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ABSTRACT

As a result of the recent curriculum reform process at the Colorado School of Mines, a 

set of problems has been developed to address the issues of inspiring student interest 

in calculus, of helping students to connect calculus to other subjects and of helping 

students to recognize mathematics written in different forms. The problems are taken 

from subject material used in courses offered by other departments on the CSM 

campus. The focus in the problems is on the mathematics involved in solving the 

problem. Included with the problems is a discussion which gives the reasons for 

developing the problems, the methodology used to develop the problems, how to use 

the problems, difficulties with notation in the problems and intended evaluation of 

their use.
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Chapter 1 

INTRODUCTION

In the recent curriculum reform process at the Colorado School of Mines, 

comments were made by faculty members from several different departments that 

students were finishing their calculus courses unprepared or underprepared to do the 

m athematics in their courses. Also, there were comments that students have difficulty 

translating the calculus they know into new concepts where problems might appear 

to be different. This led to the idea of developing a set of calculus problems based on 

concepts from courses offered in other departments on campus. By showing students 

calculus used in this manner, it is hoped that students will see the necessity of learning 

and knowing calculus and that seeing problems presented in different forms will help 

them with the process of translating calculus into different areas.

Reasons for the development of this course are supported by student and 

faculty surveys. Support for this idea is also given through development of similar 

projects conducted at several universities through grants from the National Science 

Foundation [3] and through other publications. W ithin the past few years, calculus 

for engineers textbooks have begun to appear which use a myriad of calculus and 

engineering problems as have other publications devoted to both engineering and
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nonengineering applications for calculus.

Evaluation of some of these problems has been conducted by introducing them 

to Calculus II and Calculus III honors students during the 1996/1997 academic year. 

Honors Calculus II students are students who have advanced placement credit based 

on a score of 4 to 5 on the AB exam for calculus. However there is a need for further 

evaluation that will consist of determining how well the students are able to solve 

problems, whether their overall problem solving capability improves and whether they 

are able to carry over what they learned into other courses. It will take a coordinated 

study over several semesters to obtain results. This model will be tested on students 

who did not have advanced placement credit in the fall of 1997.

The problems in this collection are intended as a supplement to the regular 

calculus curriculum. Although they cover a wide range of calculus topics, there are 

several topics not covered at all. The problems have been developed using material 

taken from courses offered through the various departments on the CSM campus. 

It is not the intention for these problems to teach engineering or scientific concepts, 

but to concentrate on the mathematics being used to develop the concept. W ithin 

each problem, a concept is introduced and the necessary equations are derived for 

the students. From this a mathematics problem or series of problems is posed which 

students are expected to solve. The student only works through the mathematics - 

he or she is not expected to fully grasp the physical concept - only understand where
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the problem comes from and how to develop the mathematics.

This problem set was developed by collecting course material from professors 

in other departments. Many of the problems come from textbooks similar to the ones 

being used in courses. In some cases, problems were written directly by the professors, 

but in most instances they were developed by this writer. From the collection of 

material, an introduction to the concept was written and the problem was developed. 

All essential material is explained or derived. Students are only expected to work 

through the actual mathematics.
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Chapter 2 

W H Y DEVELOP THESE APPLICATION PROBLEMS?

During the ongoing curriculum revision process at the Colorado School of 

Mines, many comments have been made that students were unable to use or apply 

what they have learned in calculus to other subjects. These comments resulted in the 

idea of taking concepts out of subject areas and concentrating on the mathematics 

involved. The result is to make calculus more relevant to these subjects and to help 

students see how calculus is applied. Interviews and written surveys with faculty 

members across campus have supported this idea and many faculty members have 

contributed material to this project. As a result, this thesis will present several prob­

lems involving different topics of calculus as it is applied to problems in Engineering, 

Chemical Engineering, Chemistry, Physics, Geology, Mining Engineering and Envi­

ronmental Science among other areas. It is intended that these problems supplement 

the curriculum in ways that are not found in standard textbooks and that are specific 

to CSM.

Why is it desirable to have problems which apply calculus to a number of 

different fields? The goals for these problems are threefold. It is expected that these 

problems will provide:
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•  ways to inspire and interest students in calculus;

•  ways to connect calculus to other subjects;

• ways to help students recognize mathematics written in different symbols.

These goals were developed from comments made by faculty members from both inside 

and outside the Mathematical and Computer Sciences (MCS) Department. Faculty 

members teaching calculus often feel that students are just trying to get credit in the 

course and that many students do not realize that they will encounter many problems 

using calculus in their chosen majors. Faculty members teaching in other disciplines 

often comment that students do not recognize the type of problem they are facing 

when the symbols have been changed. They say that this often leads to reteaching 

many calculus topics that students should know.

Specific comments which have motivated this project came through a faculty 

survey and through faculty interviews. One engineering professor states that “It is 

very im portant for the students to see that math is not just an abstract concept 

- but an extremely useful and necessary subject to be combined with science and 

engineering.” That students are often, but not always, missing this point is shown 

by the faculty survey and through a m ath diagnostic exam given by the Physics 

Department to all Physics I students.

To get a more concise understanding for what needed to be done in construct­

ing these problems, a faculty survey was developed and sent out to faculty members



6

in each of the m ajor science and engineering departments on campus. The survey 

consisted of three questions and a summary of the response is as follows. The first 

question asked for specific lists of mathematical topics of skills which pose difficulty 

for students. The response included topics such as complex variables, m atrix ma­

nipulation, definite integrals, differentiation, simple first order differential equations, 

algebra, trigonometry, interpretation and construction of graphical relationships, ap­

plication of symmetry information to simplify integrals in two or three dimensions, 

vector differences and differentials and understanding the chain rule. There was one 

reply stating that students generally exhibited the required mathematical knowledge. 

The second question asked if each respondee felt that students have forgotten the 

m ath, never learned the m ath or are confused about the change in vocabulary or 

symbols. Responses indicated that a change in vocabulary or symbols creates the 

most problems, followed by students not learning the m ath in the first place. Only 

one person felt that students forgetting what they have learned was a problem. The 

third question asks how much time is spent in reteaching math. Most people re­

sponded tha t little reteaching was done, but that students are expected to review on 

their own. However, the physics department states that a large amount of classroom 

time must be spent in teaching mathematical concepts. All of the people who have 

responded to this survey have contributed information from which problems were 

developed for this project.
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At the beginning of the spring, 1997 semester, a m ath diagnostic exam was 

given to all Physics I students. The exam consisted of nine basic computational, 

algebra and calculus problems. Of 220 students who took the exam, 23% scored 

between 70% and 100% on the test, and 66% scored between 40% and 70% on the 

test. Possible conclusions from this are that students don’t know their math, or that 

they are having a difficult time translating what they do know to problems that look 

different compared to what is found in their calculus textbook.

The problems presented in this thesis have been designed to address the issues 

tha t have been exposed by the survey, the diagnostic test and other comments. The 

problems consist of a background explanation and are written in the symbols and 

terminology used in the course from which they were taken. However, students need 

only solve the mathematics in the problem and be able to distinguish between the 

different uses of notation and symbols.

Further reasons for developing this problem set are based on recent calculus 

curriculum reform efforts where an emphasis is being placed on problem solving. 

Throughout the last ten years, many efforts have been made to improve the quality 

of instruction in calculus and to make calculus more relevant to other science and 

engineering subjects. Much of this came about when too many students were leaving 

science and engineering programs because they found the strict lecture technique 

dull and unwelcoming [10]. Textbooks and supplemental materials developed from



this effort can be valuable references for additional problems beyond what has been 

produced in this thesis.

Beginning in 1986, a calculus reform effort was started by the Mathematical 

Association of America (MAA) and was supported by grants from the National Sci­

ence Foundation (NSF). The reforms have moved away from the lecture and drill 

and practice teaching to using methods which have students working in small groups 

solving multi-step problems that come from a variety of disciplines, using graphing 

calculators and computers and writing lengthy explanations of their solutions [29]. 

Students are expected to move comfortably between symbolic, verbal, numerical and 

graphical representation of mathematical ideas [25]. Although criticisms have been 

made about calculus reform, such that, it is over simplified and too reliant on calcu­

lators, many of the critics will admit that the calculus reform movement has had a 

positive impact on the attitudes of mathematics faculty toward teaching [10].

One of the significant results of the reform movement was the publication of 

the “Harvard” Calculus series by Deborah Hughes Hallett, et al. These books are 

based on two principles [22] [15], “The rule of three: every topic should be presented 

geometrically, numerically and algebraically and The Way of Archimedes: Formal 

definitions and procedures evolve from the investigation of practical problems.” The 

book generally starts a new concept with a practical problem and proceeds into a 

generalization of the concept. This design came into play when the Harvard faculty’s
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response to the question of where students stumble mathematically in their courses 

was that students could not make use of what they had been taught [14]. It is the 

contention of the authors that this new method promotes thinking about problems 

in different ways by asking students to explain their reasoning.

Other textbooks and applications problems have recently been published and 

can be used as further resources for applications. The “Resources for Calculus” 

collection published by MAA [27] has a collection of problems and projects from a 

variety of engineering and scientific fields. “Calculus for Engineering and the Sciences” 

by Elgin H. Johnston and Jerold C. Mathews [18], applies many calculus concepts to 

engineering problems as does “Calculus for Engineers” by Robin Carr and Bill Goh 

[5]. New editions of standard texts also include new applications and creative use of 

technology.

In conjunction with the calculus reform effort, several universities are conduct­

ing programs to build application problems in a manner similar to this thesis. The 

NSF has multi-year grants funding these efforts [3]. Three key universities in this 

project are Rensselaer Polytechnic Institute, University of Pennsylvania and D art­

mouth College. They are working together with consortia of universities. All of the 

universities involved in this project are not only constructing applications problems, 

but intend to integrate them into their curricula. Many of these applications will be 

available on the World Wide Web for general use.
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Rensselaer Polytechnic University has created Project Links, which is a li­

brary of hypertext documents that will link calculus, differential equations, mechan­

ics, linear systems and probability and statistics to different fields such as biomedical 

engineering, chemical engineering, electrical and computer systems engineering, me­

chanical engineering, physics, chemistry and biology [4]. They will be working in 

conjunction with the University of Delaware, Sienna College, Virginia Polytechnic 

Institute, Central State University, Hudson Valley Community College and the Uni­

versity of Maryland. The objectives for Project Links are to stimulate greater cooper­

ation in educational development among faculty in mathematics and other disciplines, 

to encourage interactive teaching and learning strategies and to produce instructional 

materials for use in studio-type courses, to create a library of hypertext modules that 

link topics in mathematics usually studied by students of engineering or science and 

to continue pioneering efforts in the application of contemporary technology for edu­

cational purposes [4]. Information about Project Links and what they have completed 

so far can be found on the World Wide Web at http://www-links.m ath.rpi.edu.

The NSF project at the University of Pennsylvania has developed the Mid­

dle Atlantic Consortium for Mathematics and its Applications Throughout the Cur- 

riculum(MACMATC). The goals of the consortium are to integrate research and 

real-world applications into the basic mathematics curriculum and to achieve more 

effective integration of advanced mathematics and computing into the upper-level

http://www-links.math.rpi.edu
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curricula of disciplines that use it [7]. The consortium consists of the University 

of Pennsylvania, Villanova, Polytechnic University and the Community College of 

Philadelphia. Each school is working on a series of application problems which in­

clude image analysis, focusing on methodologies that link geometry and computing, 

mathematics and finance, mathematical thermodynamics, mathematical connections 

to business, social science and everyday life, a problem of flight speed vs. travel time 

to introduce students to linear and nonlinear phenomena, elasticity in economics as 

an application for advanced calculus and Snell’s law for light refraction in geometric 

optics [2]. As this is an ongoing project, evaluation is only just beginning. Informa­

tion about MACMATC including a lengthy description can be found on the World 

Wide Web at http://w w w .m ath.upenn.edu/ ugrad/ macmatc/gendesc.html.

Dartm outh College has formed the Center for Mathematics Education which is 

responsible for its Mathematics Across the Curriculum (MATC) project. The Center 

is responsible for collecting and housing materials and resources generated by MATC, 

as well as a collection of standards, curriculum and articles relevant to the integration 

of mathematics at various levels [24]. Information about the center can be found on 

the World Wide Web at http://w w w .dartm outh.edu/ m atc/GRANT.REV .7.html.

http://www.math.upenn.edu/
http://www.dartmouth.edu/
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Chapter 3 

FORMULATION OF THE PROBLEMS

The problems in this thesis were chosen by considering how calculus is applied 

to other subjects and to foster student interest in calculus. Nearly all of the problems 

were taken from material used in courses taught by departments other than the 

MCS Department. Choices were made in collaboration with the professors who teach 

the courses. In choosing the problems, professors were asked to pick topics where 

students had difficulty with the mathematics involved. The problems have then been 

redesigned so that there is just an introduction to the topic from which the problem 

has been drawn and the main focus is on the mathematics contained within the 

problem.

There are also a few problems that are unrelated to a specific course, but were 

created to enhance certain subject areas. They still have a relationship to science 

or engineering, but look at a concept in a different manner. An example of this is 

the problem asking students to evaluate gradients and directional derivatives using 

contours on a topographic map.

The problems were collected through personal visits with professors and by 

corresponding with others through e-mail. Everyone who was approached for input
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into this project responded enthusiastically and many interesting concepts and ideas 

came out of the discussions. The amount of material available for developing problems 

is considerably more than was used in this thesis, so prospects for expanding the 

number and types of problems are excellent.

The problems were developed as material became available. Many of the 

problems have a short introductory section which tells where the problem comes from 

and gives some background material needed to do the problem. Since the problems 

are being applied to a subject, a description of the notation is included. Often, 

in order to work the problem, students must be able to identify the parameters by 

their meaning and make correct deductions toward the solution of the problem using 

those parameters. The procedure used for solving the problems concentrates on the 

m athematics needed. In some of the problems, students are led step by step through 

the solution, filling in the mathematical details. In some cases, two or three variations 

of the same problem are given and after being led through the first part students are 

expected to set up and work out the next part without as much guidance. Any 

equations that need to be derived from the written information are given with a brief 

explanation. In other problems, students will have to deduce the solution with little 

guidance by relying on their knowledge of mathematics. Although most problems lead 

to a specific solution, a few are open ended allowing for some interpretation. Many of 

the solutions involve using a mathematical procedure for developing formulas which
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are commonly used in other courses.

Students are not expected to grasp the full meaning of the subject until they 

get to the proper course, however, they should be able to develop a good understand­

ing of the mathematics involved in solving these problems. It is not the intent of 

these problems to teach material in other subject areas, but to use that material to 

help students make use of their mathematical knowledge now and in the future.
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Chapter 4 

USING THE PROBLEMS

How these problems are used is up to the instructor, depending on what works 

best for him or her. They can be worked on individually by students, but are probably 

more easily solved by students working in groups. W hat needs to be done to work 

the problem is not always obvious and groups will stimulate discussion and generate 

ideas about the problems.

Chapter six contains two content tables for this problem set, one listing the 

problems by calculus topic and the other listing the problems according to the source. 

The problems have been organized according to the calculus topic they cover so that 

it is possible to choose from several problems covering one topic, depending on what 

draws the most interest. The problems are intended to supplement the material in 

the textbook. When students approach these problems, they should already have 

been introduced to the calculus concepts involved.

During the fall semester of 1996, some of these problems were given to stu­

dents in the Calculus II Honors class. Students were given time in class to work on
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problems and were asked to work in groups. Many of the students found that the 

interaction in the group helped them formulate ideas and after some discussion, groups 

were able to come up with solutions. Students were asked to come up with a single 

paper explaining their group’s solution and the paper was expected to be well written 

and neat. Since solutions vary from finding a formula or specific number to writing 

an estimate, how students prepare their solutions is important and should be done 

carefully. Although it sometimes takes a lot of effort to get students started in group 

work, once they begin to see the benefits, they find the group work to be helpful.

Although care was taken to insure the legitimacy of each problem, it is not 

possible to be an expert in all areas, so inaccuracies may exist. If a student thinks that 

there is an inaccuracy in a problem, this is an excellent opportunity for that student 

to do some extra exploration on that subject by making contact with professors in 

other departments.

Time to solve the problems varies greatly. Some problems can be used as 

examples during class or in short problem solving sessions; others will take two to 

three hours to finish. The longer problems can be shortened, but in some cases the 

point of the problem may be lost. An estimated time for completion has been listed 

with each problem.
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Chapter 5 

USE OF NOTATION

The use of different notations continually causes problems for students. Sci­

entists and engineers use notation that matches the ideas they are trying to convey 

and to better define formulas so that they are easier to use. It often appears much

different than what is seen in a calculus book. For example, in a calculus course,

dy
students may be asked to solve —  = —2y for y whereas in a reaction rate problem in

a chemistry course the problem may look like =  — A:[A][C] where students solve

for [A]. It should be easy for students to see that both problems can be solved using

identical steps, and that their solutions will have an exponential form, depending on

an initial condition. This problem occurs in yet another form in electric circuits as 

dv v
—  =  ———. Again, the symbols are different, but the method to obtain the solution 
d t C R

is identical. Often, students who can solve the first problem with ease will experience 

to tal confusion on the second and third problems.

An effort has been made to keep the notation true to the original problem to 

expose students to the different symbols. Although an attem pt has been made to
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give meaning to the symbols used in these problems, not all of the notation is clearly 

explained since it would mean delving much deeper into the scientific subject. That is 

not the primary intent of this study. However, students should be able to distinguish 

between what are constants and what are variables and understand the meaning of 

different functions.

To help ease notation difficulties, many of the problems have a “Troublesome 

Notation” section describing anticipated areas where notation may be misinterpreted. 

These sections have been written for students and are areas instructors may want to 

make students aware of. Some of the more common notation difficulties are listed 

below.

• Symbols versus Numbers: In many of the problems in this thesis, we are deriving 

the mathematics behind an idea or concept. Hence, each symbol takes on 

a different meaning and it is im portant to understand the meaning since some 

may represent constants and others functions of variables. Most of the problems 

will be worked in terms of symbols, so students must have an understanding of 

what they are solving for.

• Vector Notation: Designation of vectors varies greatly. In some texts, vectors 

are denoted in boldface, a, in others with an arrow, o, and yet in others as just 

plain a. Most calculus books use the boldface designation, so when the others 

occur, confusion can result. To add to this, unit vectors can be written like
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any vector as shown or may be written as à. Vector components may also take 

on several forms. If 0 2  and a3 are components of a, we may denote a as 

(« i,o2,o3), or a\i +  a2j  +  a^k. If things are not crazy enough at this point, 

when denoting the magnitude of a vector, a, we may write just plain a or use 

the absolute value symbols, |o|.

• Subscripts: Often in engineering, subscripts are used on variables to give the 

variable a clearer meaning in the equation. For example, in =  p (qin — q0ut), 

qin represents a flow quantity in and qout represents a flow quantity out. Another 

problem may use qx to indicate a flow quantity in the ^-direction. Confusion 

may result when a subscript is used to indicate a partial derivative. For instance, 

qx in another problem context may indicate the partial derivative of q with 

respect to x. Sometimes subscripts may just look confusing. For example, 

although <1Fa =  c?(-Fao(1 — X a )) appears to have a lot going on, the subscripts 

are being used only to help keep track of the meaning of the variables.

• Length and Distance Notation: Many different symbols can be used to indicate 

length or distance. Often in the description of the problem one symbol, say s, 

is used to indicate distance in a formula, yet in a specific problem, x  is used for 

distance since the distance is on the a;-axis or in the ^-direction.

There are many other difficulties not listed here that will occur when these problems 

are presented to students. Students need to learn to be aware of differences in notation
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and to recognize patterns in types of problems written in different forms. It is also 

im portant that students learn to keep track of the meaning of the different symbols 

and variables in a problem. This will help avoid confusion.
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Chapter 6

SUM M ARY OF THE PROBLEMS

The problems in this thesis are summarized in tables here to give the user 

quick access to information about them. Table 1 is a listing of problems by calculus 

topic and table 2 is a listing of problems by subject. Some problems apply more than 

one area of calculus, so they may be listed twice. The problems have been organized 

by calculus topic as much as possible.

Table 6.1: List of Problems by Calculus Topic

Calculus Topic Problem

Subproblem No.

Cross products

Moments on force systems (Engineering) 7.19

Curvature

Temperature profile with heat generation (Chemical 7.26

Engineering)
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Calculus Topic Problem

Subproblem No.

Cylindrical coordinates

Temperature profile with heat generation (Chemical 7.26

Engineering)

Differentiation

Motion of a collar on a swinging arm (Engineering) 7.1

Motion of a kicked football (Engineering, Physics) 7.4

Projectile motion (Engineering, Physics) 7.4

Directional derivatives

Concentrations in a field (Chemical Engineering) 7.27

Gradients and directional derivatives from a topographic map 7.27

(Geology)

First order differential equation with initial conditions

Age of a rock formation (Geology) 7.13

Conservation of mass used to determine the flow through a 7.22

system (Chemical Engineering)

Current in a resistor-inductor circuit (Engineering) 7.7

Dissapation of smoke in a room (Environmental Science) 7.6

Effect of friction on a fluid moving through a pipe (Chemical 7.23

Engineering)
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Calculus Topic Problem

Subproblem No.

First order differential equation with initial conditions

Flow of a gas mixture through a tank (Chemical Engineering) 7.12

Growth rates for the human population on earth (Environ- 7.11

mental Science)

Mass balance in tank flow (Chemical Engineering) 7.14

Motion of an object given its acceleration (Engineering, 7.8

Physics)

Output of a plug flow reactor using reaction rates (Chemical 7.15

Engineering)

Potential difference in a resistor-capacitor circuit 7.7

(Engineering)

Reactions in a batch reaction system (Chemical Engineering) 7.10

Transfer of heat through different objects (Chemical 7.9

Engineering)

Gradients

Concentrations in a field (Chemical Engineering) 7.27

Gradients and directional derivatives from a topographic map 7.27

(Geology)
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Calculus Topic 

Subproblem 

Indefinite Integration

Estimating groundwater discharge and recharge from hydro­

graphs (Geology)

Integration

Electric potential at a point for different types of charged 

objects (Physics)

Estimating groundwater discharge and recharge from hydro­

graphs (Geology)

Mass balance in tank flow (Chemical Engineering)

Output of a plug flow reactor using reaction rates (Chemical 

Engineering)

Potential difference due to continuous charge distributions 

(Physics)

Strength of a magnetic field at a point near a charged object 

(Physics)

Lagrange Multipliers

Famine relief (Economics)

Problem

No.

7.5

7.30

7.5

7.22

7.15

7.20

7.31

7.28
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Calculus Topic Problem

Subproblem No.

Line Integrals

Forces acting on particles on described paths (Physics) 7.29

Strength of a magnetic field at a point in a charged wire loop 7.31

(Physics)

Work done by a spring (Physics) 7.29

Work done by friction (Physics) 7.29

Work required for a rock cutting machine to chip rock from 7.21

the face of an excavation (Mining Engineering)

Mass Moment of Inertia

Wear on steel spheres used in a ball mill (Mining Engineering) 7.24

Maxima

Projectile motion (Engineering, Physics) 7.4

Moment at a point on a mechanism (Engineering) 7.3

Motion of a kicked football (Engineering, Physics) 7.4

Minima

Movement of a secret agent (Physics) 7.2
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Calculus Topic 

Subproblem 

Multiple Integration

Conservation of mass used to determine the maximum veloc­

ity of a fluid moving through a pipe (Chemical Engineering) 

Effect of friction on a fluid moving through a pipe (Chemical 

Engineering)

Partial Differentiation

Check solutions for the heat equation, the ideal gas law and 

the wave equation (Engineering, Physics)

Polar Coordinates

Conservation of mass used to determine the maximum veloc­

ity of a fluid moving through a pipe (Chemical Engineering) 

Simultaneous Equations

Demands on a water storage tank (Environmental Science) 

Spherical Coordinates

Temperature profile with heat generation (Chemical 

Engineering)

Problem

No.

7.22

7.23

7.25 

7.22

7.10

7.26
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Calculus Topic Problem

Subproblem No.

Surface Integrals

Electric flux over a surface (Physics) 7.32

Magnetic flux over a surface (Physics) 7.32

Vectors

Action of vehicles on a mine haul road (Mining Engineering) 7.17

Concentrations in a field (Chemical Engineering) 7.27

Electric flux over a surface (Physics) 7.32

Gradients and directional derivatives from a topographic map 7.27

(Geology)

Forces acting on a moving object (Engineering) 7.16

Force vectors (Engineering) 7.19

Relative velocity of a moving object (Physics) 7.16

Rescue problem (Physics) 7.18

Strength of an electric field at a point (Physics) 7.30
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Table 6.2: List of Problems by Source

Problem

Subproblem 

Reaction Rates

Reactions in a batch reaction 

system.

Amount of nitrate in drinking wa­

ter sources.

Demands on a water storage tank.

Flow of Fluids in Pipes and Tanks

Conservation of mass used to de­

termine the maximum velocity 

through a pipe.

Conservation of mass used to 

determine the flow through a 

system.

Source Problem

Calculus Topic No.

Chemistry, Environmental Science 

first order differential equa- 7.10 

tion with initial conditions, 

simultaneous equations. 7.10

first order differential equa- 7.10 

tion with initial conditions.

Chemical Engineering 

multiple integrals, polar co- 7.22 

ordinates.

first order differential equa- 7.22 

tion with initial conditions.
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Problem Source Problem

Subproblem Calculus Topic No.

Friction Factors in Flow through a Pipe 

Effect of friction on a fluid moving 

through a pipe.

Gas Balance

Flow of a gas mixture through a 

tank.

Heat Transfer

Transfer of heat through different 

objects.

Mass Balance

Draining and filling of tanks.

Reaction in a Plug Flow Reactor

Output of a plug flow reactor us­

ing reaction rates.

Chemical Engineering 

first order differential equa- 7.23 

tion with initial conditions, 

multiple integration.

Chemical Engineering 

first order differential equa- 7.12 

tion with initial conditions.

Chemical Engineering 

first order differential equa- 7.9 

tion with initial conditions.

Chemical Engineering 

first order differential equa- 7.14 

tion, using integration tech­

niques.

Chemical Engineering 

first order differential equa- 7.15 

tion, using integration tech­

niques.
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Problem

Subproblem 

Temperature Profile

Unsteady-state heat conduction.

Famine Relief

Distribution of food.

Dynamics

Tangential velocity and accel­

eration.

RC and RL Circuits

Potential difference in a resistor- 

capacitor circuit.

Current in a resistor-inductor 

circuit.

Statics

Moments on swinging booms. 

Moments on force systems.

Source Problem

Calculus Topic No.

Chemical Engineering 

gradients, curvatures, cylin- 7.26

drical and spherical coor­

dinates.

Economics

Lagrange multipliers. 7.28

Engineering 

partial differentiation. 7.1

Engineering 

first order differential equa- 7.7

tion with initial conditions, 

first order differential equa- 7.7

tion with initial conditions.

Engineering 

finding a maximum. 7.3

vectors, cross products. 7.19
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Problem

Subproblem 

Heat and Wave equations

Checking solutions of the heat 

equation, wave equation and ideal 

gas law.

Objects in Motion

Motion in a recoil mechanism.

Movement of a secret agent. 

Projectile Motion

Parametric equations for position 

to find velocity and acceleration. 

Motion of a kicked football.

Source Problem

Calculus Topic No.

Engineering, Physics 

partial differentiation. 7.25

Engineering, Physics 

first order differential equa- 7.8 

tion with initial conditions, 

first order differential equa- 7.8 

tion with initial conditions, 

first order differential equa- 7.8 

tion with initial conditions, 

vectors, finding a minimum. 7.2

Engineering, Physics 

differentiation, finding a 7.4 

maximum.

differentiation, graphing, 7.4 

finding a maximum.

Motion of an object affected by 

gravity.

Acceleration of a particle.
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Problem

Subproblem

Logistic Growth of Human Population 

Growth rates for the human pop­

ulation on earth.

Smoke in a Room

Dissapation of smoke in a room.

Geolgical Dating

Age of a rock formation.

Hydrographs

Using a hydrograph to esti­

mate groundwater discharge and 

recharge.

Mapping

Gradients and directional deriva­

tives from a topographic map.

Ball Mill Problem

Evaluation of the wear of steel 

spheres in a ball mill.

Source Problem

Calculus Topic No.

Environmental Science 

first order differential equa- 7.11 

tion with initial conditions.

Environmental Science 

first order differential equa- 7.6 

tion with initial conditions.

Geology

first order differential equa- 7.13 

tion with initial conditions.

Geology

integration, indefinite inte- 7.5 

gration.

Geology

vectors, gradients, direc- 7.27 

tional derivatives.

Mining Engineering 

mass moment of inertia, 7.24 

integration.
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Problem

Subproblem

Haul Roads

Action of a vehicle on a haul road 

out of a mine.

Rock Excavation

Energy required for a rock cut­

ting machine to chip rock from 

the face of an excavation.

Electric Fields as Vector Fields

Strength of an electric field at a 

point.

Electric Flux

Electric flux over a surface. 

Magnetic flux over a surface.

Magnetic Fields

Strength of a magnetic field at a 

point near a charged object. 

Strength of a magnetic field at a 

point in a charged wire loop.

Source Problem

Calculus Topic No.

Mining Engineering 

vectors. 7.17

Mining Engineering 

line integral, dot product. 7.21

Physics

vectors, setting up and eval- 7.30 

uating an integral.

Physics

surface integrals, vectors. 7.32 

surface integral, dot 7.32 

product.

Physics

cross product, setting up 7.31 

and evaluating an integral, 

line integral, cross product. 7.31
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Problem Source Problem

Subproblem Calculus Topic No.

Vector Problems

Sight of an airplane crash - Res- vectors, 

cue problem.

Relative velocity of a ferry. vectors.

Motion on a pitched baseball. vectors.

Wind acting as a force. vectors.

Work and Potential Difference

Electric potential at a point for 

different types of charged objects.

Work Using Line Integrals 

Work done by friction.

Work done by a spring.

Forces acting on particles on de­

scribed paths.

Physics

7.18

7.16

7.16

7.16

Physics

finding the differential ele- 7.29

ment, setting up integrals, 

line integrals.

Physics

line integral, dot product. 7.20

line integral, dot product. 7.20

line integral, dot product. 7.20
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Chapter 7 

PROBLEMS

The thirty-two problems in this chapter are the focus of the thesis. They 

should be self explanatory and a solution follows each problem.
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7.1 M otion of a Collar on a Swinging Arm

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Differentiation 

Engineering 

Dynamics 

20 minutes

Reference: [1]

The mechanism shown in figure 7.1 is dynamic, that is when forces are applied, 

movement takes place. In this case the motion is angular, which means that position, 

acceleration and velocity depend on the angle the object moves through and the 

distance from the center of movement. Velocity and acceleration can be calculated in 

several different ways, for instance, with respect to angular or rectangular coordinates.

Troublesome Notation: Both er and e# are defined as unit vectors in this 

problem, which is similar to the notation used for the vectors v and a . In calculus 

unit vectors are indicated by the hat symbol, i.

O

Figure 7.1: Collar on a swinging arm moving through the angle 9.
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This is a motion problem involving radial and t ran verse components, i.e., it is 

dependent on the values of r and 6. In Figure 7.2, er is called the unit radial vector

o

Figure 7.2: Tangential and radial vectors.

and eo is the unit tangential vector. Hence the position of the particle P  is re r . The 

following relationships hold for the radial and tangential vectors:

dCr -»  1 deQ _ / 7  1 \—  =  e, and - ^  = - e r (7.1)

Using the chain rule, we can express the time derivatives of the unit vectors er and 

ëe as follows:

dër dër dO ^ d6 dëe dëe d0 ^ d$
~dt ~  ~d9dt ~  ee~dt a n d  H  =  l # T t = ~ erTt ( 7 - 2 )

To obtain the velocity v of the particle P , we express the position vector r of P  as 

the product of the scalar r and the unit vector er and differentiate with respect to t.
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This yields:

^ d dr _ der dr ^ dO ^
v  =  I t  ( r e - )  =  H er +  r H  =  +  r n ee- ( 7 - 3 )

To find the acceleration of particle P  we differentiate again with respect to t which 

yields:

dv d2r _ dr der dr d9 _ d26 _ d9 deg
a = H = Ifler + + TtHee + rI ë e° + rT tII

= fe ™r (5 ) )e' + (r̂ + 2SI) ̂ (7'4)
In Figure 7.1, the rotation of the 0.5 m arm OA  about O is defined by the relation 

9 = 0.13t2, where 9 is expressed in radians and t in seconds. Collar B  slides along 

the arm in such a way that its distance from O is r  =  0.5 — 0.12t2. In this case r 

is expressed in meters and t in seconds. After the arm OA  has rotated through an 

angle of 0, we want to determine

1. the magnitude of the total velocity of the collar,

2. the magnitude of the total acceleration of the collar, and

3. the magnitude of the relative acceleration of the collar with respect to the arm. 

After the arm has rotated through an angle of 30°, determine

4. the magnitude of the total velocity of the collar, and

5. the magnitude of the total acceleration of the collar.



Solutions to: Motion of a Collar on a Swinging Arm

We are given 0 =  0.13Æ2 and r =  0.5 — 0.12t2. We also know

dr d6 ^
v = — er r — eo. Therefore 

at at

v = -0 .24 (4  +  (o.5 -  0.12(2) (0.30() 4  =  -0 .2 4 (4  +  (0.15( -  0.036(3) e6

v = V (-0 .24()2 +  (0.15( -  0.036(3)2

We know tha t a = ( ^  -  r g )  )  ^  Therefore

a =  (-0 .2 4  -  (0.26t)2(0.5 -  0.12(2)) 4  +  ((0.5 -  0.12(2)(0.26) +  2(-0.24t)(0.26f)) 4  

=  (-0 .2 4  -  0.0338(2 +  0.008112(4) 4  +  (0.13 -  0.156(2) e0

a = ^/(—0.24 -  0.0338(3 +  0.008112(4)2 +  (0.13 -  0.156(2):

The acceleration of the collar with respect to the arm is 

d2r _
üb/oa — — —0.24er. The magnitude of the acceleration is
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4. When 6 =  30° =  0.524 rad, 0.524 =  0.13i2 => t =  2.01 s 

v -  \/(-0 .2 4 i)2 +  (0.15i -  0.036i3)2

=  V'(-0.24(2.01))2 +  (0.15(2.01) -  0.036(2.01)3)2 =  0.48 j

5. a = \ / ( —0.24 -  0 .0338f +  o.008112i4)2 +  (0.13 -  0.156«2)2

=  ^ ( -0 .2 4  -  0.0338(2.01)2 +  0.008112(2.01)4)2 +  (0.13 -  0.156(2.01)2)2 

=  0.560 ^
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7.2 Secret A gent Problem

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Minima 

Physics 

Mechanics 

30 minutes

Reference: [17]

In this problem it is necessary to develop an equation representing time in 

terms of distance traveled, then find a minimum.

XXX's path

Bridge
ion of the J j
mitter T

Position
transm iner

Figure 7.3: Secret Agent XXX’s path.

Your mission, should you decide to accept it, is to guide Secret Agent XXX 

to her destination in a minimum amount of time. The secret agent is to travel under 

darkness from the south end of the bridge to the secret enemy base as shown in figure 

7.3. She will have to swim across the canal and then creep along its bank to get 

there. You are to place an ultrasonic transm itter at the canal’s edge; the secret agent 

will swim directly toward the transm itter and then creep from the transm itter to the 

warehouse. Determine the placement distance x  from the north end of the bridge for
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the transm itter that will minimize the XXX’s travel time. Your only information is 

tha t XXX’s swimming speed is half of her creeping speed and that the width of the 

canal is 30 m and the distance from the north end of the bridge to secret base is 80 

m. Develop an expression for the travel time in terms of x  and the fixed parameters 

involved in the problem, then find the minimum.
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Solutions to: Secret Agent Problem

The distance from A  to the transm itter is

d  =  V so 2 +  x 2

and the time required for the agent to swim across the canal is

t s =  — = -------------- . (vs = swimming velocity)
v« v.

The distance the agent must creep is 80 — rr, so the creeping time is

80 — a: . i \t c = --------- . (vc =  creeping velocity)
vr

The total travel time for the agent is

VSO2 + X 2 80 -  x  
t — ts tc — 4-

Since 2vs = vc, t = — ^2V302 +  x 2 +  80 —

To find the minimum t with respect to x, take the derivative and set 

it equal to zero.

£  =  (2V900 +  T2 +  80 -  x) =  1  -  l j



Solving for x  yields

=  1 =» 900 +  x 2 = 4x2 => 3x2 =  900
V900 +  x 2

x  =  ±17.3 m +17.3 m puts the transm itter in the correct position.
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7.3 M oments on Swinging Booms

Calculus Topic: Maxima

Department: Engineering

Subject Area: Statics

Time Needed: 1 hour

Reference: [12]

The mechanism shown in figure 7.4 is static, that is, the forces placed on it do 

not cause any movement in the system. This is the basis for all of the calculations in 

these two problems. Much of the preliminary work for these problems is shown to give 

an idea of where the equations come from. The second problem is an example of how 

mathematics can become complicated. It is suggested that graphing or numerical 

techniques with the aid of a symbolic manipulation program be used to solve this 

problem.

Troublesome Notation: The study of Statics is centered around the action 

of forces. The boldface and arrow notation is not used here, but the student is 

expected to keep track of both the magnitude and direction of the forces. Components 

of force vectors are indicated by subscripts, for example, Fx and Fy.

1 . A beam supports three loads of given magnitude and a fourth load whose mag­

nitude is a function of position as shown in figure 7.4. IÏ b = 1.5 m and the 

loads are to be replaced with a single equivalent force, determine



46

9 m

1300 N 400 N
b

600 N

>f > f >f
A
Â â

> i
2

400 ~ N

Figure 7.4: A static beam with three constant loads and one variable load.

(a) the value of a so that the distance form support A  to the line of action of 

the equivalent force is maximum and

(b) the magnitude of the equivalent force and its point of application on the 

beam.

We want to reduce all loads with a single equivalent force which we will call R. 

Summing all of the forces in the vertical direction produces

-  1300 +  400^ -  400 -  600 =  - R  (7.5)

Summing the moments about A  produces

^  (lOO^) -  a (400) - ( a  + b) (600) =  - L R  (7.6)
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where L  is the distance from A  to R.  Using (7.5) and (7.6) to solve for L 

produces

1 0 0 0 a +  6006- 2 0 0  ( ^ - )
L - ----------------------

2300 -  400 l - j

or with b = 1.5 m, L = - f a 2  +  10a +  9  (7.7)
— la  +  23 v 7

Now use (7.7) to find the value of distance a that maximizes length L.

8 ft

800 lbs

5 ft
3 ft

Figure 7.5: A boom with loads.

2. In the mechanism shown in figure 7.5, the position of boom A C  is controlled by 

arm BD.  For the loading shown, we want to be able to determine the couple M  

required to hold the system in equilibrium for different values of 6 ranging from



the reaction force at A. As a part of the design process of the mechanism, 

determine

(a) the value of 0 for which M  is maximum and the corresponding value of M.

(b) the value of 0 for which the reaction at A  is maximum and the correspond­

ing magnitude of this reaction.

B

A

3  ft

D

Figure 7.6: Trigonometry of the boom.

Using trigonometric properties on figure 7.6, we can find that

1 Z 5 sin 0 — 3 
a  =  tan — ------ —

Using the free body diagram in figure 7.7 and summing the moments counter­

clockwise around point A  gives the magnitude of the force at B,  which is
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Figure 7.7: Free body diagram of bar AC.

Also from figure 7.7, we can find the magnitude of the force at A  by summing 

the forces in the x- and ^-directions on bar AC.  Since the motion is static, the 

sum of the forces is 0. Summing the forces in the ^-direction produces

A T — B  sin a  =  0 A x =  B  sin a =
8F cos2 a  sin a 
5 cos#

Summing the forces in the ^-direction produces

Ay +  B  cos (x — F  — 0 ^ /  5 cos 0 — 8 cos3 a 
A » = F [  5 ^ -------

Hence the magnitude of the force at A is

A(6) =  A =  (A l  +  Al)

To find the couple M  at D, consider the free body diagram in figure 7.8. By
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5 ft

°y

Figure 7.8: Free body diagram of bar BD.  

summing the moments counterclockwise around point D, we find

8F cos2 a cos(0 — a)
M  — 5 ( B  cos(0 — a)) =  0 M(0)  =  M  = cos 9

Now compute parts (a) and (b) and remember that a  is a function of 9. The 

mathematics in this problem is difficult, so determining the maximum by the 

method used in calculus may not be feasable. W hat other ways can a maximum 

be determined? It might be better to use a symbolic manipulation program to 

help with this.
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Solutions to: Moments on Swinging Booms

— +  10o +  9
1. a. We are given that b = 1.5 m and that L = -------§-— gd +  23

dL
To maximize L  over a, set —  =  0.

da

dL 2  (1 1 4 3 - 276a +  16a2)
da ( -6 9  +  Sa)'

=  0 11 4 3 - 276a +  16a2 =  0

a =  {6.91m, 10.34m). a must be 6.91 m since A B  is only 9 m long.

b. R  = 1300 -  400v +  400 +  600 =  1300 -  400—  +  400 +  600 =  458 N
b 1.5

— | a 2 +  10a +  9 —1(6.91)2 +  10(6.91) 4- 9
— g a +  23 -§(6 .91)4-23

=  3.16 m

ttt i w //,\ 8 F cos 2 aco s ( 0  — a) _ 1 / sin^ — §2. a. We have M(6)  = --------------- :----------  where a = tan '  -
cos 9 cos#

and
d M  200Fcos I# — arctan [sec# (§) 4- sin#)] j sin#
d9

50Fcos

3 4 -  30 sin#

# — arctan sec# (— (§) 4 - sin#) (45 — 15cos2# — 6 8 sin#)

( — 17 4-15sin#)2

150Fcos# (—3 4 - 5 sin#) sin # — arctan sec# ( — (§) 4 - sin#)]]

(—17 4- 15sin#)2

ARTHUR LAKES LIBRARY  
COLORADO SCHOOL OF MINES 
GOLDEN, CO 8 0 4 0 1
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(ft-lbs)

-1 0

0 (degrees)

- 3 0  - 2 0  -1 0

dM
d6

10 20  30 40 50 60 \ 7 0  80 90

0 (degrees)

Figure 7.9: M  vs. 9 and vs. 9.
d9

As can be seen, setting =  0 and solving for 9 would be difficult.
d9

Figure 7.9 shows the graphs for M  and From these, it is easy to see

tha t a maximum for M  occurs at approximately 9 = 6 6 °. Numerically 

checking the equation shows that there is a maximum of M  =  8684.32 ft-lbs

at 0 =  65.9°.
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b. We have A(0) — F
cos2 a  sin a \  2 ^  /5  cos 9 — 8 cos3 aX 2

5 cosO 5 cos#

/s in #  -  |X
where a  =  tan ------- —̂  and

V cos # y

dA 2000Fcos3# (—3 +  5 sin#) GOOFcos# (—5 +  3 sin#)) (—3 +  5 sin#)'_ h
de (17 — 15 sin#)

+ 2 f  sec2 e f s  c o s « -  2 5 0  ̂

( — 17 +  15 sin#)

(sec2 # (17 — 15 sin#))3/2/

/  r . _ 375 sec3 # (—45 +  15 cos 2# +  6 8  sin #) \
- 5 sin# H---------------- rrz------y
 \/2  (sec2 # (17 — 15sin#)) /

25 +
400 (—3 +  5 sin2 #  ̂sin 2# 

(17 — 15 sin # ) 3

1

25
2 sec2 # I 5 cos # — 250\/2

(sec2 # (1 7 — 15 sin#))3//2.
tan #

2
25

sec2 # I 5 cos # — 250\/2
(sec2# (17 — 15sin#))3/2,

</A

+
200 cos2 # ( —3 +  5 sin2 #) 

( l7  — 15 sin3  e)

As can be seen, setting —  =  0 and solving for # would be difficult.
a#

dAFigure 7.10 shows the graphs for A and — . From these, it is easy to see

that a maximum for A occurs at approximately # =  6 8 °. Numerically

checking the equation shows that there is a maximum of A =  1436.06 lbs

at # =  68.5°.
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Figure 7.10: A vs. 0 and —— vs. 0.
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7.4 P rojectile  M otion

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Differentiation, Parametric Equations

Physics

Mechanics

40 minutes

Reference: [11]

Projectile motion is the motion of an object in flight where gravity is the only 

force acting on it. Thus acceleration remains constant while velocity and position 

change. We look at the motion of a projectile in two dimensions, horizontal and 

vertical. Problem 1 illustrates how the motion equations can be used to determine 

the position and velocity of a projectile as shown if figure 7 .1 1 .

Path of projectile

Figure 7.11: The motion of a. projectile.
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Troublesome notation: In these problems we use x to indicate the horizontal 

position, y to indicate the vertical position x' to indicate horizontal velocity and y' 

to indicate vertical velocity. In physics, subscripts may be used to express the same 

meaning. For example, sx and sy might indicate horizontal and vertical position and 

vx and vy might indicate horizontal and vertical velocity. Also note that vQ is used 

for initial velocity even though x' and y' indicate velocity at any time.

1. The motion of a projectile as shown in figure 7.11 can be described by the 

following parametric equations:

x (t) =  (v0 cos 0)t  + x a

y( t)  = -  ̂ g t2 +  (v0 sin 9)t + y0

where v0 is the velocity with which the object is propelled, (x0, y0) is the launch 

point, 6 is the angle from the horizontal and g is the acceleration due to gravity. 

Given (x0,y0) = (0,0),

(a) Find x ’ (t) and yf (t).

(b) When will the maximum height be reached by the object (y' = 0)?

(c) W hat is the maximum height the object reaches?

(d) Find the range of the object (When y = 0, find x).

(e) W hat 6 will maximize the range of the object?
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2. A football player is attem pting to kick a field goal at a distance of 40 yards 

from the goal posts. The cross-bar of the goal posts is 3 yards above the ground 

level and he kicks the ball is such a way that the initial angle with the ground 

is 40°. For this problem, g =  32p-.

(a) If he kicks it directly in a line with the center of the goal posts, find the 

minimum velocity he must impart to the football to assure that it passes 

over the crossbar.

(b) Construct a graph showing the height of the ball at each ten yard marker. 

Also show the point where the peak of the trajectory occurs.

(c) If the kicker imparts a velocity of 25 yards per second to the football and 

kicks it directly at the uprights 50 yards away, find the range of possible 

initial angles (to the nearest degree) with the ground for which the ball 

will pass above the crossbar.
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Solutions to: Projectile Motion

1 . a. x'(t) =  v0 cos 0

y'(t) =  - g t  +  v0 sin 0

b. Maximum height is reached when t =  - ° S*n ^
9

sm2 0
c. Maximum height is y(t) =  - 2— h yQ

sin 20
d. The range of the object is x(t)  =  —---------- h x Q

^9

dx d (  v? sin 20 \  v2 cos 20
e- +  ^ )  =  ~ 7 T ~  =

cos 20 =  0 => 0 =  45°

The angle that will maximize the range is 0 =  45°

2. a. Use x(t) = (v0 cos0)t + x 0 and y(t) = —^gt2 + ( 

Be sure to change yards to feet.

120

i

Using x(t): 120 =  vQ cos 40t +  0 =4> t =
v0 cos 40

'o sin 0)t + yo



Using y(t) and substituting for t:

120 V . Z 120
+ v0 sin 40

cos 40/ \ v 0cos 40

392621 „ ft
9 = ------- %----- h 100.69 => v0 =  65.4—

vt s

(18, 27.6) 
(20, 27.4) •  •  high point

(10, 23.9) •

(30, 19.4)

30

20
height
(feet)

(0, 9), * 1 0

40 30 20
distance (yards)

10

Figure 7.12: Graph of the motion of a football.
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Be sure to change yards to feet.

Using y(t) and substituting for t\

2 2
+  75 sin#

cos#

—64 sec2# +  150 tan# =  9 

—64 ( l  +  tan 2 #j +  150tan# =  9 

—64 tan 2 # +  150 tan # =  73 

64 tan 2 # — 150 tan # 4 - 7 3  — 0  

Using the quadratic formula: tan#  =  .686,1.65 => 34.6° < # < 58.8° 

for the football to clear the crossbar.



61

7.5 G roundw ater Flow

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Integration, Indefinite Integration 

Geology

Groundwater Hydrology 

2 0  minutes 

Reference: [20]

An aquifer is a layer of porous rock which can store water and allow water to 

move through it. Figure 7.13 shows how groundwater in an aquifer can be recharged 

and discharged. A hydrograph, shown in figure 7.14, is a chart which shows cycles of

Recharge

W ater ta b l e ^  

Aquifer
Discharge

Impervious layer

Figure 7.13: Recharge and discharge of groundwater.

discharge and recharge of groundwater in an aquifer. It measures the flow rate, Q, 

against time, t. Note that Q is on a log scale and t is on a linear scale. It is possible 

to determine the volume of water discharged by making an analysis of the curve. If 

t is the amount of time passed from a given date, then at t =  0  the discharge rate is 

Q = Q0. For the purposes of this excercise, we will say that at some time t = tc, the
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10000

1000 Q = Qn 10-m

100

t

Figure 7.14: Example of an Hydrograph, 

discharge Q =  0 . 1  • Q0- Hence at any time t,

Q = Qo- 1 0 - ' / ' '  (7.8)

1. We want to find the volume V  of water discharged during a time period, say 

from ti to <2 - Since Q is a rate of flow, we have Q = Find the volume of 

groundwater being discharged by setting up and evaluating the integral from ti 

to t2.

2. Find the total amount of groundwater that could discharge, that is, the amount 

of groundwater that could discharge from t =  0  to t =  oo.

3. Calculate the total amount of groundwater that could discharge after the end 

of a recession if the recession ends at t =  ^ .
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Solutions to: Groundwater Flow

We are given Q =  and that Q =  Qo10 i t̂e. Combining these produces

dV = Q0lU-t/tldt =► [ V dV = Q0 [ t2 10~t/tedt
Jo Ju

V \o = -Qo

'0  J U

1 0 */  ̂In 1 0
y  =  Qo

r V  roo rA.
/ dV = Q0 lO-'^dt => V =  lim Q0 /  10~‘/,'dt 

Jo Jo A  ^oo J o

—te

1 0 'i/Zf In 1 0  1 0 ^ /^  In 1 0

A

V  =  lim Qo
A —»oo 10*/** In 10

V  -  0 -  Qo\~te

y  _  i -  ^  /  ~te_________ —te
~  a ^ o  V10A/^ In 10 10°/^ In 10

y  =  Qo;
te

In 1 0  In 1 0

J r V  roo
dV = Q0 10~t 'tedt =4> following the same solution as (2) 

o J ti

—tey  _  y  q  f  —te_________ —te
-  U 0 A/^ In 1 0  lO'i/'f In 1 0

v  = 0 -  Qo
10*'f** In 1 0

te
o l 0 h / te ln 10
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7.6 Sm oke in a R oom

Calculus Topic: First Order Differential Equation

Department: Environmental Science

Subject Area: Air Pollution

Time Needed: 40 minutes

Reference: [5]

We will use a mass balance equation to find the amount of formaldehyde 

released by smoking cigarettes in a living room. The solution of a steady state mass 

balance involves solving a simple equation where

input rate =  output rate +  degrading rate.

This can be written as

Ein =  QC  +  k V C  (7.9)

where V  is the volume of the room, E in is the input rate of smoke, A: is a reaction 

rate coefficient, Q is the rate air moves through the room and C is the concentration 

of formaldehyde being measured.

1. A living room with a volume of 50 m 3 has two people smoking in it, each 

smoking 3 cigarettes per hour. An individual emits approximately 1.40 mg of 

formaldehyde for each cigarette. Formaldehyde degrades with a reaction rate
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coefficient of . The forced air furnace moves air through the room at a rate 

of 50 ^ 7 . Estim ate the steady state concentration of formaldehyde, C, assuming 

complete mixing in the room. How does the value compare with the threshold 

for eye irritation of about 0.05 ppm ^ 0 -0 5  PP^^9..mai. =  0.061 —f^?

The next problem involves an unsteady state mass balance. Therefore we must con­

sider solving the following equation where is the rate of change of concentration 

of formaldehyde in the room:

V = £  = E in - Q C - k V C .  (7.10)

2. Solve problem 1 assuming an unsteady state mass balance. First solve (7.10) 

for C. To find C, it might be helpful to use a change of variables, i. e., let 

a =  — and b = ^  + k then use the separation of variables method. Let C =  Cq 

at £ =  0 be an initial condition for this problem. Since the mass balance will 

vary with time, find the concentration of formaldehyde, C, at t =  1 hr, t = 2 

hrs, t =  5 hrs and t = 10 hrs with CQ = 0. Graph C vs. t. W hat is happening 

to the concentration of formaldehyde in the room as time goes by?
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Solutions to: Smoke in a Room

1. We want to use Ein =  QC  +  k V C  to solve for C.

We are given E in =  (  ̂ f )  (  ( 2  people) =  * ± 0 * ,
y cigarette J y person • hour J hr

Q = 5 0 ^ - ,  y  =  50 m 3  and k = ^  
hr hr

Solving fo rC , C =  ^  =  =  0 . 1 2  g .

mg
0 . 1 2  —-  is roughly twice the amount of the threshold for eye irritation, 

rrr

Eyes will suffer irritation in this room.

2. First, we need to solve the differential equation,

V ^ f -  =  E in - Q C -  k V C  for C.
at

If we use the suggested change of variables, a =  -p and b = ^  + k, then

dC , _ dC ^  r dC r ^
l T = a " i,C =" a^bC ~ =*■ J ^ b C  = J dt *

— ̂  in (a — bC) = t + constant.

Since C =  C0 at t =  0, then constant = - ^ In (a — bC0) .



Therefore — ^ In (o — bC) = t — i  In (a — bCa) .

Rearranging and solving for C: — ^ (In (a — bC) — In (o — bC0)) — t

In f  —— £7 7 -^ =  ~bt => ----- —~- =  e~bt => a — bC = (a — bC0) e
\̂ cl — bC0 J a — oC0

— bt . z - l    ^  y^f X  _  —bC = a — { cl — bC0) e =£■ C1 — ~ ~—  C0  j e

Ein (  E iTherefore C =
Q + kV  \ Q  + kV

-  Ca)  e ( v +hy

°  =  50 +  (0.40)(50) -  (so  + f o i x s o )  " ° )  e (i+ 0 '40)(,) =  0-090 B

C = 50 + (0.40)(50) " (50 + (0.40)(50) “  ° )  e (i+ 0 '40)<2) = °-112 B

C =  50 + (0.40)(50) " (50 + (0.40)(50) “  ° )  e(f§+0'4°)<5) =  °-120 B

C =  50 + ((U0)(50) " (50 + (0.40)(50) “  ° )  e(S+0'4°)(10) =  0'120 ^

As time goes by, the concentration of formaldehyde levels out.

0.10

, m g ,

Tim e (hours)

Figure 7.15: Unsteady state concentration of formaldehyde over time.
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7.7 RC  and RL C ircuits

Calculus Topic: 

Department:

Subject Area:

Time Needed: 1 hour

First Order Differential Equations 

Electrical Engineering 

Circuits

Reference: [16]

R C  Circuits

A R C  circuit is a simple one-loop circuit containing only a capacitor and a 

resistor, as shown in figure 7.16. A capacitor is an electronic device that can store 

energy and release it over time. A resistor is an electronic device that resists the 

movement of energy through the circuit. In this circuit, there are no current or 

voltage sources, so any current or voltage is due entirely to the charge initially stored 

in the capacitor. If we consider what is happening in the circuit over a time t, then

'Ytf

Figure 7.16: Example of a R C  circuit, 

we will say that at t =  0, the energy stored in the capacitor is VQ volts. Kirchoff’s
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Current Law (KCL) states that the sum of the currents entering and leaving a node 

equals zero. In a resistor, the current flowing through is directly proportional to the 

voltage across it, which gives the relationship

v =  iR

where v is the potential difference (voltage) measured in volts (V), i is the current 

measured in amperes (A) and R  is the resistance measured in ohms (fi). In a capac­

itor,

dv
where C  is the capacitance measured in farads and — is the change in potential

difference over time.

Troublesome Notation: Understanding the meaning of the variables in this

dv
problem is important. In motion problems, — is the rate of change of velocity, or

dv
acceleration, but in electric circuit problems, — is the rate of change in potential 

difference in a circuit. Also, the function notation in this problem can be confusing. 

Voltage, v, work, w, and power, p are all functions of time even though it is not 

always indicated.

1 . Use this information to work the following exercises on R C  circuits.
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(a) Use the KCL to set up a first-order differential equation based on the 

current moving through the node shown in the circuit in figure 7.16.

(b) If the initial charge of the capacitor is U0, find the voltage, v(t) in the 

circuit at some time t.

All of the energy in the circuit is stored in the capacitor. At any time t the 

energy stored in the capacitor is wc(t) = ^Cv2(t) where wc(t) represents the 

energy of the capacitor and is often measured in joules (J). Energy is dissipated 

by the resistor. The rate at which energy is dissipated is called power, hence if 

power is denoted by p and measured in watts (W), p =

(c) If we know that the power dissipated by a resistor is

find the total energy wn(t) dissipated by the resistor from time 0  to some 

time t ,  where w r ( 0 )  = 0  and v(t) is the potential difference found in part

(b).

(d) Given that the initial energy in the capacitor was wc(0) — show

that the energy lost by the capacitor is the same as the energy dissipated 

through the resistor.
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R L  Circuits

A R L  circuit is a simple one-loop circuit containing only an inductor and a 

resistor, as shown in figure 7.17. An inductor is an electronic device which 

stores energy in the form of a magnetic field. As current running through an

inductor changes, a voltage is developed across the terminals of the inductor. 

Therefore, the relationship between inductance and potential difference is

where v is the potential difference (voltage), L is the inductance measured in 

di
henrys (H) and — is the change in current with respect to time. If we consider 

what is happening in the circuit over a time t, then we will say that at t =  0 , 

the current through the inductor is I0 amperes. Kirchoff’s Voltage Law (KVL) 

states that the sum of the voltage drops around any closed loop equals zero. In

>

Figure 7.17: Example of a R L  circuit.
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a resistor, the voltage across its terminals is directly proportional to the current 

flowing through it, which gives the relationship

v =  iR

where v is the potential difference (voltage) measured in volts (V), i is the 

current measured in amperes (A) and R  is the resistance measured in ohms 

( Ü ) .

2. Use this information to work the following exerciese on R C  circuits.

(a) Use the KVL to set up a first-order differential equation based on the 

voltage moving around the path shown in the circuit in figure 7.17.

(b) If the current through the inductor at £ =  0 is / 0, find the current, i(t) in 

the circuit at some time t.

(c) W hat happens if the initial time is not t =  0? Let z(10) =  I0 and find %{t) 

given R  = 2 ÇI and L =  1 H. (Hint: it is necessary to follow the procedures 

for parts (a) and (b).)

(d) W hat are the similarities/ differences between the equations for the RC  

and R L  circuits?
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Solutions to: RC and RL Circuits

dv
v C R

dt
rv dv _  r 

Jvn v Joo CR
dt

since u(0) =  V0. Therefore v(t) =  VQe rc 

dwR
c .  P r  = dt

o 9 —2*
,  , ,

uwr — p Rdt  —

r w R f t. o < v~e Ac CK?■e «c

wR = ---- —  ( 1 - e R c j

d. We want to show that wc(0) — wc(t)  =  wR(t).

1 C V 2
wc (o) -  wc {t) =  - c i / 2 — —e~Rc =  ( l  -  e rc) =

di
2. a. L —  +  zR =  0

dt

b. L —  +  z’R =  0 
dt J / 0 z Jo L

* R dt

since z(0) =  / 0. Therefore z(t) =  / 0e ^



R I*since i(10) =  I0- Therefore In il*, =  — —t =>Uo L 110

In y  = —y  ( 1 0  -  t) => i(t) = / oe_ ^ (10_<)
I0 R

For R  = 2 Q and L =  1 H, i = ^ e - ^ 10" 0 .

d. In a R C  circuit, the potential difference is changing with respect to time 

because of the action of the capacitor. In a R L  circuit, the current is 

changing with respect to time because of the inductor. Both require a first 

order differential equation with initial conditions to solve.
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7.8 O bjects in M otion

Calculus Topic: Integration, Maxima and Minima

Department: Physics

Subject Area: Kinematics

Time Needed: 1 hour

Reference: [1]

The motion of an object moving in one direction can be described if we know 

its position at any time t. If the position of the object is given by x(t), then its 

velocity, v(t) — and its acceleration, a(t) =  —
CZr V Cv V

Troublesome notation: Although acceleration, a(t), velocity, v(t), and po­

sition, x(t) are functions of time in each of these problems, they are often written in

a shortened form as a, v and x. Also, position is represented by different variables, x

and y. x  generally refers to a horizontal position and y generally refers to a vertical 

position. It is not uncommon for physists to use s to indicate position.

1. Certain types of guns have breaking mechanisms to reduce recoil when the gun 

is fired. This mechanism consists of a piston attached to the barrel which moves 

in a fixed cylinder filled with oil. As the barrel recoils with an initial velocity 

v0 the piston moves and oil is forced through orifices in the piston, causing 

the piston and the barrel to decelerate at a rate directly proportional to their 

velocity, that is, a =  —kv. Express:



76

(a) v in terms of t.

(b) x  in terms of t.

(c) v in terms of x.

2 . Considering the fact that the gravitational attraction of the earth is weaker

as an object moves away, we will define the acceleration due to gravity at an 

altitude y above the surface of the earth to be

where a is measured in gf and y in meters. Using this expression, compute the 

height reached by a bullet fired vertically upward from the surface of the earth 

with the following initial velocities: 2 0 0  2 0 0 0  j- and 11.18

3. The acceleration of a particle is described as u =  & sin . Knowing that both 

the velocity and the position coordinate of the particle are zero when t =  0 , 

determine

(a) the equations of motion, that is, find v in terms of t and x  in terms of t.

(b) the maximum velocity.

(c) the position at t =  2T.

(d) the average velocity during the interval t = 0 to t = 2T.

-9.81
a —



Solutions to: Objects in Motion

a. a = —kv
dv
Tt =  ~ kv

dv
=  —kdt

Integrating both sides and using the initial condition that u(0)

rv d v  f*
/ —  =  —k dt In v\l = —fctL => In v — lnu 0 — —kt

Jvo v Jo Vo u

In — =  —kt => — =  e~kt Therefore v =  v0e~kt.

v =  vne—kt

Vc

dx
dt

= vne => dx = vne dt

Integrating both sides and using the initial condition that x(0)

Jo Jo
dt x \o ~~

Jo -kt

Therefore x = vQe kt — voe0 =  vQ (e kt — l )

, dv , dv dx dv
c. a = —kv  =  — => —kv =  —— — = v —  => dv =  —kdx

dt dx dt dx

Integrating both sides and using the initial condition that u(0)

rv çx
/ dv = —k / dx => v\lo = —kx\Q => v — vq = —k(x — 0 ) 

J Vo Jo

Therefore v = v0 — kx
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a.

b.

c.

3. CL.

dv dv dy dv
a =  —  =  —— — =  v —  => ady — vdv => -----

dt dy dt dy % _|_
—9.81
 ÿ dy = vdv

6.37x106

Integrating both sides and using the initial condition that u(0 ) =  v0:

r -Jo I
-9.81

+ y
6.37 x 106 

6.25 x 1 0 7

^2/ = Jv0
vdv

6.25 x 107

1 + y
6.37 x 1 Q6

v
~2

1 + y -  6.25 x 107 =
v‘~ — vi

6.37 x 106

At the maximum height, u =  0. Solving for y produces

6.25 x 107
6.25 x 107

1 + y

1 + y

6.37 x 106

2(6.25 x 107)
6.37 x 106 +  2 (6.25 x 107)

1.25 x 10s
1.25 x 10s -  t)2 

1.25 x 108

-  1y = 6.37 x 106 

y = 6.37 x 106 

y = 6.37 x 106 

At 11.18 — the bullet goes on infinitely.

1.25 x 1 0 s -  2 0 0 2 

1.25 x 10s
1.25 x 10s -  20002

— 1 =  2040 m

1 =  2 1 0  km

dv dv 1 . /Tit
a = d i ^  d i =  m { T

TTt
dv = k sin [ —  ) dt

=>

Integrating both sides and using the initial condition that v(0) =  0:
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JoVdv = J ‘ k  sin Q ) d t  =>

v = iv (1- cos(t ))
dx k T  f  /TrtXX

y =  d i  =  v V ™ c o s ( t ) J

,v k T

<  = - - cos{ t

dx = kT
7T ( i  - cos( ^ ) )  ^

Integrating both sides and using the initial condition that x(0) =  0:

f x dX = r ^
Jo Jo 7TTT d " 0 ” ® ) *

/cT /cT2 . Z 7Tt
'  ^ s in ( r7T TT"

A:T A:T2 . /  nt
*  I  =  T t " ' ^ s m ( r

dv
b. To find the maximum velocity, set — — O and find t. 

^  = ksin = 0 => * =  {0,T,2T, •••}

Maximums occur at {T, 3T, 5T, • • •}. Hence the maximum velocity is

k T  Z ZttTXX 2/cT
Vrnnnr — I 1 COS I * I —7T \ T  JJ 7T

c. At t =  2T, the position of the particle is

,  =  i I (2T)_ È f , ln ( ÿ )  =  ! H !
7T IT1 \  1 J 7T

, . change in position ^  ^
d. Average velocity =  — :-------- :---- :-------. From t =  0 to t =  2T,

change in time

2 &T2

, . ~~r~ kT
Average velocity =  =  —I l  7T
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7.9 H eat Transfer

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

First Order Differential Equations 

Chemical Engineering 

Transport Processes 

40 minutes

Reference: [8 ]

The transfer of heat through a material can be described as follows:

♦ Drate ot

heat in

(  r \  
rate of

generation 

of heat

(  e \  
rate of

heat out

/  \
rate of

accumulation

V of heat

(7.11)

/

If the heat transfer occurs only by conduction, then it can be described by Fourier’s 

Law of Conduction which is:

A T
(7.12)9 x _  , d T  

Â  "  ~ k d^

where qx is the heat-transfer rate in the x  direction in watts (W), A is the cross- 

sectional area normal to the direction of flow of heat in m2, T  is the temperature in 

degrees K, x  is the distance of flow in m and k is the thermal conductivity in

Troublesome Notation: Don’t confuse the subscript on qx to mean a partial 

derivative with respect to x. Here it means that q is in the direction of x. and is part 

of the variable. The subscript notation can be very confusing in this problem, but it
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is only being used to help keep track of the meaning of the variables.

1 . Consider the transfer of heat through a circular pipe whose cross-section is 

shown in figure 7.18. In figure 7.18, the pipe has an inside radius of where

Figure 7.18: Cross-section of a circular pipe.

the tem perature is Ti, an outside radius of ?'2 where the temperature is and 

a length of L. Heat is flowing radially from the inside surface to the outside. 

The area normal to the direction of flow is A = 2irrL.

(a) By letting r =  a;, evaluate Fourier’s Law of Conduction for this pipe, that

is, solve for q.

(b) Now find the heat conduction through a hollow sphere, assuming the sphere 

has an inside radius of r\ where the temperature is Ti, an outside radius 

of ?'2 where the temperature is To and that heat is flowing radially from

the inside surface to the outside. W hat is A  for a sphere?



82

Area
x + Ax

AX

Figure 7.19: Balance for heat transfer in a control volume.

A different way of looking at the idea expressed in (7.11) is shown in figure 7.19. 

In this case, the heat transfer equation becomes

Qx\x +  9  (A:r • A) =  gz|x.+Aæ +  0 (7.13)

where qx\x is the rate of heat transfer in the ^-direction going into the control 

volume, qx\x+Ax is the rate of heat transfer in the ^-direction coming out of the 

control volume q is the rate of heat generated per unit volume and A  is the 

cross-sectional area of the control volume. In order to evaluate the continuous 

movement of heat through the block, we need to rearrange the terms, divide by 

A x  and let A x  —» 0. Then,

+ g ■ A =  0 (7.14)dx
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> x

Figure 7.20: Wall with internal heat generation.

2. In the plane wall shown in figure 7.20, heat is being generated inside the wall 

and is conducted only in the rr-direction. The temperature Tw aX x = L  and 

x  =  —L  is held constant.

d2T
(a) Substitute equation (7.12) into equation (7.14) for qx and solve for •

(b) Solve for the temperature profile T  by integrating twice.

(c) The boundary conditions are at x  = ±L , T  = Tw and at T =  0. T  =  T0. 

Solve for the integration constants using these conditions to get a equation 

for T.
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Solutions to: Heat Transfer

1. a. We are given that % =  —k ^ ~  where A  =  2irrL.
A  dr

Therefore r =  —k —  
2'KrL dr

j l  r  *  =  - k  / T2
27rL 7 r i  r J T i

2'KrL 

Q

dr =  —kdT

In r
r 2

-/cT |

2^ lnS  = f c ( T l - r2 )
Qr —

2 k L

2nLk (Ti — T2 )
Ino-

6 . Start with % =  —k ——. For a hollow sphere, A =  4 7 T7'2. 
A dr

Therefore Qr _  ^ d T  
4 7 rr2 dr AKr2

dr = —kdT

! t - r ds  k r * dT  =
47T J r i  r2 J T i

qr_
A k

Ak \ r i  r 2

r j

Qr —

r2

rj

47rA: (Ti — T2) 
X _  X
r i  r 2

2. a.  The two equations are %  =  —k ^ ~  and —— + ÔA =  0
A dx dx

Therefore — ( —k A ^ - ]  +  çA =  0 
dz V dx /

d2T
dx2



Therefore, the final form for the equation is T  = ---- - x 2 +  T0.
2k
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7.10 R eaction  R ate Problem s

Calculus Topic: First Order Differential Equations

Department: Chemistry, Environmental Science

Subject Area: Environmental Monitoring

Time Needed: 2 hours

Reference: [8 ]

Since working with reaction rates involves some knowledge of chemistry, the 

initial set up for each of these problems is done. There is some vocabulary here which 

may be confusing, but the meaning of the words does not play a part in the problems 

you have to solve. It is left to the reader to find the meaning of any unknown words.

Troublesome Notation: The variables in these problems are written dif­

ferently tha t most math students are used to seeing, which may make the problems 

seem difficult. For instance in problem ( 1 ), you will be given and be asked to

find [A]. [A] represents the amount of chemical A in the reaction and acts just like 

dx
solving for x  in — . You use the same methods for finding a derivative, or in this 

case, for solving a differential equation.

1 . In a batch reaction system, a chemical reaction is partially autocatalytic when 

the product C affects the reaction rate as shown below:

2 A —> C +  other products (7.15)
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rA =  -k[A\[C] (7.16)

In this problem, rA represents the reaction rate, A: is a constant and [A] and [C] 

are amounts of reactant and product. Since the reaction is partially autocat- 

alytic, we need to consider the derivatives of the reactants and the products. 

Since this occurs in a batch reaction system, we have

r .  =  (7.17)

(a) First we want to develop an expression for rA in terms of [A] and [C0]. The 

stoichiometry of (7.15) produces the following relationship:

[ A o ] - [ A ] = 2 ( [ C ] - [ C o ] )  (7.18)

where [A0] and [CD] represent initial amounts and [A] and [C] represent 

amounts at some time t during the reaction. We want rA in terms of [A] 

and [C0], so using (4), we will make the following substitution.

[C] =  [C0] +  A[C]

— Po] +  ([C] — [C0])

— [Co] +  -  ([A0] -  [A]) (7.19)
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From (7.16) and (7.17) we find that

d[A]
dt =  -fc[A][C], (7.20)

Substituting for [C] using (7.19) produces 

d[A]
dt — ([Co] +  -  ([A0] — [A])^ . (7.21)

Solve for [A] using where we initially have [A0] at =  0  and we end with 

some amount [A] at some time t.

(b) Plot [A] and [C] versus t for [A0] =  10 [C0] =  1 and k = 1

in a batch reaction system.

2. The reaction-rate data  given below were obtained using a batch reaction system 

for the reaction

A —> products.

We want to determine an appropriate rate expression and the rate coefficient. 

To solve this problem, we seek an expression for rA where k is constant for the 

given data. Since this is a batch reaction system where A —» products., then

r ,  =  (7.22)
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T im e
min

A f
.A

0 30.00
0.5 1 2 . 0 0

1 7.50
2 4.29
4 2.31
8 1 . 2 0

16 0.61
32 0.31

Table 7.1: Reaction Data

Consider the order of [A]. For the n th order of [A], rA =  =  — A;[A]n. For

example, for the zeroth order of [A], rA =  =  —A:[A]°. Start at the zeroth

order and find an expression for k given that the amount of reactant at t — O is 

A0  and the amount of reactant at some time t is Af. Now use the data  in Table 

7.1 to check if k is constant. If not, increase the order of [A] by one and check 

k again. Continue increasing the order of [A] until you find a constant k.

3. A town requiring 1.0 ^  of drinking water has two sources, a local well with 

60 nitrate and a distant reservoir with 10 ^ 3  nitrate. W hat flow rates of 

well and reservoir water are needed to meet the 45 ^  nitrate drinking water 

standard and minimize the use of more expensive reservoir water?
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Set up two equations. The first is a mass balance equation.

total mass sum of the masses of water

of water y ^ from the different sources y

The second is a materials balance using the amount of nitrate in the water.

amount of nitrate

in a source of water
/  V

mass of

water /  X

concentration

of nitrate

total amount of sum of the amounts of nitrate in

y nitrate in the water y ^ the water from different sources J

In this case, mass and amount of nitrate are given in flow rates. The density of 

water is constant, so the mass balance equation can be written in terms of lÿ- 

with the same result as if mass were written in terms of grams. The density of 

nitrate is also constant, so the amount of nitrate can be written in terms of .

4. A water storage tank receives a constant feed rate of 0.2 and the demand

varies according to the relationship 0 . 2  ^ 1  — ^ ^ q q )  f  tan^ *s cylindrical

with a cross-sectional area of 1000 m2. If the depth at t =  0 is 5 m, plot the 

water depth as a function of time. To solve this problem, we need to solve the

ARTHUR LAKES U B R A R f  
COLORADO SCHOOL OF M INES  
GOLDEN, CO 8 0 4 0 1  -
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following mass balance equation.

= pQin -  pQou, (7.23)

where V  is the volume of the water in the cylinder, p is the density of the water 

(in this case a constant) and Q is the mass of the water moving in and out of 

the tank. Since p is a constant, (7.23) reduces to

(7.24)

Let V  =  AZi, where A  is the cross-sectional area of the cylinder. Hence A  

remains constant and h varies according to how much water is in the tank. Use 

this information and (7.24) to solve for h. Assume that time ranges from t = 0 

to t = t. Then construct the plot.

5. Given a reaction A —> B with rA =  —kCA, determine the time £ to achieve 9 5  

percent of the steady-state for a step increase in influent concentration from 0  

to CAi for a single CFSTR. Assume the value of rk = 1.0.

To achieve 95 percent of the steady-state for a step increase in influent concen­

tration from 0 to CAi we want CAIC A. = 0.95. To help find this we will use a

—j 7  — V  in — V on t
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mass balance equation which, in general, shows

Accumulation =  Mass in — Mass out +  Mass generated

Using information from our problem, the mass balance equation becomes

v ^ f -  = QCa, -  QCa +  r Ay  (7.25)

where is the reaction rate of chemical A, V  is the volume, Q is the flow rate, 

Ca; is the initial concentration of chemical A and Ca is the concentration of 

chemical A at some time t. Let V  = t Q, where r  is a detention time constant. 

From this, (7.25) becomes

—r— — - C A i  Ca — &Ca, or
at t  t

t — =  Ca^ Ca tJcCa (7.26)

Use (7.26) to find the ratio Ca/C a, and consider what happens as £ —> oo. Then 

find the ratio - .
T
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Solutions to: Reaction Rate Problems

1. a.
d|A]
dt =  -& K I ([Co] +  -  ([A0] — 

rf[A]
[A] ([Co] +  5  ([A0] -  [A]))

=  —kdt

/•[A]

J\AJ
d[A]

[Ao] [A] ( 2 [Co] +  [A0] — [A])
1

=  — — / kdt 
2 Jo

/•[A]

J\An]
d[A]

[Ao] [A] (2[C0] +  [Ao] — [A]) 2[C0] +  [Ao]
In [A0]

1

Now,

2 [C0] +  [Ao] 

1

2 [C0] +  [Ao] 

1

In

In

[A]

(2 [C0] +  [Ao]) — [A]

[Ao]

[A]

[Ao]

—  I l l

(2[C0] +  [A0]) -  [A] (2[C0] +  [A0]) — [Ao]

2[A][Co]

In

[Ao] (2[C0] +  [A0] — [A]) 

2[A][Co]
2[C0] +  [Ao] [ [Ao] (2[C0] +  [Ao] — [A])

1 ft 1
=  - - k  /  dt = —

2 Vo 2
kt

2 kt (2[C0] +  [A0]) In [AJ f  _  [A])

2 [A] [C0] _  e -ifc< (2 [C 0] +  [A0])

[Ao] (2 [C0] +  [Ao] — [A])

(2[Ao][Co] +  [A o]')e-2 ^^c.]+[Ao])
[A] =  

6 . [A] =

2 [C0] +  [Ao]e™2 fc<(2 [c°]+[Ao])

(2 (1 0 ) (1 )  +  (10)^) e-&i<(2(i)+(io)) g o e - ^
■6 /



94

[C] -  [Co] +  5 ([Ao] -  [A]) -  1 +  5 ( 1 0  -  i +  s e -e ,)  -  6  +

[A] - reactant

[C] - product

n (mol/m)

F ig u re  7.21: Plot for a batch reaction system.

2. Since this is a batch reaction, rA =
dt

^ [ A ]  t  r * IQ  _  f [ A <] r t
0 th order: rA = ^ -  = -A;[A] 0 =» [  ' d[A] = f  -

dt 7 [a 0] Jo

[Aq] -  [Af] gk =
m3 • min

P- order: r A =  =  -Jfc[A]> => - k d t
dt J\a0} A Jo

A: =  — -  In min 1 
t [A0]

2nd order: r A =  ^  =  -fc[A ] 2 =4> ^  =  f  - k d t
dt 7 [a j  A 2 Jo

. 1 /  1 1 \  m3
k =

t \  [Af] [Ao] J g • min
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At t =  0 , [A] =  [A0] =  30 g.

Time [Af] kQ =  lAoJ-lAf]
* 2  -  H f i r  -  ï i i )

0 30.00
0.5 1 2 . 0 0 36 - 1 . 8 0 . 1

1 7.50 22.5 -1.4 0 . 1

2 4.29 1 2 . 8 6 -0.97 0 . 1

4 2.31 6.92 -0.64 0 . 1

8 1 . 2 0 3.60 -0.40 0 . 1

16 0.61 1.84 -0.24 0 . 1

32 0.31 0.92 -0.14 0 . 1

T able  7.2: Reaction calculations for zeroth, first and second order equations.

Therefore, since &2 is constant, it is the rate coefficient. The rate expression is

k2 =  l { \ k ~ K ] ) '

3. Let Q be the flow rate in ^  and C be the concentration of nitrate in 

The two equations become

Mass balance Qtotal — Qreservoir H” Qwell

Mateiials balance Qtotal^{NOz)total Qreservoir^(NÔ )reservoir T Qwell^{NOrwell

m 3 g  g
We IvllOW that Q t o t a l  ~  1 0 , C ( N O ^ ) t o t a l  — 4o —, C ( N O - s ) r e s e r v o i r  — 10 rs rcr



c U ld  C ^ N O s ^ w e l l  —  6 0  g .  T h e r e f o r e ,  Q r e s e r v o i r  Q w e l l  1 c U ld  

4 5  { Q w e l l  1 )  ( 1 0 )  +  Q t u e / / ( 0 0 )  =$■ Q w e l l  —  0 . 7  â l l d  Q r e s e r v o i r  —

~ j   ̂ =  pQ in —  pQout =*• =  Q,„ -  Qout s i n c e  p  i s  c o n s t a n t .

V  =  A h ,  where A  =  1 0 0 0  m 2 , Q in =  0 . 2  a n d  Q out =  0 . 2  ( l  -  

Therefore, « « « f  "  » 2 “  » 2 (■ ~  J5 J5 )  ■ »

" - à ( — 0 - 3 )  »  —  ^ ( “ ® 5 )

[h _  f l 0-2 (  'Kt \  f |h _  0.2 43200 (  . nt \
J5 Jo 1 0 0 0  X 43200/ ^  "  1 0 0 0  tt \  43200/

h = 5 + S sin a -  The plot is 3 5  follows-

( m e te r s )

T im e  (h o u rs )

F ig u re  7.22: Change in water depth in a tank over time.
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5. We are given r ~~ĵ ' = — CA — rkC A. Solving for CA gives

 dCA   r  at
Jo CAi — Ca ( 1  +  rk)  Jo r

1

1 + rk
In (CAi — CA (1 +  t / c ) )

c a t

1  [In (CA, -  Ca (1 +  rk)) -  In CAi] =  *
1 + rA: ' ” T

1 i Ca,-— Ca (1 +  “rfc) t CAIn ---------- —------------- =  — We want the form ——, so
1 +  rfc CAi t  CAt ’

In f l  — ( 1  +  =  -  => ( 1  +  rk)  =  g-(i+ ^ ) 7  _j_ i
1 +  t& v CAi y t  CAt

CA e-(l+r&)7 +  l CA 1
—— =  ---- :------ :----- As t oo — »  --
Ca, 1 +  Tk CAi \ Tk

C C l
Therefore since we want — = 0.95, = 0.95

Substituting back and using rk  = 1.0, — =  — ̂  In

C a , C a , 1 +  t /c

Z1X 1 =  1.51 -  0.95 g )  (2)
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7.11 Logistic G rowth

Calculus Topic: First Order Differential Equation

Department: Environmental Science

Subject Area: Population Growth

Time Needed: 40 minutes

Reference: [6 ]

To solve this problem we need to use the logistic growth model

AT /  ^
H  =  r N (1 " I )  (7-27)

where K  is the carrying capacity of the environment (maximum population that the 

environment can support), r is the logistic growth factor and N  is the population at 

time t. r N  represents the exponential growth in this problem and repre­

sents the environmental resistance to growth. We will apply (7.27) to the following 

information in steps.

Suppose human population growth follows a logistic curve until it stabilizes 

at 7.3 billion people. Starting with its 1985 population of 4.84 billion people and 

the growth rate, i?G, at that time of 1.7 % per year, we want to find the predicted 

population for 1994?
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1. Let t* be the time at which N  = ^ .  Show that

N  = R
1 +

2. If N 0 is the population at t =  0, show that

3. If R 0 is the growth rate at t =  0, show that

R 0r =

- i

4. Now find the population for 1994 from the information given in the opening 

problem.
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Solutions to: Logistic Growth

dN
dt

r N ( - S

r N (-3
=  dt

I f  dN  f
r J  -xt { i N \ - J

" ( ‘ - 3

dt

(
In

N
\

=  t +  c, c is a constant In
N

v 1 - ^ /

rt +  c

1 -

iV
=  ert+c = cert

K N
K - N

=  cer t

K

K N  +  Nceri = Kceri => N  (l< + cer‘) =  jVce 

A'ce" K

rt

N  =
K  +  cert 1 +  Kce' ■rt

Using the initial condition, N(t*) = =  ------—-----—
2 2 1 +  Kce~rt

1

2 1 +  Kce~rtm

~rt*

=> 1 +  Kce rt = 2 => ce rt — —  =>
K

N  =

Substituting for c, TV =

/<

/<

1 +  /<
,rt*

/<
(e -^ )

1 +

/<
If 7V(0) =  7V0, then 7V0 =  ^ 7 ^ 7



We are given that K  = 7.3 billion people, N 0 =  4.84 billion people

, „  1-7%and R 0 — -------.
year

r =  -jy - =  ° ° 4  g4  =  0 0504 /year

' - i :  ' - a  

<* =  ; l n ( ê " 1 )  =  ô i ô 4 l n ( i È - 1 )  =  - 1 3 -4  y e a r s

Note: The negative sign on t* means that the population reached half the

carrying capacity 13.4 years before 1985.

K T - M -  K  -  7,300,000,000 _
I +  e-r(t-t*) l g—0.0504(( 1994—1985)—(—13.4)) ^  ̂people.
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7.12 Flow  of a Gas M ixture through a Tank

Calculus Topic: Differential Equations

Department: Chemical Engineering

Subject Area: Process Simulation and Analysis

Time Needed: 40 minutes

Reference: [27]

When a gas is placed in a tank, it expands to fill the whole volume of the tank. 

Because of this pressure must be considered as the measurable representation in this 

problem. The ideal gas law

f  y  =  (7.28)

can be used to relate pressure to the other conditions in the tank. In (7.28), P  is the 

pressure in the tank, V  is the total volume of the tank, n is the total number of mois 

of gas, R is a gas constant and T  is the absolute temperature.

Consider the tank system in Figure 7.23 which has a two-component ideal gas 

mixture at a constant temperature. The gas mixture is being added to the tank at a 

flow rate (mois per amount of time) of F, with oz being the percent of the composition 

of component A. The flow rate of the gas out of the tank is F0 with a being the percent 

of the composition of A leaving the tank since a is the percent of the composition of 

A in the tank. In the tank at any time, there are N  mois of gas mixture of which N a

mois are of composition of A, at pressure P  and a is the percent of the compositon
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Figure 7.23: Ideal gas mixture at a constant volume and temperature, 

of A in the tank. From (7.28) we can find that

P V  aPV
N  = so that for A N a — aN  =R T R T

Considering an overall mole balance for the system,

P V  \
dN
dt dt =  Fi -  F0 (7.29)

The mole balance for component A is

dN,
dt dt

= ciiFi — aF0 (7.30)

Troublesome Notation: The differential notation is also confusing when 

substitution takes place. For example, is a simple substitution of
Cv c Cv 6 Tl -J-
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for N.  simplifies to —— since V, R  and T  are constants. 
R T  dt

1. Let F{ =  0 so that the tank is being emptied. Let the gas leave the tank at a 

rate proportional to the difference between the tank pressure and the pressure 

of the atmosphere, Patm, a constant. Then the overall mole balance equation is

where the ideal gas law is used to write N  is terms of P. Considering that V,  

T  and R  are constant and that when £ =  0, the pressure is PG, find the pressure 

as a function of t at any time.

where B  represents the degree of departure from non-ideality at low pressures 

and is constant for constant temperature processes. As in problem (1), Let 

Fi =  0 so that the tank is being emptied, but this time assume that the tank is 

emptying at a constant rate, that is, F0 is constant. If the pressure in the tank 

is P0 at £ =  0, set up the differential equation and solve for P.

2. Now consider a non ideal gas which behaves according to the non ideal gas law

B P
P V  = Z n R T  where Z =  1 + (7.31)
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Solutions to: Flow of a Gas Mixture through a Tank

1. We are given = - k ( P  -  Patm) => —— Ç
d t  r  —  1 a t m  V

dP k R T  r‘ , , „  ,,p fc-RT ‘

In ( p " p°--) = => R = Ra«m + (Ro -  Patm} 6 ^
V-to ■* a t m '  *

B P
2. We are given that P V  =  Z n R T  where Z =  1 +  our system,

p y  p y  p y
n = N ,  so N  =

Z R T (I +  £ £ )  fiT  R R + B R

The mass balance for this system is =  F0 where F0 is a constant. 

d N  d (  P V  \  V ^  {RT  +  BP)  -  P V B ^  dP V R Td (  P V  \
~  dt \ R T  +  B P  J ~dt dt \ R T  +  B P  J (RT  +  B P y  dt (R T  +  BP)'

Henœ ~ d i(R T  + B P ) 2 = F o  ^  ( R T <+ >B P ) 2 = V R T dt *

d P  ( ' d t  1[  ^  =  ^  [  
Jpo (R T  +  B P ) 2 ~  V R T  JoIpo (R T  + B P y  V R T  Jo R T F  B P

1 1 BF0t

B F 0 1 
V R T

R T  + B P  R T F  B P 0 V R T

(V R T )  (R T  +  B P 0) R T
P  =

- B  (BF0t) (R T  +  BP0) +  V R T  B
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7.13 G eological D ating

Calculus Topic: Differential Equations

Department: Geology

Subject Area: Historical Geology

Time Needed: 40 minutes

Reference: [24]

The age of rock formations can be determined by measuring the amounts of 

certain radioactive elements in the rocks. Chemical elements can be classified into 

isotopes, which are defined by the number of protons and neutrons in the element. 

Most isotopes are stable, however some are radioactive; that is, they emit particles 

and decay to either a different isotope of the same element or to a different element 

all together. For example, carbon-14 decays to a nitrogen isotope and rubidium-87 

decays to a strontium isotope. Each unstable isotope decays at a different rate. The 

rate of decay is measured in terms of its half-life which is the amount of time is takes 

for one-half of the atoms in any sample of that element to decay. A property of 

half-life is that once one-half of the initial amount of unstable isotope has decayed, 

only one-half of the amount of isotope that is left will decay over the next half-life.

1. Uranium-234 decays to a thorium isotope and has a half-life of 248,000 years. 

At the time a certain rock formation developed, 1000 grams of U-234 formed in 

a sample of the rock. Using the definition of half-life, approximate the amount
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of U-234 left in that sample of rock after one million years.

2. From the method you used to find the solution to problem (1), find the amount 

of an isotope left after T  years if its half life is H  and the original amount of 

isotope is N.  W hat type of relationship develops between N  and T?

To determine the age of a rock, a geologist needs to know the amount of unstable 

isotope left in the rock, the amount of the stable element produced and the rate of 

decay of the unstable isotope. The rate of decay of the isotope is directly proportional 

to the amount of isotope remaining, that is,

where N  is the amount of unstable isotope at any time t and & is a decay constant.

3. If N 0 is the amount of unstable isotope at t = 0, solve for N(t)  taking into 

account the initial condition. Sketch the solution curve.

4. Derive the equation for converting between the decay constant k and the half-life 

T.  That is, derive k T  =  In 2.

5. Use the results from problems (3) and (4) to solve problem (1).
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Solutions to: Geological Dating

1. Approximately four half-lives have occured in one million years, 

End of first half-life: 500 g is left

End of first half-life: 250 g is left

End of first half-life: 125 g is left

End of first half-life: 62 g is left

21000000/248000
=  G l . l g r

1 \ T / h

or, n =  1000- =  61.1grams remain.

2. The amount remaining will be N

3. We are given =  —k N  => =  —kdt =>

rN d N  r1 /y
J n  ~ N = ~ k L d t  ^  h l N \ * o  = ~ k t \o = >  l n ï ^  =  - k t

— ktW =  Ar„e

4. 1 =  (\)e~kT => In 1 =  - k T  =4- - l n 2  =  -fcT  In 2 =  kT

5. N  = N 0e~kt => Af =  (1000)e(ln2/24soooxioooooo) =  61.1 grams.
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7.14 M ass Balance in Flow  through a Tank

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Differential Equations 

Chemical Engineering 

Simulation and Analysis 

90 minutes

Reference: [27]

A mass balance equation for a tank is being filled and drained at the same 

time is formed according to the following conservation principal:

Z

X

rate of change 

of mass

\ (
input rates 

of flow

\  /  \  
output rates

V of flow
(7.32)

/

Since the mass M  of the fluid is the same as the density p times the volume, we can 

write (7.32) as

dM
dt =  PQi ~  PQo (7.33)

where t is time, ç, is the volumetric rate of flow (amount of volume per amount of 

time) into the tank and q0 is the volumetric rate of flow out of the tank.

T roub lesom e N o ta tio n : Often in science and engineering, subscripts are 

used on variables to give them a clearer meaning in an equation. For example, in 

this problem, ç,: denotes the rate of flow in. Subscripts can also indicate partial 

derivatives or vector components, which is not the case here. The differential notation
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confusing when substitution takes place. For example, is a simple
di/ Cv V

substitution of pAh  for M.  simplifies to p A —  since p and A  are constants.
Ct v CLZ

Fluid level

F ig u re  7.24: Cylindrical tank being both filled and drained.

1. In figure 7.24, a cylindrical tank is being filled and drained at the same time so 

the conservation principal in (7.32) applies. The amount of the liquid through 

the cylindrical tank depends on the height h since the cross-sectional area A 

remains constant. The mass of the fluid is also dependent on the height and 

is calculated as M  = pAh.  Using (7.33), the conservation of mass problem 

becomes

d (pAh) dh
^ r  = p A T t = p { q i - q°)

or

dh _  (qj -  q0) 
dt A

(7.34)
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(a) If both qi and qQ are linear functions of time, i. e., qQ = kit and g, =  

and the height of the liquid at t =  0 is h0, find the height of the liquid in 

the cylindrical tank as a function of time.

(b) If q{ is a function of time and qQ is a function of height so that g, =  kt and 

qQ = ch where c and k are constants, then (7.34) becomes

Using a technique for solving differential equations called the integrating 

factor, (7.35) can be solved by rewriting it as

Assuming that the height of the liquid at t =  0 is Zi0, find h as a function 

of time.

2. Now we will use conservation of mass to determine the flow rate through the 

cone shaped tank shown in Figure 7.25.

cones, one which makes up the tank and the other formed by the water

pA—  =  p(ch — k t ) . (7.35)

(a) The volume of a cone is U =  - tt— Zi. In Figure 7.25 there are two similar

level. Since these cones are similar, we can write the relation — =  — . Set
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Fluid level

F ig u re  7.25: Cone shaped tank being both filled and drained.

up an equation which gives the mass of the liquid in the tank at any time 

t with M  in terms of p, W , H  and h.

(b) Set up the differential equation according to (7.32).

(c) If both qi and q Q are linear functions of time, i. e., qQ =  kit and =  Aigt, 

and the height of the liquid at £ =  0 is h0, find the height of the liquid in 

the cylindrical tank as a function of time.

(d) If qi — 0 and qQ =  ch2 where c is a constant, and the height of the liquid 

at £ =  0 is h0, find the height of the liquid in the tank at any time £ until 

the tank is completely drained.
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1. a.

b.

2. a.

Solutions to: Mass Balance in Flow through a Tank

We are given ^  Substituting q0 = kit and #  =  k2t

dh (k2t — kit^ 
dt

[  d h =  [
Jh0 JO

A

i (k2t — k\t)
A

dt

d h = ^ t - k l t ) dt =>
A

=> h \ t  =  {- k2t2 ~  i"i<2)
2A

h  =  i ! ^ ± f l  +  ho

We are given —  =  1 . Substituting = c/i and g, =  kt

dh _  (/ct — ch) 
dt A

dh ch kt . . , x ci
=> —  +  — =  The integrating factor, fi(t) =

produces d^e^h^j =  ~~£~dt j d ( e " h ) = j j t e

cl k A çt f  Qi , et k A ci A cl—■ —te a — e^d t =r- e Ah = — —t e * ----- eÂ
A . c J A . c c +  C 1

^ c< k
h = — (t — 1) + d e - Â .  Since /i =  ha at t = 0, c% — h0 4— .

c c

Therefore Zi =  (t — 1) 4- f h 0 4- -  j e~*.

„ 7 . T/ 1 w2 w W  dMWe are given V  =  ^ tt— h, M  = pV, — =  —  and -  g0) .

1 w2 1 1  /W  X 2 
M  = pV = l p x T h = l p K - ( j j h )  h =

h H  dt

p7rW2h3
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h , • i . . .  dM  7rpW2h2 dho. Ine  diiferential equation is —  ̂ TT̂ — — = p (% — q0)
dt 12H2 dt

7TlV2ft2 dh 
12H1 dt =  (Çi -  9o)

c- , , , , . -ïïW^h2 dh .c. Since q„ = kit  and g, =  fc2i, — —-  —  =  (fc2t -  fcit)

7rW2 /i2

X2H2
dh =  (k^t — kit) dt irW2 t h 

12H2
f  h2dh =  (k2 — k\) f  tdt

Jh0 JO

36H2 K
— g (^2 — k i ) t 2 h3 ~  Ü W 2 ^ '2 ~  f c l ^ 2 _  h°

1/3

2 wW2h2 dh 2
a. Since q0 =  cn^ and g; =  0,  „ —— — —c/i irVK2 dh

kW 2 
12 H 2

T tW 2

12H2

dh =  —cdt

12H2 dt ^  12^2 ^

Trll/ 2 rh rt

— C

12 H 2
[  dh = ~C [

Jh0 JO

h — —c |̂q => /i =  —et + /%».
h0 1 2 # 2  »



115

7.15 R eactions in a P lug Flow R eactor

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

First Order Differential Equation 

Chemical Engineering 

Kinetics 

40 minutes

Reference: [18]

Different types of reactors such as batch reactors and plug flow reactors pro­

duce different results from reactions between fluids. Each reaction can be described 

by a material balance equation as follows.

(

\

\ (  \ (  \ (  \
rate of rate of rate of reactant rate of

reactant reactant loss due to accumulation

flow into = flow out + chemical reaction + of reactant

element of element within the element in element

of volume ^ of volume  ̂ of volume of volume
(7.36)

In a plug flow reactor, the composition of the fluid varies from point to point along 

a flow path. This means that a material balance equation for a reaction component 

must be made for a differential element of volume d V . We set up the material balance
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equation according to (7.36).

Fa = (Fa + dFa ) + (—ta } dV + Q (7.37)

where FA is the input of reactant A in moles per time, FA 4- dFA is the output of 

A in moles per time, {—rA)dV is the disappearance of A in moles per time and rA 

is rate of reaction of A. If we let Fao be the molar feed rate of component A to 

the reactor, then the input of A in moles per time becomes Fa =  FAo( l  — X A) and 

dFA =  d(FAo( l  — X A)) =  —FAo d X A where X A is the fraction of reactant that is 

converted into product. Substituting this into (7.37) gives

=  ( - r ^ )  d l/ (7.38)

T roub lesom e N o ta tio n : The subscripts in this problem can be very confus­

ing, but in each case they are being used to give a specific meaning to the variable 

and to distinguish between similar quantities. The subscript A  refers to element A 

and the subscript O refers to an original (initial) amount.

1. Using separation of variables, write a differential equation placing volumes on 

one side and rates on the other side. Set up the limits of integration considering 

that the reaction starts at zero volume and ends at some volume and the amount 

of reactant converted to product starts at zero and ends at some final fraction,
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X ^ f-  Decide which terms are constant and which are variables.

2. Let t  be the time required to process one reactor volume of feed measured at

C a q Vspecified conditions. Then r  =  — -----. where C a o  is the initial concentration
F a o

of A in moles per liter. Using the result from problem (1), find r. (Hint: It will 

be possible to evaluate one side of the equation, but you do not have enough 

information to evaluate the other side.)

3. A homogeneous gas reaction A — > 3R has a reported rate at 215° C of —ra =  

k C lÂ 2 ^rlsee- Find the space-time (r) needed for 80% (i. e., X a  = 0.8) conver­

sion of a 50% A - 50% inert feed to a plug flow reactor operating at 215° C and 

5 atm. C a o  =  0.0625

For this type of reaction,

c ‘  -

and k =  10-2 • Since the reaction is 50% A - 50% inert feed, eA =  1.

Use this substitution to solve the problem.
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Solutions to: Reactions in a Plug Flow Reactor

1. We are given that F^ o d X A =  (—r A) dV. The differential equation takes

dv dX/i  ̂ _ /-y dy dxA
the form =  — —. W ith integration limits, [  ——  = — [  

—rA Jo Fao JoFAq —r a Jo FAq Jo rA

FAq is the only constant in the equation.

Since r  =  then V  =  T̂ A°  • Evaluating the left side of the
FAq CAq

rV d V  V  t
integral produces / ——  =  ——  =  —— . Hence we now have 

Jo FAq FAq CAq

——  = [  1 ----—. We need more information about rA to evaluate the
Cao Jo —t'a

right side. Therefore r  = CAq [  f
Jo rA

--------------J and1 +  €AX A J

that eA =  1. First we need to find [  ' 5 .
Jo - r A

rx Af d X A C Ao  [ XAf / I  — X  
r  -  I-/") Jo Jo 1 1 4- X A

y / C Ao  [ Xas /1  +  X A \ 1 2̂ , v, V C Ao  f XAf 1 +/ I  +  A A Y "  _  VCAO 1 4-
Jo 1 1 -  X A /  ^  & Jo (1 _  X ^ l / 2 dX

— ^arcsin X A -  \ / l  -  X Aj
Xa/

ARTHUR LAKES LIBRARV 
COLORADO SCHOOL OF M IH cS  
GOLDEN, CO 8 0 4 0 1



~ CkA°  ^ a rc s in X A/ -  y/1 -  X Af2̂ j -

(arcsinO.8 — \ / l  — 0.82 +  l)  
1 0 - 2  v /

^arcsin 0

8.30 seconds
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7.16 V ector Problem s

Calculus Topic: Vectors

Department: Physics

Subject Area: Mechanics

Time Needed: 40 minutes

Motion problems can be solved using vectors. The key to solving these prob­

lems is to make a sketch of the vectors before attempting to do the mathematics. 

Since each problem is different, no general formulas can be given here.

T roub lesom e N o ta tio n : In these problems, two different methods of denot­

ing vectors are used. One is F  with its magnitude denoted as F  and the other is a 

with its magnitude denoted as a. In each problem, the æ-, y- and ^-components are 

given in terms of the unit vectors z, j  and k. In most calculus texts, a boldface a 

is used for vector notation, |a| would designate its magnitude and (0 1 , 0 2 , 0 3 ) would 

designate its components.

1. A ferry carrying cars and passengers across a river is traveling east with a 

velocity of 15 miles per hour relative to the water. The current is going directly 

south at this point in the river. W hat is the velocity of the ferry relative to the 

river bed?

2. A pitcher throws a curve ball with an acceleration vector a =  24j  — 32/c, an 

initial velocity vector v0 =  120% — 3j +  4A; and an initial position vector of
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le  =  5fc. The origin of the coordinate system is at the pitcher’s mound, the 

x —axis is from the mound to home plate. The z—axis is vertical. It is 60 feet 

from the mound to home plate. Determine the y and z components of the 

position vector when x  =  60 feet.

3. A wind with a force F(t)  =  2ti — 5t2j  N is acting on a ball with a mass of 

10 kg. If the ball is moving on a horizontal surface with no friction, find the 

position of the ball at t — 6  s if it is at rest at t =  0. It may be useful to recall 

Newton’s Second Law of Motion which states that force =  the product of mass 

and acceleration and can be written in vector form F = ma. [19]
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Solutions to: Vector Problems

N

Ferry’s  velocity 
vector relative to 
the river bed, r

Ferry s velocity
vector, v= 15
mph relative to
the water

Current's velocity 
vector, c

F ig u re  7.26: Vector diagram of the boat crossing the river.

1 . From figure 1 , Irl =  y/c2 + v2 =  Vc2 +  152 and 0 = tan 1 -  =  tan 1 —
r 15

Therefore r  =  y/c2 + 152 tan 1 — degrees south of east.

2. a  =  24j — 32k, v c =  120% — 3j +  4k, r 0  =  5k

v — J  8idt — C\i — (24t +  C2 ) j  +  (—32t +  C3 ) k

At t =  0, v =  v 0  ci =  1 2 0 , C2 =  —3, C3 =  4.

Therefore v =  120% — (24t — 3) j  +  (—32t + 4)k

r  =  J  vdt = J  ( l 2 0 î -  (24« - 3 ) j  +  (-3 2 r +  4) k) dt 

= (120t +  C4 ) i — ^12#  ̂ — +  0 5  ̂j  +  ^—16#“ +  4# +  k
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At t =  0 , r  =  r 0  => c4 = 0 , c5 = 0 , c6 = 5.

Therefore r  =  120tz — ^12t^ — J +  ^ -I- At +  5  ̂h

When x  =  60, 1 2 0 2  =  60 => t = - .

The ^-component is 12 — 3

The ^-component is — 16 +  4 + 5  =  3.

3. We are given that F(t)  =  2ti — ht2j  N and that mass, m =  10 kg.

C- z=? -  F 2 t i - b t 2j  1 ,  1 2~.Since F  =  ma, then a =  — =  --------------=  - t i -----1 i.
m  10 5 2

s = Tt *  ^  J  d* = J  ( ï tl ~ ¥ ] )  dt

=>- V =  +  Cî j i -  Q t 3 +  c2j  j  Since ï7(0) =  0, ci =  c2 =  0.

Therefore v =  - -̂Z2% — %2 3j .
10 6 J

^  =  ( à <2î -  dt =*“ J d° = J  ( à * 2' -  M  *

2 =  t 3 +  C3)  i -  t4  +  c4)  j  Since s(0) =  0, c3 =  c4 =  0.

Therefore s = — t3i — — t4j.
30 24

At 2 =  6 , s(6 ) =  ^ ( 6 )3z -  ^ ( 6 )4j  =  y  z -  54 j.
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7.17 H aul R oad D esign

Calculus Topic: Vectors

Department: Mining Engineering

Subject Area: Mine Design

Time Needed: 20 minutes

Reference: [10]

A haul road up the side of the pit of the Turnagain Copper Mine consists of 

three straight sections that lead from the pit bottom to the crusher on top of the 

highwall. The road sections can be described by the following vectors, which are 

written in units of miles.

Section 1 Section 2 Section 3

1.31* +  0.78; +  0.016k 0.93* +  1.50; -  0.233Â; 0.142* +  2.49; -  0.046Â:

1. To climb out of the pit, do haul trucks travel from section 1 to section 3, or vice

versa?

2. W hat is the elevation difference between the bottom of the pit and the crusher 

station?

3. If the rr-axis is aligned with east and the y-axis with north, what bearing is the 

pit bottom  in relation to the crusher station?

4. If the units were kilometers (1.00 km =  0.62137 mi), how would the bearing in 

problem (3) change?
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Solutions to: Haul Road Design

1. The trucks go from section three to section one. In this direction, they 

rise 0.046 +  0.233 — 0.016 miles.

2. 0.046 +  0.233 -  0.016 =  0.263 miles =  1389 feet

3. The pit is 1.31 +  0.93 +  0.142 =  2.382 miles east of the crusher and

0.78 +  1.50 +  2.49 =  4.770 miles north of the crusher. Hence, the pit is 

4.77
tan ——— =  63.5° north of east or 26.5° east of north of the crusher. 

2.382

4. The bearing would stay the same. Units have no bearing on the bearing.
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7.18 R escue Problem

Calculus Topic: Vectors

Department: Physics

Subject Area: Mechanics

Time Needed: 2 hours

This problem uses properties of three dimensional vectors for finding a downed 

aircraft. Using consistent vector notation is important to the solution of the problem.

A ranger stationed in a remote section of the Rocky Mountains spots a small 

Cessna aircraft with smoke pouring from the engine. In order to give the search and 

rescue team as accurate information as possible, he immediately contacts a second 

ranger who can also see the plane. At the same time they both take bearings on the 

plane in order to calculate its exact position. The first ranger is located at (0,0,6800) 

and sights the plane at 42° south of east and 11.5° above the horizon. The second 

ranger is located at (17321,10000,7600) and sights the plane at 58° south of west 

and 3.4° above the horizon. Three minutes later, they both take a second bearing on

the plane. The first ranger sights the plane at 41° east of north and 2.3° above the

horizon. The second ranger sights the plane at 83° west of north and 1.6° below the

horizon. All coordinates are in feet.

1. Draw a reasonably accurate sketch of the problem. Although you have three 

dimensions in the problem, it may be easier to work with a two dimensional
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sketch with the elevations listed next to the points.

2 . Calculate the coordinates of the plane at the two sightings.

3. Find both the displacement vector and the velocity vector (in feet per second) 

for the plane between the two points.

4. If the plane is heading toward a meadow averaging 6300 feet in elevation and 

assuming that the plane maintains its current direction and velocity, calculate 

the coordinates where it will crash and find the amount of time elapsed between 

the second sighting and the crash.

5. A rescue helicopter leaves an airfield at the same time the second sighting is 

taken by the rangers. It flies on a velocity vector of —170% +  248j +  7k. The 

coordinates of the airfield are (150000, —200000,4000). When will it reach the 

crash sight?
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Solutions to:

Ranger Station 1 
(0, 0, 6800)

Rescue Problem

Second
Sighting

83'

Path of 
Plane

42'

First
Sighting

Ranger Station 2 
(17321, 10000, 7600)

F ig u re  7.27: Sketch of the path of the plane.
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2. Vector from Ranger Station 1 to the first sighting: 

7085Ï -  6379] +  1940&

Vector from Ranger Station 1 to the second sighting: 

9525z +  10957]+  583A:

Vector from Ranger Station 2 to the first sighting: 

-10236% - 16379]+  1140Ê

Vector from Ranger Station 2 to the second sighting: 

-7796* +  957]-271fc

3. Displacement vector of the plane from the first sighting

to the second sighting: 2440% +  17336j — 1357&

The displacement unit vector: 0.139% +  0.987j — 0.077Â; 

The velocity vector of the plane from the first sighting 

to the second sighting: 13.6% + 96.3j  — 7.5A:

4. The vector form the second sighting to the crash: 

1955%+ 13 8 8 2 ]- 10836

The coordinates of the estimated crash point: 

(11480,24839,6300)

The crash will occur in 2 minutes 24 seconds after the 

second sighting.

5. The helicopter flies at 300 ^ for a distance of 264094 

ft. It will take 14 minutes 40 seconds for it to reach the 

sight.



130

7.19 M om ents on Force System s

Calculus Topic: Vectors, Cross Products

Department: Engineering

Subject Area: Statics

Time Needed: 1 hour

Reference: [12]

The mechanism shown in figure 7.28 is static, that is, the forces placed on it 

do not cause any movement in the system. This is the basis for all of the calculations 

in the following problems. Much of the preliminary work for these problems is shown 

to give an idea of where the equations come from.

T ro u b leso m e N o ta tio n : The study of Statics is centered around the action 

of forces, which are vectors. The arrow notation, Tb d -, is used here, and \Tbd \ denotes 

the magnitude of Tb d - It is important for the student to keep track of both the 

magnitude and direction of the forces. Components of force vectors are indicated by 

subscripts, for example, Fx and Fy.

1 . Given the forces in the diagram in figure 7.28 and the coordinates of the fol­

lowing points as A(0, 0,0), B (6 , 0,0) C (10,0,0) D(0, 7 ,6 ) and £ ( 0 ,7 ,—6 ),

find

(a) \Tb d \ and \TBe \ (the magnitude of the force vectors) and

(b) A where A = A vi +  A yj  +  A zk.
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y

BE

tBD

840 lbs
z

F ig u re  7.28: System for Problem 1 .

Since this is a static system, the sum of the moments acting on A is 0. Each 

moment acting on A can be found by

M a =  v x  T

where T is a force vector acting at a point and v is the displacement vector from

A  to f .  For example, T b d  =  \TBD\ ,~ 6* +  ^  +  +  7 j  +  6 /t)
^ ( - e ) 2 +  72 +  6 2 11 V y

and =  6 z +  Oj +  Ofc =  6 i. There are four forces working in this system 

(A, Tgp, Tbs and C) and you need to find the moments for all four by evalu­

ating the cross-product. Then use

M a = 0
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to set up an equation in which you can solve for \ T b d \  and \ T b e \ -

To find A x, A y and A z sum the forces in the rr-, y- and ^-directions and set the 

sum equal to zero. Consider only the x-components of the forces when summing 

the forces in the ^-direction, the ^-components of the forces when summing the 

forces in the ^/-direction and the ^-components of the forces when summing the 

forces in the z-direction.

y

455 N

t b e

E

Figure 7.29: System for Problem 2.

2 . Given the forces in the diagram in figure 7.29 and the coordinates of the follow­

ing points as A (0,0,0), £ (0 ,3 ,0 ) C (0 ,6 ,0) £ (1 .5 ,0 , —3) £ (1 .5 ,0 ,3 ) and F ( —3 ,0 ,2), 

find
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(a) \Tb d \ and \Tb e \ (the magnitude of the force vectors) and

(b) A where A =  A xi +  A yj  +  A zk.

Since this is a static system, the sum of the moments acting on A is 0. Each 

moment acting on A can be found by

M a = v x T

where T  is a force vector acting at a point and v is the displacement from A to

f .  For example, f BD = \ f BD\ ~ -  ik    =  \ T ^ \  / ^  ^  ^
^/l.52 +  (—3)2 +  (—3)2 4.5 V )

and vbd — 0z +  3j + 0k = 3j. There are four forces working in this system and 

you need to find the moments for all four by finding the cross-product. Then 

use

53 M a =  0

to set up an equation in which you can solve for \ T b d \ and \ T b e \-

To find A®, Ay and A z sum the forces in the x-, y- and ^-directions and set the 

sum equal to zero. Consider only the ^-components of the forces when summing 

the forces in the z-direction, the ^-components of the forces when summing the 

forces in the ^/-direction and the ^-components of the forces when summing the 

forces in the z-direction.



134

Solutions to: Moments on Force Systems

53 A?a =  A x Ô +  f BE x (6 ,0 ,0) +  T b d  x  (6,0,0) +  C x  (10,0,0)

* J k î J & i 3 k
I^b e I , pB£>| ,

6  0 0
1 1  + 6  0 0 i i  + 1 0 0 0

- 6  7 - 6 - 6  7 6 0 -840 0

=>

Therefore, — I-^be| — ~  ^ an(  ̂ y ï ^ b e I — " |T b ü |  — 8400 =  0.

Solving this system gives \TBE\ = \ T b d \  = 1100 lbs 

b. ^ 2  Fx => A x ~  — \Tb d \ ~  — \TBe \

A x = A(1100) +  A ( 1100) =  12001bs

5 3 Fy ^  A y +  — |7b£)| +  — \Tb e \ ~  840 =  0

Ay = ^ (1 1 0 0 ) +  ^ (1 1 0 0 ) -  840 =  —5601bs
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A2 =  - ^ ( 1 1 0 0 )  + ^ -(1 1 0 0 ) =  0

Therefore A  =  1200z — 560j lbs.

1.5% -  3; -  3ik
2 . a. Tbd =  \TBD

\Tb d \ (i.5 î -  Zj -  3k)

T b e  — \Tb e

C = 455-

^/l.52 +  ( - 3 ) 2 +  ( - 3 ) 2 4.5

| • 1- ^ - ~ 3i +  3/'' =  % i  (1.5* -  3] + 3k)
y i.5 2  +  ( -3 )2  +  32 4.5 V J

—3i — 6j ~h 2fc
—195* -  390; +  130fc

v/ ( - 3 ) 2  +  ( - 6 ) 2  +  22 

Afyi =  A x 0 +  Tbe x (0,3,0) +  Tbd % (0,3,0) +  C x (0 , 6 , 0 )

i j k i 3 k i j k

\Tb e \ , \Tb d  | ,
0 3 0 4.5 + 0 3 0 4.5 + 0 6 0

1.5 - 3 - 3 1.5 - 3 3 -195 -390 130

=  0

=> ^ ^ |T b £ ) | +  — |Tb£;| +  780^ i +  ( —|Tb£)| — [Tb^I +  1170) =  0

Therefore, — 2|Tg£)| +  2|T^^>| +  780 =  0 and — — |Tg^)| +  1170 =  0.

Solving this system gives \Tb d \ = 780 N and \Tb e \ — 390 N

b- ^>2 Fx => A x +  — |Tb£>| +  — iTe^l — 195 =  0

A x = -1 (7 8 0 )  -  1(390) +  195 =  -1 9 5 N
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53 Fy => A,, — — |Tbd| — — |TbE| -  390 — 0 =>

A„ =  &780) +  |(390 ) +  390 =  1170N 

53 ^  ^  — +  j ^ | Î b e | +  130 =  0 =>

A2 =  &780) -  ?(390) -  130 =  130N 

Therefore A =  —1952 +  1170j +  130Â; N.
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7.20 Potential Difference Due to Continuous Charge Distributions

Calculus Topic: Integration

Department: Physics

Subject Area: Electric Fields

Time Needed: 90 minutes

Reference: [17] [23]

When a small charge called a test charge, is placed in an electric vector field 

E,  the electric force on the test charge, F  =  q0E  is the vector sum of the individual 

forces exerted on qQ. Work is the amount of energy it takes for a force to displace 

an object, so the work done by the force q0E  for an infinitesimal displacement ds is 

given by

dW  = F  • ds =  q0E  • ds

Change in potential energy, AU,  is defined as the negative of work done by a conser­

vative force so that

rb
A U  =  I —q0E  • ds.

Ja

Potential difference is directly related to potential energy by a constant equal to the 

reciprocal of the test charge. It is defined as the amount of work per unit charge that
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an external force must apply to displace the charge, say from a to b. Hence

A U  f b -*A V  = —  = -  E  • ds. (7.39)
Qo J a

For this problem, we are concerned with what happens when we introduce a contin­

uous charge distribution as opposed to a single test charge. For a continuous charge 

distribution we need to consider a charge element dq and see what effect that this 

charge distribution has on the potential difference when the distance from the charged 

object is kept constant. Using (7.39), and given that —É  • ds =  k — , the potential 

dV  due to the charge element dq at some point P  a distance r from dq is given by

d v  = k ^  *  y  =  f c / 6-r  Ja r

Troublesome notation: In this problem, vectors are denoted by E  with 

the magnitude of E  denoted as E  and the components of E  as E x, E y and E z. In 

most calculus texts, a boldface a is used for vector notation, \a\ would designate its 

magnitude and (<2 1 , 0 2 , 0 3 ) would designate its components. Both s and r are used 

here to describe a distance or displacement. In this case, s is a vector describing a 

displacement along a path that an object is being moved and r describes the distance 

from an object to a point. E  represents a field of vectors, but can be represented by 

a single vector at a known point. Also in this problem, E  • ds denotes a dot product
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between two vectors. There are two ways to evaluate a dot product. In calculus, the 

dot product is written as a  b  and is either a\bi +  « 2 6 2  +  « 3 6 3  for three component 

vectors or |a ||b | cos 0 where 9 is the angle between the vectors. This problem uses 

the second form.

In the following problems you will be finding the potential difference due to 

different types of charged objects.

1 . For a uniformly charged ring of radius a and total charge Q

(a) Find the electric potential at a point P  located on the a;-axis a distance x 

from the center of the ring. As shown in figure 7.30, the plane of the ring 

is chosen perpendicular to the a'-axis. Your answer should be written in 

terms of x  and a.

Figure 7.30: A uniformly charged ring of radius a.

(b) W hat is the maximum electric potential along the 2 -axis?

(c) Find the amount of work required to move a test charge from point P  to 

the ring. (W  = —Vq0)
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(d) Given that the strength of an electric field at a point on the a:-axis is

Ê  =  —-7 - ,  find Ê  at point P.  You may want to compare this to Problem 
ax

3 in the Electric Fields (7.30) section.

2. Find the electric potential along the axis of a uniformly charged disk of radius 

a and charge per unit area a.

(a) Sketch the problem showing the disk, the rr-axis, P , the radius and the 

charge element. The charge element will be a ring of area dA =  2'Krdr. 

Show dA and dr on your sketch.

(b) Since the disk has a charge per unit area cr, dq can be written in terms of 

dA. Using this information, set up and evaluate the integral to find the 

potential difference.

3. A rod of length £ located along the z —axis has a uniform charge per unit length 

and a total charge Q. Find the electric potential at a point P  along the y—axis 

at a distance d from the origin as shown in figure 7.31. Let A =  y  be the unit 

charge so that dq = \dx .

>

Td
±

Figure 7.31: A uniformly charged rod of length £.
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Solutions to:

1 . a.

b.

c.

d.

2 . a.

Potential Difference Due to Continuous Charge

v = k j ^ = k r a v ^ = 7 ^ i ô dq

r*27ra

y/X2 + a2
2'Kaq

kQx
^  (a;2 +

\Jx2 + a2 

= 0 => x =  0

W  =  —Vq0 =
kQq0

y/ x 2 +  a*

1

=  - k Q  (a: 2 +  a2) 3 / 2  (2a;) z =
kQx

(af +  a S ) ^

dq

Figure 7.32: A uniformly charged disk.
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, T. , f  dq , f 2™ dq , f a a2'Krdro. V  = k I — = k — k I
J r  Jo \ / x 2 +  r 2 Jo

2 r d r

y j  x 1 +  r 2 Vo a/^'2 +  7'2

=  'Kka f  - ^  = =  2'ïïka f \ / ^ 2 +  a 2 — x )
Vo y x 2 +  r 2 x y

3. V = k [ ^  = k f ^ = = =  k \  [ C^ $ =
J r  Jo s/x^  +  dJ Jo \ ] r l  +  d-

... (e + VPT&\ kQ, (e + VPTé
=  fcAln {  5 J  =  " T  (  d --------

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL OF M INES  
GOLDEN, CO 8 0 4 0 1
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7.21 R ock Excavator B it Testing

Calculus Topic: Line Integrals

Department: Mining Engineering

Subject Area: Cutting Machine Design

Time Needed: 30 minutes

Reference: [10]

Rock excavation machines use hard metal cutters mounted on rotating cut- 

terheads to chip rock from the working face of an excavation. Many different cutter 

designs have been used over the years. One of the ways that machine designers de­

termine what cutters are appropriate for a particular excavating job is to perform a 

punch-penetration test in a sample of the rock to be dug. A single cutter is fixed 

to a hydraulic loading device and forced down into the rock until chips form on the 

rock surface. The load level and penetration depth are recorded several times per 

second and plotted. The purpose of this test is to determine how much energy that 

particular cutter needs to create a chip of that particular rock. Energy is represented 

on the data  plot by the area under the load-penetration curve. When a chip forms the 

load falls quickly, creating a sawtooth in the curve. For a curve recorded by the CSM 

Excavation Engineering and Earth Mechanics Institute in a recent project, determine 

the energy required to form the first major rock chip.
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The following equation is used to determine the energy required to form a rock

chip:
rr2

t/1-2 =  /  F • drJri

where [ / 1 _ 2  is the work done by the loading device to make the cutter penetrate 

the rock, F is the applied force vector and r is the displacement vector which has 

magnitude s. Subscript 1 refers to the initial condition (the cutter is sitting with no 

load on the rock surface) and subscript 2  refers to the final condition (the cutter is 

at the penetration point of interest).

Troublesome Notation: In this problem, F r denotes a dot product between 

two vectors. There are two ways to evaluate a dot product. In calculus, the dot 

product is written as a b and is either +  «2̂ 2 +  <23£>3 for three component vectors 

or |a||b| cos 0, where 6 is the angle between the vectors. This problem uses the second 

form.

100000

80000

60000

40000
(lbs)

20000

0
0.10 0.20 0.30 0.40 0.50 0.60 0.700

Penetration (inches)

Figure 7.33: Results from a punch-penetration test.
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Figure 7.33 shows the results of a particular test. Calculate the amount of 

work done to make both chips if the force was applied at 0, 20, and 40 degree angles 

to the displacement of the bit. We will assume a linear relationship here.
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Solutions to: Rock Excavator Bit Testing

We are given the equation t/ i _ 2  =  /  F  • dr which can also be written as

Ui- 2  = F  cos 9ds, where s is the magnitude of the displacement.

From the graph in figure 7.33, the first rock chip occurs at 0.18 inches with a 

force of 53000 lbs., and the second chip occurs at 0.19 in (0.40 in - 0.21 in) 

with a force of 48000 lbs.

The energy for the first chip penetrating at an angle of 0° is

r s 2 r0.18
Ui- 2  — / F cosOds = /  F  cos Ods

=  F sc o s 6 | ” ' 18 =  (53000)(cos0)(0.18 -  0) =  9540 in-lbs

The energy for the first chip penetrating at an angle of 20° is

=  F sc o s0 | „ 18 =  (53000)(cos20)(0.18 -  0) =  8965 in-lbs

The energy for the first chip penetrating at an angle of 40° is
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rs2 /"0.18
t/i_ 2  =  / F cosOds = / F  cosOds 

Js! Jo

=  FscosSIo 18 =  (53000)(cos 40)(0.18 -  0 ) =  7308 in-lbs

The energy for the second chip penetrating at an angle of 0° is

r s 2  r0 .18
t/i_ 2  =  / F  cosOds = /  F  cosOds 

J si do

=  Fscosfllo 18 =  (48000)(cos0)(0.40 -  0.21) =  9120 in-lbs

The energy for the second chip penetrating at an angle of 20° is

r s 2  rO.18
U\ - 2  — / F  cos 6ds =  / F  cos 6ds 

Jsi Jo

=  F sc o s0 |o 18 =  (48000)(cos 20)(0.40 -  0.21) =  8570 in-lbs

The energy for the second chip penetrating at an angle of 40° is

r s 2  rO.18
Ui- 2  =  / F  cos 6ds =  /  F  cos Ods 

Js! Jo

= F  s c o s # | q 18 =  (48000)(cos40)(0.40 — 0.21) =  6986 in-lbs
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7.22 Flow  of Fluids in P ip es and Tanks

Calculus Topic: 

Department:

Subject Area:

Time Needed: 1 hour

Multiple Integration 

Chemical Engineering 

Fluids

Reference: [15]

To set up a conservation of mass equation, we will make use of the general 

conservation equation for mass, momentum or energy which is

dN
dt

dN
dt +

cv I L npV'dA (7.40)

where TV is a flow quantity (mass, momemtum or energy), n is the flow quantity per 

unit, S  is the system, C V  is the control volume, C S  is the control surface, Vn is 

the velocity distribution in direction n, p is the density of the medium and A  is the 

cross-sectional area. The three parts of this equation can be written in the following

manner:

/
instantaneous 

time rate of change 

in N  for a system 

of particles

\
instantaneous time

rate of accumulation

of N  within the

control volume

+

amount of N  

leaving the control 

volume minus the 

amount of N  entering
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From the general conservation equation, we can find the continuity equation, which 

is a statement of the conservation of mass. The flow quantity N  becomes m  (mass) 

and n =  m /m  =  1. Now, the general conservation equation becomes

dm
dt

dm
dt +

cv J L ' V-
dA.

This is called the control volume approach to flow through a pipe. For a system of 

particles, mass is constant, so we can further simply the equation to

dm
dt cv

+ [  [  pVndA = 0. 
J Jcs

For a system with steady flow,

[  [  pVndA =  0. 
J Jcs

For incompressible fluids, p is  a constant, so

/  [  VndA  =  0, 
J Jcs

which means that the amount leaving is equal to the amount entering. When a liquid 

flows through a pipe, it has a velocity profile as shown in figure 7.34. An average
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Row Direction

F ig u re  7.34: Velocity profile in a pipe, 

velocity, V  can be calculated for a profile as follows.

V A  = J  Jc s VndA = >  v  = U c s ^ n d A  (7 .4 1 )

W ater is moving through the pipe in a bullet shape which may approximate the shape 

of a parabola. The use of polar coordinates helps to describe the movement in the 

above equation.

T ro u b leso m e N o ta tio n : The symbol /  fc s  is a, general method of indicating 

integration over a surface which is two-dimensional. In these problems, it is defined 

according to the shape of the duct and the type of flow. When setting up the problem, 

it will be necessary to define the limits for each part of the integral. Also note that 

Vn is velocity in the n-direction. In the problems, velocity may be in the ^-direction, 

so we would define it as V2. In these problems, V  stands for velocity instead of v 

found in motion problems of physics. Don’t confuse V  with volume.

The following problems are associated with the flow of fluid through a pipe.
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1. Find the average velocity over the cross-sectional area of a circular duct as in 

figure 7.34. The velocity distribution is given as

Vz — Vmax f 1 j-ç2

where R is the radius of the pipe.

2. Find the average velocity over the cross-sectional area of a circular duct when 

the velocity distribution is

r \ £
K = Vmax ( 1 R

3. A pipeline with a 24 cm inside diameter is carrying liquid with an average 

velocity of 0.5 y . A reducer is placed in the line and the outlet diameter is 8 

cm as shown in figure 7.35. W hat is the velocity at the end of the reducer? 

Given the velocity distribution of problem 1, what is the maximum velocity for 

each section of pipe?

Reducer

Figure 7.35: Pipe with a reducer.
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4. A 4 foot diameter tank containing acetone is sketched in figure 7.36. The acetone 

is drained from the bottom of the tank by a pump so that the velocity of flow 

in the outlet pipe is constant at 3 If the outlet pipe has an inside diameter 

of 1 in, determine the time required to drain the tank from a depth of 3 feet to 

a depth of 6 inches. Acetone has a density of 1.527 5̂ s. The control volume is

3ft

k 4ft

F ig u re  7.36: Cylindrical acetone tank.

chosen to be the volume of liquid in the tank at any time. The flow is unsteady 

and the continuity equation applies as follows:

a w
dt +

cv
[  [  npVndA = 0. 

J Jcs

Set up the equation and find t. Note that the integration is over several con­

stants.
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Solutions to: Flow of Fluids in Pipes and Tanks

1. The average velocity is V  = f  f c s  VsdA 
A

where K  =  Vmnx 1 —
R 2

Since the pipe is circular, A = ttR 2. Therefore, using polar coordinates,

V - i T  r v—  ( i - y
r2 r4

4R2

R

d#

ttR 2

I V  \2n 1

2 4,

4 7T 10

2 . The average velocity is y  =  ^  ^  where V- = K i - - N"m ax \ -1 jr̂

Since the pipe is circular, A =  ttJ?2. Therefore, using polar coordinates,

3.

V
-  a L  L  Vmax ( 1 r )

—  —  I rdrdO

Vrr />27r F/ —r +  i ? \ 1/5 /5?'2 5ri? 25jR2
ttR 2  Jo [ \  R  )  \ n  ~  ™66 66~

vmax f - R  + R \ 1/5 ( 5 R 2 5R2 2bRr

R

TTR2 /:(■ R 11 66 66
dd

25 Vmax q 
66 7T

2 1  -  OO 77ia.T0 33

We know that the average velocity V  = From this we get
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V A  = [  [  VndA. For the 24 cm end of the pipe, V = 0.5 — and 
d Jcs 5

A = 144%- cm2. Therefore, [  [  VndA =  (0.5)(1447r) =  226.2 For the
J Jcs

8 cm end of the pipe, we know that /  /  VndA =  226.2 and A =  16%-
J Jcs

Therefore, y  =  U c$V „ dA  =  2 2 6 j =  ^  m
A  16%- s

cm2.

4. We are given that
cv

+  /  /  pVndA = 0. 
J Jcsd t

The volume of the tank is V =  %" (22) z = 12.57z ft3. The mass of 

the acetone in the tank is m  = p • V = (1.523)(12.57z) =  19.2z slugs.

Qjjl Q % dg
=  19.2—  =  19.2— since the depth varies only with time. 

ot ot dt

f  Jcs pVndA =  J  jou,PVndA ~ J  l „ PV"dA =  (1'523)(T ( 24)  (3) =  0 025-

+ [  [  pVndA = 19.2-y- +  0.025 =  0 .
J Jcs dt

d N
Substituting,

rv.o r
Solving the differential equation produces / dz = —0.00130 /

73 7o

0.5 -  3 =  —0.00130(t -  0) t = 1920 s
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7.23 Friction Factor in Flow through a P ipe

Calculus Topic: First Order Differential Equations

Department: Chemical Engineering

Subject Area: Fluid Mechanics

Time Needed: 2 hours

Liquids flow through pipes in two different ways, laminar and turbulent. In 

laminar flow, the liquid moves in smooth layers through the pipe, and in turbulent 

flow liquid moves erratically in the pipe. Friction caused by contact of a liquid with 

the wall of a pipe acts on a fluid moving through a pipe. We will look at laminar 

flow in a pipe, making use of a momentum equation which will be derived from the 

general conservation equation,

where TV is a flow quantity (mass, momemtum or energy), n is the flow quantity per 

unit, S  is the system, C V  is the control volume, C S  is the control surface, Vn is

cross-sectional area. The three parts of this equation may be better understood if

(7.42)

the velocity distribution in direction n, p is the density of the medium and A  is the
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written in the following manner:

(
instantaneous 

time rate of change 

in N  for a system 

of particles

instantaneous time

rate of accumulation

of N  within the

V control volume

+

/

amount of N  

leaving the control 

volume minus the 

amount of N  entering

If we consider linear momentum as we would find in laminar flow, we can find 

the result of forces acting on a control volume in a pipe as follows:

d
(7.43)

where Yj Fi is the sum of the forces in the i direction. From (7.43) the conservation 

equation becomes

+ J  /  V (V ■ d A ) . (7.44)

Since we will be considering steady one-dimensional flow only, (7.44) becomes

Y , F i =  J  J  Vi p V n d A
eg

(7.45)
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Troublesome Notation: In this problem, vectors are denoted by F with 

the magnitude of F denoted as F  and the components of F as Fy and Fz. In 

most calculus texts, a boldface a is used for vector notation, |a| would designate its 

magnitude and (&i,og,#3 ) would designate its components. Also, V • dA  denotes a 

dot product between two vectors. There are two ways to evaluate a dot product. In 

calculus, the dot product is written as a b and is either aib\ +  agbg +  0 3 6 3  for three 

component vectors or |a||b| cos0, where 6 is the angle between the vectors. This 

problem uses the second form.

1. In figure 7.37, we will select an element representing the flow of a liquid through 

a circular pipe and then analyze the forces acting on that pipe. pA  is a pressure 

force acting over the cross-sectional area and rdAp is a shear force caused by 

the walls of the pipe. Since the diameter of the pipe is constant, the right-hand

Flow Direction

Elem ent of fluid Velocity Profile

(p +  dp)A

■ >

F ig u re  7.37: Forces acting on an element of fluid in a circular pipe.
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side of (7.45) is zero. Summing the forces on the element gives

pA  +  rdAp — (p +  dp) A =  0 => rdAp — Adp =  0 (7.46)

Since the pipe is circular, A =  27rr and the area over which the shear stress acts 

is dAp = 2'Krdz.  This changes (7.46) to

di? 2 t
t  (2'Krdz) — 'k t2d p  = ^  =S> — =  —  (7.47)

d z  r

d p
—  is a pressure drop per length of pipe, which is caused by the friction in the 

pipe. We will assume that we have a Newtonian fluid which means that

r  = ^  (7.48)

where ^  is a constant depending on the type of fluid.

Now, for the circular pipe in figure 7.37,

(a) Substitute (7.48) for r  into (7.47) and solve for — Then solve the dif­

ferential equation for Vz.

(b) At the boundary, r  = /?, the velocity Vz =  0. Use this to solve for the 

constant of integration. Now what is Uz?
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(c) Now find the average velocity using

rr _ I ICS VndA 
A

2. Consider the flow of a fluid through a rectangular duct as shown in figure 7.38.

h

xwdz

2ywp 2yw(p+dp)

xwdz

F ig u re  7.38: Forces acting on an element of fluid in a rectangular duct.

(a) As with the circular pipe in (7.46), find the sum of the forces acting on 

the element. Again, the right-hand side of (7.45) is zero since the size of 

the duct remains constant. Using the steps you used to find Vz in problem

(1), find Vz for the rectangular duct. This time r  =  and you will be
dy

integrating with respect to y.



160

(b) To evaluate the integration constant, use the fact that y =  ± |  when 

Vz =  0.

(c) Find the average velocity for the profile throught the rectangular duct.

3. Consider the flow of a fluid through an annulus as shown in figure 7.39. Pay 

particular attention to the shape of the flow element in figure 7.39 and to how 

the forces act on it.

Flow Element

x dA,
(p + dp)A

F ig u re  7.39: Forces acting on an element of fluid in an annulus.

(a) As with the circular pipe in (7.46), find the sum of the forces acting on the 

element. Again, the right-hand side of (7.45) is zero since the size of the 

duct remains constant.

(b) Find dAPi and dAP2 and substitute into part (a).
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(c) The term dr dr  is very small and can be taken to be zero. Assuming that

dr)
dr dr is zero, write the equation from part (b) in terms of — .

dz

(d) For a Newtonian fluid, r  =  Substitute this into the equation from
dz

part (c) and integrate with respect to r.

(e) There are two boundary conditions for this problem. When l/z =  0 , r  =  /? 

and when Vz =  0, ?' =  k/Z, (0 <  « < 1). Use these conditions to find the 

two integration constants, then give an equation in terms of Vz.

(f) Find the average velocity for a profile in an annulus.



a.

b.

c.

2. a.
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Solutions to: Friction Factor in Flow through a Pipe

w  • d V z  a  d P  2 tWe are given r  =  u —r -  and — =  — . ° dr dz r

dp 2t 2 dVz
r r drdz

I dV’ = I  fzi.dr

dVz _  dp r 
dr dz

Since Vz = 0 when r =  R,  then 0  =  +  Ci
dz 4/i c i  =  -

dp R 2 

dz 4/i

Vz = ± ± ( r2 _ R A = _ dP R 2  
dz 4/i x /

See section 7.22 V  =

—R 2 dp f 2w \ f  r

dz 4^

—R 2 dp 
f  f V zdA 4/j, dz

- ' 5 )1
C  C { ' - w ) r i Tm

An dz Jo

A

4R 2

txR 2

z f ± r a ) de
n _  A/i dz Jo \ 4 /

ttR 2 7T

z E % 2K
16/i dz

7T
722 Z dp' 
8/i \  dz

^  Fz =  0  =  2 wi/p +  rwdz  +  Twdz — 2 icy (p +  dp) =>

2 rwdz  =  2 wydp
dp r  
dz %/

Since we are given that r  =
dV  ̂ y dp _  dVz 
dy ’ p dz dy
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h2 dpb. Since Vg = 0  when y = ± | ,  then 0 = ------— H C2 => cg =
8 /i ctz

c. See section 7.22 V

xh xh

f x J f _  ( _ d p \ ,
= 12^  \  d z )  X _  ( ~ ^ ) x  _  / d p  A

a: x 1 2 p  y dz J

3. a. 5 3  F z =  0 =  pA +  (t +  dr) dAPl — rdA P2 — (p +  dp) A

b. dApi = 27r(r +  dr)dz dAP2 =  2'irrdz =>

—27rrdrdp +  ( r  +  dr) (27r) (r +  dr)dz — r  (2nr) dz =  0,

where the shell area, A =  2'ïïrdr.

c. Since drdr —* 0, set d rd r =  0. Then 2'Krdrdp = 2 'Krdrdz +  2'Krdrdz

=> rdr—  =  rdr  +  rdr. 
dz

d. Since we are given that r = p d]4
dz

dp dV2 (  dVz
rdr—  = a ——dr +  rd p —— 

dz dr \ dr

dp \  h2

dz J 8>p
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tv  • j • i ii i j  i dVz d p  d  (  dVz Uividmg both sides by d r  produces p — h r —  =  r — p-
dr dz dr \  dr J

TT- i d d /Using the product rule where — r —— = —----h — r ——  , we get
dr \ dr J dr dr \ dr

d
dr (r5 )  = S - Integrating’ ! d  (r9 = / l t dr

r ^Y± — +  C3. Dividing by r and integrating again produces
dr 2 p dz

J d V ’ =  l { i , i + 1rC3) d r  =*■ V ‘ =  i l ï z + C 3 l n r  +  C4

e. The boundary conditions are when Vz = 0, r = R  and

whenVj =  0, r  =  kR,  where 0 <  /c < 1 .

R*̂  dp k? R 1̂ dp
Hence, we have-— — +  c3 In i? +  c4 =  0 a n d  — +  c3 In ( k R )  +  c4  =  0.

4p dz Ap dz

Solving this system produces c3 =  ^  ( l  — /c2) and
In n 4 p d z  v y

C4 =  ™ ÿ î ( 1 +  l ^ l n f i ) '

Therefore Vz = —
Ap \  dz

r2 1 — /c2 . z r
In

-R2 In /c Vi?

/ .  See section 7.22

_  /  J  K<h4 _  Jo"  IJ r  ( - & )  t1 -  j r  -  ^  ln ( f l ) ]  r d rd e
A TT ( f i 2 -  K2 / ? 2 )

4M ( ~  g )  /o 2 " [ / â  rrfr -  f«R ^ d r -  J ,«  In dg
i r R 2  ( 1  — /c2 )



165

2 . R2—k2R2 _  R*-k4R4 _  2̂(K2-l)+«2fi2(«2-l)(l-21n/c) 
2 4R2 4 In k de

Tri?2 (1 — /c2)

e  ( - £ )  / o '  [ f  (i -  2«2 + «4) -
(/c2-1)k2/?2

2

tt/?2 (1 -  /c2)

( -1 )  r  f f  (1 -  -2)2 + 4 ^ ( 1 -  -2)2 +
Tri?2 (1 — /c2)

t 1 - * 3 )  +  O - " 2 )  +  - £4 ^ 41n« ^ 2
Tri?2 ( l  - K 2)

1 i?2 /  d p \  f 2n [(1 — k2) In A: +  (1 — /c2) +  2/c2 lu A:
TT 4/i y dz J Jo 

1 i?2 / dp'
TT lô^ \  dz J Jo 

1 i?2 Z dp

1 + / C 2 +

4 In /c 

l - / c 2
In/c

d6

tt 16p \  dz

i?2 Z dp'
8p V dz

l +  /cz +
1 -  /c2

l +  /c2 +

In/c

l - / c 2 
In k,

27T
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7.24 Ball M ill Problem

Calculus Topic: Mass Moment of Inertia

Department: Mining Engineering

Subject Area: Ore Processing

Time Needed: 30 minutes

Reference: [10]

A ball mill is used to break large chunks of ore into smaller pieces. It is a 

large barrel into which is put a quantity of ore and a quantity of steel spheres. As 

the mill turns about its axis, the ore and the spheres tumble around together. The 

spheres break the ore chunks by impact. The mill must be rotated fast enough that 

the material tumbles well, but not so fast that centripetal force keeps the material 

plastered up against the wall. The engineers who design ball mills need to know, 

among other things, how the mass moment of inertia of the steel spheres changes as 

they wear down (their radii decrease). The mass moment of inertia is calculated by

I  = [  r2dm =  [  r2pdV = p [  r2dV
J m  J V  J V

where I  is the mass moment of inertia, r is the perpendicular distance from the axis 

of rotation to the element dm, m  is mass, V  is the volume of the object and p is the 

density of the object (assumed constant in this case).

ARTHUR LAKES LIBRARY 
COLORADO SCHOOL OF M INES  
GOLDEN, CO 8 0 4 0 1
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T roub lesom e N o ta tio n : The symbol f v is a general method of indicating 

integration over a volume which is three-dimensional. When setting up the problem, 

it will be necessary to evaluate what may be a triple integral along with the limits 

for each part.

Plot how the mass moment of inertia of a steel sphere changes as its radius 

decreases with wear. The initial radius is 3.00 in, the final radius is 0.75 in. and the 

steel density is 7 .8 8 ^ 3 . Consider 0.25 in increments.
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Solutions to: Ball Mill Problem

We want to find I  = p J  r2dV  for a sphere where r  is the distance from the

center of the sphere to its surface. The volume for a sphere is V =  ^ 7rr3.

rr / 4 . \ 4  P a 4
Hence I  = p r  ( - n r  d r  ) =  - n p  / r d r  =  — n p r

1 Jo \3  J 3 1 Jo 15

Convert p to compatible units: 7.88 f  — / 2. 54cm\  /  lib  \  _  q 2 3 4  I
\ cm3/  V 111 J \454gy 1

lbs 
3

For r = 3.00, I  = ^7r(0.284)(3.00)5 =  57.9 lb • in2

For r  =  2.75, /  =  -^7r(0.284)(2.75)5 =  37.5 lb • in2

For r =  2.50, I  =  ^ t(0 .2 8 4 )(2 .5 0 )5 =  23.3 lb • in2

For r = 2.25, I  =  ^7r(0.284)(2.25)5 =  13.7 lb • in2

For r  =  2.00, /  =  ^7r(0.284)(2.00)5 =  7.63 lb ■ in2

For r =  1.75, I  =  ^ir(0.284)(1.75)5 =  3.91 lb • in2

For r  =  1.50, I  =  — t(0.284)(1.50)5 =  1.81 lb • in2

For r =  1.25, I  = ^7t(0.284)(1.25)5 =  0.727 lb • in 2
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For r =  1.00, I  =  — t(0.284)(1.00)5 =  0.238 lb • in2

For r  =  0.75, /  =  — Tr(0.284)(0.75)5 =  0.0565 lb • in5

o
f

I
n
e
r
t
i
a

3 0

20

Radius r (inches)

F ig u re  7.40: Change in the mass moment of inertia as the size of the steel spheres 
shrinks.
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7.25 H eat and W ave Equations

Calculus Topic: Partial Differentiation

Department: Physics, Engineering

Subject Area: Continuity

Time Needed: 40 minutes

Reference: [25]

The heat, wave and ideal gas law equations are partial differential equations 

which can be easily verified by taking partial derivatives with respect to the variables 

shown in the equation. The following problems demonstrate this idea.

1. It is shown in physics that the temperature u (re, t) at time t and at point x  of a 

long insulated rod that lies along the .r—axis satisfies the one-dimensional heat 

equation

du d2u
dt dx 2

where A; is a constant determined by the material from which the rod is made of. 

Show that u ( x , t )  = e~n~kt sm(nx)  satisfies the one-dimensional heat equation 

for any constant n.

2. The Ideal gas law p V  = n R T  (n is the number of moles of the gas, R is a 

constant) determines each of the three variables p, V  and T  (pressure, volume
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and temperature) as function of the other two. Show that

dp dV  dT
a y  '  "  '

3. A string is stretched along the x —axis, fixed at each end and then set in vi­

bration. In physics it is shown that the displacement w ( x , t )  of the point of 

the string at location x  at time t satisfies the one-dimensional wave equation. 

Another example occurs if you stand on an ocean shore and take a snapshot 

of the waves. The picture shows a regular pattern of peaks and valleys in an 

instant of time. If we stand in the water, we can feel the rise and fall of the 

water as the waves go by, that is, we see periodic vertical motion in time. This 

equation is

d2iu _  2 d2w 
dt2 C dx 2

where w is the wave height, x is the distance variable, t is the time variable and 

c is the velocity with which the waves are propagated. The number c varies 

with the meduim and type of wave. Show that the following functions satisfy 

the one-dimensional wave equation.

(a) w = sin (x +  ct)

(b) w = 5 cos (3x +  3ct) +  ex+ct
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Solutions to: Heat and Wave Equations

1 . u(x,t )  =  e n2ktsiii(nx)

^  =  —n2 ke~n2kt sin(nz) 
dt  v v

O u  - n 2 k t  r  \  , d  U  o - n 2 k t  ■ z \—  — ne cos(nx) and r =  — u e sin(na')
dx dx2

du d2u —n2ke n~kt sm(nx) = k ( —n2e n‘kt sin(nx))
dt dx 2

2. pV7 =  n/?T

n itT  dp
p =  y  d ÿ  =  ÿ 2™

ni7T dV
p dT p

T = py d T ^  v_
ni? dp ?i i?

dp d y  d T _ _ n R T  nR  V  _  n R T  _  
d V  d T  dp V 2 p n R  pV

d2w 2 d2uj
3 '

a. w = sin (x +  ct)

dw
—  =  ccos (x +  ct)
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d2w 2

-Qp =  —c sin (x +  ct) 

dw
—  =  cos (x 4 - ct) dx v  y

d2w .  z  x=  -  sin (x +  ct)dx1
d2W 2  d2W 2  •  z  ,  \  2 z  •  z  N x

"dt2” =  C dx 2 ^  ~~C 8111 ^  ) =  c (_  8111 +  ct))

6 . w =  5 cos (3x +  3ct) +  ez+c<

=  —15c sin (3x + 3ct) +  cex+ct

d2W
-Qp =  —45c2 cos (3x +  3ct) +  c2 ex+ci

^r— = — 15sin(3x +  3ct) +  ex+ct 
dx

d2w
=  —45 cos (3x +  3ct) +  ex+ct 

d2w 2

'dW = c d^  ^

—45c2cos (3a- +  3ct) +  c2 ex+c' =  c2 ( -4 5  cos (3.r +  3c<) +  eT+cl)
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7.26 Tem perature Profile w ith  H eat G eneration

Calculus Topic: Differential Equation, Cylindrical and Spherical Coordinates

Department: Chemical Engineering

Subject Area: Transport Processes

Time Needed: 1 hour

Reference: [9]

Temperature profiles with heat generation can be modeled through a partial 

differetial equation. The following equation represents an energy change and is a 

form of Fourier’s second law of unsteady-state heat conduction. Here it is written in 

rectangular coordinates:

k
where —  is a thermal diffusivity term.

1. Rewrite equation (7.49) in cylindrical and spherical coordinates.

2. A solid cylinder in which heat generation is occurring uniformly as q W atts per 

cubic meter is insulated at the ends. The temperature of the surface of the 

cylinder is held constant at Tw degrees Kelvin. The radius of the cylinder is 

r = R  meters. Heat flows only in the radial direction. Derive the equation
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for the temperature profile at steady state if the solid has a constant thermal 

conductivity as follows.

(a) Use the cylindrical form of Fourier’s second law of unsteady-state heat 

conduction and add the term to the right-hand side. For steady state,
pCp

we have

Since the heat conduction is only in the radial direction, then

92T  _ n d2T  _  n
dz* -  ae2 ~

W hat is the resulting equation?

(b) Show that the equation from part (a) can be written in the form:

± (r^) = -Ê
dr \ dr J k

(c) Integrate the equation from part (b) twice and solve for T.

dT
(d) The boundary conditions are when r  =  0, —  =  0 (by symmetry) and when 

r = R , T  = TW. Find the integration constants and solve the equation for 

the tem perature profile T.
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Solutions to: Temperature Profile with Heat Generation

1. Rectangular coordinates: —  =  — V T  =  —  — ^ 7  +  t t t  +dt pcp pcp \ d x 2 dy 2 d z 2

, ar A: , i ar , i â T , â T̂Cylindrical coordinates: _  =  _  +  _ _  +  ^  j

Spherical coordinates:

d T _ ± _
dt pcp

\ d (  2 d T \  1  a /  . „ d T \  1 a2T 
r  -r— +  0 . sin <9—  +

r2 dr \  dr J r2 sin 9 dB \  d9 J r2 sin" 9 dcf)2

2. a. § . ± ( ‘g  + i£ + \ ÿ  + m  + ±,o
dt pCp \  dr 2 r dr r 2 d92 d z 2 J pcp

a2T   ̂  ̂a2T  ̂  ̂ , W T  9Since — r- =  0 and —— =  0, we have — r H — =
dz 2 d92 dr2 r dr k

Since the change is only in the r direction, the PDE becomes an ODE.

L TT -  ̂ 1 d /  d / d T \  dT d^T dTo. Using the product rule, — r —  =  r — —  +  —  =  r — - +  — .
dr \  dr J dr \  dr J dr dr2 dr

Multiplying the result from (a) by r produces
dr2 dr k

Therefore £  ( r p i  =  - f .
dr \  dr J k

d T \  Q f  , dT  q 9i _  i —v------ r —  — -----------r -  _|_ C lc. Separating variables, J  d ( r —  j = —̂  J  rdr
J k J d r  2k

Dividing both sides by r and separating variables again,
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J d T - j ( - ± r + C-±)  => T  = - ^  + cl In r  +  c2.

J d T  „ ,d. —— = 0  when r =  0  => ci =  0 .dr

T  = TW when r = R, R  is the radius of the cylinder, =>

qR? n (R? — r^)
C2 =  Tw +  . Therefore, our final equation is t =   —-------- (- Tu

4k 4k
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7.27 G radients

Calculus Topic: Gradients and Directional Derivatives

Department: Physics

Subject Area: Physics, Chemical Engineering

Time Needed: 1 hour

Reference: [14]

The directional derivative of a function, / ,  describes the rate of change of /  in 

a certain direction. A gradient vector, V /  for a function f  points in the direction in 

which f  increases most rapidly. The magnitude of V /  is equal to the rate of increase 

of /  with respect to distance. Directional derivatives and gradients can be applied to 

mapping problems, heat flow problems and solution mixing problems among others. 

The following problems are examples of some of these ideas.

1 . Figure 7.41 is a topographic map showing the elevation f ( x , y )  of the point

(#, y) in feet above sea level. Find solutions to each of the following problems

and give a written justification for your solution.

(a) Estimate the slope of the terrain as you walk from B  to C .

(b) Estimate the direction you would go from C if you wish to descend by the 

quickest route. Give your answer in unit vector form.

(c) Estimate the directional derivative at C (to the next contour line) in the 

direction of —2 i +  j .
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F ig u re  7.41: A topographic map with a contour interval of 40 ft.

(d) Estimate the direction from B  that has a directional derivative of -0.406.

(e) Estimate the value of the gradient at A.

2. The concentration of salt in a body of salt water can be described by the function 

/  (:r, ?/, z) =  x 2 +  y2 zA +  :r3 z3 at the point (%, y, z) (in feet). Your are standing 

in the water at the point ( — 1 , 1 , —1 ).

(a) In which direction should you move if you want the concentration to in­

crease the fastest?

(b) Suppose you start to move in the direction you found in part (a) at a speed 

of 2 j-. How fast is the concentration changing? Explain your answer.



The temperature field at any point on a metal plate is given by

T (%,%/)= ^x 2 +  y2 +  5

(a) Where on the plate is it the hottest? W hat is the temperature at that 

point?

(b) At the point (3, 2), find the direction of the greatest increase in tempera­

ture. W hat is the magnitude of that greatest increase?

(c) At the point (3, 2), find the direction of the greatest decrease in tempera­

ture.

(d) Does the vector you found in part (b) point towards your answer from part

(a)? If not, why not?

(e) Find a direction at the point (3, 2) where the temperature does not increase 

or decrease.

(f) W hat shape are the level curves of T?
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Solutions to: Gradients

80
L a. The slope from B to C is approximately —=======  =  0.512.

K VlOO2 +  1202

b. The quickest descent is in the direction i — j .

c. The approximate directional derivative at C in the direction —2 i +  j

is ,4—.....   =  0.596.
\/602 +  302

d. The direction with a directional derivative of -0.406 is approximately 

40z -  90;.

e. The approximate gradient at A  is .943 (—z +  j )

2 . /  (x, y, z) = x 2 + y2 z 4 +  x 3 z 3

a. V /  =  +  -J^k = (2x +  3x2 z*) i +  2yz4j  +  (^4y2 z 3 -f 3a.-3 z2)

From the point ( — 1,1, —1) you would want to move in the direction 

( 2 ( - l )  +  3(—1)2 (—I)3) i + 2(1)(—l)4j  +  (4(1)2 ( - 1 ) 3 +  3(—1)3( —I)2) k 

= —5z +  2j — 7k.
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b. |V / | gives us the rate of change in the direction with respect to distance.

=  v/ ( - 5 ) 2 +  22 +  ( - 7 ) 2 = x/78.

To find the rate of change with respect to time, rate of change

=  rate of change ( cô " ic e ° ") ' rate of change ( dlgg1nece)

=  \/78 • 2 =  2\/78 units of salt per second.

3' T{Æ’2/) =  x 4 ? )+ 5

a. The hottest point on the plate is where x  =  0 and y =  0. The temperature 

at that point is 2 0 0 .

dT  - d T  -
b. The gradient of T, VT =  z +  at (3,2) will give the direction of

ox ay

the greatest increase in temperature.

( - l ) (1 0 0 0 )(2 z )  2000%
dx  ( % 2 +  z/ 2 +  5 ) 2 (x2 +  z/ 2 +  5 )J

a r  ( - i ) ( i o o o ) ( 2?/) 2oooz/
dy (x2 +  z/ 2 +  5) 2 (x2 + y2 +  5 ) 2

At (3,2), v r  =  _  ) +  2000(2)
(32 +  22  +  5Y  (32 +  22 +  5 r  

6000, 4000, 2000 z
V388 -  V38J " V a s t
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c. The direction of the greatest decrease will be in the opposite direction

2000  /  ~

as the gradient, or -^= - +  2 j j

d. It does point toward the origin, as expected.

e. The direction of no increase or decrease occurs perpendicular to

2000 / ~ ~\ 2000 / 
the gradient. The two choices are —̂==- — 2jj  or y — ^—3% +  2 j j

/ .  The shape of the level curves are circles, centered at the origin.
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7.28 Fam ine R elief

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Lagrange Multipliers 

Economics 

Fund Allocation 

30 minutes

Reference: [15]

An international organization must decide how to spend $27,000 they have 

alloted for famine relief in a remote area. They expect to divide the money between 

buying rice at $3/sack and beans at $9/sack. The number P  of people who would be 

fed if they buy r sacks of rice and b sacks of beans is given by

P  =  r +  36 +
r 3̂ 3

3 x 1018'

W hat is the maximum number of people that can be fed, and how should the orga­

nization allocate the money?
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Solutions to: Famine Relief

If we use Lagrange multipliers, let G = 27000 — 3r — 96 =  0.

V G  = —3i -  9j

(  r2 b3\  (  r^b2\
V P  =  AVG => [1 + W 8 ) =  -3A and ( s  +  —  j = -9A

3r 2̂ 3
Hence, 3 +  —-r%- =  3 +  ——% => 36 =  r or ?' =  0 or 6 =  0.

10lb 101#

From G =  0, we have: when r =  0, 6  =  3000, when 6  =  0, r = 9000 and 

when r =  36, r =  3000, 6  =  1000. Subsituting into P , P  (9000, 0) =  9000, 

P  (0,3000) =  3(3000) =  9000 and 

45003 • 15003
P  (4500,1500) =  4500 +  3(1500) +  - - q— - =  9102

Therefore, 9102 people can be fed with 1500 sacks of beans and 4500 sacks

of rice.
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7.29 Work done by Variable Force

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Line Integrals 

Physics

Work and Energy 

40 minutes

Reference: [17]

A line integral can be used to determine the amount of work or energy it takes 

to move an object along a path. The amount of work W  can depend on both a 

variable force F  and a variable displacement L Consider the direction of the force 

and the path followed in figure 7.42. The path can be divided into a number of small

Figure 7.42: The work done by a variable force on a small line segment of the path 
is F  • M .

line segments approximated by a small displacement AT If each displacement is so 

small that over that segment the force vector can be considered unchanging and the
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path be considered straight, then the work done by the force over that segment is

A W  =  F  • A t

If we add the work done for all of the segments, then the sum gives an approximation 

for the work done,

W = Y, ? ' A f .

Taking the limit as A l —» 0 produces the line integral

fb -
W  = /  F -dt

Ja

As  an object moves along a path from a to b, the work done by a force exerted on the 

object is equal to the line integral of the force along the path. Keep in mind that both 

the force and the displacement are vectors. The components of F  can be written as 

Fy and Fz with the subscripts indicating the direction of F  and the components 

of dt  coan be written as dx, dy and dz with x, y and z indicating direction. Hence, 

work can be expressed as

Ja J a
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Often force components are expressed as Ff  for frictional force which is parallel to 

the plane of movement and Fn for normal force which is perpendicular to the plane 

of movement.

T roub lesom e N o ta tio n : In this problem, vectors are denoted by F  with 

the magnitude of F  denoted as F  and the components of F  as Fx, Fy and Fz. In 

most calculus texts, a boldface a  is used for vector notation, |o| would designate 

its magnitude and (oi, 0 2 1 0 3 ) would designate its components. Also, in this problem, 

F -dZ denotes a dot product between two vectors. There are two ways to evaluate a dot 

product. In calculus, the dot product is written as a  b and is either aib\ +  a2b2 +  <2363 

for three component vectors or |a ||b | cos 0 , where 6  is the angle between the vectors. 

This problem uses the second form.

Each of the following problems uses the line integral equation to calculate the 

amount of work done.

1 . A puck with a mass m = 0.30 kg moves in a circular path which has a radius 

r = 0.80 m on a horizontal surface of ice as shown in figure 7.43. The coefficient

d7

Figure 7.43: Puck’s path.
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Ck
of friction of the ice is fx =  0.11. We want to find the work done by the frictional 

force as the puck moves through one-quarter of a revolution. The frictional force 

Ff  on the puck is found by multiplying the coefficient of friction by the normal 

force Fn where Fn = mg with m  being the mass of the puck and g being the 

acceleration due to gravity (9.81 Jl). Fn is not shown in figure 7.43, but points 

straight down from the mass m. In this problem, take the unit for work is the 

joule, denoted as J (1 J =  l^ ÿ 22).

2. A mass lying on a flat table is attached to a spring whose other end is fastened 

to the wall as shown in figure 7.44. The spring is extended 40 cm beyond its rest 

position and released. If the axes are as shown in the figure, when the spring 

is extended by a distance of #, the force exerted by the spring on the mass is 

given by

F  =  —kxi

where /c is a positive constant that depends on the strength of the spring. 

Suppose the mass moves back to the rest postion. How much work is done by 

the force exerted by the spring?
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0 20 

I x 1̂*1

Figure 7.44: Diagram of a spring

3. A particle moving along the rr-axis is subjected to a force given by Fx(x) = 

F0 {ex/c — «, where F0 and c are constants.

(a) Determine an expression for the work done by this force as the particle 

moves form the origin to the point X\.

(b) Let Fq = 2.5 N and a =  0.20 m. Evaluate the work done if x\ = 0.50 m.

4. Suppose that an object moving along the z-axis is acted on by a force given by 

Fz(z) = — k, where c is a constant. Taking both zz- and Zf as positive with i 

indicating initial position and f  indicating final position, obtain the expression 

for the work done by this force as the object moves from z* to z/.
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Solutions to: Work as a variable force

W =  y  F f ' d £  = J  Ffd i  cos tt =  J  —fimgdi

= —firing J 2 dr = —fimg Æ — 0^

=  -  (0.11) (0.30 kg) fo.8 p )  ^ 0  (0.80 m) =  -0 .41 J 

W  = J  F  ■ dC = J  ■ (dxij  — J  —kxdx

■kx2
= 800& N

40

3. W  = J  f - d t  = r  Fx(x)dx = r  Fo (exla -  l )  dx

W

=  Fa ex/adx -  j p  dx^ = F0 (aex/a 

= J  F  - d i  — J  F.(z)dz = —C  j

X\
X Xi ) =  F „ a ( e ^ - l - y

zf dz

=  £ r = c f i - i '
Z 'Z* \ Zî  Zî y



192

7.30 E lectric Fields

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Integration, Vector Fields 

Physics

Electricity and Magnetism 

1 hour

Reference: [17] [23]

*  \  Î  f  *
»  X  f

'  I '  Positive charge

x ' /  1

.. t  \  ..

Figure 7.45: An electric field for a positive charge shown as a vector field.

An electric field is a type of vector field of which an example is shown in figure 

7.45. The electric field vector E  at some point in space is defined as the electric force 

F  acting on a positive test charge qQ placed at that point divided by the magnitude 

of the test charge, or

E  =
F_
q0

(7.50)

Finding an electric field vector in an electric field created by a point source of charge 

is relatively easy as can be seen in figure 7.45. However, when the source of the
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electric field is a continuous charge distribution such as a charged rod or a charged 

ring, determining the magnitude and direction of a electric field vector requires a more 

complex process. To find an electric field vector for a continuous charge distribution, 

we will make use of Coulomb’s Law which finds the force F  between two charges by 

the relationship

F = k ^ r  (7.51)
rz

Substituting (7.51) into (7.50) gives

E  = k \ r
r

where q is the charge of the source of the electric field, r is the distance between the 

source and the point where the electric field is being measured, f  is a unit vector 

which points from q toward the point where the electric field is being measured and 

k = 8.9875 x 109^ r  is a constant (C stands for Coulomb, the unit for charge). If 

there are several charged particles grouped closely together, the elecric field at a point 

is a result of the vector sum of each charge acting on that point.

i  7 i
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This leads to the idea of an electric field for a continuous charge. We will treat the 

charge as a continuous distribution of infintesimal charge elements Aq. Therefore

A È  =  f  or Ë  æ —ft ?

Now by letting Aq  —> 0, we can find an electric field vector for a continuous charge 

distribution.

rb dq
E -< !$

T ro u b leso m e N o ta tio n : In this problem, vectors are denoted by É  with 

the magnitude of E  denoted as E  and the components of E  as Ex, E y and E z. In 

calculus, a boldface E  is used for vector notation, |.E| would designate its magnitude 

and (Ei, E^, Eg) would designate its components. Here, unit vectors are indicated by 

the hat symbol, r. Unit vectors in the y- and ^-directions are denoted by z, j  and 

k. Be aware of the difference between r which is a measure of distance and f  which 

is a unit vector along the line which r is measured. In the following problems, it will 

be necessary to define f  by looking at what is going on in the figure. The symbols r, 

d, x, y, z and I are all used to represent length or distance in this problem. Be aware 

that they are often substituted freely into equations and can cause some confusion.

The following problems allow you to calculate an electric field vector at a point 

for electric fields created by different types of sources. These problems will look at
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specific points where symmetry in the figures will simplify the calculations.

1. First we are going to consider a charged rod of length £ and total charge Q as 

the source of a continuous charge distribution. We will assume that the rod has 

a uniform positive charge per unit length A, where A =  y  and that the z —axis 

of the rod runs through the length of the rod as shown in figure 7.46. We want 

to find the electric field vector at a point P  on the x —axis, a distance d away 

from one end.

y
dx

dq = Xdx z

Figure 7.46: An electric field vector generated from a uniformly charged rod.

(a) To set up the integral, note that in figure 7.46, the differential element is 

dq = \dx .  We will choose the variable of integration to be x, the distance 

from the electric field vector to the differential element. The limits of 

integration go from d to d + £ (Why?), r is —i. Set up the integral using 

this information.

(b) Find the electric field vector in terms of Q. Your answer should be written 

as a vector.



196

2. Consider a long thin wire with a uniform line charge as the source of a continuous 

charge distribution. The charge along a long thin wire is called a line charge 

and is characterized by its linear charge density, A. Since we have a uniform 

line charge, A =  ^  where Q is the total charge and 21 is the length of the wire 

(21 is chosen for convenience). We want to determine the electric field vector 

E  in the perpendicular bisector plane of a long, staight uniformly charged wire 

as shown in figure 7.47.

Figure 7.47: An electric field vector generated from a long thin wire.

(a) To set up this problem, first break the vector dE  into y- and ^-components. 

Because of the symmetry of the long thin wire, dEZi = 0. Explain why 

this is so.

(b) Set up the integral to find the electric field vector at point P. Follow the 

procedure used in problem 1 with the variable of integration as z. W hat 

are the limits of integration?
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(c) Write the electric field vector in terms of Q. Your answer should be written 

as a vector.

3. Next consider a ring of radius a which has a uniform positive charge per unit 

length with a total charge Q. We want to determine the electric field vector at 

a point P  lying a distance x  from the center of the ring along the axis of the 

ring as shown in figure 7.48.

d a -> \  |

  dq

dE

Figure 7.48: An electric field vector generated from a charged ring.

(a) Divide the vector dE  into three components and evaluate each component 

by considering the symmetry of the object before setting up the integral.

(b) Use what you have seen in problems (1) and (2) to set up and evaluate the 

integral.

4. A disk of radius R  has a uniform charge per unit area cr. Find the electric field 

vector at point P  which is located along the axis of the disk, a distance x from



198

its center as shown in figure 7.49. Use what you have found in problems (1),

(2) and (3) to help you.

dq

Figure 7.49: An electric field vector generated from a charged plate.
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Solutions to: Electric Fields

1.  Ê = k j ^ r  =  k j t §  ( - « )  =  k j d ^  ^  ( - « )
e+d Xdx

r i->e+d
= k \ ----

L xid

-
d ( e  +  d ) 1

dq

B  = w h  H )

2. Ê  = k J  -p̂ f = J  (dEyj  +  dEzk)

Using symmetry to take all differential elements dz into account, £  dEz = 0.

Ë  = f_ e dEyj  =  f  t dE  cos B j  = £  (£ £ rf2)3/2 i

2Afc
=  Afcy

.y2 (y2 +  z2)1/2
J =

2/ (%/2 + 1/ 2 J

3. £  =  fc/5f=fc/ dq
cos 6  i

Using symmetry to take all differential elements d?/ and dz into account,

E  dEy =  0 and X) dJF2 =  0.

E
r2n dqx ~ r2*

= k — -  i = k 
Jo r l r Jo

xdq
(x2 +  a2)3/2

2,r - A:x

=  V  x 2 + a2)

f 2n j - kx  ~ kx  _ -
(x2 Jo Q ' ~  (x* + 9 1 ~  ( S - + a i f 2Q *

M W U R  LAKES L i m m

G o 5 œ S S O F W s
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4. ê  = k f ^ f  = k [ R —
J r 2 Jo (x

x
-2 ir(jrdr i

(3,-2 +  , .2 ) 5 /2

Since the element is a ring, we have dQ =  2'ïïdq = 2 'Krdr

Using symmetry to take all differential elements dy and dz into account,

X) dEv =  0 and 53 dEz =  0.

-  f R 2 rdr ~
E  =  7T<7 /   %-rr Î  =  KTTTO"

VO ( x 2  +  ?.2 )3 /2

- 1
.2 (x 2 +  r2)1/2

=  27r/C(7 I 1 — 1/ 2
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7.31 M agnetic Fields

Calculus Topic: 

Department: 

Subject Area: 

Time Needed:

Vector Fields, Vectors 

Physics 

Magnetism 

1 hour

Reference: [23]

A magnetic field vector B  at some point in space is the magnetic force that 

would be exerted on an appropriate test object at that point. Magnetic fields can be 

created by electric currents. Here we will consider magnetic fields created by currents 

moving through wires or objects that can be treated as wires. The direction of the 

magnetic field B  created by a current is determined by the right-hand rule. If the

dB,

ds

F ig u re  7.50: The magnetic field at a point P  due to a current element ds. The 
magnetic field circles the wire, coming out of the page at P  and entering the page at 
P'.

thumb of the right hand is oriented along the direction of current flow in a wire, the
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fingers curl in the direction of the magnetic field. In order to calculate the strength of 

a magnetic field acting on some point P , it is necessary to make use of the Biot-Savart 

Law. Figure 7.50 shows the direction of the vectors acting in the Biot-Savart Law, 

which is written in the following form,

-* fi0I  d s x  r 
-  47T r2

where /  is the current moving through the wire, ds is a small element of the wire, f  

is a unit vector pointing from ds to the point P , r is the distance from ds to P  and 

yi/o =  47T x lO"7^ 1 is a constant (T =  stands for tesla, a unit for measuring the 

strength of a magnetic field and A stands for Ampere, a unit for measuring current). 

Hence,

d _  Vol [b d s x  f
47T Ja r2

T roub lesom e N o ta tio n : In this problem, vectors are denoted by B with the 

magnitude of B  denoted as B.  In most calculus texts, a boldface a  is used for vector 

notation and |a| would designate its magnitude. Also, be careful of the definitions of 

the vectors ds and f  and the distance r. ds is just an element of the wire and r is a 

unit vector pointing in the direction of r.

These two problems can be solved by using the above results.



203

a. A lightning bolt may carry a current of 104 A for a short period of time. W hat 

is the resulting magnetic field at points 50 m and 200 m from the bolt?

b. Measurements of the magnetic field of a large tornado were made at the Geo­

physical Observatory in Tulsa, Oklahoma in 1962. If the tornado’s field was

vatory, what current was carried up/down the funnel of the tornado?

To find the solution to each of these problems, we will consider the magnetic field at 

a particular point resulting from the current as if it were moving through a long thin 

straight wire. This will be found in problem (1).

1. First we need to find the magnetic field resulting from current moving through 

a long thin wire. Let the wire carry a constant current I  and be placed along 

the x —axis as in figure 7.51. Calculate the total magnetic field at the point P  

located at a distance a from the wire. First find d s x  f  (W hat is the direction?).

B =  1.5 x 10 8 T pointing north when the tornado was 9 km east of the obser-

p

>

F ig u re  7.51: A long thin wire aligned with the rr-axis.

Note that 0, r and x  are all variable, so using the figure, express r and x in
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terms of 0, then substitute into the equation. Now find the magnetic field vector 

at point P  by integrating over all elements subtending angles ranging from 61 

to $ 2  as shown in figure 7.52. W hat happens if the wire is of infinite length, i. 

e., what values do 9i and 6 2  become? Now find the result of the Biot-Savart 

Law for an infinite wire.

F ig u re  7.52: A long thin wire aligned with the a;-axis showing the angles 9i and 92.

2. Use this result to calculate the answers to the two problems (a) and (b). 

Other applications of the Biot-Savart Law are as follows.

F ig u re  7.53: A long thin wire forming a loop.

3. For the wire in figure 7.53, calculate the magnetic field at the point O for the 

nearly closed current loop. The loop consists of two straight portions and a.
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circular arc of radius i?, which subtends an angle 0 at the center of the arc. As 

a hint, find the contribution to the magnetic field for each segment of the loop. 

It may help to draw the vectors ds and r on each segment and look at their 

orientation.

4. Consider the magnetic field produced by a circular loop of radius a carrying a 

current I  as shown in figure 7.54. To set up this problem, first break the vector 

dB  into x- and ^-components. Because of the symmetry of the long thin wire, 

J2i dByi — 0. Explain why this is so, then calculate the magnetic field at a point 

P  along the T—axis which has been chosen as the axis of the loop.

dB

F ig u re  7.54: A magnetic field produced by a circular loop.
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Solutions to: Magnetic Fields

1. ds x f  =  |ds x r \k  = dx sin 6 k and dB =  dBk

hence dB = ------- %—  (x, r and 6 are all variables)
47T r2

r = ■—— = acsc9.  tan 6 — —  => x = —a cot 9 and dx = a esc2 9d9.
B i n d  x

dB = ^ L ^ o ^ l de = H J sindd9
47T a2 esc2 9 Aiira

T> _ V o l  f 02 z, .,/, Vol  
47CCI

[  sin 9d9 — (cos do — cosdi)
JOi 47T

For an infinitely long wire, di —» 0 and d2 —> tt =4> B =
27TO

r 2%aB 27r(9000 m) (1 . 5x  10"s T) t
“  t T Ï Î Ô ^ — U  675 A

3 . B , e d f * J L i
47t Ja r
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— /  f B ds x f  rc ds x f  rD ds x r rE ds x f  r
47T \ J a  r 2 J b  r2 J e  r2 J d  r2 "*™ j e

F ds x r
e r2

Note that for segments AB, B C , D E  and EF,  ds x f  = ds sin 0 =  0.

7T
For segment CD, ds x r = ds sin — = ds.

u> 1 f  elsHence, B  =  — / — r is a constant and ds =  rdO, so
47T Jc r2

fi0I  re n0I6
B  = f ^ [  =

47rr2 Jo 47rr

u0Ids  x r tt
4. dB =  —---- -—  Note that ds x r = ds sin — = ds and that when all dBv47rr2 2 y

are considered, symmetry dictates that /  dBy = 0. Hence dB =  dBx.

Holds cos 9BX = J
47t (x2 +  a2)

I ds — S — ^ « 1  W UXO.VA x-zve v     , /0
J r  (x ï  +  a2 ) l /2

/ i „ / 2 i r a 2

Note that / ds = s = 27ro and cos^ =  — =
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7.32 Electric F lux

Calculus Topic: Surface Integrals, Dot Products, Vectors

Department: Physics

Subject Area: Electricity

Time Needed: 1 hour

Reference: [23]

Electric flux is a measure of the number of electric field lines penetrating a

surface. In other words, it is defined as a surface integral of the electric field E  over a

surface S. In a calculus book, the flux of a three-dimensional vector field F  across an 

oriented surface S  in the direction n is defined as Flux =  f  f surf ace F  • nda. Electric 

flux, 0 , is the dot product of the electric field strength, E,  and a surface area, A, as 

shown in figure 7.55. If we consider a general situation, choose a small element AAZ

F ig u re  7.55: An electric field moving through a surface.

on the surface area which has a corresponding Ei and define 6 as the angle between 

them. Then

A<$>i — E{AAi cos 9 — Ei • A Ai.
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By letting the area element AA,- —» 0, we get the general definition of flux:

$  =  lim V  Êi • A A, = [  Ê  - dÂ  
AAi- 0̂ Z-' Js

T ro u b leso m e n o ta tio n : The symbol J Jsurf ace is a general method of in­

dicating integration over a surface which is two-dimensional. When setting up the 

problem, it will be necessary to define the limits for each part of the integral. In 

this problem, vectors are denoted by E  with the magnitude of E  denoted as E  and 

the components of E  as E x, E y and E z. In calculus, a boldface E  is used for vec­

tor notation, \E\ would designate its magnitude and (E\, E 2 , E 3 ) would designate its 

components. Also in this problem, E- d A  denotes a dot product between two vectors. 

There are two ways to evaluate a dot product. In calculus, the dot product is written 

as a  • b  and is either ai&i +  <2 2 b2 +  0 3 Ô3 for three component vectors or |a ||b | cos 6 

where 6 is the angle between the vectors. This problem uses the second form.

dA,
dA.

F igure 7.56: An electric field moving through a cube.
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1. This problem demonstrates movement of flux through a cube. Consider a uni­

form electric field, E  oriented in the x  direction as shown in figure 7.56. Find the 

net electric flux through a cube with edges of length £ by evaluating $  = Js Ë-dÂ  

for each surface. Remember to consider the direction of Ë  when evaluating 5.

2. A nonuniform electric field is given by the expression Ë  =  ayi + bzj + cxk where 

a, b and c are constants. Determine the electric flux through a rectangular 

surface in the xy  plane, extending from x = 0 to x = w and y = 0 to y = h. 

Draw a diagram of the surface to help define the limits of integration.

3. An electric field is given by Ë  = azi +  bxk, where a and b are constants. 

Determine the electric flux through the triangular surface shown in figure 7.57.

dA

F ig u re  7.57: A triangular surface in the xy  plane.

The definition of flux associated with a magnetic field is similar to that of an electric 

field. Consider an element of area dA on an arbitrarily shaped surface. If the magnetic 

field at this element is B,  then the magnetic flux through the element is B  • dA where
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dA  is a vector perpendicular to the surface whose magnitude is equal to the area dÂ. 

The total magnetic flux through the surface is defined as

$m = J  B  ■ dÂ.

4. A rectangular loop of width w and length £ is located a distance d from a long 

wire carrying a current I  as shown in figure 7.58. The wire is parallel to the 

long side of the loop. We want to find the total magnetic flux through the loop.

dr

F ig u re  7.58: A rectangular loop near long wire.

(a) Describe the magnetic field in the rectangular loop. W hat direction is the 

magnetic field? Is the magnetic field uniform through the loop?
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(b) Ampere’s Law states that the magnitude of the magnetic field can be

expressed as B  = where n0 is a constant, I  represents the current, 27rr

and r is the distance from the wire to the point where the magnetic field 

is being measured. If teslas are used as units for the magnetic field, the 

constant (â0 in Ampere’s Law is 47r x  10~7 Write dA in terms of the 

measurements of the rectangle and evaluate



213

Solutions to: Electric Flux

1. For the sides of the cube in the xy and xz planes,

$  =  I E  ' d A =  I EdA  cos — =  0~ J ê - d Â -  J

In the yz plane, $ = J^Ê - dÂ  + J  Ê - dÂ

= EdA  cos 0 + y  EdA  cos tt = — EdA  + J  EdA

=  - E f  +  E tr =  0.

$ J  Ê • dÂ = J  (ayi + bzj + cxk'j • (jidxk̂ j = J  cx (hdx)
chw2r= ch

Jo
xdx =

$ = J Ê • dÂ = J  (jazi 4- bxk̂ j • [ydxk̂ j = J  bx (ydx) = J  bx arj dx
bh fw 9 , bhw2= — / x d x  = -----
w Jo 3

/
_ -  rd+w

B  • dA — bdA cos 0 dA =  Mr

= L
d+w jiol  _  fd0H  rd+w cB 

d 2'kv 2'k Jd r

/d0I£
2'K

In r
d+w ii0i e . d + w
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Chapter 8 

CONCLUSION

It is hoped that these problems will be a useful aid to students learning calcu­

lus. Comments made by faculty members show the importance of students learning 

this subject well. Evaluation of the eventual effectiveness of this approach remains to 

be done. Some initial evaluation was done in the Fall, 1996 semester to test the idea 

behind this thesis, but not all of the problems have been exposed to students yet.

Evaluation of these problems needs to cover three areas.

• Do all of the problems work well, that is, are the students able to follow the 

procedures and come up with a reasonable solution?

• Do the problems enhance the learning of calculus concepts by extending student 

knowledge and fostering student interest?

• Do the problems help students learn to translate their knowledge of calculus as 

they encounter it in other courses?

It will take a few years study to formulate answers to these questions.
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As an initial evaluation, in the Fall, 1996 semester, several of these problems 

were given to students in the Calculus II Honors classes. Students worked in groups to 

solve the problems. A focus was placed on understanding the concepts and preparing a 

well written solution or explanation for each problem. Group interaction was generally 

lively and groups were quite often able to find solutions without much help. Older 

students visited the class and commented on how exciting they felt this method 

was. At the end of the semester, a student evaluation form was given to students. 

When asked what element of the course help them learn calculus the most, twenty- 

eight of forty-four students listed the problem solving sessions as being very helpful 

in learning calculus concepts and only one said that they were no help at all. A 

couple of comments were “The real problem applications (helped) - when you have to 

answer a question, it makes you really understand what the calculus is telling you” 

and “The real problems are fun and facilitate the learning of new concepts” . The 

biggest complaint about the problems from students was that they had to sit and 

think. When asked to list connections of calculus to chemistry, engineering, physics 

and economics, nearly all students were able to list at least two and many listed three 

to four.

This same group of students is being tracked through Physics I in the Spring, 

1997 semester to see what effect the problem solving had. Early reports indicate the 

Physics faculty feels they are able to deliver this course with greater mathematical

ARTHUR LAKES LIBRARY
COLORADO SCHOOL OF MINES 
GOLDEN, GO 8 0 4 0 1
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content. Since much more evaluation needs to be done, it will take a few years for 

the effect of problems like these to be known.

As the projects similar to this one are being developed at Rensselaer Polytech­

nic Institute, the University of Pennsylvania and Dartmouth College among others, 

more resources for applications will come available and information about the effec­

tiveness of these types of problems will begin appearing. However, at this point in 

time their evaluation processes are still in the earliest stages. There is still a wealth of 

information to use at CSM for the development of more problems, so a much larger 

resource exists here also. Having faculty involved in providing problems has im­

proved the interaction between the various departments and MCS and has enhanced 

its image. Real application problems can make a difference in the way students view 

mathematics.
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