of recognizing associations 

that assist in identifying geologically significant features.

It is assumed in using factor analysis that the underlying patterns or processes in the 

data can be represented in fewer factors than the number of variables measured, i.e. p <
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m, where p is the number of factor models, and m is the number of variables (Davis, 

1986). The southwestern portion of Sumbawa, Indonesia, is presently known to have 

three types of mineralizations, e.g. porphyry copper-gold, low-sulfidation epithermal 

gold, and alluvial style gold (Sjoekri, 1997). In addition, fluctuations in stream chemistry 

within tropical, humid climates probably result in some complexing and sorption between 

heavy metals in suspension and in sediment. The best indicator elements for these 

processes are Mn and Fe but they, unfortunately, were not determined in the initial 

sample analysis. Sudden depletions in Zn, Cu, and Pb could, however, be indicative of 

sorption processes (Rose et al., 1979). Finally, changes in the lithologies drained could 

potentially result in another factor, especially for basins with a predominant lithology. 

Based upon these probable factors, it is estimated that out of the seven elements, four or 

five geologically relevant factors may be found.

Another assumption is that the variances observed within the data are the result of 

correlations between variables and underlying factors (Davis, 1986). This assumption is 

critical, in that if it is correct, the analysis will result in a few factors which explain the 

majority of the variance. If this assumption is incorrect, the communalities will be low 

and the number o f factors needed to explain the majority of variation will increase 

substantially. The later case indicates that factor analysis will probably prove 

inconclusive.

Key components of factor analysis include eigenvalues, eigenvectors, factor loadings, 

factor scores and communalities. Eigenvalues are the numerical equivalent of the amount
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of total variability accounted for in a given factor model (Davis, 1986). Eigenvectors 

represent the orientation in «-dimensional space of the orthogonal factors to one another. 

Eigenvectors also reflect the percentage o f variation represented by individual factors in 

their respective factor models. Eigenvalues and eigenvectors are calculated by obtaining 

the determinant of the matrix, finding n roots o f the matrix’s characteristic polynomial, 

and then solving n sets of n simultaneous equations (Davis, 1986). For example, a 2 x 2 

matrix would have 2 eigenvalues. The eigenvalues would represent the long and short 

axes o f the ellipse that encloses the data. The eigenvectors in this case would represent 

the orientation of the long and short axes of the ellipse relative to the factor axes.

Factor loadings represent the individual weights that are assigned to each variable in 

order to project the objects onto the factor axes as scores (Davis, 1986). The loadings for 

each factor are obtained by multiplying an eigenvector by its corresponding eigenvalue. 

The loadings also represent the correlations of the individual variables with the factors 

(Davis, 1986). The factor scores are calculated by multiplying the original data matrix by 

the factor loadings. The factor scores can be graphically displayed and examined.

Finally the communalities are calculated by squaring each factor entry and adding them 

together for each respective variable. The communalities represent the percent of 

variance of a variable explained by a given factor model(Davis, 1986).

The factor analysis module of the Statistica software package is used for the 

calculations. Only the geochemical data are used for the analysis, and Mo data are not 

included from the reconnaissance survey as it would have reduced the total drainages
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interpreted to 79. The In-transformed data is used for both surveys for comparative 

reasons, even though normally distributed data are not required by this method. Once all 

of the calculations have been made, a table of the factor models, corresponding 

eigenvalues, communalities and factor loadings is produced to examine the element 

associations that have been revealed. The factor scores for associations that could 

indicate mineralization are plotted geographically to identify the drainage basins that 

contain potential mineral occurrences.

Selection of the appropriate factor model will be made according to the following 

criteria: (1) are any of the elemental associations within a factor model representative of 

geological, geochemical, or exploration processes; (2) are the spatial relationships 

between a factor model and known mineral occurrences consistent; and (3) does the 

factor model explain a significant amount of the total data variance. Scree plots, plots of 

eigenvalue versus factor model, can also be helpful for selecting factor models. StatSoft 

(1995) suggests that the factor models prior to the point on the plot where eigenvalues 

appear to drop off to the right are most valuable.

5.3 Orientation Survey Results

Table 5.1 contains the correlations for elements within the orientation survey. Nine 

statistically significant correlations are indicated in bold. Table 5.2 contains the 

communalities for each element for each factor model. The four factor model explains 

85% of the overall variance and a minimum of 85% of the variance for each element,
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Table 5.1 Correlation matrix for geochemical data from the orientation survey. 
Correlations with values greater than 0.29 for n=49 are statistically significant at the 95% 
confidence level. Statistically significant correlations are in bold.

Element Au Cu Pb Zn As Sb Mo
Au 1
Cu -0.06 1
Pb 0.18 - 0.37 1
Zn 0.32 - 0.76 0.26 1
As 0.27 - 0.72 0.50 0.76 1
Sb 0.13 -0.03 0.14 0.01 -0.03 1
Mo 0.02 0.41 -0.21 -0.24 - 0.48 0.04 1

Table 5.2 Communalities table for geochemical data from the orientation survey.

Factor Model
Element 1 2 3 4 5 6 7

Au 0.11 0.56 0.81 0.86 0.98 1.00 1.00
Cu 0.74 0.77 0.77 0.85 0.88 0.98 1.00
Pb 0.33 0.39 0.51 0.85 0.99 0.99 1.00
Zn 0.72 0.73 0.81 0.92 0.93 0.94 1.00
As 0.86 0.86 0.86 0.87 0.87 0.96 1.00
Sb 0.00 0.49 0.85 0.98 1.00 1.00 1.00
Mo 0.29 0.47 0.59 0.62 0.99 0.99 1.00

Eigenvalues (in %) 43.6% 60.7% 74.2% 85.0% 94.9% 98.1% 100.0%
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except Mo (62%) which is best explained by the fifth factor. Figure 5.1 contains the 

scree plot for the orientation survey data. Based upon the scree plot, factor models 2, 3,

4, or 5 might significantly contribute to the interpretation of the data. The most 

significant changes in communalities are between second and third, third and fourth, and 

fourth and fifth (for Mo only).

Figure 5.2 is a plot of the factor loadings. Factor loadings can be both positive and 

negative, as represented by the “+” and on the bottom row of figure 5.2. Thus 

elements, within the same factor, with opposite signs are inversely associated. The four 

factor model is probably the best model since the first factor is probably indicative of 

mineralization, containing high values of Zn and As, inversely related to high values of 

Cu and Mo. This was also suggested by the univariate and Mest results presented in 

section 4.4.1, which suggests that Cu and Mo might be better pathfinders for porphyry 

copper-gold, while As, Au, Pb, and Zn might be better pathfinders for low-sulfidation 

epithermal gold mineralization.

Figure 5.3 is a plot o f the factor scores for factor one of the four factor model. Factor 

one of the four factor model [As, Zn, -Cu, -Mo], where high positive scores represent 

high As and Zn values [As, Zn] and large negative factor scores represent high Cu and 

Mo values [-Cu, -Mo], is weakly related to mineralization. Many of the drainages that 

contain porphyry copper-gold have low factor scores. Drainages with low-sulfidation 

epithermal gold and alluvial style mineralization have high factor scores. Figure 5.4 is a
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Figure 5.1 Scree plot for the orientation survey showing eigenvalue versus 
corresponding factor model.
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plot o f factor one scores versus lithology. Factor one doesn’t appear to be related to 

lithology; however, the higher values are typically found near the bottom of the drainages 

especially with relation to the distribution of alluvium.

Figure 5.5 is a plot of the factor scores for factor two of the four factor model by 

drainage. Factor two [Au, Mo, Zn] appears to also be related to porphyry copper-gold 

mineralization. The smaller the drainage area with a porphyry copper-gold deposit the 

greater the factor score, which might also indicate diluted signatures with increased size. 

Moderate values are seen for drainages with low-sulfidation epithermal gold and alluvial 

style mineralization. Figure 5.6 is a plot of the factor scores for factor two versus 

lithology. Factor two does not appear to be clearly related to any lithologie unit as high 

and low values occur in sequential drainages with no apparent change in lithology.

Figure 5.7 is a plot o f the factor scores o f factor three of the four factor model by 

drainage. Factor three [Sb] does not appear to be correlated with any o f the known 

mineral occurrences. Figure 5.8 is a plot of the factor scores for factor three of the four 

factor model versus lithology. Factor three is possibly related to hornblende microdiorite 

occurrence, as drainages that contain hornblende microdiorite upstream tend to have high 

scores, although there are a couple o f exceptions. The exceptions might be related to 

close proximity to porphyry copper-gold occurrences which can cause the stream to 

become more acidic.

Figure 5.9 is a plot of the factor scores for factor four of the four factor model by 

drainage. Factor four [As, Pb, -Mo] may also represent mineral occurrences, although, a
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consistent relationship is not identifiable. Figure 5.10 is a plot of the factor scores for the 

factor four of the four factor model versus lithology. Factor four does not have a 

consistent relationship with lithology; however, moderate to elevated values (high Pb and 

As) typically occur downstream, while low values (elevated Mo) typically occurs 

upstream near the concentration o f porphyry copper-gold deposits and hornblende 

microdiorite. This may be more reflective of the surficial geochemical environment and 

mobility rather than mineralization and lithology.

5.4 Reconnaissance Survey Results

Table 5.3 is the correlation matrix for the reconnaissance survey. Five statistically 

significant correlations are indicated in bold. Table 5.4 contains the communalities for 

the different factor models from the reconnaissance survey. The greatest significant 

increase of percentage variance represented in a model is from the third to the fourth 

factor models. A second increase is from fourth to fifth factor model. Figure 5.11 is the 

scree plot for the factor models. While there is no clear break point in the scree plot, it is 

expected that the third to fifth factor models are probably the most useful because the 

slope change is a bit more pronounced after the fifth factor model. The scree plot and the 

increase in communalities and percent variance of data accounted for suggest that the 

fourth or fifth factor model might be the best options to investigate further.

Figure 5.12 is a plot of the factor loadings by factor model. Factor loadings can be 

both positive and negative, as represented by the “+” and on the bottom row of figure
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Table 5.3 Correlation matrix for geochemical data, not including Mo data, for the 
reconnaissance survey. Correlations with values greater than 0.20 for n=255 are 
statistically significant at the 95% confidence level. Statistically significant correlations 
are in bold.

Element Au Cu Pb Zn As Sb
Au 1
Cu 0.32 1
Pb 0.07 0.24 1
Zn -0.03 -0.04 0.19 1
As 0.17 0.14 0.29 0.21 1
Sb -0.01 -0.14 -0.09 -0.13 -0.15 1

Table 5.4 Communalities table for geochemical data from the reconnaissance survey.

Factor Model
Element 1 2 3 4 5 6

Au 0.21 0.59 0.60 0.87 0.88 1.00
Cu 0.35 0.63 0.65 0.72 0.80 1.00
Pb 0.42 0.45 0.55 0.86 0.86 1.00
Zn 0.14 0.58 0.61 0.71 0.99 1.00
As 0.45 0.49 0.53 0.58 0.94 1.00
Sb 0.16 0.22 0.96 0.96 0.97 1.00

Eigenvalues (in %) 29.0% 49.0% 65.0% 78.6% 90.6% 100.0%
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5.12. Thus elements, within the same factor, with opposite signs are inversely associated. 

From Figure 5.12 the fourth factor model is selected, as opposed to the fifth, because it 

has more potentially useful element associations. The fifth factor model starts to break 

down into single and double element factors, which may be related to mineralization; 

however, the third or fourth element in an association can provide, in many cases, just a 

little more information. Element associations for the fourth factor model are: factor one, 

Pb, Zn and As with inverse relationship with Cu; factor two. Au, Cu and As; factor 

three, Cu and inverse Sb; and factor four, Pb, Cu, As for the four factors in the four factor 

model. The Au, Cu, As is most probably related to mineralization as these elements are 

indicator and pathfinder elements (Rose et al., 1979) for porphyry copper-gold and low- 

sulfidation epithermal gold mineralization. Zinc, As, Pb, and Cu could be related to 

mineralization; however, this association might also be related to the predominance of  

andésite volcanic rocks within drainages. Antimony and Cu are probably related to the 

mobility of Pb, Cu, and As. Appendix A contains a discussion of mobility and 

environmental geochemistry that effects the placement of elements in the surficial 

geochemical environment.

Figure 5.13 is a plot of the factor scores for factor one o f the four factor model.

Factor one has large positive values for elevated As, Pb, and Zn and large negative values 

representing elevated Cu [As, Pb, Zn, -Cu]. Factor one does not appear to be 

significantly related to mineralization. Figure 5.14 is a plot of the factor scores for factor 

one of the four factor model versus lithology. Factor one does not appear to be
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significantly related to lithology, although high positive values occur in drainages with 

only andésite volcanic rocks or with limestone. High positive values also occur 

downstream, near the coastal regions, suggesting that perhaps it might be more closely 

related to element mobility rather than mineralization.

Figure 5.15 is a plot of the factor scores for factor two [As, Au, Cu] of the four factor 

model by drainage. Factor two appears to correlate well with mineralization as high 

positive scores correspond to known porphyry copper-gold deposits. Moderate to low 

scores correspond with low-sulfidation epithermal deposits. Figure 5.16 is a plot of the 

factor scores for factor two versus lithology. Factor two is not related to lithology as 

large negative (low) scores are found throughout despite changes in underlying lithology.

Figure 5.17 is a plot of the factor scores for factor three [Cu, -Sb] of the four factor 

model by drainage. Factor three does not appear to be directly related to mineralization 

although low scores typically occur in drainages just below porphyry copper-gold and 

low-sulfidation epithermal gold deposits. Figure 5.18 is a plot of the factor scores for 

factor three versus lithology. Factor three might be related to mobility since elevated Cu 

(large positive scores) occurs near the upper areas o f drainages and elevated Sb (large 

negative scores) typically occur near the mouths of the drainages. This follows the 

mobility of Cu and Sb, as Sb tends to be dispersed further downstream than Cu (see 

Appendix A and B for discussion on element mobility).

Figure 5.19 is a plot o f the factor scores for factor four [As, Cu, Pb] o f the four factor 

model by drainage. Factor four appears to be related to mineralization, as drainages with
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moderate to high positive scores typically occur near porphyry copper-gold deposits. 

Figure 5.20 is a plot o f the factor scores for factor four versus lithology. Factor four does 

not appear to be related to lithology. An extensive outcrop of limestone in the northern 

portion of the study area, however, may buffer the stream chemistry and alter the 

signature that is seen in the south-central portion of the study area near the Batu Hijau 

deposit.

5.5 Discussion

Factor analysis for both the orientation and reconnaissance surveys was able to locate 

drainages for further investigation, i.e. potentially mineralized, with adequate reliability. 

Factor one [As, Zn, -Cu, -Mo] and two [Au, Mo, Zn] o f the four factor model for the 

orientation survey represent mineralization. Factor two [Au, As, Cu] and four [As, Cu, 

Pb] of the four factor model for the reconnaissance survey represent mineralization.

Factor four [As, Pb, -Mo] of the orientation survey and factors one [As, Pb, Zn, -Cu] 

and three [Cu, -Sb] of the reconnaissance survey are interpreted to represent surficial 

geochemical processes in the environment. Factor three of the reconnaissance survey 

represents the mobility o f Cu and Sb in the environment. A specific aspect of the 

surficial environment, like mobility or adsorption, is not easily identifiable based upon 

the associations for factor one of the reconnaissance survey and factor four of the 

orientation survey. Factor three [Sb] of the orientation survey is probably related to 

lithology.
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5.6 Assessment of Technique

The reliability of interpreting factor analysis results hinges upon the interpreter’s 

experience with the problem at hand. The more experienced, the easier and faster the 

interpretation. The interpretations presented in sections 5.3 and 5.4 are reliable. The 

reliability o f the factors corresponding to surficial geochemical processes would have 

been dramatically improved if data for Fe and Mn were available. Iron and Mn are 

elements that can effect the placement o f other elements, such as Cu, in the geochemical 

environment by taking Cu out of solution by adsorption onto Fe- and Mn-particles (Smith 

and Huyck, 1999). Furthermore, examining the lithologies present and the common 

minerals in them, such as biotite and plagioclase, along with the occurrence of sulfide 

minerals in porphyry copper-gold and low-sulfidation epithermal deposits, it might have 

been helpful to also have data for K, Ca, Na, and S. As the analytical instrument 

technology advances, making the extra determinations for such elements would only 

increase the cost of analysis a small amount, but would increase the reliability o f the 

interpretation of the factors immensely as factors related to lithology and geological 

processes would be easier to identify.

Factor analysis is a technique that is easy to use, especially when utilizing the 

Statistica factor analysis module. Factor analysis does not require a lot of data 

pretreatment, and interpretation of the output is fairly straightforward. Training with 

Statistica and also determining how to display and interpret the results of the analysis 

took about a day. Once the method is understood, factor analysis results were obtained in
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45 minutes o f entering the data into Statistica. Mapping the factor analysis results in 

Arc View took about 3 hours. Interpretation time, which varies with interpreter, 

depending on experience with the problem and the factor analysis method, took roughly 

three hours.

Factor analysis is a cost-effective method which does not require a lot o f training time 

to get reliable results. Once a person is trained in using factor analysis, the bulk of cost 

and time will typically occur during the interpretation and presentation of the results.
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CHAPTER 6 

DISCRIMINANT ANALYSIS

6.1 Introduction

Discriminant analysis is a classification method that requires a priori knowledge to 

create a function which can be used to then classify unknown samples (Davis, 1986).

The strategy behind discriminant analysis is to find the linear relationship between two 

normally distributed populations that allows for the discrimination between the two 

populations which might otherwise be indiscernible. Figure 6.1 is a schematic depiction 

of the relationship and objective of discriminant analysis. A key benefit of discriminant 

analysis with respect to mineral exploration is the ability, once a function has been 

obtained, to classify unknown samples as either mineralized or non-mineralized. This 

method is also statistical and can be tested for statistical significance.

6.2 General Methodology

Discriminant analysis requires a representative set o f known samples (i.e. training set) 

from each population or group in order to create a discriminant function (Rose et al., 

1979; Howarth and Sinding-Larsen, 1983). Discriminant functions can be established to 

discriminate between more than two populations. Once the training set has been selected 

the data are partitioned into the various groups o f deposit types, porphyry copper-gold.



Xi

Figure 6 .1 Schematic depiction of discriminant analysis. Xj and X2 are variables that are 
common to groups A and B. When Xi and X2 are taken together these two variables 
result in an adequate separation between two groups so that classification of unknown 
samples can be made. (Davis, 1986)
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low-sulfidation epithermal gold, and alluvial style deposits, along with nonmineralized or 

“barren” drainage basins. This partitioning is based upon the location o f known deposits 

to respective drainage basins. It is critical that the parent populations or groups have 

sufficiently different means to provide a worthwhile discrimination. This can be tested 

with the /-test such that if the means are not sufficiently different the discrimination will 

not work (Swan and Sandilands, 1995).

The discriminant function takes the generic form of:

D = po + PiXi + P2X2 + ... + pnXn (eq. 7.1) 

where Pi are the coefficients for Xj independent variables where i ranges from 1 to n 

(Rose et al., 1979). Once the equation has been generated to maximize the separation 

between the groups, the discriminant scores will be plotted geographically to evaluate the 

classification spatially with respect to the location of known mineralization.

Some assumptions are required for this method to work. The first assumption is that 

the covariance matrices are equal (Swan and Sandilands, 1995). Overall these matrices 

were not equal, and thus the analysis may be slightly more affected by nonnormal 

distributions. Although the tests o f such functions is “not badly affected by unequal 

covariance matrices” (Swan and Sandilands, 1995, page 360).

The second assumption is that the data come from multivariate normal or near normal 

distributions (Davis, 1986; Clark et al, 1989; Swan and Sandilands, 1995). Natural log 

(In) -transformed As, Au, Cu, Pb, and Zn and stream order data for the reconnaissance 

surveys were normally distributed, while In-transformed data for Au, Pb, and Zn for the
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porphyry copper-gold group in the orientation survey are normal. All other variables for 

each class for each survey were positively skewed. Swan and Sandilands (1995) noted 

that if  the distributions are significantly nonnormal, the discriminant function may 

produce spurious results.

The third assumption is that the data are not closed, i.e. does not sum to a constant 

value (Clark et al, 1989; Swan and Sandilands, 1995). The aerial extents of the 

lithological data were used in place o f percentages which sum to 1 00 , to meet the third 

assumption.

To use either the forward stepwise or backward stepwise discriminant analysis 

module in Statistica, the program must calculate a measure of how much a variable 

contributes to the discrimination between the classes. The application of this calculation 

results in either the addition (forward stepwise) or the removal (backward stepwise) of 

variables. Unfortunately, if  the training sets fail to meet the three assumptions above 

such tests will be less reliable (Swan and Sandilands, 1995). If this is the case, the results 

of /-tests and geologic knowledge of the problem at hand will be used to select potential 

variables for the standard discriminant function.

Statistica also requires that the user set the a priori possibilities, the probability that a 

sample will be in a given group based upon the training data. The a priori possibilities 

were set proportionate to the number of training samples in each class for each group.

Once the final combination of variables is selected (see sections 6.2.1 and 6.2.2 for 

survey specific discussions of how the variables were selected), the discriminant function
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is computed for each n-1 classes, e.g. B versus M would have one function. The 

discriminant scores are calculated and plotted on a simple line graph. For the groups that 

contain four classes, both a line graph and x-y plot are used to evaluate the discriminant 

scores and determine group separation. The classification of samples is done by visual 

examination of the line plots, such that samples which plot within an area defined by a 

given class, e.g. barren, are classified in that class. Finally, the discriminant function or 

group of functions which produced the best separation and classification results for the 

classes used is selected and plotted spatially using ArcView software.

6.2.1 Orientation Survey Training Set

The orientation survey contains 49 sample points, 26 o f which have mineralization 

either in the drainage or within two drainages above the sample point. The training set 

was established by selecting all drainages which contained alluvial style gold occurrences 

(two), low-sulfidation epithermal (three), and porphyry copper-gold (ten) either in the 

drainage or within two drainages upstream of the sample point. Random selection of six 

of the remaining drainages which did not contain known mineralization within three 

drainages upstream from the sample point were used for the barren class. This resulted in 

21 samples sites for training. A second training set of barren versus mineralized 

(grouping porphyry copper-gold, low-sulfidation epithermal, and alluvial style 

occurrences together) was also tested.
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The F- and /-tests for the comparison of elements by class for each group are 

presented in Table 6.1. From Table 6.1, the training set for the barren versus mineralized 

drainages (group 2 ) will probably not result in a reliable discriminant function, as the two 

groups do not contain any variables that have statistically different means. Likewise, 

comparisons between the barren (B) versus low-sulfidation epithermal (L), and barren 

(B) versus porphyry copper-gold (P) also did not contain any statistically different means, 

while the comparison between L and P groups contained only four variables with 

statistically different means. Even though the alluvial style gold occurrences (A) class 

only contains two points, it appears that comparisons of the B, L, and P groups against 

this class have a better chance of producing a relatively reliable discriminant function.

6.2.2 Reconnaissance Survey Training Set

The training set for the reconnaissance survey was set up by selecting all of the 

drainages with known porphyry copper-gold, low-sulfidation epithermal gold, and 

alluvial style gold occurrences present, or in the immediately preceding drainage.

Seventy drainages representing “barren” drainages were randomly selected from the 220 

potentially barren drainages, those without any known mineral occurrences within three 

preceding drainages upstream of the selected drainage. A total o f 98 samples were used 

for the training set, representing roughly 38% of the data.
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Table 6.1 List o f variables with statistically different means and variances from t- and F- 
tests, respectively, for combinations of the different classes within the two groups for the 
orientation survey training data. See Figure 2.2 for spatial distribution of lithologie units 
listed here.

/-test E-test
Group 1

Class Alluvial Style versus Low-Sulfldation Epithermal
Cu
Agglomerate Lapilli, Alluvium, Limestone

Agglomerate Lapilli, Andésite Volcanic 
Rocks, Diatreme Breccia, Feldspar 
Porphyry, Hornblende Biotite Diorite, 
Hornblende Microdiorite, and Quartz Veins

Class Alluvial Style versus Porphyry Copper-Gold
As
Agglomerate Lapilli, Alluvium, Andésite 
Volcanic Rocks, Diatreme Breccia, 
Feldspar Porphyry, Laharic Breccia, 
Limestone, and Quartz Veins

Agglomerate Lapilli, Andésite Volcanic 
Rocks, Diatreme Breccia, Feldspar 
Porphyry, Hornblende Biotite Diorite, 
Hornblende Microdiorite, Limestone, and 
Quartz Veins

Class Alluvial Stipie versus Barren
Agglomerate Lapilli, Andésite Volcanic 
Rocks, Limestone, and Quartz Veins

Agglomerate Lapilli, Andésite Volcanic 
Rocks, Diatreme Breccia, Feldspar 
Porphyry, Hornblende Biotite Diorite, 
Hornblende Microdiorite, Limestone, and 
Quartz Veins

Class Low-Sulfidation Epithermal versus Porphyry Copper-Gold
Cu
Hornblende Microdiorite, and Leuco 
Diorite

Stream Order, 
Cu

Class Low-Sulfidation Epithermal versus Barren
(none) Alluvium, Hornblende Microdiorite, and 

Leuco Diorite
Class Porphyry Copper-Gold versus Barren

(none) Stream Order
Alluvium, Hornblende Microdiorite, and 
Leuco Diorite

Group 2
Class Barren versus Mineralized

(none) Stream Order,
Hornblende microdiorite, Laharic Breccia, 
and Leuco Diorite
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Two groups of classes were selected, the first group contained the classes: porphyry 

copper-gold (P), low-sulfidation epithermal gold (L), alluvial style gold occurrences (A), 

and "barren" (B), where the P, L, and A classes all represent drainages which either 

contain the specific mineral occurrence or are immediately below drainages that do.

Class A contains two data points, so the statistical significance of this class is nearly 

nonexistent compared with the other classes. The second group contained the classes: 

“barren” (B) and mineralized (M), where the mineral occurrence either occurs within the 

drainage or within the drainage immediately preceding it.

F- and /-tests were run on each group’s classes to determine the parameters that might 

best discriminate between the each group’s classes. The results o f the F- and /-tests are 

provided in Table 6.2. Several variables have statistically different means for classes in 

both the first and second groups.

6.3 Orientation Results

The first o f the three functions that were determined using the discriminant analysis 

module of Statistica correctly classifies 71% of the data. The second and the third can 

correctly classify 48 and 43% of the data, respectively. All three functions, however, 

failed the chi2 significance test, meaning that all three functions fail to produce 

statistically significant discriminations. Table 6.3 provides the three discriminant 

functions and the statistics for the correct classification percentage. Figures 6.2, 6.3, and
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Table 6.2 List o f variables with statistically different means and variances from t- and F- 
tests, respectively, for combinations of the different classes within the two groups for the 
reconnaissance survey. See Figure 2.2 for spatial distribution o f lithologie units listed 
here.

f-test E-test
Group 1

Class Barren versus Low-Sulfldation Epithermal
Stream order,
As, Sb,
Andésite Volcanic Rocks, Diatreme Breccia, 
Feldspar Porphyry, Hornblende Micro-Diorite, 
Leuco Diorite, and Quartz Veins

Stream order.
Au, Cu,
Agglomerate Lapilli, Alluvium, Andésite Volcanic 
Rocks, Clastic Sediment, Dacite Volcanic Rocks, 
Hornblende, Biotite Diorite, Hornblende Micro- 
Diorite, Laharic Breccia, Limestone, and Old 
Tonalité

Class Barren versus Alluvial Style*
Sb,
Diatreme Breccia, Feldspar Porphyry, Laharic 
Breccia, and Quartz Veins

Stream order,
Agglomerate Lapilli, Alluvium, Andésite Volcanic 
Rocks, Hornblende Biotite Diorite, Hornblende 
Micro-Diorite, and Laharic Breccia

Class Barren versus Porphyry Copper-Gold
Stream order.
Au, Cu, Pb, Sb,
Diatreme Breccia, Feldspar Porphyry, Hornblende 
Micro-Diorite, Leuco Diorite, and Quartz Veins

As, Cu, Pb,
Agglomerate Lapilli, Andésite Volcanic Rocks, 
Hornblende Biotite Diorite, Hornblende Micro- 
Diorite, Limestone, and Old Tonalité

Class Low-Sulfldation Epithermal versus Alluvial Style*
(none) Agglomerate Lapilli, Alluvium, Diatreme Breccia, 

Feldspar Porphyry, and Quartz Veins
Class Low-Sulfldation Epithermal versus Porphyry Copper-Gold

As, Cu Pb,
Agglomerate Lapilli, Alluvium, Diatreme Breccia, 
Feldspar Porphyry, Hornblende Micro-Diorite, 
Limestone, and Old Tonalité

Class Porphyry Copper-Gold versus Alluvial Style*
Laharic Breccia Alluvium, Andésite Volcanic Rocks, and Feldspar 

Porphyry
Group 2

Class Barren versus Mineralized
Stream order.
Au, As, Sb,
Agglomerate Lapilli, Andésite Volcanic Rocks, 
Diatreme Breccia, Feldspar Porphyry, Hornblende 
Biotite Diorite, Hornblende Micro-Diorite, Laharic 
Breccia, Leuco Diorite, Old Tonalité, and Quartz 
Veins

Stream order,
As, Au, Cu, Pb,
Dacite Volcanic Rocks, Laharic Breccia, Limestone, 
Old Tonalité

* Alluvial Style class has two data points
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Table 6.3 Discriminant functions for the orientation survey data. The number of samples 
in each training class is provided immediately below the abbreviation for the class. The 
percent correctly classified samples are calculated by plotting the discriminant scores for 
each function from the training data on the line plots of Figures 6.2, 6.3, and 6.4.

Discriminant Functions

Percent Correctly 
Classified for Each 

Class (%)
A
2

L
3

B
6

P
10

Discriminant Function 1 Total Correct: 71%
-2.87 + 0.64 InCu + 0.66 Alluvium -  0.47 Andésite Volcanic 
Rocks + 86.19 Limestone + 2.03 Agglomerate Lapilli — 16.40 
Diatreme Breccia + 155.29 Quartz Veins + 2.53 Hornblende 
Microdiorite + 13.44 Leuco Diorite

100 33 50 90

Discriminant Function 2 Total Correct: 48%
-1.20 + 0.21 InCu + 0.27 Alluvium -  0.01 Andésite Volcanic 
Rocks + 13.68 Limestone + 0.48 Agglomerate Lapilli — 3.37 
Diatreme Breccia — 63.99 Quartz Veins + 0.84 Hornblende 
Microdorite — 7.93 Leuco Diorite

100 100 50 20

Discriminant Function 3 Total Correct: 43%
3.48 -  0.61 InCu +0.87 Alluvium -  0.019 Andésite Volcanic 
Rocks — 22.59 Limestone + 0.31 Agglomerate Lapilli + 11.70 
Diatreme Breccia -  228.25 Quartz Veins + 2.91 Hornblende 
Microdiorite — 6.03 Leuco Diorite

50 33 100 10

A) alluvial style
L) low-sulfidation epithermal
B) barren
P) porphyry copper-gold
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6.4 are line plots o f the results from the first, second, and third discriminant functions, 

respectively. Both unknown and training data are plotted to show the accuracy of the 

classification with each function. The first function (Figure 6.2) provides the best 

separation of the classes and also the most accurate overall correct classification. The 

second and third functions have a significant drop in overall correct classification. This 

is reflected in Figures 6.3 and 6.4 where at least two of the four classes contain similar 

means.

Figure 6.5 is a plot of the first discriminant function versus the second discriminant 

function. Figure 6 .6  is a plot o f the first discriminant function versus the third 

discriminant function. Figure 6.7 is a plot of the second discriminant function versus the 

third discriminant function. Plotting the results o f one discriminant function against the 

other is another way of checking the quality of the classifications. If different classes 

separate into distinctly different regions of the graph, these regions could be used to 

classify the unknown samples. No distinct separation is visible between the four classes 

in any o f the three plots.

Figures 6 .8 , 6.9, and 6.10 are the spatial distributions of the results from the first, 

second, and third discriminant functions, respectively plotted using ArcView software. 

From these figures it is clear that the classifications specific to each discriminant function 

are not consistent.
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6.4 Reconnaissance Results

The first o f the three functions for the first group (B, L, A, and P classes) that were 

determined using the discriminant analysis module o f Statistica correctly classified 70% 

of the data. The second and third functions each correctly classified 56% of the data. All 

three functions passed the chi2 significant test, meaning that all three functions produce 

statistically significant discriminations. Table 6.4 provides the discriminant functions 

and the statistics for the correct classification percentage for each class in both the first 

and the second groups.

Figures 6.11, 6.12, and 6.13 are line plots o f the results from the first, second, and 

third discriminant functions, respectively, for the first group o f classes. Similar to the 

results from the orientation survey, the first discriminant function provided the best 

separation between the groups compared to the second and third functions.

Figure 6.14 is a plot of the first discriminant function versus the second discriminant 

function. Figure 6.15 is a plot o f the first discriminant function versus the third 

discriminant function. Figure 6.16 is a plot o f the second discriminant function versus 

the third discriminant function. Figure 6.14 provides the best possible discrimination 

between the classes using an x-y plot based upon the training data. The barren samples 

are neatly clustered together, while the other three groups spread outward about the 

barren cluster. Unfortunately, due to the number of data points and the slight overlap 

between the groups, the separation is not significant enough to use to classify all o f the 

unknown samples.
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Table 6.4 Discriminant functions for the reconnaissance survey data. The number of 
samples in each training class is provided immediately below the abbreviation for the 
class. The percent correctly classified samples are calculated by plotting the discriminant 
scores for each function from the training data on the line plots of Figures 6.11, 6.12, 
6.13, and 6.18.

Discriminant Functions

Percent Correctly 
Classified for Each Class 

(%)

Group 1 (classes B, L, A, P) A
2

L
13

B
70

P
13

Discriminant Fimction 1 Total Correct: 70%
2.83 — 0.29 InAu — 0.16 InCu — 0.18 InPb — 0.23 InAs +
0.03 InSb — 664.27 Quartz Veins — 1.38 Limestone +
1.21 Alluvium — 0.13 Andésite Volcanic Rocks + 4.43 Hornblende 
Biotite Diorite — 0.70 Hornblende Microdiorite + 1.58 Old Tonalité 
+ 192.85 Diatreme Breccia

50 38 80 54

Discriminant Function 2 Total Correct: 56%
-2.80 -  0.11 InAu + 0.67 InCu + 0.04 InPb + 0.11 InAs +
0.15 InSb -  299.09 Quartz Veins + 0.22 Limestone -  
0.48 Alluvium — 0.01 Andésite Volcanic Rocks + 1.73 Hornblende 
Biotite Diorite — 0.09 Hornblende Microdiorite + 14.52 Old Tonalité 
+ 110.20 Diatreme Breccia

50 31 69 15

Discriminant Function 3 Total Correct: 56%
-1.77 -  0.14 InAu + 0.49 InCu + 0.03 InPb -  0.01 InAs -  
0.11 InSb + 43.98 Quartz Veins + 0.31 Limestone -  
2.17 Alluvium -  0.11 Andésite Volcanic Rocks + 3.19 Hornblende 
Biotite Diorite + 0.66 Hornblende Microdiorite + 13.04 Old Tonalité 
— 3.87 Diatreme Breccia

50 31 60 62

Group 2 (classes B and M) B
70

M
2&

Discriminant Function 1 Total Correct: 90%
3.91 + 0.14 InAu + 0.57 InCu + 0.15 InPb + 0.22 InAs + 0.10 InSb + 
302.21 Quartz Veins +1.01 Limestone + 0.08 Andésite Volcanic 
Rocks — 2.12 Hornblende Biotite Diorite + 0.49 Hornblende Micro 
Diorite + 8.55 Old Tonalité — 73.65 Diatreme Breccia

97 71

A) alluvial style
B) barren
M) mineralized

L) low-sulfidation epithermal 
P) porphyry copper-gold
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Figure 6.17 is the spatial distribution o f the results from the first discriminant 

function. The results of the second and third discriminant functions were not plotted 

spatially because these functions did not show good separation between the classes 

(Figures 6.12 and 6.13).

The discriminant function for the second group, B and M classes, correctly classified 

90% of the training data and passed the chi2 significance test. Figure 6.18 is the line plot 

of the results from the unknown and known samples. Figure 6.19 is the spatial 

distribution o f the results from the discriminant function. Approximately seven of the 

unknown drainages classified as mineralized by group two were also classified as a 

mineralization type in group one. Group two contained fewer drainages classified as 

mineralized, compared with group one, and also failed to classify the two unknown 

mineralizations in the northwestern portion of the study area. This could be due to 

“weak” geochemical signatures of the two mineral occurrences, resulting in the barren 

classification from group two.

6.5 Discussion

The spatial distribution of the results from the first discriminant function for the 

orientation study are in agreement with existing mineral occurrences in the upper part of 

the two drainage basins, but disagree in the middle to lower portions. The disagreement 

may be due to the similarity of the signatures between the A, B, and L classes and the 

small number o f training samples for each o f those classes relative to the P class.
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The spatial distribution of the results from the second and third functions show even less 

agreement with the first discriminant function. The line plots of the second and third 

discriminant functions (Figures 6.3 and 6.4) do not show good separation between the P 

and B classes, and P and L classes, respectively.

The first discriminant function for the first group of the reconnaissance survey has 

fairly good separation between the classes (Figure 6.11). The line plot for the second and 

third discriminant functions (Figures 6.12 and 6.13, respectively) and the x-y plots of the 

discriminant functions (Figures 6.14, 6.15, and 6.16) were not very helpful in 

discriminating between the classes.

The results o f the second training group for the reconnaissance survey were much 

easier to interpret. The line plot (Figure 6.18) showed good separation between the two 

classes. The only drawback is that information on the type of mineral occurrence is 

missing from the second group’s classification scheme.

6.6 Assessment of Technique

Overall, the discriminant analysis worked fairly well, with a minimum of 78% to 90% 

correct classification when the training set was run through the equations. While this is a 

biased estimate of the correct classification as it uses the same data that was used to 

create the functions, for areas where all of the known drainages have been used for 

training, it is difficult to assess the percent correct for the regular data set.
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Considerable time was required to set up the training sets and interpreting the results. 

It took roughly three hours to set up the training and corresponding unknown data sets for 

both surveys. The functions were obtained using Statistica in about three hours, after 

trying different combinations of variables. Calculations, line plots, and x-y plots for the 

unknown data sets took another two hours. The interpretation of the plots and subsequent 

spatial plotting of the results in Arc View took approximately five hours.

The discriminant analysis method seems to work better when only discriminating 

between two classes and when there is adequate training data for each class. As such the 

results from the orientation survey were not as promising as the results from the 

reconnaissance survey. This is probably due to the small number of training data points 

for the barren, low-sulfidation epithermal, and alluvial style mineralization relative to the 

porphyry copper-gold class. For the reconnaissance survey, the first group (B versus M) 

was a better choice of classes than the second group (B, L, A, and P). This is probably 

due to the significant number of training data points for each class in the B versus the M 

group, relative to the B, L, A, and P classes. The breakdown o f the M class into the 

respective types of mineralizations, L, A, and P, reduces the overall training points for the 

mineralized (M) class into three individual classes.

Perhaps a better way to use discriminant analysis is to break the outcomes into two 

classes each so that several two class functions can be developed that would provide all 

of the information that the investigator needs. For example, the first function could look 

at barren versus mineralized. Then for those drainages that were mineralized, look at
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porphyry copper-gold versus low-sulfidation epithermal gold deposits. Additionally, 

having equal, and subsequently more, training samples would have aided in both the 

accuracy and interpretation of the results.
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CHAPTER 7 

CLUSTER ANALYSIS

7.1 Introduction

Cluster analysis is a classification technique that, ideally, forms separate relatively 

homogeneous groups from an originally heterogeneous data set (Davis, 1986). The 

principle behind cluster analysis is that the similarities or dissimilarities between samples 

or variables can be used to group together samples or variables that are the most similar 

thereby forming clusters. Like factor analysis, cluster analysis has two basic modes: R- 

mode and Q-mode. In R-mode cluster analysis examines the similarities and 

interrelationships between the variables, whereas Q-mode cluster analysis looks at the 

similarities between samples. Cluster analysis is most commonly used in Q-mode as the 

interpreter is looking for clusters of objects, sample sites, drainage characteristics, etc. 

This study employs Q-mode cluster analysis. The characteristics of the samples within 

each cluster can then be examined for potential indications of the target mineralization.

Cluster analysis is useful for large sets of multivariate data. Howarth and Sinding- 

Larsen (1983) proposed a method of cluster analysis whereby a random subset of data is 

run first. The clusters so generated can then be used to classify the remaining samples by 

similarity to the groups or discriminant analysis. Sjoekri (1997) utilized a method similar 

to this in that he used the orientation survey data to develop clusters representing three
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classes o f potential mineralization. Once these classes were established, he used the 

same parameters to interpret the reconnaissance data. Howarth and Sinding-Larsen 

(1983) also warned that two underlying problems exist with cluster analysis: 1) there are 

many different ways of defining similarity between samples; and 2) there are no 

universally agreed statistical or nonstatistical criteria for what constitutes a valid cluster. 

As a result the interpreter’s judgment and experience with the type of problem at hand are 

very important factors in the interpretation of the results.

7.2 General Methodology

Q-mode cluster analysis is a type of data analysis technique used to classify samples 

into homogenous groups. Four types of cluster analysis techniques exist and are based 

upon: 1) partitioning methods; 2) arbitrary origin methods; 3) mutual similarity; and 4) 

hierarchical clustering (Davis, 1986). Hierarchical clustering techniques are the most 

commonly used techniques in the geosciences (Davis, 1986; Sjoekri, 1997).

First, similarity or dissimilarity measures such as the Pearson Product-Moment 

Coefficient (R2) (similarity) or Euclidean distances (dissimilarity) must be selected based 

upon the problem at hand (Swan and Sandilands, 1995). For example, the Euclidean 

distance measures the “distance” or similarity between two points or a point and a cluster 

or two clusters. The similarity between the two objects increases as the distance between 

the two objects decreases and the similarity is greatest when the distance between to
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points is zero. In contrast, the Pearson Product-Moment Coefficient increases to one as 

the similarity between two objects increases.

Second the linkage method is selected. Nearest neighbors (single linkages) and 

furthest neighbors (complete linkages) are the two most commonly used techniques 

(Davis, 1986; Swan and Sandilands, 1995; Sjoekri, 1997). Nearest neighbor linkage 

involves joining the closest points, recalculating the matrix and then linking the next 

closest point to the cluster and so on (Jackson, 1983). The furthest neighbor linkage 

involves the initial linkage of the two closest points, followed by the recalculation of the 

distance between the initial cluster and the remaining points and the joining of two points 

that are closest together. This process is repeated iteratively until all points or clusters are 

joined (Jackson, 1983). Swan and Sandilands (1995) recommend the furthest neighbors 

technique for producing robust dendrograms with a minimum degree of chaining.

Chaining refers to the connection of points to the ends of elongated clusters where the 

opposite ends of the clusters could be significantly different, thus producing more 

heterogeneous clusters.

Third, dendrograms are produced. Dendrograms are tree-shaped graphical 

representations of the relationships between the samples and their associated clusters 

(Davis, 1986; Swan and Sandilands, 1995). In order to interpret a dendrogram, the 

investigator must place a phenon line (a line at a given similarity or dissimilarity level) to 

define a set o f clusters. The placement of the phenon line is subjective. It is typically 

based upon the investigator’s best judgment and previous experience with the problem at
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hand (Swan and Sandilands, 1995). “Natural breaks” in the linkages of the clusters, may 

assist in the placement of the phenon line (Swan and Sandilands, 1995). In addition, the 

number o f clusters selected may vary with the detail required by the project. Cluster 

analysis is not a statistical procedure (Swan and Sandilands, 1995) and, as such, ordinary 

tests for the statistical significance between clusters do not apply.

7.3 Cluster Analysis from Sioekri (1997)

Sjoekri (1997) used a Q-mode hierarchical clustering technique, experimenting with 

the Pearson Product-Moment Coefficient (R2) and Euclidean distance measure and with 

nearest neighbor and furthest neighbor (complete) linkages. Sjoekri (1997) used the 

MultiVariate Statistical Package (MVSP 2.0) for the orientation survey as it only 

contained 49 sample points. The MVSP software, however, was unable to handle the 

262 sample points for the reconnaissance survey, thus the cluster analysis module in 

Statistica 5.0 was utilized for this phase of the analysis. The orientation survey was used 

to establish parameters that were then used to interpret the reconnaissance survey. The 

results from each step in the cluster analysis were plotted using the Arc View and 

Arc/Info software packages to examine the spatial relationships with known mineral 

occurrences. This aided in the selection of the final clusters and interpretation of the 

results.
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7.3.1 Methodology for the Orientation Survey

Sjoekri (1997) used eight steps in order to incorporate the geochemical, airborne 

geophysical, and lithological data into the final dendrogram for cluster analysis (Figure 

7.1). Initially, Sjoekri (1997) produced dendrograms for stream sediment geochemistry, 

bedrock lithology, and airborne radiometric data separately. Then four more 

dendrograms were produced with combinations of the variables: 1) combined airborne 

radiometric and magnetic data; 2) lithology and geochemistry; 3) lithology, 

geochemistry, and airborne magnetic; and 4) lithology, geochemistry, and airborne 

radiometric data (Sjoekri, 1997). The dendrogram for each step helped guide the 

interpretation of the results for each subsequent step.

The placement of the phenon line for the final dendrogram was done using several 

iterations and map displays of the resulting clusters. Each resulting cluster was evaluated 

with respect to a priori knowledge of the study area and known mineral occurrences 

(Sjoekri, 1997). The final dendrogram for the orientation survey was classified into eight 

groups. Sjoekri (1997) noted that “the final classification.. .was selected based on 

several subjective criteria, since there is no quantitative statistical basis for choosing the 

‘best’ classification. The criteria used included the number of distinct groups -  between 

five and ten seemed optimal -  and their spatial distribution” (page 135).
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7.3.2 Methodology for the Reconnaissance Survey

Sjoekri (1997) used both the -40# BLEG and —80# silt samples in the cluster 

analysis; however, only approximately 67% of the sample sites have -40# BLEG data 

while 99% of the sample sites have -80# silt data. This resulted in “gaps” in the 

multivariate data set which had to be “filled” prior to cluster analysis (Sjoekri, 1997). To 

fill the “gaps” three dendrograms were produced, one for the -40# BLEG, one for the 

-80# silt, and another for the samples with both -40# BLEG and -80# silt data, which 

provided multiple classifications for most samples (Sjoekri, 1997). Cross-tabulation of 

individual -40# BLEG and —80# silt classifications with “corresponding classification 

based upon both size fractions allowed for those samples lacking one or the other fraction 

to be assigned to the most similar classification based on both fractions” (Sjoekri, 1997, 

page 144). This provided all sample locations with a uniform geochemical classification 

code, which was then used for the subsequent cluster analyses to produce the final 

classification.

Figure 7.2 provides a flow chart for the cluster analysis used on the reconnaissance 

survey data. Both standardized and nonstandardized Euclidean distances were used with 

furthest neighbor linkage (Sjoekri, 1997). The standardized Euclidean distance produced 

a “straggly, chained set o f clusters, which [are] difficult to explain,” thus non­

standardized Euclidean distances were used for the subsequent hierarchical cluster 

analysis (Sjoekri, 1997, page 146). The final dendrogram for the reconnaissance survey 

was separated into ten clusters.
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7.4 Results

The final dendrogram and resulting clusters for each survey were plotted using 

Arc View software. The clusters were examined for common characteristics that might be 

related to mineralization as well as their spatial relationship to known mineral 

occurrences in the area.

7.4.1 Orientation Survey

The final dendrogram and corresponding map of the clusters from Sjoekri (1997) are 

provided as Figure 7.3 and Figure 7.4, respectively. The separation between groups 1 to 

4 and 5 to 8 is representative of the different drainages, where groups 1 to 4 represent the 

Sejorang drainage, while groups 5 to 8 represent the Tongoloka drainage (Sjoekri,

1997). Groups 6 and 8 are associated with porphyry copper-gold mineralization in the 

area, specifically the Batu Hijau deposit and the weakly developed Katala prospect 

(Sjoekri, 1997). Table 7.1 contains the characteristics of each group.

The groups that contained mineralization were assigned to one of three mineral 

exploration target classes (Table 7.2) (Sjoekri, 1997). The target classes were established 

to provide a “possible guidance for ... further mineral exploration in the area” (Sjoekri, 

1997, page 133). Target class A samples reflect high volume low-grade porphyry 

copper-gold deposits and diorite and intrusive rocks associated with Batu Hijau and 

Katala (Sjoekri, 1997). Target class B reflects low-sulfidation epithermal gold 

mineralization with moderate to high Au values and weakly developed porphyry copper-
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Figure 7.3 Final dendrogram from cluster analysis on the orientation survey 
(Sjoekri, 1997).
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gold, such as Teluk Puna (Sjoekri, 1997). Target class C reflects other low-sulfidation 

epithermal gold mineral occurrences and possibly alluvial style occurrences, such as that 

at the Lower Sejorang prospect (Sjoekri, 1997).

7.4.2 Reconnaissance Survey

Figure 7.5 and 7.6 contain Sjoekri’s (1997) final dendrograms and cluster distribution 

map selected for the reconnaissance data. Table 7.3 contains the characteristics for each 

of the ten final clusters for the reconnaissance survey. These clusters for the 

reconnaissance survey were then compared with the eight clusters and the exploration 

target classes previously defined for the orientation survey (Sjoekri, 1997). Three 

clusters in the reconnaissance data (clusters 1, 3, and 9 in Table 7.3) did not match 

characteristics for the groups established using the orientation data. Sjoekri (1997) did 

not explain why this might have happened, however, it may be due to the occurrence of 

“barren drainages” or larger proportions o f some lithologies in the reconnaissance survey 

compared with the orientation survey. For example, limestone represents a maximum of 

15% in drainages from the orientation survey, compared with a high of 94% in the 

reconnaissance survey.

Figure 7.7 is a map of the exploration target classification for the reconnaissance 

survey. Drainages were classified into one of the three exploration target classes based 

upon their similarity to the target class (Sjoekri, 1997).



STANDARDIZED

Tree Diagram for 262 Cases 
Furthest Neighbor 
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1400600 800 1000 1200200 4000
Linkage Distance

Figure 7.3 Final dendrogram from cluster analysis on the 
reconnaissance survey (Sjoekri, 1997).
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Exploration target class A drainages (clusters 4, 8, and 10 in Table 7.3) are 

characterized by large proportions of andésite, diorite, agglomerate lapilli, and laharic 

breccia, as well as more localized areas of alluvium, diatreme breccia, quartz veins, and 

old tonalité (Sjoekri, 1997, page 151). Exploration target class A also corresponds 

spatially with the Batu Hijau deposit and with elevated Au and Cu values in the stream 

sediments. The west-northwest trend of drainages of target class A is consistent with the 

alignment of porphyry copper-gold occurrences in the area and their inferred regional 

structural control (Sjoekri, 1997). Sjoekri (1997, page 152) suggested that this trend may 

represent a corridor o f potential exploration targets having some similarity to Batu Hijau 

(Sjoekri, 1997, page 152). He also states that “by experience with mineral prospecting in 

southwest Sumbawa, it can be interpreted that target class A, representing porphyry style 

mineralization, is the most economically important class.”

Exploration target class B drainages (clusters 6 and 7 in Table 7.3) include several 

known localities o f low-sulfidation epithermal gold mineralization, along with weakly 

developed porphyry copper-gold deposits (Sjoekri, 1997). Class B drainages are also 

characterized by predominantly andésite volcanic rocks and diorite intrusives with minor 

dacite and limestone. Class B drainages are typically located peripheral to target class A 

and represent the second most important drainages for follow-up exploration (Sjoekri, 

1997).

Exploration target class C (clusters 2 and 5 in Table 7.3) includes some areas of low- 

sulfidation epithermal gold and alluvial-style mineralization. Class C is predominantly



180

andésite volcanic rocks, agglomerate lapilli, laharic breccia, and alluvium, with localized 

diorite and diatreme breccia (Sjoekri, 1997, page 151). Class C represents the lowest 

ranking exploration target class and is given low priority for follow-up exploration 

programs (Sjoekri, 1997).

7.5 Assessment of Technique

The highly subjective nature of cluster analysis is both an asset and a detriment. It is 

an asset for those familiar with the technique and the problem at hand as it allows the 

investigator a wide variety of possibilities for interpreting the results. It is a detriment for 

those not as familiar with the technique, or the problem at hand, as there are so many 

options to choose from when selecting dissimilarity versus similarity measures, linkage 

procedures and the placement of the phenon line. The options can be overwhelming and 

confusing as there are no set guidelines or recommendations for the procedures (Howarth 

and Sinding-Larsen, 1983).

Cluster analysis can be a reliable method. The reliability of the interpretation is 

largely reliant upon the experience of the interpreter. Sjoekri (1997) was able to select 

clusters which correctly identified the known mineral occurrences in the area.

Cluster analysis becomes easier to use with experience, both with the technique and 

the geological problem at hand. This is largely due to the many options, such as 

similarity versus dissimilarity measures, that must be selected. The selection of the
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various parameters becomes easier as the interpreter gains experience with which 

parameter works best for a given problem.

Cost-effectiveness of cluster analysis, again, is largely based upon the experience of 

the interpreter. For example, someone with little experience with the technique will take 

much longer than someone who has used the technique several times. An estimate of the 

time it took Sjoekri (1997) to perform the cluster analysis is not available. It is estimated 

that he took one, probably two, days to complete the cluster analysis, due to the number 

of steps and iterations that were performed to arrive at the final interpretation.

The cluster analysis did result in extracting valuable information from the original 

data and in the selection o f potentially mineralized drainages in the reconnaissance 

survey. A key benefit o f cluster analysis is to be able to examine the properties of the 

clusters and then group them into categories to fit the problem at hand, such as the 

selection of target classes above. To adequately use the method, the interpreter needs 

some experience with the cluster analysis technique and the problem at hand to aid in the 

placement of the phenon line and subsequent selection of clusters. A benefit is that no 

prior knowledge, i.e. training data, is needed to use the method.
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CHAPTER 8 

NEURAL NETWORK TECHNIQUES

8.1 Introduction

Neural networks, also called artificial neural networks (ANN), consist o f a group of 

computer programs which look for patterns in data sets to classify objects. Neural 

networks, modeled after the human brain, consist o f a set o f nodes, also known as 

neurons, interconnected by weighted linkages (Brown et al., 2000). The weights of the 

linkages can be adjusted so that the underlying patterns in the data can be seen. Most 

supervised neural networks techniques are similar to discriminant analysis, requiring a 

priori knowledge o f the survey area and data at hand to select training data. However, in 

contrast, neural networks look for patterns in the data rather than computing a linear 

relationship within the variables, and thus neural networks do not require normalized 

data. Unsupervised neural networks do not require a priori knowledge and result in 

clustering the unknown data into similar groups (Mehrotra et al., 1997).

The use of neural networks techniques in the geosciences is fairly recent, and its 

application in mineral exploration has only developed within the last decade (Pan and 

Harris, 2000). Several varieties o f neural networks exist; however, the feedforward back- 

propagating and probabilistic neural networks (PNN) techniques seem to have been used 

more frequently within the mining and mineral exploration geosciences (Singer and
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Kouda, 1997; Brown et al., 2000). Back-propagating neural networks are supervised 

neural networks where the interpreter adjusts the weights on the links between nodes so 

as to reduce the error between the expected outcome (training set) and network output. 

The PNN is also supervised neural networks in that training data is required. In contrast, 

PNN’s can have any number of categorical outputs.

8.2 General Methodology

Supervised neural network techniques require a training set that typically consists of 

preselected samples used in a training session or a randomly selected subset of the target 

area data used in an unsupervised training method. The training set should contain an 

equal number of patterns for each outcome and the total number of patterns should be ten 

times the number o f inputs (Ward, 1996). Redundant variables should be avoided as they 

increase the training time and can, in some cases, decrease the reliability (Ward, 1996). 

Also, if  the ratio of two variables contains more information than the two individual 

variables, the ratio should be used instead o f the original two variables as it increases the 

accuracy o f the network (Ward, 1996).

The training data sets for the orientation and reconnaissance data set consist of natural 

log (ln)-transformed geochemical data, drainage area, lithology (in percents), and stream 

order for each survey. While normally distributed data are not required for this 

technique. Ward (1996) suggests using In-transformed data for variables with large
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ranges, such as Cu in the reconnaissance survey (which ranges from 8 to 1400 ppm), to 

make training the network faster.

The most common structure for neural network applications is a three layer system 

which includes input, hidden, and output layers (Dowd and Saraç, 1994). Each layer 

consists of nodes or neurons. Each node may have more than one input, but only one 

output and can perform calculations. The nodes are connected and weights are applied to 

the connections during the training portion of the procedure so that the network “learns” 

the pattern of the target mineral deposit (Dowd and Saraç, 1994; Ward, 1996).

Dr. K. J. Voorhees, Chemistry and Geochemistry Department, Colorado School of 

Mines, gave the author permission to use the NeuroShell 2 (Ward, 1996) software for this 

evaluation of the neural networks technique. NeuroShell2 software is produced by Ward 

Systems, Inc. A probabilistic neural network (PNN) algorithm is used for this analysis as 

it allows for the several categorical outputs (Ward, 1996).

8.2.1 Orientation Survey Training Set

The training set initially included all o f the variables with the exception of Sb as it 

didn’t have any variance within the training set. Subsequent training sets were made as 

variables were removed due to smoothing factor adjustments below 0.1 (see section 8.3 

for discussion on smoothing factors). A total of three training sets were set up to classify 

samples based upon barren (B), low-sulfidation epithermal (L), alluvial style occurrences 

(A), and porphyry copper-gold (P) classes. One training set was set up to classify
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samples based upon B, L, and P categories. It is important to note that the A category 

only contained two data points while B, L, and P all contained 9 to 11 data points.

8.2.2 Reconnaissance Survey Training Set

Two training data sets were developed for two groups of categorical outputs, i.e. 

classes. The first categorical output contained the barren (B) and mineralized (M) 

classes. The first group contained 28 samples in both the B and M classes. The samples 

used for the B training patterns were selected randomly from all of the drainages which 

were more than four drainages removed from known mineralization. The second group 

of categorical outputs contained the barren (B), low-sulfidation epithermal (L), and 

porphyry copper-gold (P) classes. The alluvial style occurrences category was not used 

in the second group as it only contained two sample points while the other categories 

contained nine sample points each. The samples used for the B training patterns in the 

second group consisted o f nine randomly chosen samples from the B training samples for 

the first group.

Initially the training data set for the first group contained all variables except Mo, 

dacite volcanic rocks, and feldspar porphyry. Molybdenum was not included as the 

network needs to have a variable input for each pattern, thus patterns with no data for a 

variable could not be considered. Dacite volcanic rocks and feldspar porphyry were not 

included as the data in the corresponding unknown data set did not contain any nonzero 

values for these two lithologies. NeuroShell 2 will not accept variables if the minimum
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and maximum values are the same. A total of four training sets were tested for the first 

group: BM1, BM4, BM5a, and BM6.

Initially the training data for the second group contained all variables except Mo. 

Variables were removed if  the smoothing factor adjustment was below 0.1. A total of 

three training sets were tested for this group: BLPla, BLP2, and BLP3a.

8.3 PNN Architecture

Several steps were needed to set up the neural networks. First, the training data were 

selected (see discussion in sections 8.2.1 and 8.2.2) and loaded into the program. Since 

this was a supervised network, the columns from the training set were denoted as either 

input or output. This told the network the number o f input variables, the number o f  

output variables, and allowed the network to adjust the weights on the linkages so that the 

network outputs more closely match the “actual” outputs.

Second, the test set, or validation set, was extracted from the training set. The test 

set is used by the network to test itself during training for calibration. For the orientation 

survey, 30% of the data in the training set was used as the test set. The reconnaissance 

survey used 25% of the training set as the test set.

Third, the network was set up (Figure 8.1). The PNN has three “slabs” or layers. The 

first, or input, layer is the collection o f nodes for the input variables. The second, or 

“hidden,” layer assembles different combinations of the variables based upon their
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Input Hidden Output

Class:

Pattern Units

Figure 8.1 An example o f probabilistic neural networks architecture. Open circles are 
nodes. Input, hidden, and output represent layers in a three layer network. Classes are 
barren (B), low-sulfidation epithermal (L), alluvial style (A), and porphyry copper-gold 
(P). The nodes in the hidden layer assemble different combinations of the variables 
based upon the their individual smoothing factor. Nodes with similar patterns are then 
grouped together, using Euclidean distance measure. These patterns are then compared 
with the actual output for each corresponding sample in the training data set and are 
assigned to a categorical output.
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individual smoothing factor. Nodes with similar patterns are then grouped together. The 

hidden layer typically has many more nodes than the input layer. The third, or output, 

layer contains the nodes for the network output. The number of nodes for each layer 

varies with the training set and the number o f categorical outputs. For example, if  all 

variables were used for the reconnaissance survey, the input layer would have 20 nodes. 

The hidden layer would have 98 nodes. The output layer, if the B and M classification is 

desired, would have two nodes.

The initial smoothing factor was set to 0.6. The smoothing factor ranges from 0 to 1 

with 1 being the most smooth. “High smoothing factors cause more relaxed surface fits 

through the data” (Ward, 1996; online Help).

Fourth, the training criteria were set. For this, the Euclidean distance was used, much 

like in cluster analysis, to compare patterns based upon their distance to each other 

(Ward, 1996). The genetic adaptive calibration was selected. The genetic adaptive 

calibration finds smoothing factors for each input as well as an overall smoothing factor 

for the network (Ward, 1996). First, the network is trained with the training set. Then 

the network uses the calibration to test a wide range of smoothing factors that work best 

with the test (or validation set). The individual smoothing factor adjustments that result 

are multipliers for each input which can be used to adjust the overall smoothing factor 

established for the network. Thus, inputs with large smoothing factor adjustments are 

more valuable to the network than those with smaller adjustments (Ward, 1996). Input
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variables with smoothing factor adjustments of less than 0.1 were subsequently discarded 

and a new network trained.

The network was also set to notify the author if any inputs had missing data. This 

option was selected as all variables should have had numerical values. This also meant 

that Mo for the reconnaissance survey could not be used. Other options were available, 

such as using the average value in place o f missing data for an input; however. Mo data 

were so sparse, this option did not seem feasible.

Each network was trained by running the training and test data through once to 

attempt to avoid over-training since the training sets were so small. Once the network 

had been trained, the unknown data set corresponding to the training data set, must have 

exactly the same variables, was run through the network. The results were then mapped 

spatially using ArcView.

8.4 Orientation Survey Results

Table 8.1 contains a list of the variables which were retained for each network and the 

percent of training samples correctly classified by the trained network. A variable was 

removed if it had a smoothing factor adjustment of less than 0.1, with the exception of 

stream order. Stream order was removed because it is strongly correlated with drainage 

area (Figure 4.1) and thus is probably redundant.

The unknown data were run through each network several times, in order to get 

outcomes where nearly all the samples were classified. Each time the unknown data
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Table 8.1 List o f variables retained for each network trained for the orientation survey 
and statistics on the number o f correctly classified training samples. ____________

Set la Set 2 Set 3 Set 4
Variables
Retained

Stream Order 
Au, Cu, Pb, Zn, 
As, Mo 
All Lithology 
Drainage Area

Stream Order 
Au, Cu, Pb, Zn, 
As, Mo 
All Lithology 
Drainage Area

Au, Cu, Pb, Mo
Alluvium,
Andésite
Volcanic
Rocks,
Limestone,
Diatreme
Breccia, Quartz
Veins,
Hornblende
Biotite Diorite,
Old Tonalité,
Hornblende
Microdiorite,
Drainage Area

Au, Cu, Pb, Mo
Alluvium,
Limestone,
Diatreme
Breccia, Quartz
Veins,
Hornblende
Biotite Diorite,
Old Tonalité,
Hornblende
Microdiorite

Variables Not 
Retained

Sb Sb Stream Order 
As, Sb, Zn, 
Agglomerate 
Lapilli, Laharic 
Breccia, 
Feldspar 
Porphyry, 
Leuco Diorite

Stream Order 
As, Sb, Zn, 
Agglomerate 
Lapilli, Laharic 
Breccia, 
Feldspar 
Porphyry, 
Leuco Diorite, 
Andésite 
Volcanic Rocks 
Drainage Area

% Correct of Training Data
B 100 100 60 100
L 100 100 100 100
A 100 - - - 100 100
P 100 100 60 100
B = barren
L = low-sulfidation epithermal mineralization 
A = alluvial-style mineralization 
P = porphyry copper-gold mineralization
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were run through its corresponding network, a different outcome was obtained, which 

indicated that the networks that were produced during training were unstable. Figures 

8.2, 8.3, 8.4, and 8.5 are the spatial plots o f the classifications for each network, i.e. set. 

From examining Figures 8.2, 8.3, 8.4, and 8.5, it is clear that several drainages which 

contain known mineral occurrences have been misclassified. For example, many of the 

drainages with known porphyry copper-gold deposits were classified as either barren or 

low-sulfidation epithermal. This is probably due to inadequate training data.

8.5 Reconnaissance Survey Results

Table 8.2 contains a list of the variables retained and the percent correct classification 

for the four networks produced with the first group of classes: BM1, BM4, BM5a, and 

BM6. Table 8.3 contains a list of the variables retained and the percent correct 

classification for the three networks produced with the second group of classes: BLPla, 

BLP2, and BLP3a.

Figures 8.6, 8.7, 8.8, and 8.9 are spatial plots o f the results for networks for the first 

group. The only network which recognized the two unknown mineralization sites, or 

types of mineralization, was BM1 (Figure 8.6). Both networks BM4 and BM6 are 

probably unstable as: (1) they didn’t recognize the two unknown mineralized drainages as 

mineralized; and (2) a significant number of drainages were not classified at all. The 

BM5a network (Figure 8.8) was able to classify all drainages but was unable to recognize 

the two unknown mineral occurrences as mineralized drainages.
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Table 8.2 List o f variables retained for each network from the first group of classes for 
the reconnaissance survey and statistics on the number o f correctly classified training 
samples._______ ______________ ______________ ______________ ______________

BM1 BM4 BM5a BM6
Variables
Retained

Au, Cu, Pb, Zn, 
As, Sb
Quartz Veins,
Limestone,
Andésite
Volcanic
Rocks,
Hornblende
Biotite Diorite,
Hornblende
Microdiorite,
Old Tonalité,
Alluvium,
Laharic
Breccia, Clastic 
Sediment, 
Agglomerate 
Lapilli, Leuco 
Diorite, 
Diatreme 
Breccia 
Drainage Area

Au, Cu, Pb, As, 
Sb
Quartz Veins,
Limestone,
Andésite
Volcanic
Rocks,
Hornblende
Biotite Diorite,
Hornblende
Microdiorite,
Old Tonalité
Drainage Area

Au, Cu, Pb, Zn, 
As, Sb
Quartz Veins,
Limestone,
Andésite
Volcanic
Rocks,
Hornblende
Biotite Diorite,
Hornblende
Microdiorite,
Old Tonalité
Drainage Area

Au, Cu, Pb, Zn, 
As, Sb
Quartz Veins,
Limestone,
Andésite
Volcanic
Rocks,
Hornblende
Biotite Diorite,
Hornblende
Microdiorite,
Old Tonalité

Variables Not 
Retained

Mo
Dacite Volcanic 
Rocks,
Feldspar
Porphyry

Mo, Zn
Dacite Volcanic 
Rocks,
Feldspar
Porphyry,
Alluvium,
Laharic
Breccia, Clastic
Sediment,
Agglomerate
Lapilli, Leuco
Diorite,
Diatreme
Breccia

Mo
Dacite Volcanic 
Rocks,
Feldspar
Porphyry,
Alluvium,
Laharic
Breccia, Clastic
Sediment,
Agglomerate
Lapilli, Leuco
Diorite,
Diatreme
Breccia

Mo
Dacite Volcanic 
Rocks,
Feldspar
Porphyry,
Alluvium,
Laharic
Breccia, Clastic 
Sediment, 
Agglomerate 
Lapilli, Leuco 
Diorite, 
Diatreme 
Breccia, 
Drainage Area

% Correct of Training Data
B 93 100 89 100
M 79 100 71 100
B = barren M = mineralized
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Table 8.3 List o f variables retained for each network from the second group of classes 
for the reconnaissance survey and statistics on the number of correctly classified training 
samples._______ ____________________________________________________________

BLPla BLP2 BLP3a
Variables
Retained

Stream Order
Au, Cu, Pb, Zn, As,
Sb
All Lithology 
Drainage Area

Stream Order
Au, Cu, Pb, Zn, As,
Mo
All Lithology 
Drainage Area

Au, Cu, Pb, As, Sb 
Alluvium, Andésite 
Volcanic Rocks, 
Quartz Veins, 
Limestone, 
Hornblende Biotite 
Diorite, Hornblende 
Microdiorite, Old 
Tonalité, Diatreme 
Breccia,
Drainage Area

Variables Not 
Retained

Mo Mo, Zn Stream Order 
Mo, Zn,
Feldspar Porphyry, 
Agglomerate Lapilli, 
Laharic Breccia, 
Clastic Sediment, 
Leuco Diorite,
Dacite Volcanic 
Rocks

% Correct of Training Data
B 78 78 78
L 89 89 78
P 100 100 100
B = barren
L = low-sulfidation epithermal mineralization 
P = porphyry copper-gold mineralization
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be attainable. This technique was attempted for both the orientation survey and the 

reconnaissance survey; however, the results were very poor. For the reconnaissance 

survey, only 10% of the unknown data was even classified. It is important to note, 

however, that Clare and Cohen (2001) were using a data set o f 1670 stream sediment 

sample points, as opposed to the 255 sample points in the reconnaissance survey.

8.7 Assessment of Technique

The reliability of this technique with this data is poor. Singer and Kouda (1997), 

Brown et al. (2000), and Clare and Cohen (2001) have all been able to develop much 

more reliable networks, chiefly due to: (1) larger data sets; (2) more experience with the 

technique; and (3) better training data sets, where applicable.

Neural networks, once trained, are easy to use. The method itself is much less easy to 

use as it requires several parameters be set and can require a lot o f training time.

Training time consists of both learning how to use the method and to train the network.

In contrast though, the NeuroShell 2 software itself was very user-friendly.

It took approximately eight hours to train to use the neural networks software. Most 

of this time was used to learn about the different parameters that needed to be selected 

while setting up the network. The time it took to create the training and corresponding 

unknown data sets was roughly four hours, based upon trial and error. The time to setup 

and train each network took on the order o f minutes, with actual training time on the 

order a few seconds. Only a few permutations of variables and outcomes were tested in
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this study as the results were pretty clear that more training data were needed for more 

precise outcomes.

In contrast, Clare and Cohen (2001) compared an unsupervised neural network 

(UNN) technique to k-means clustering. The authors state that “analytical time taken to 

define clusters and anomalous catchments from presentation of the raw data to the UNN 

was in the order o f minutes. The k-means clustering required some hours o f data 

manipulation and preprocessing prior to running the models” (page 133). Thus, neural 

networks methods can be cost-effective if: (1) that method is planned for many future 

projects; and (2) there are enough data for the method to be reliable. This allows the 

initial set up and training costs to be recovered in later projects.

Overall, neural networks techniques are a promising new approach to data 

interpretation. Future investigations should continue to look at the limitations and 

benefits o f this technique. The interested reader is referred to Singer and Kouda (1997), 

Brown et al. (2000), and Clare and Cohen (2001) for more information about neural 

network techniques in mineral exploration.
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CHAPTER 9 

COMPARISON OF TECHNIQUES

9.1 Comparisons o f the Techniques

The basis of comparison of the techniques, as outlined in section 1.1, will be by 

reliability, ease-of-use and cost effectiveness. A technique is deemed reliable if it 

correctly identifies nearly all of the drainages with known mineral occurrences. Ease of 

use criteria includes the time and experience required to prepare for and run each 

technique and interpret the results. Cost-effective techniques are those with a small 

overall run and interpretation time, matched by a reliable output and low overhead cost, 

such as purchase of software or purchase of experience.

In comparing each technique used in this study it is important to note the limitations 

that the orientation and reconnaissance data sets imparted. First, the reconnaissance 

survey was conducted in 1987 and the orientation survey was conducted in 1993, both 

before the widespread ability of large volume multielement low cost ICP analyses. As 

such, the number o f elements determined for each survey was restricted to those which 

would best represent porphyry copper-gold and low-sulfldation epithermal 

mineralization. In contrast, many of today’s data sets include a wide variety of elements 

which provide the interpreter with access to elements that might help to identify other 

geochemical processes such as adsorption. For example, it is common to analyze for Fe
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and Mn today; however, in 1987, the justification of the added expense to analyze these 

two elements might not be recognized by the investor.

9.1.1 Reliability

Reliability is probably one of the most important factors when deciding which 

multivariate data interpretive method to use, especially in relation to mineral exploration 

programs. For the methods used here, the two most reliable methods were factor analysis 

and cluster analysis because each method was able to identify potential areas o f mineral 

occurrences that had similar characteristics. Discriminant analysis was reliable if  the 

discrimination was between barren and mineralized classes, but became less reliable if  

the discrimination was between barren, porphyry copper-gold, low-sulfidation 

epithermal, and alluvial style mineralization. This is probably due to insignificant 

number of training samples per class and failing to meet two out o f the three criteria.

The results from the neural network analysis for the barren versus mineralized classes 

of the reconnaissance survey, with all the variables retained, was the most reliable of all 

o f the networks tested. As with the discriminant analysis, neural networks analysis was 

not as reliable due to the insignificant number of training patterns compared to variables.

9.1.2 Ease of Use

The ease of use is another important criteria when selecting a multivariate interpretive 

method, as it can affect the cost-effectiveness o f the method. For example, if a method is
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harder to use or require more training, it will probably be more expensive to use either in 

time or experience. Another factor effecting ease of use is the degree of a priori 

knowledge available for a given study area and data set.

Each method was relatively easy to train for and easy to implement. Factor analysis 

was the easiest to train for and implement, although the interpretation of the resulting 

factors required knowledge o f the common geochemical associations for the target 

mineral occurrences, surrounding Ethologies, and geochemical environment.

Discriminant analysis was also easy to use as it didn’t take long to learn the Statistica 

software package and to run the analysis. Interpretation o f the results was also fairly 

straightforward, as a drainage was either in one class or another. Cluster analysis was 

probably a little more difficult to use as it requires several iterations with different 

placements o f the phenon line to get clusters which made sense geologically (Sjoekri, 

1997). The neural network technique was a little more difficult to use since each network 

to test different combinations o f variables required different training sets. Like 

discriminant analysis, however, the neural network interpretation was straightforward.

The time to learn the NeuroShell 2 software was comparable to learning the Statistica 

discriminant analysis and factor analysis modules.

9.1.3 Cost-effectiveness

A key component for mineral exploration programs is the issue of cost-effectiveness. 

Cost-effectiveness is a combination of the reliability of a method, the ease of use, and the
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cost o f running the method in both time and expertise. As previously mentioned, stream 

sediment sampling can be a cost-effective means of obtaining broad aerial coverage.

This has been made possible due to instrumental capability, particularly that o f ICP-MS, 

increasing each year with respect to sensitivity, suite o f elements determined, and 

volume, without significant overall cost increases.

Currently the base price for the Statistica program with the multivariate exploratory 

techniques module which includes factor analysis, discriminant analysis and cluster 

analysis is $1,190.00. The new neural network module for Statistica is also available, 

however, the cost has increased to $1,495.00 at the time this study was published. The 

price for NeuroShell 2 at the time this study was published was $595.00. If the programs 

that are used to run the selected interpretive techniques have already been acquired, as 

was the case in this study, then the initial purchase cost and set up time do not need to be 

considered.

Another factor is the training time required to use a method. In some cases it is more 

cost-effective in the long run to train someone to use a method that is expected to be used 

for many future projects. In this way the initial time and money spent on training is 

recovered later. In some instances where a method is only expected to be used once, it 

may be more cost-effective to hire someone who already has experience with the method.

Another factor is the time needed for interpreting the results. A person’s experience 

with the method and the problem will largely dictate the time and reliability of the 

interpretation.
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For the methods compared in this study, factor analysis was reliable, took the least 

amount of time to prepare the data, run, and interpret the results compared with all o f the 

methods examined. Cluster analysis and discriminant analysis were both slightly less 

cost-effective than factor analysis. Cluster analysis was less cost-effective than factor 

analysis due to the estimated time it took Sjoekri (1997) to prepare the data and go 

through the several steps to arrive at the final dendrogram and subsequent interpretation; 

however, the results were reliable. Discriminant analysis is probably as cost-effective as 

cluster analysis; however, in this study it was not as reliable even though it is believed 

that it took less time to use. The neural network method was the least cost-effective 

method in this study because the results were not reliable and it took longer to learn how 

to use compared with the other methods.

9.2 Recommendations for Future Study

The selection o f the multivariate approach to use for interpreting drainage survey data 

must keep in mind the following:

a) what type of a priori knowledge is available for the study area

b) what type of information would be most useful, i.e. geochemical associations or 

classifications

c) what is the time frame in which the study will need to be completed

d) what method is the user most familiar with or prepared to learn

e) what kinds of data have been or will be collected
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The answers to these questions will aid in the selection o f the most useful method. If 

no a priori knowledge or training data exists for a survey, perhaps factor analysis or 

cluster analysis would be the most appropriate. Unsupervised neural networks might also 

work if  enough data are collected. The evaluation of geochemical associations might be 

useful to better understand not only the barren versus mineralization relationship, but also 

other factors such as adsorption or downstream dilution which might be masking 

mineralization signatures.

Short time frames, indicating little time for training on a new technique, might result 

in the investigator picking the technique that he or she is most familiar with. Finally the 

types o f data that are available, if the surveys have already been conducted prior to 

selecting the method, will also aid in selecting the method to use. All methods can use 

geochemical data. Discriminant analysis, cluster analysis, and neural network analysis 

were able to use Ethology, stream order and drainage area data as well. Factor analysis 

worked well with only the geochemical data; however, it would also work well with 

stream orders and drainage area data. If the survey has not been conducted, selecting the 

multivariate statistical technique during the design o f the survey would be helpful also 

selecting the appropriate variables for the method.

The author agrees with Wong et al. (1995)’s suggestion that neural network 

techniques should be used in conjunction with standard statistical techniques, especially 

if  the predictions from the standard techniques are unsatisfactory due to violations of the 

required assumptions for that technique. However, it is also important for more work to
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be done with different data sets, comparing discriminant analysis and neural network 

techniques, along with factor analysis and cluster analysis and other multivariate 

statistical techniques.
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APPENDIX A 

DRAINAGE GEOCHEMISTRY

A.l Introduction

The general behavior o f chemical components within the environment, and 

specifically with relation to stream sediment, is an important part of interpreting the 

results o f the multivariate statistical techniques that are compared in this study. Macro- 

environmental factors such as topology, climate (which includes temperature and 

rainfall), vegetation, and anthropogenic processes must be kept in mind when interpreting 

results as these factors affect the degree and predominant type o f weathering.

Intermediate environmental factors affecting an element’s geoavailability in the stream 

environment include the physical and chemical weathering characteristics of the source 

material and how that material moves downstream. At the micro-environmental level, 

the interactions between water and stream sediments are dominated by changes in pH and 

Eh of the water and the overall content o f clays, Fe- and Mn-oxides, and organic matter. 

Geochemical barriers represent significant changes in the micro-environment over short 

distances and can be used to better understand where an element might be placed within 

the system and why it got there. All these factors, when taken together, can be used to 

explore for ore deposits since ore deposits can significantly change the micro­

environment when compared with the surrounding lithology.
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A.2 Macro-Environmental Factors

The topography of southwestern Sumbawa ranges from coastal lowlands to high 

mountainous areas. Church et al. (1989) found that mechanical weathering is more 

prominent in mountainous terrain; however, the authors were studying dispersion in the 

cool temperate climate of the Alaskan Aleutian Island Chain. In contrast southwestern 

Sumbawa is a humid tropical climate, especially in the high mountain areas where 

rainfall can reach 85 inches (220 cm) per year. In addition to the high average rainfall, 

the average temperature ranges between 6 8 ° to 8 6° F (20° to 30° C). With increased 

temperature and moisture, chemical weathering becomes more prominent.

Vegetation also plays an important role in affecting the location of elements in the 

environment (Smith and Huyck, 1999). Vegetation, including trees and shrubs, can take 

up certain elements, thus removing them from soil and sediment either temporarily or 

permanently. Bioactivity in humid tropical climates can be intense, resulting in the 

uptake of elements and subsequent loss o f information that might otherwise be in the 

stream sediment. For example. Au can be concentrated in plants as a cyanide complex 

(Rose et al., 1979), thus removing it from stream sediment and potentially reducing what 

might ordinarily be an anomaly to background levels.

Contributions from human activity, such as runoff from roadways or leaching from 

mine tailings, could also contribute to the composition of drainage sediments. Few roads 

existed in the survey areas at the time the two surveys were conducted and construction
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of mining facilities at Batu Hijau did not begin until 1996, well after the two surveys had 

been completed (DeMull et al., 2001). Thus anthropogenic factors are not considered to 

be significant in interpretation o f the survey data.

A.3 Intermediate Environmental Factors

The geoavailability o f an element, its tendency of an element to be released from its 

source mineral into the surficial environment, is a function of physical and chemical 

weathering (Smith and Huyck, 1999). Physical weathering is the mechanical, non­

chemical, breakdown and movement of material. Insoluble minerals, those that are stable 

in normal surface conditions, tend to move downstream by saltation or in the suspended 

load. Chemical weathering is the chemical breakdown of rocks and minerals into more 

stable substances. Highly soluble minerals, such as calcite, will readily breakdown into 

its chemical components under certain surficial conditions. Once an element is in 

solution it moves downstream until the aqueous conditions change so that it precipitates, 

complexes, or becomes adsorbed and thus taken out of solution.

Geochemical conditions can change significantly throughout a drainage. Hobday and 

Fletcher (2001) found that for first and second order streams, the dominant factor in the 

composition of stream sediments is lithologically controlled under normal conditions. As 

more tributaries merge and the stream order increases, a shift in composition of stream 

sediment from control by source rocks to aqueous geochemical processes occurs. Thus, 

in larger streams and rivers feed by several tributaries, the dominant geochemical
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signature will be affected more by chemical processes in the aqueous environment 

(Hobday and Fletcher, 2001).

As previously mentioned, the proportions of lithologies within the drainage area that 

are represented at a sample site depend upon the individual lithologies’ susceptibility to 

weathering (Stallard and Edmond, 1987). As a result lithologies which are more readily 

weathered than their counterparts in the catchment will make up a proportionally greater 

percentage of the stream sediment composition. The exception to this is if  the lithologie 

unit as a whole is more readily chemically weathered or dissolved. In this case the more 

resistant lithology, and probably more mechanically transported material, will represent a 

greater proportion of the stream sediment composition.

A.4 Micro-Environmental Factors

Interactions between the aqueous environment, source minerals, and stream sediment 

are predominantly affected by changes in pH and Eh, and adsorption on clays, Fe- and 

Mn-oxides, and organic matter (Rose et al., 1979; Perel’man, 1986; Horowitz, 1991; 

Plumlee and Nash, 1995; Smith and Huyck, 1999). The degree of acidity or alkalinity, 

the pH, is a measure of the H+ ion activity present in water. Eh is a measure of the free 

oxygen content in the system, with oxidating waters being rich in free oxygen and 

reducing waters being absent o f free oxygen. Both pH and Eh can affect the location of 

elements in the environment. For example, under highly oxidative and strongly acidic 

conditions Au is somewhat mobile in solution, but otherwise it is generally chemically
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inert, i.e. immobile (Smith and Huyck, 1999). Horowitz (1991) notes that Sb typically is 

the most soluble of the elements collected for this study, traveling on average 50% in the 

soluble phase under normal conditions. Roughly 20 to 30% As travels in solution, Cu 

between 8 and 10%, Pb roughly 0.8% and Zn roughly 0.2%.

Once an element is in solution, the ionic potential, the ratio of oxidation number to 

ionic radius, predicts whether an element will by mobile as a simple cation, e.g. Na+ 

which has a low ionic potential, or form compounds with oxygen, e.g. S6+ as SO42" which 

has a high ionic potential (Smith and Huyck, 1999; Rose et al., 1979). Appendix B 

contains selected geochemical parameters for elements used in this study, including ionic 

potential and mobility in solution. Elements with moderate ionic potential are fairly 

immobile because they have a tendency to strongly adsorb or hydrolyze (Smith and 

Huyck, 1999; Rose et al., 1979). It is important to note that changes in valence state, i.e. 

oxidation number, will change the ionic potential and subsequently change the element’s 

mobility in a given environment (Rose et al., 1979).

Adsorption is the process by which elements in solution, either as simple cations or as 

oxyanions, attach to the surface of hydrous Fe- and Mn-oxides, clays, or organic matter 

(Rose et al., 1979; Perel’man, 1986; Horowitz, 1991). Fine grained sediments or organic 

molecules with large charged surface areas and high cation exchange capacity are the 

best receptors for ions in solution. Hydrous Fe- and Mn-oxides are excellent candidates 

for adsorbing ions due to the fine-grained, poorly crystallized habit with large surface 

area and high cation exchange (Horowitz, 1991).
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Clay minerals are also extremely fine-grained, have large surface areas, expandable 

lattices, and moderate to high cation exchange capacity with high negative surface charge 

principally due to broken bonds on mineral edges and substitution o f Al3+ for Si4+ within 

the lattice structure (Plant and Hale, 1994; Horowitz, 1991). As a result, the fine-grained 

clay-sized particles have some of the highest metal concentrations (Smith and Huyck, 

1999).

Organic matter, or humus, can concentrate substantial amounts of Co, Cu, Fe, Pb,

Mo, Ag, and Zn, due to the large surface area, high cation exchange capacity, high 

negative surface charge and physical trapping (Horowitz, 1991). Three of the ways 

organic matter can affect the mobility o f ions in solution include complexing with trace 

elements thereby increasing their mobility, forming organic compounds that result in 

immobilization o f the element, or reducing the element to a lower valence state which 

changes the chemical properties o f the element as reflected by a change in ionic potential 

(Rose et al., 1979).

The affects o f the above factors on the location of elements in the surficial 

environment can be predicted by understanding the concept o f geochemical barriers. 

Geochemical barriers result from significant and mostly abrupt changes in the physical or 

chemical properties of a stream which result in the precipitation of certain elements 

(Smith and Huyck, 1999; PereTman, 1986). The most significant physio-chemical 

barriers in the southwestern Sumbawa region are oxidizing, reducing hydrogen sulfide, 

acidic, alkaline and adsorption (PereTman, 1986, Rose et al., 1979). Table A .l contains a



228

synopsis of the geochemical barriers most common in the southwestern Sumbawa region. 

It is important to understand that more than one geochemical barrier can exist at a 

location, such as the complex oxidizing-adsorption barrier, where the precipitation of 

hydrous Fe- and Mn-oxides (oxidizing) is accompanied by the adsorption of Cu, Zn and 

Pb (adsorption) on the hydrous oxides (PereTman, 1986).

A.5 Application to Mineral Exploration

The design of mineral exploration drainage surveys and selection of elements 

for analysis should include careful consideration of the aforementioned factors.

For example, the elements that are used in this study may occur in primary ore 

minerals that travel with the heavy mineral fraction (concentrated in coarser-sized 

particles), secondary ore minerals which become finer grained downstream from 

the source, precipitates, adsorbed ions on Fe-Mn oxides, organic matter, or clay, or 

taken up by vegetation along the stream bank (Rose et al., 1979).

Rose et al. (1979) note that normal surface waters are typically between a pH 

of 5 and 8 , however, near a sulfide ore body the pH can drop significantly, which 

can significantly affect an elements mobility as described in section A.4.

Typically immobile elements tend to create a “halo” about the deposit, moving 

mostly with the clastic, solid particles by saltation (Rose et al., 1979), whereas the 

mobile elements move into solution and are carried much further from the deposit.

The size o f halos about pyrite-rich orebodies tend to be reduced, while the
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Table A. 1 Synopsis o f geochemical barriers commonly found in southwestern 
Sumbawa. Compiled from Rose et al. (1979), PereTman (1986), Plumlee and 
Nash (1995), and Smith and Huyck (1999).

Geochemical Barrier Occurrence Results

Oxidizing When reducing waters come 
into contact with free oxygen

Precipitation of hydrous Fe- 
and Mn- oxides, which lead to 
adsorption o f Cu, Ni, Ag, Zn, 
and Pb from solution

Reducing Hydrogen 
Sulfide

When oxidizing or reducing 
gley waters come into contact 
with hydrogen sulfide or 
sulfide minerals, such as in 
the vicinity of sulfide deposits 
in humid climates

Precipitation of sulfides such 
as pyrite and galena, and 
concentration o f Fe, Cu, Zn, 
Pb, and Ni

Acidic Acidic barriers occur when 
neutral or alkaline waters 
come into contact with acidic 
waters

Silica minerals and Mo- and 
Ti-minerals can be 
precipitated; cause anionic 
elements to become less 
mobile and cationic elements 
to become more mobile

Alkaline barriers Occur where acidic conditions 
are replaced by alkaline 
conditions, such as at the 
oxidation zones about a 
sulfide ore deposit surrounded 
by limestone; presence of 
carbonate, which can buffer 
acidic conditions

Carbonates, phosphates, and 
hydroxides can be 
precipitated; cause elements 
that migrate easily under 
acidic conditions, such as Fe, 
Al, Ca, Mg, Cu and Pb to 
precipitate as hydroxides or 
carbonates

Adsorption Commonly occur in 
connection with any of the 
above barriers, where ions are 
taken out o f solution by 
adsorbing onto a precipitating 
hydrous Fe- or Mn-oxide, clay 
or existing organic molecule

Elevated concentrations of 
elements, such as Cu, Pb, and 
Zn, that readily adsorb onto 
precipitating or fine-grained 
particulates
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magnitude increases because of the large amounts o f iron oxides that form during 

weathering, since these iron oxides tend to adsorb ions readily (Plant and Hale, 1994). 

Rose et al. (1979) note that Mo is commonly used as a pathfinder element for porphyry 

copper deposits as it has a larger dispersion pattern than Cu due to its increased mobility 

in more neutral to alkaline conditions. The authors also note that As in stream sediment 

is also used as a pathfinder for vein-type Au ore because it has a greater dispersion 

pattern due to increased mobility.

Chastain and Fletcher (2001) examined the Pascua-Lama high sulfidation epithermal 

gold deposit in the High Andes of Argentina-Chile. The authors noted that mobile 

elements, e.g. Cu and Zn, tend to be leached near the deposit due to highly acidic 

conditions and increased concentrations o f these are seen further from the deposit, mostly 

controlled by changes in pH. In contrast, the largely immobile elements, e.g. Au, As, Sb, 

Hg, and Mo, tend to stay out o f solution and rely mostly on mechanical transport, thus 

anomalous halos tend to stay near the site o f origin (Chastain and Fletcher, 2001).



APPENDIX B

Selected geochemical characteristics of As, Au, Cu, Mo, Pb, Sb, and Zn.
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Table B. 1 Selected geochemical characteristics for elements used in this study.
Compiled from Rose et al. (1979), Klein and Hurlbut (1993), Krauskopf and Bird (1995), 
Plumlee and Nash (1995), Ottonello (1997), Reimann and de Caritat, (1998), and Smith 
and Huyck (1999).

Characteristic As Au
Geochemical Affiliation1 Chalcophile Dominantly Siderophile, 

sometimes chalcophile as 
it is often found in sulfide 
veins

Common Valence states, 
corresponding ionic radii (A) 
(Coordination Number); 
Ionic Potential2

Asj+, 0.58 (VI); 5.2 
A s5+, 0.34 (IV); 14.7 
A s5+, 0.46 (VI); 6.5

Au+ , 1.37 (VI); 0.7 
Au3+, 0.68 (IV); 4.4 
Au3+, 0.85 (VI); 3.5

Anionic vs. Cationic3 Anionic Anionic
Common Aqueous species H2ASO4'

HAsCV"
HAsCh

H3AUO3
H2AUO3
HAuOa2"

Redox Sensitivity4 Sensitive Probably sensitive only 
under extreme conditions

Mobility 
Strongly acidic: 

pH < 3  
Weakly acidic: 

pH 5 to 6.5 
Neutral to Weakly alkaline: 

pH 6.5 to 8.5 
Strongly alkaline: 

pH > 8.5

Mobile under oxidizing, 
strongly acidic conditions; 
Somewhat mobile under 
oxidizing, weakly acidic to 
weakly alkaline and 
reducing gley conditions; 
Immobile in strongly 
alkaline and reducing 
hydrogen sulfide 
conditions

Somewhat mobile under 
oxidizing, strongly acidic 
conditions;
Immobile otherwise

Factors affecting mobility Presence of sulfide to form 
arsenic-rich sulfides; 
Adhesion and 
coprecipitation with Fe- 
hydroxides and clays; 
Some plants readily take 
out of solution
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Table B.l (Continued)

Characteristic Cu Mo
Geochemical Affiliation1 Chalcophile Siderophile
Common Valence states, 
corresponding ionic radii (A) 
(Coordination Number); 
Ionic Potential2

Cu+ , 0.46 (II); 2.2 
Cu+ , 0.77 (VI); 1.1 
Cu2+, 0.57 (IV); 3.5 
Cu2+, 0.65 (V); 3.1 
Cu2+, 0.73 (VI); 2.7

Mo4+, 0.65 (VI); 6.2 
Mo6+, 0.41 (IV); 14.6 
Mo6+, 0.59 (VI); 10.2

Anionic vs. Cationic3 Cationic Anionic
Common Aqueous species Cu2+

Cu(OH)2
CuHC03+
CuCI32"
CuCl2

M o o /-
HM0 O2

Redox Sensitivity4 Sensitive Sensitive
Mobility 
Strongly acidic: 

pH < 3  
Weakly acidic: 

pH 5 to 6.5 
Neutral to Weakly alkaline: 

pH 6.5 to 8.5 
Strongly alkaline: 

pH > 8.5

Very mobile under 
oxidizing, strongly acidic 
conditions;
Mobile under reducing 
gley, weakly acidic 
conditions;
Somewhat mobile under 
oxidizing, weakly acidic 
conditions;
Immobile under reducing 
hydrogen sulfide and 
alkaline conditions

Mobile under oxidizing 
weakly acidic to weakly 
alkaline conditions; 
Somewhat mobile under 
oxidizing, strongly acidic 
conditions;
Immobile under reducing 
conditions

Factors affecting mobility Presence of sulfides, 
adsorption to Fe- and Mn- 
oxides, organic matter and 
hydrolysis effect placement 
in environment;
Elevated chloride 
decreases adsorption on 
sediment, due to 
complexing with chloride 
to form more mobile 
complexes

Presence of sulfides, 
reducing conditions, 
adsorption, presence of Pb, 
Fe, and carbonate ions 
effect placement in 
environment; Adsorption 
on clays, precipitation in 
carbonate rich environs is 
common
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Table B.l (Continued)

Characteristic Pb Sb
Geochemical Affiliation1 Chalcophile Chalcophile
Common Valence states, 
corresponding ionic radii (Â) 
(Coordination Number); 
Ionic Potential2

PtT, 1.19 (VI); 1.7 
Pb2+, 1.29 (VIII); 1.6 
Pb2+, 1.35 (DC); 1.5 
Pb2+, 1.40 (X); 1.4

SbJ+, 0.76 (VI); 3.9 
Sb5+, 0.60 (VI); 8.3

Anionic vs. Cationic3 Cationic Anionic
Common Aqueous species Pb2+

PbC03
Pb(OH)+
Pb(OH)2
PbCl2

Sb02"
HSb02
SbS32"

Redox Sensitivity4 Sensitive only under 
extreme conditions

Sensitive

Mobility 
Strongly acidic: 

pH < 3  
Weakly acidic: 

pH 5 to 6.5 
Neutral to Weakly alkaline: 

pH 6.5 to 8.5 
Strongly alkaline: 

pH > 8.5

Mobile under reducing 
gley, weakly acidic 
conditions;
Somewhat mobile under 
oxidizing, strongly to 
weakly acidic conditions; 
Immobile under reducing 
hydrogen sulfide and 
alkaline conditions

Somewhat mobile under 
oxidizing conditions 
regardless o f pH;
Immobile under reducing 
conditions regardless of pH

Factors affecting mobility Controlled by adsorption 
on Mn- and Fe-oxides and 
insoluble organic matter. 
Presence of sulfate, sulfide, 
adsorption effect 
placement in environment; 
Most Pb bound in 
carbonates and Fe-Mn 
oxides

Presence of sulfide, 
adsorption onto Fe-Mn 
oxides affect placement in 
environment
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Table B.l (Continued)

Characteristic Zn
Geochemical Affiliation1 Chalcophile
Common Valence states, 
corresponding ionic radii (Â) 
(Coordination Number); 
Ionic Potential2

Zn2+, 0.60 (IV); 3.3 
Zn2+, 0.74 (VI); 2.7 
Zn2+, 0.90 (VIII); 2.2

Anionic vs. Cationic3 Cationic
Common Aqueous species Zn2+

Zn(OH)2
Zn(NH3)42+
HZnOf

Redox Sensitivity4 Not Sensitive
Mobility 
Strongly acidic: 

pH < 3  
Weakly acidic: 

pH 5 to 6.5 
Neutral to Weakly alkaline: 

pH 6.5 to 8.5 
Strongly alkaline: 

pH > 8.5

Very mobile under oxidizing, 
strongly to weakly acidic 
conditions;
Mobile under reducing gley, 
weakly acidic conditions; 
Immobile under reducing 
hydrogen sulfide and alkaline 
conditions

Factors affecting mobility Tends to be adsorbed by 
MnC>2 and insoluble organic 
matter; scavenged by non- 
detrital carbonates, organic 
matter, and oxide minerals; 
elevated chloride causes Zn 
to complex with chloride 
molecules resulting in 
decreased adsorption on 
sediment
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Footnotes:

1. Geochemical Affiliation: Denotes Goldschmidt’s classification of elements based 
upon the element’s preference to be concentrated with sulfur in sulfides (chalcophile), 
occur with native iron (siderophile), or occur in silicate minerals (lithophile) 
(Krauskopf and Brid, 1995).

2. Ionic potential: ratio o f valence state (oxidation number) to ionic radii. Low ionic 
potential typically indicates greater mobility as single cations in aqueous 
environments, while high ionic potential indicates greater mobility as oxyanions 
(Smith and Huyck, 1999).

3. Anionic vs. cationic: Denotes the general ionic behavior in aqueous solutions, where 
cationic means that the element travels as cations and anionic means the element 
travels as anions, typically oxyanions (Smith and Huyck, 1999).

4. Redox sensitivity: An element is sensitive if it responds to changes in redox state by 
changing oxidation number (valence state), which can result in changes in 
geochemical behavior (Smith and Huyck, 1999).
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APPENDIX C

Histograms and cumulative frequency plots for the orientation and reconnaissance 
survey data.

Figure C.la Histogram for gold from the orientation survey.
Figure C.lb Cumulative frequency plot for gold from the orientation survey.
Figure C.lc Histogram for copper from the orientation survey.
Figure C.Id Cumulative frequency plot for copper from the orientation survey.
Figure C.2a Histogram for lead from the orientation survey.
Figure C.2b Cumulative frequency plot for lead from the orientation survey.
Figure C.2c Histogram for zinc from the orientation survey.
Figure C.2d Cumulative frequency plot for zinc from the orientation survey.
Figure C.3a Histogram for arsenic from the orientation survey.
Figure C.3b Cumulative frequency plot for arsenic from the orientation survey.
Figure C.3c Histogram for antimony from the orientation survey.
Figure C.3d Cumulative frequency plot for antimony from the orientation survey.
Figure C.4a Histogram for molybdenum from the orientation survey.
Figure C.4b Cumulative frequency plot for molybdenum from the orientation survey. 
Figure C.4c Histogram for gold from the reconnaissance survey.
Figure C.4d Cumulative frequency plot for gold from the reconnaissance survey.
Figure C.5a Histogram for copper from the reconnaissance survey.
Figure C.5b Cumulative frequency plot for copper from the reconnaissance survey.
Figure C.5c Histogram for lead from the reconnaissance survey.
Figure C.5d Cumulative frequency plot for lead from the reconnaissance survey.
Figure C.6a Histogram for zinc from the reconnaissance survey.
Figure C.6b Cumulative frequency plot for zinc from the reconnaissance survey.
Figure C.6c Histogram for arsenic from the reconnaissance survey.
Figure C.6d Cumulative frequency plot for arsenic from the reconnaissance survey.
Figure C.7a Histogram for antimony from the reconnaissance survey.
Figure C.7b Cumulative frequency plot for antimony from the reconnaissance survey. 
Figure C .lc  Histogram for molybdenum from the reconnaissance survey.
Figure C.7d Cumulative frequency plot for molybdenum from the reconnaissance

survey.
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APPENDIX D 

THE CARRANZA AND HALE (1997) METHOD

D.l Introduction

The Carranza and Hale (1997) method of estimating the background contribution of  

lithology for a drainage basin involves taking into consideration the area being drained by 

the stream at the point it is being sampled, the different Ethologies present in the 

upstream drainage area, and corresponding aerial extent in the upstream drainage area.

As with many techniques o f this nature a few assumptions need to be addressed first. 

The first assumption is that the stream sediment samples do not contain any contributions 

from alluvial river bank material, which is probably the case as the area contains dense 

vegetation which would probably result in more stable river banks. The second 

assumption is that once the elements are removed from solution they remain in the 

sediment. The second assumption is probably met best in higher order streams, say third 

order or higher. The third assumption is that erosion is uniform within each drainage.

The topography in southwest Sumbawa changes significantly from low coastal lands to 

high mountainous terrain, which suggests that the third assumption is probably not met, 

especially for the reconnaissance survey which covers a large more varied area. The 

fourth assumption is that the area of exposed mineralization is very small, roughly 10 to 

200 times smaller, relative to the drainage basin. In most cases this assumption is true.
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especially for the low-sulfidation epithermal gold mineralizations in the area. The fifth, 

and final, assumption is that all anomalous values are due to mineralization (Carranza and 

Hale, 1997). The final assumption is also probably met, however, it is expected that 

background concentrations will be elevated in this region due to the numerous known 

mineral occurrences.

D.2 Methodology

The Carranza and Hale (1997) method involves the multiple linear regression. For 

the regression technique, the aerial extents of the lithology (j) are regressed against the 

In-transformed element data to estimate the regression coefficients for each lithologie 

unit (bj). By forcing b0 through the origin (zero) the investigator is able to estimate the 

mean element concentration o f the j* rock unit. The aerial extents o f lithology are used 

instead o f the percents to avoid introducing negative correlations and to provide the 

regression with an open data set (Swan and Sandilands, 1995). The regression is done 

according to equation D. 1.

m
Ÿi = bo + %bjXÿ (D.l)

Where: Ÿ* = stream sediment element contents due to lithology
Xÿ = aerial proportions of the j* rock unit (j = 1, 2, ..., m) in the ith 
sample catchment basin (i=l, 2, ..., n)
m

Xy = 1.0 for j=l,  2, ..., m rock units in sample catchment basin i
j
b0 and bj = regression coefficients
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Once the regression is complete and the regression coefficients are obtained. The Ÿ*

values are calculated according to equation D.2 for each sample site:

Ÿj = hi Xi + bi X2 + ... + bn Xn (D.2)

Where bi, b2, ..., bn = regression coefficients for lithologies X=1, 2, ..., n
Xi, X2, ..., Xn = aerial extent of lithologies X = 1, 2, ..., n

Then the Ÿj values are converted from In-transformed data to regular element 

concentrations using the eYl function. Finally, the average Ÿj values for each element are 

then taken to represent the average lithologie contribution to background concentrations 

for each element.
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APPENDIX E

Figures of element concentrations by drainage for each survey. In each figure the 
data was subdivided into groups that (1) best reflect the actual spread of the data, and (2) 
produce a number o f subdivisions small enough to make the figure easier to read.

Figure E.l Gold concentrations for orientation survey
Figure E.2 Copper concentrations for orientation survey
Figure E.3 Lead concentrations for orientation survey
Figure E.4 Zinc concentrations for orientation survey
Figure E.5 Arsenic concentrations for orientation survey
Figure E.6 Antimony concentrations for orientation survey
Figure E.7 Molybdenum concentrations for orientation survey
Figure E.8 Gold concentrations for reconnaissance survey
Figure E.9 Copper concentrations for reconnaissance survey
Figure E.10 Lead concentrations for reconnaissance survey
Figure E.l l  Zinc concentrations for reconnaissance survey
Figure E.12 Arsenic concentrations for reconnaissance survey 
Figure E.13 Antimony concentrations for reconnaissance survey
Figure E.l4 Molybdenum concentrations for reconnaissance survey
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APPENDIX F

Contents o f CD-ROM in the back pocket. The document (*.doc) files are in 
Microsoft Word 2000 format. The spreadsheet (*.xls) files are in Microsoft Excel 2000 
format.

•  Plate I.doc
• Plate Il.doc
• Plate III.doc
•  Plate IV.doc
• Plate V.doc
• Orientation Survey.xls1
•  Reconnaissance Survey.xls2

1. Contains all of the orientation survey data used for this study. Column headings are self-explanatory.
2. Contains all of the reconnaissance survey data used for this study. Column headings are self- 

explanatory.


