
EVALUATION OF AN INTERACTIVE SITE M ODELING SYSTEM

by

Frederick W. Hood

ARTHUR LAKES LIBRARY
COLORADO SCHOOL OF MINES
GOLDEN, CO 80401 ^

ProQuest Number: 10794276

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10794276

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of

Mines in partial fulfillment of the requirements for the degree of M aster o f Science

(M athematical and Computer Sciences).

Golden,
Date _

Golden,
Date Î-

Colorado
W 9 7

Signed: fd—'
Frederick W. Flood

Approved: *
Dr. W illiam A. H off
Thesis Advisor

Colorado

Dr.
Professor and Head,
Department of Mathematical and Computer
Sciences

Graeme Fairweather

ABSTRACT

Hazardous and/or unstructured environments often require the use of robots. The

efficiency with which high level robotic operations are conducted in these environments

can be improved with the help of graphical site models. M ethods for creating these

models have historically fallen into two categories: manual modeling or fully automatic

(autonomous) modeling. M anual methods are generally slow but reliable, while typical

autonomous systems are fast but lack reliability. However, an interactive system for

creating site models {i.e., one that has both manually-driven and autonomous

components) can combine the speed of autonomous techniques with the reliability of

m anually-driven methods. Our System for Interactive M odeling via Optim izatioN

(SIMON) takes 3-D range points from a trinocular stereo vision system as input. SIMON

uses an optimization technique known as simulated annealing in conjunction with a

supervisory control measure called traded control to do the site modeling. The result is a

system that fits graphical models to range data quickly and accurately. To demonstrate

the performance of SIMON, we have designed and executed experiments using 14 human

subjects. The experiments were designed to test the following hypotheses:

1) The performance of interactive modeling is not significantly better than manual

modeling in terms of total task time and fitting accuracy.

2) Operator effort does not decrease significantly when utilizing interactive modeling.

3) User expertise has a significant effect on interactive modeling task time.

4) Initial placement of the primitive object model by the human supervisor will not

improve performance significantly when interactively modeling a “difficult” scene,

nor will minimal human interaction (no initial placement) significantly increase

performance on “easy” scenes.

Our results refuted all of the above with the exception of the first part of Hypothesis 4.

iv

TABLE OF CONTENTS

1. INTRODUCTION.. ix

2. REVIEW OF BACKGROUND LITERATURE... 8

2 .1 . M a n u a l S o l u t i o n s ... 8

2 .2 . A u t o n o m o u s S o l u t i o n s .. 10

2 .3 . I n t e r a c t iv e S o l u t i o n s ... 13

2 .4 . O p t im iz a t io n ...15

3. SYSTEM DESCRIPTION... 18

3 .1 . S t e r e o V is io n S e n s o r ... 2 0

3 .2 . A u t o m a t e d O p t im iz a t io n 'M o d e l F i t t i n g .. 24

3.2.1. Optimization by sim ulated an nealing ... 2 5

3.2.2. The M odel Fitting G U I ..30

3 .3 . M a n u a l C o m p o n e n t {t r a d e d c o n t r o l) ..36

4. EXPERIMENTS...38

4 .1 . P r e l im in a r y E x p e r im e n t s ..39

4 .2 . F o r m a l E x p e r i m e n t s .. 4 2

4.2.1. Discussion o f hypotheses .. 43

4.2.2. Experimental d es ig n ...46

4.2.3. Procedure/E xecution ..48

4.2.4. Results..34

v

5. CONCLUSIONS AND FUTURE WORK

LIST OF FIGURES

F ig u r e 1 : T h e m a j o r c o m p o n e n t s o f o u r s it e m o d e l in g s y s t e m ...19

F ig u r e 2: T r in o c u l a r s t e r e o c a m e r a a r r a y m o u n t e d o n g a n t r y r o b o t e n d e f f e c t o r 21

F i g u r e 3: T h e s t e r e o v i s i o n " s c e n a r i o " (a d a p t e d f r o m M a c h i n e V i s i o n 1 8) .. 22

F i g u r e 4: I m a g e s (l e f t , c e n t e r , r ig h t) f r o m s t e r e o v is io n s y s t e m ..23

F ig u r e 5 : F in a l r a n g e p o in t s g a t h e r e d ...23

F ig u r e 6: V a r y in g o r ie n t a t io n s f o r c u b e (o n e , t w o , a n d t h r e e v is ib l e f a c e s) a n d c y l in d e r (s id e ,
SIDE AND CAP, AND CAP ONLY VISIBLE) M ODELS... 29

F ig u r e 7 : T h e a p p l ic a t io n G U I ... 31

F i g u r e 8: A n e x a m p l e o f a s c e n e g r a p h (a d a p t e d f r o m Th e I n v e n t o r M e n t o r ^)32

F ig u r e 9: I n it ia l p o s it io n o f t h e m o d e l ...33

F ig u r e 10: F in a l p o s it io n o f m o d e l a f t e r f i t t i n g ... 33

F ig u r e 11 : T h e m o d e l -f it t in g a p p l ic a t io n c o n t r o l p a n e l s .. 34

F ig u r e 12: S c e n e s u s e d f o r p r e l im in a r y e x p e r im e n t (s e e T a b l e 2 f o r o r d e r) ..4 0

F ig u r e 13: S c e n e s u t il iz e d in t h e f o r m a l e x p e r im e n t s L t o R f r o m t o p : s y n I, s y n I I , s y n 2, a n d

SYNlO (EASY); SYN3, SYN9, SYN4, AND SYN12 (DIFFICULT)...50

F ig u r e 14: I n d iv id u a l s u b j e c t e v a l u a t io n f o r m ...52

F ig u r e 15: S h e e t c o n t a in in g f o r m a l e v a l u a t io n g u id e l in e s ..53

F ig u r e 16: C o m p a r is o n o f m e a n t a s k t im e s f o r e a c h s c e n e (e r r o r b a r s r e p r e s e n t s t a n d a r d

DEVIATIONS)...58

F ig u r e 17: A c o m p l e t e d s it e m o d e l .. 61

F ig u r e 18: A n e x a m p l e o f h o w in c o m p l e t e d a t a c a n s k e w a m o d e Os f i t ..63

LIST OF TABLES

T a b l e 1 : S a m p l e s t e r e o m a t c h in g s t a t is t ic s (f r o m p r e l im in a r y e x p e r im e n t s) ... 24

T a b l e 2: O r d e r in w h ic h t h e s c e n e s w e r e in t r o d u c e d t o t h e s u b j e c t s (o r d e r r e p e a t e d d u r in g

SECOND HALF OF TRIAL WITH OPPOSITE FITTING METHODS)... 41

T a b l e 3: S u m m a r y o f p r e l im in a r y e v a l u a t io n r e s u l t s .. 4 2

T a b l e 4 : I n d e p e n d e n t e x p e r im e n t a l v a r ia b l e s ... 4 6

T a b l e 5 : S c h e d u l e o f s c e n e s e n c o u n t e r e d d u r in g e x p e r i m e n t s ... 4 8

T a b l e 6: R e s u l t s o f A N O V A ... 56

T a b l e ? : M e a n e x p e r im e n t a l r e s u l t s f o r t h e in d iv id u a l t e s t s u b j e c t s ..5 6

T a b l e 8: M e a n e x p e r im e n t a l r e s u l t s f o r a l l s c e n e s ..57

T a b l e 9: I n t e r a c t iv e t a s k t im e s f o r v a r y in g u s e r e x p e r t is e ...57

T a b l e 10: I n t e r a c t iv e t a s k t im e s u s in g v a r io u s f it t in g s t r a t e g ie s ... 57

ACKNOWLEDGMENTS

I would like to thank Dr. W illiam A. H off for serving as my advisor, for hiring me,

and for offering guidance and support throughout. I would also like to thank the

following people for their contributions to my work:

Thesis committee members: Dr. Robin M urphy and Dr. Steve Pruess.

Project team members: Dr. W illiam Hoff, Dr. Robert King, Tory Lyon, Khoi Nguyen,

Lin Xia, Doug Swartzendruber, and Rex Rideout.

Volunteer test subjects: Scott W alker, Dave Hershberger, Hilda Layne, Myron Smith,

Charles Farris, Joe Dvorak, Dan M organto, M att D ’Amore, John Markus, Eric Northcut,

Glenn Blauvelt, Jake Sprouse, Jodi Noone, Lin Xia, Khoi Nguyen, Chris Colborn, and

Aaron Gage.

ix

1

1. INTRODUCTION

The use of robots to do a variety of tasks is becoming more common in industrial

settings. In particular, the use of robots for operations in hazardous environments is, in

many cases, a necessity because humans are unfit to perform such operations due to

health risks or physical limitations.

The efficiency of robot operations can be improved by making common operations

such as the avoidance or manipulation of objects more autonomous. In order to enable

autonomous operations, robots require 3-D data. Specifically, the location, orientation,

shape, size, and other vital information pertaining to objects in an environment or scene

are needed to autonomously avoid or manipulate objects. The acquisition of this 3-D data

is the subject of this thesis.

Determination and representation of 3-D object information is what can be referred to

as the site modeling problem 1. Site models contain the vital object information necessary

for a particular robotic application. Site modeling is the creation of a graphical

representation of 3-D objects in a scene (a site model). As part of this process, pose

estimation must be performed. Pose estimation refers to the process of determining the

2

location and orientation of objects. Our research to this point has addressed the site

modeling problem in order to arrive at an effective solution.

However, site modeling and pose estimation are not trivial problems for machines.

Humans, on the other hand, can view images and separate objects from the background

much more efficiently than machines.

Many techniques have been developed in an attempt to solve the site modeling

problem. In the past, site models were constructed from explicit measurements or

blueprints using CAB applications. Recently, the emergence of machine vision

techniques for gathering range, distance, and image data has provided an accurate

alternative to manual measurement. These techniques include stereo vision and

structured light systems and have resulted in more efficient site modeling methods.

Historically speaking, site modeling methods have fallen into one of two categories:

m anually-driven modeling techniques and autonomous methods. M anual site modeling

methods are, in general, very reliable since the user can employ specific knowledge about

the scene when placing or building object models. These systems usually consist of a

graphical user interface that allows the user to fit models of various objects to range data

or background images2. Although reliable, these manually-driven methods suffer from a

lack of speed and too much effort on the user’s part1.

Autonomous modeling methods have been designed to overcome the problems with

m anually-driven methods. Since they are implemented using com puterized algorithms,

3

these methods tend to find solutions quickly and require little or no human intervention.

Examples of autonomous modeling systems include: a system that fit an MRI model to

laser range data3; a technique that used dense range images to form a discrete occupancy

map of an environm ent4; and a system that created 3-D surface meshes from range points

and estimated the corresponding cylindrical models that most closely fit the surfaces5.

However, autonomous methods suffer from unreliability (i.e., do not perform correctly

when completely unsupervised), particularly when operating in unstructured

environm ents1. This unreliability helps to support the notion that site modeling is a

difficult problem in com puter vision.

To minimize the problems with speed and/or reliability facing existing site modeling

systems, researchers have moved toward developing interactive solutions. Interactive site

modeling systems consist of both an autonomous component and manual supervision.

This combination of manual and autonomous components (if done correctly) results in

systems that operate efficiently and accurately. An example of the growing presence of

interactive technologies is ARP A s ongoing Research and Development for Image

Understanding Systems (RADIUS)6 project in which aerial images of buildings are used

in automated and semi-automated systems to create site models.

The research question facing us was, “Can we utilize interactive techniques to improve

site modeling performance and maintain reliability?” This question, in turn, raised

several technical issues concerning our approach to site modeling. The first issue is the

4

type of data that we use to either fit models to or build models from. For example, the

data can be sparse or dense, 2-D or 3-D. Differing data types necessitate the use of

different algorithms. A second issue is the choice of an automated method for use in site

modeling. Automated techniques for building and fitting models can improve the

efficiency of such techniques compared to manually-driven methods. Another issue is the

means by which we would implement interaction. Human interaction is necessary in an

interactive system and can improve reliability compared to purely automated systems.

Object model representation comprises yet another issue. Several alternatives exist and

can influence the difficulty of the problem.

The potential advantages of interactive systems and the research issues we raised led

us to create a System for Interactive M odeling via Optimization (SIM O N). Our system

consists of three major subsystems: a stereo vision sensor, an automated optimization

routine, and a supervisory control measure. The stereo vision subsystem addresses the

need for data. Stereo vision is the source of sparse (from 50-150 “points” per image) 3-D

range data and was selected primarily because it is inexpensive. However, we have tested

SIMON successfully using data from a laser rangefinder. The issue of which autonomous

method to employ is handled by our choice of simulated annealing. Optimization by

simulated annealing was selected for its ability to escape local minima when searching an

error space (a crucial aspect in our problem environment). The choice to use simulated

annealing over methods such as least squares and genetic algorithms also revolved around

5

its availability, our familiarity with the algorithm, and because it was relatively easy to

code. Finally, a supervisory control measure called traded control7 addresses the issue of

how to enable human interaction. In particular, traded control was incorporated to allow

human intervention when the automated portion fails. The optimization and supervisory

control portions co-exist in a software application written for Silicon Graphics

workstations which takes range data as input and allows the interactive creation of site

models.

By designing SIMON in this way, we, in essence, made several simplifying

assumptions which facilitated SIMON s creation of site models. First of all, we assumed

that objects in a scene were rigid and were comprised of “prim itives” , or simple objects

such as cubes, cylinders, spheres, and cones, that were of known size. This choice

addresses the issue of object representation — an important point in com puter vision

problems since objects can also assume parametric, superquadric, and depth map

representations (among others). The choice of simple geometric primitives also allowed

the user to choose the model and associated dimensions from a database of such objects,

thus eliminating the problems of segmentation and sizing of objects. Primitive object

models also simplified distance calculations from range data to the object surface. For

each primitive, an associated “closest point” formula was easy to produce because of the

regular geometry of a primitive. Occluded objects could also be modeled using this

approach. Another assumption was that differing densities of range data would be

6

handled in the same way. Therefore, any set of range points expressed in terms of their

(x, y, z) coordinates in meters from a camera-centered origin could be utilized. This

convention makes the use of any range source (e.g. stereo vision, structured light, etc.)

viable.

In addition to development of our interactive site modeling system, we had the

following objectives:

1) Do performance analyses comparing SIMON to identical but purely manual and

purely automated systems. The analyses should use identical scenes and data and

should use human subjects where necessary. Data sets should contain outliers and

scenes with occluded objects. Also, devise performance metrics (functions of

time, fitting accuracy, or both) to adequately represent the results.

2) Determine the best fitting strategies for scenes of varying difficulties.

3) Determine if the benefits of SIMON are greater for novice/skilled operators and for

simple/difficult scenes.

Through experiments conducted with 14 human subjects, we have demonstrated that our

system completes tasks quickly and accurately for the “cube” and “cylinder” primitive

model types. W e compared our interactive system to an identical but purely manually-

operated system by having the subjects fit models in identical scenes using both methods.

The hypotheses we intended to refute were as follows:

7

1) Interactive modeling should not significantly outperform purely manual modeling

in total task time and fitting accuracy.

2) Operator effort does not decrease significantly when utilizing interactive modeling.

3) User expertise has a significant effect on interactive modeling task time.

4) Initial placement of the primitive object model by the human supervisor will not

significantly improve performance when interactively modeling a “difficult” scene,

while minimal human interaction (no initial placement) will not increase

performance significantly on “easy” scenes.

A preliminary evaluation also addressed the lack of reliability inherent in an identical but

purely autonomous site modeling system.

The rem ainder of this thesis discusses literature relating to our methodology and area

of application, gives a detailed description of our system, summarizes the experiments

and their results, and submits conclusions and directions for future research.

2. REVIEW OF BACKGROUND LITERATURE

Technologies in the areas of computer vision, robotics, and optimization are relevant

when discussing the site modeling problem. This review addresses a selection of works

in these areas that were consulted throughout the course of this project. In particular, this

review will address manually-driven solutions to the site modeling problem, autonomous

solutions, interactive solutions, and optimization techniques used in such problems. The

autonomous solutions are further decomposed into surface and/or map-based methods

versus model-based approaches. The section on interactive solutions also discusses the

supervisory control literature. Several optimization techniques will be addressed, but the

concentration will be on simulated annealing.

2.1. M anual Solutions

M anual solutions to the site modeling problem, as with many other systems, are

reliable but tim e-consum ing7. By manual, we mean that the computer provides a

graphical user interface (GUI) and contributes little else, while the user performs most or

all of the modeling tasks. Systems in this category typically facilitate intuitive piloting of

the application through the presence of a sophisticated GUI.

9

For example, M echanical Technologies Incorporated (MTI) developed a

Topographical M apping System (TMS) that used a GUI for manipulating and fitting

object models to structured light range data2. SIMON was developed with a similar

thought in mind: the fitting of pre-built object models to range data displayed in a GUI

viewing area. Structured light data, however, is very dense (i.e., comparable in order of

magnitude with the number of pixels in an image) and gathering this data exacts

significant time and expense relative to our stereo vision system. M TFs TMS also

exacted a cost in time and effort from the user, who was ultimately responsible for

choosing and placing or fitting the graphical models using the range data as a guide.

Other manual site modeling techniques have been developed in conjunction with

actual robotic systems. Researchers at Sandia National Laboratories have created several

Graphical Programming systems8. These systems used the IGRIP software package to

display graphical models of robots and objects in scene. IGRIP also gave object and

robot models the functionality necessary to perform full-fledged simulations (joint

movements, gripping, collision simulation, etc.). The choice not to use IGRIP for

SIMON was one of availability and lack of an immediate need for functional object

models. In the Graphical Programming system, the models were predefined and placed

manually within the scene, much like with SIMON. The authors recognized that such a

system could benefit from a computer vision-based approach to modeling and updating

like SIM O N ’s.

10

The concept of pose querying is also important to manual modeling techniques. Pose

querying refers to the measurement of range via touching an object with a sensor.

Tracking this sensor’s location will then return the pose. Pose querying is typically

accomplished via teleoperation of a robot. The developers of the Graphical Programming

system mentioned pose querying as a method of improving their system. M easuring pose

through virtual manipulation of objects9 and by manually placing a pattern of targets in a

scene from which depth can be estim ated10 were variations on the idea of pose querying.

Pose querying offers reliable measurements, but at the expense of time and operator

effort. M anual placement of targets, too, is time-consuming as well as an unwanted

health risk to humans in hazardous environments. Stereo vision, as was used in SIMON,

provides a much safer and less laborious means of measuring range.

Overall, it is evident from the relative lack of recent literature on manually-driven

systems that more modern research literature addresses partially and fully automated

systems. This observation is indicative of the current trend in the area of site modeling

systems, as well.

2.2. Autonomous Solutions

Autonomous solutions to the site modeling problem attempt to overcome the speed

deficiencies inherent in manually-driven methods via the utilization of computerized

11

algorithms. These algorithms may be designed to build graphical models from range data

or features extracted from an image.

Methods which construct depth maps or surface-based representations of objects from

range or image data comprise one category of autonomous modeling methods. Depth

maps produced by methods such as the environment modeling done at the University of

Michigan4 are volumetric occupancy grids created from dense range data. Depth

mapping methods are useful because they are not limited to any particular types of

objects. However, methods like this are time-consuming due to the seamless set of dense

range data and multiple views required to produce the maps. In contrast, SIMON

produces and uses a fairly sparse set of range data, which takes little time to produce. In

addition, depth mapping methods do not perform segmentation. Segmentation is the

separation of objects in an image from the background. Segmentation is critical for

efficient operations via the use of site models because it facilitates the manipulation of

individual objects. SIMON does segmentation interactively by fitting simple primitive

object models to the data.

Surface-based representations do more segmentation than do depth mapping methods.

The point in the modeling process at which segmentation occurs, however, can vary

amongst methods. For instance, one approach “grew” geometric models from seed

regions in an image that were termed most likely to contain data belonging to only one

object11. Unlike SIMON, which uses simulated annealing and primitive models, the

12

selection and placement of the geometric parametric models was accomplished using a

“winner takes all” algorithm. Other approaches addressed segmentation in the latter

stages of modeling only. An example was the “Artisan” system at Carnegie Mellon5

which used dense scanning laser rangefinder data to produce a surface mesh, followed by

construction of planar and quadric surface representations, and finally the placement of

more meaningful models such as cylinders. Artisan suffered from modeling inaccuracies

due to sensor error and also failed to fit occluded data effectively due to a lack of multiple

views. SIMON was designed to handle occluded objects, with less data, and data from a

single view. Another example was a method which employed range images and the 3-D

Hough transform to extract planes from object surfaces and later determine the location

and orientation of objects from these planes12. The Hough transform method only

worked effectively for objects composed of planar surfaces and had difficulty with

objects in which only one surface was visible. SIMON has been tested successfully with

objects having curved and/or planar surface composition.

M odel-based autonomous solutions to the site modeling problem more closely

resemble SIM O N ’s approach in that pre-built models are fit to data or extracted image

features. The desire for neurosurgeons to operate without a stereotactic frame attached to

the patient prompted the creation of an automatic registration method3. This method fit

M RI models to 3-D laser range data using a variation of least squares fitting. Another

method used the iterative closest point (ICP) algorithm to fit a hierarchy of models

13

(including point sets, parametric curves, 3-D surfaces, and complex models built from

primitives) to 3-D point data13. Both of the above methods resemble SIMON in their use

of optimization and 3-D point data as well as pre-built models. However, they

demonstrate little tolerance for multiple objects, occlusions, and faulty data, particularly

in the form of statistical outliers.

Thus, purely autonomous methods, most of which require dense range data, tend to

lack the capabilities to deal with occlusions, statistical outliers, and faulty data. It follows

that such methods, by themselves, would be unreliable in unstructured environments and

adverse conditions.

2.3. Interactive Solutions

Interactive solutions to the site modeling problem combine the speed of autonomous

methods with the reliability of manual techniques. Typically, the automated portion of an

interactive system extracts image features and either builds models from these features, or

fits models to these features (or to range data). The manual portion of the system allows

the user to monitor and interact with the system as needed to guide its operation and

correct errors.

ARP AN RADIUS project has prompted the development of many such systems,

primarily using data gathered from aerial images of buildings and the surrounding terrain.

One example was the SITECITY system at Carnegie M ellon14. The image understanding

14

techniques utilized in SITECITY included edge detection as well as the incorporation of

geometric constraints. The extracted data was then used to build graphical models. The

paper that com municated this work was especially relevant to our work with SIMON in

that it:

1) dem onstrated the performance and usefulness of an interactive system

2) evaluated the choice of automated process(es)

3) supported the use of an identical but purely manually-driven system for

performance evaluation

4) identified a performance measure referred to as user cost.

A nother RADIUS-related work discussed the addition of interaction to an automated

m odeling system 1. M inimal human interaction was the goal of this work as well and,

much like SIM O N ’s use of traded control, was used to fine-tune the fit of a model to

extracted image cues such as edges or shadows. This fine-tuning was only part of a final

editing measure and did not approach full traded control.

Interactive systems, in general, have recently become more widely used in research,

but the idea of supervisory control is decades old7. Methods like the above use a form of

traded control, meaning that human or automated control of the system at any one time is

exclusive. The use of traded control in SIMON has been extensively as a means of

interaction, prim arily for initially placing or fine-tuning the fit of an object model.

Shared control, on the other hand, allows the human operator to control several degrees

15

of freedom while the automated portion controls the remaining degrees. Shared control

has been implemented for SIMON, as well, but has not been tested extensively. An

example of SIM ON using shared control would be to allow the user to manipulate the

translation of an object while automated simulated annealing attempted to fit the

orientation.

W ith the added reliability of human interaction, interactive systems have the potential

to outperform manual systems in speed and autonomous systems in reliability. The

RADIUS project examples, most of which used aerial views of sites to be modeled, still

seem to lack the capability to model occluded objects. However, a model-based

interactive approach such as SIM O N’s relies on the user for segmentation. This approach

eliminates the possibility that occluded objects might be perceived as being smaller than

they really are.

2.4. Optimization

Optimization is often used in computer vision for fine-tuning of the estimated

positions and orientations of objects. The methods covered here represent but a few of

the possible optimization schemes that can be adapted for vision applications.

These optimization methods can be categorized according to their formulation — some

utilize derivatives of their respective objective functions {i.e., the function to be

minimized), while the others do not utilize the derivatives. M ethods which use the

16

derivatives include Random Sample Consensus (RANSAC), which has been applied to

the Location Determination Problem (LDP) in computer vision15, neural networks (and

associated training methods such as gradient descent), which have been used in

conjunction with the Hough transform to perform simple object recognition16, least

squares methods such as the Levenberg-M arquardt variant17, and least-median-squares18.

One major drawback in using these methods is that coding the calculation of these

derivatives is difficult, especially for a free form representation of objects (nearly

impossible, in fact).

In addition to being relatively intuitive to code, a method used in an environment such

as SIM O N ’s must be tolerant of outliers in the data set. Derivative-based methods have

an upper bound on the number of outliers that can be tolerated. Least-median-squares,

for instance, can not handle a situation where more than 50 percent of the data points are

outliers.

Several other optimization methods that we have encountered do not utilize

derivatives in their formulation. SIMON utilizes simulated annealing optimization.

Simulated annealing has been used for such problems as the Traveling Salesman19 and

circuit performance design optimization20, but not for building site models until the

advent of SIMON (to the best of our knowledge). Genetic algorithms also fall under this

category and have been used for adaptive image segmentation21. Both algorithms were

promising for use in our research because of their tolerance of outliers (simulated

17

annealing has exceeded 70% when used in SIM ON’s experimental testing) and ease of

implementation. W e chose simulated annealing over genetic algorithms due to our

greater familiarity with the algorithm as well as the availability of usable code.

18

3. SYSTEM DESCRIPTION

We have designed and implemented an interactive modeling system {i.e., one that

combines an automated fitting mechanism with human supervision) to solve the pose

estimation and/or site modeling problem. The system is called SIMON and consists of

three major components (see Figure 1): a stereo vision sensor, an automated optimization

algorithm called simulated annealing, and a human supervisory control method known as

traded control. Stereo vision is a source of sparse range data to which 3-D graphical

models can be fit. The latter components (simulated annealing with traded control) were

im plem ented together in our model-fitting application using RapidApp (a visual C++

rapid application and GUI development package) and the Open Inventor graphics libraries

on an SGI Indigo2 workstation. Simulated annealing fits a primitive model to data by

minimizing an objective function based on the distances from the points to the

corresponding closest points on the surface of the model. Presently, a primitive model

refers to a cylinder or cube, although cones, spheres, and other primitives (should they

become available) could be added easily. If the model gets stuck in a local minimum

(since simulated annealing is an iterative process, local minima are a possibility) a human

supervisor can assume control of the fitting procedure via traded control. This supervisor

19

can then encourage the model in the direction of lowest error using a 6 DOF manipulation

device and, thus, the best fit as the global minimum value of the objective function was

designed to return the correct pose of the object.

SIMON User Monitoring

 I ____________

Stereo
Vision
Sensor

NPUT

Range

Data

Automated Simulated
Annealing

Interactive Model Fitting

Manual Traded
Control

T -----------
User Interaction

OUTPUT

Model

Figure 1: The major components of our site modeling system

The remainder of this section discusses the major components of our system in more

detail. In particular, each com ponent’s composition, implementation, and function will

be discussed as well as the interaction between components. The description of the stereo

vision sensor is necessary due to its importance to the system, but will be less detailed

than the remainder of the system since its development was beyond the scope of this

thesis.

20

3.1. Stereo Vision Sensor

Stereo vision is a technique used in a wide variety of computer vision applications for

gathering 3-D and depth information from images. Stereo was chosen as SIM O N ’s

source of range data for a number of reasons. First of all, stereo vision is a relatively

inexpensive source of range data when compared to alternatives such as structured light

or laser radar. Also, stereo vision data can be collected quickly. Images from the stereo

vision system interface smoothly with the Galileo video capture board on the SGI

workstation. This fact does not apply to the alternatives which require special hardware

and software interfaces to transmit their data to a computer.

The range points from stereo are sparsely distributed as a result of the difficulty in

matching points between images in areas where the contrast is low. This makes the pose

estimation problem more challenging since the edges of an object are invariably less well-

defined than with the use of dense range data. Thus, the challenging nature of stereo

range data is a good test for SIMON — i.e., if SIMON can work well with stereo data, it

should work well using just about any source.

The word “stereo” implies that a pair of images of the same object or scene are used,

but the use of three or more views of the same scene is possible22. Our sensor consists of

a trinocular array of cameras placed in an equilateral triangular configuration (Figure 2).

21

C a m e r a s

Figure 2: Trinocular stereo camera array mounted on gantry robot end effector

The two cameras on the bottom are the left and right components of a stereo pair. In

stereo vision, depth information from two cameras is gathered by first matching

corresponding pixels between images and then calculating depth using triangulation.

Pixels (points) in the high contrast regions of one image are matched to pixels in the other

using the following, cross-correlation-based score23:

If this score exceeds a pre-determined threshold, the points are tentatively considered

a match. The depth of each range data point is then calculated from the locations of a pair

of matched points using triangulation. Spacing between the left and right cameras gives

22

the length of the base of a triangle with vertices at the left focus, right focus, and the point

in question as seen in Figure 3. Assuming proper calibration, the left and right images are

then used to calculate the point’s angle of deviation from each image center. With these

measurements available, the remainder is simple geometry and use of the Pythagorean

theorem.

Further verification via the third or “center” camera is done following the depth

calculations. This camera is placed halfway between the left and right cameras and

slightly above them. To perform verification, the derived 3-D point is projected into the

third cam era image (see Figure 4 and Figure 5 for images and resulting data). If no

feature was found at the predicted location, the point is eliminated. Table 1 displays

tabulated stereo matching statistics.

O bject Point

Left Im age Right Im age

Right C am eraLeft C am era

Figure 3: The stereo vision "scenario" (adapted from Machine Vision18)

23

Figure 4: Images (left, center, right) from stereo vision system

Figure 5: Final range points gathered

24

Table 1: Sample stereo matching statistics (from preliminary experiments)

Scene Left
Interest
Points

Right
Interest
Points

Matched
Left-Right
Points

Final Points
After
Verification

Final
Remaining
Mismatches

boxl 167 216 99 68 3
box2 105 120 65 4 9 4
box3 103 140 65 47 3
druml 340 369 161 129 3
drum2 133 2 0 4 63 55 3
drum3 186 194 91 79 3
gantry 1 235 3 17 148 120 6
gantry2 163 231 118 102 2
gantry3 163 262 107 93 1
gantry4 192 255 110 91 2
gantryS 180 265 142 89 1
gantryb 2 1 8 282 164 106 9
gantry? 203 264 154 121 8

Average 184 240 114 88 4

3.2. Autom ated Optimization/M odel Fitting

Data acquired from the stereo vision sensor is fed to our model fitting system. This

system consists of two major components, namely an automated component and a manual

component. The automated portion is a numerical representation of an optimization

algorithm called simulated annealing. The routine was integrated with the Open Inventor

and RapidApp-generated code so that the results of the algorithm (i.e., the pose of the

model) could be viewed continuously and monitored by a human supervisor. The

incorporation of automation into SIMON was made to speed execution of site modeling.

The remainder of this section will address the simulated annealing algorithm itself

25

followed by specifics of the user interface portion of SIMON and the computer vision

techniques that were utilized in the solution process.

3.2.1. Optimization by simulated annealing

As discussed in the literature survey and above, simulated annealing performs

optimization on an iterative basis. The version we used can be found in Numerical

Recipes in C 17 and is based on the downhill simplex method of optimization. The

vertices of the simplex consist of n-dimensional vectors which represent possible states of

the system. In this case, the state of the system was the pose of the primitive model —

specifically, a 6-D vector with 3 translation parameters (x, y, z in meters) and 3

orientation parameters (ax, ay, az — the Euler angle representation in radians). There are

n+1 of these vectors (corresponding to vertices), each representing slightly different states

of the system. Downhill simplex will then choose the vertex that evaluates to the

maximum value of the objective function and “reflect” or “expand” it in the geometric

sense to make it achieve a lower objective function value. Smaller, “downhill”

movements toward a minimum cost occur as the simplex contracts. Downhill simplex

could thus be termed a greedy algorithm.

However, our needs required a method that was not greedy as the error spaces in our

domain of problems are often littered with local minima — the kinds of problems that

cause simple greedy algorithms to fail miserably. These local minima can be caused by

26

faulty data, objects that may or may not be similar to the one we are trying to fit,

background noise, and many other such anomalies. Simulated annealing builds upon the

downhill simplex algorithm through the use of a “temperature” parameter. The

temperature is actually a statistical measure which reflects the probability that state

vectors having greater error will be retained in the simplex — a higher temperature means

a higher probability. Specifically, the reflections, expansions, and contractions of the

simplex are tested via evaluation of the objective function to determine whether the move

will be kept. If the change in the value of the objective function is less than or equal to

zero (AE < 0), then the move will be kept. However, if the change in the value of the

objective function is greater than zero, the probability that the move will be kept is a

function of this change and the temperature (specifically, e A£/*s7). This temperature is

reduced iteratively in our system, retaining only 99 percent of its original value after

every 100 iterations. This allows the state of the system (in this case, the pose of the

current model being fit) to settle into a minimum much as the metal cooling process for

which simulated annealing was named settles into a minimum energy state. Other

temperature reduction schedules are possible and can improve results depending on the

problem 24.

The objective or cost function that simulated annealing minimizes uses the locations

and orientations of the model and the locations of the range points. Our goal is to

27

minimize the distances from all data points corresponding to the object to the visible

surface of the model. The objective function we use is:

p t s

e r r o r s c o r e = ^ —G / r;
/=i

Here, r\ is the distance from a point to the m odel’s surface and G is constant. Thus, the

contribution of the i* point to the score varies as the inverse of its current distance from

the surface of the model to be fit. Note also that this equation is the analogue of the

potential energy in an electrostatic or gravitational environment. This measure minimizes

the contribution of outlying points which can present a problem for least squares and

other such estimation methods. Closer points exert a large force since 1/r is large for

relatively small values of r. For r less than 1 centimeter, which is the assumed stereo

error, the contribution to the score was taken to be 1 centimeter to avoid infinitely large

contributions. Likewise, for large r {i.e., outlying points) the small value of 1/r indicates

a much smaller contribution.

To calculate the distance from a point to the closest visible surface of the model, we

employ several steps. Since the pose of the model and the camera are known,

transformations from a camera-centered coordinate system to an object-centered

coordinate system are possible and greatly simplify distance calculations.

The pose of a primitive object in Inventor is represented using a 7-D vector. This

vector consists of three translation components (x, y, z) and four rotation components in

28

an axis-angle representation (ax, ay, az, and theta). From the 7-D vector, we arrive at a

rotation and translation of axes which places the origin at the object’s center and aligns

the y-axis with the prim itive’s major axis.

The next step is to determine the visible faces of the primitive (Figure 6). Knowing

the visible faces allowed us to calculate the distance from each range point to its

associated closest visible surface on the primitive. For instance, the visible surfaces of a

cylinder or cube model can be found using the orientation and location of the model (see

Appendix for sample code). Then, classification of the closest region on the primitive

(rim, cap, or lateral surface for a cylinder; edge and lateral surface for a cube) makes

calculation of the distance from a range point to that region trivial. The fact that we are

using objects that can be described with few parameters (radius and height for a cylinder;

height, width, and depth for a cube) further simplifies our calculations. Given a cylinder

and a coordinate system with origin at the center of this cylinder, a point whose y-

coordinate is greater than h/2 (h is the height of the cylinder) and whose distance from the

y-axis is greater than r (r is the radius of the cylinder) is closest to the upper rim of the

cylinder. The distance from the point to the rim is then easily calculated via:

This is done for all points in the scene at each iteration for the current primitive model.

29

Figure 6: Varying orientations for cube (one, two, and three visible faces) and
cylinder (side, side and cap, and cap only visible) models

The result of the numerical error score is taken to be the value of the objective

function and the performance for a particular pose. Note that the pose in the optimization

routine was previously mentioned to be a 6-D vector. To get this 6-D vector, which uses

a 3-D Euler angle representation (angles of rotation about x, y, and z axes) instead of

Inventor’s axis-angle convention, the following equations are utilized25:

kxkxvQ+cQ kxkyv Q - k zsQ kxkzvQ + k ysQ

Rk (Q)= kxk yv 6 + k zsQ kykyvQ+cQ kykzvQ - k xsQ

k k .vQ -k sQ k Ic.vQ+ksQ /:> ,v6+ c6
A £ > } -C A Z Z

a = Atan2(r211c$,ru / cp)

y = Atan2(r32 / c p ,r33 / cp)

30

In the above equations, Rk is the rotation matrix created from an axis (kx, ky, kz) and an

angle (0). (3, a , and y are the angles of rotation about the y, z, and x axes, respectively.

Finally, c0 equals cos0, s0 equals sin0, and v0 equals l-co s0 .

W e use Euler angles instead of axis-angle because they are independent of one

another. The axis-angle components use four values to represent three degrees of

freedom and can result in an invalid orientation (i.e., an axis which is not a unit vector).

Euler angles, on the other hand, can assume any value and not produce invalid rotations.

Ultimately, the ability to obtain axis-angle representation from Euler angles enables us to

render to the position of the current primitive object at each iteration of the fitting routine.

3.2.2. The Model Fitting GUI

The simulated annealing code from Numerical Recipes in C interfaces quite easily

with our system for several reasons. First of all, the pose of the model (a 6-D vector) can

be used as the state of the system. Also, the ability of C and C++ to be mixed in a

program gives RapidApp and the compiler few if any problems. Finally, we can

incorporate our own error function. Calls to this function can then evaluate the error

associated with a particular system state (or pose of the model, in this case).

Inventor, with the help of the GUI created through RapidApp, enables us to view the

state of the system at each iteration of the fitting procedure. Open Inventor displays

graphical objects in a Viewer window which is attached to a RapidApp object called a

31

BulletinBoard (Figure 7). The contents of the window are dictated by a data structure

called a scene graph. The scene graph is a tree structure containing objects (graphical

depictions of curves, solids, points, and/or surfaces) and their associated attributes. An

example of the scene graph associated with the contents of our Viewer window is shown

below in Figure 8.

Figure 7: The application GUI

32

Root

Range
\ Points

Primitive
L Models

SBCBBGCB

Background
Image Rendering
Callback

6D0F manip.
Callback

shapex-form
material

Figure 8: An example of a scene graph (adapted from The Inventor Mentor26)

Inventor enables us to monitor the progress of our application by refreshing the scene’s

depiction in the Viewer window every time one of the m odels’ attributes is changed (see

fitting sequence in Figure 9 and Figure 10). This auto-refresh is accomplished via an in-

order traversal of the scene graph much as the initial rendering of the scene is done.

Figure 9: Initial position of the model

Figure 10: Final position of model after fitting

34

As mentioned previously, the object model as well as the range points and background

image of the scene are rendered in a Viewer window. However, the application

environm ent consists of two control panels in addition to the Viewer window (see Figure

11). Also, the pulldown menus at the top contain several operations that were not crucial

to our experiments (to be covered in the next section) with the exception of exiting the

program.

I M a n u a l

A X Î nI £—..- J

N e w P r i m i t
Theta H ---------

i-ll —
UnusedHj

tÜMMumrr nMw

6DOF Sensitivity Temperature

Figure 11: The m odel-fitting application control panels

35

The left control panel consists of several controls and buttons. At the top are three

buttons for selecting fitting procedures. The “M anual” button chooses manual fitting in

which the human operator controls the movement of the primitive object using a 6 degree

of freedom (6 DOF) manipulation device — ours is a Logitech Magellan, but others exist.

“Interactive” model fitting uses simulated annealing in conjunction with human

supervision via the 6 DOF manipulation device to complete the task (see next subsection

on traded control). Finally, the button labeled “Constraint” enables shared control of the

model, which will be discussed in reference to future work in section 5.

Below the buttons which activate the modeling routines are buttons that introduce

primitives to the scene. W hen pressed via the mouse pointer, a primitive object is placed

in the scene two meters from the camera center with its major axis aligned with the y-

axis. In SIMON, all four primitive types are made available. However, only the cylinder

and cube are used since code to evaluate the objective functions for cones and spheres has

not yet been developed.

One last control on the left side of the application window is the 6 DOF sensitivity

dial. Sensitivity, in this case, refers to the speed with which an object under the 6 DOF

manipulation device’s control moves across the screen. The reduction of this sensitivity

is crucial when fine-tuning the fit of a primitive to its associated range data.

The entire right control panel is dedicated to displaying vital information about the

current model as well as data about the progression of the fitting algorithm. For instance,

36

the orientation of the model is displayed using the axis-angle orientation convention and

the translation of the model (its center’s location) is displayed as an (x, y, z) point in

cam era-centered coordinates. The error at that particular pose is also displayed as a

decimal score falling between 0 and 1000. Toward the bottom, attributes of the model

such as height, width, and radius are displayed.

3.3. M anual Component (traded control)

Simulated annealing was chosen for its reputed ability to ignore local minima and find

the global minimum in error space for several difficult problems. Despite this reputation,

the method is still susceptible to getting caught in these minima in our particular problem

space. W e then concluded that complete confidence in simulated annealing to solve the

problem would sacrifice consistent and reliable fitting of the graphical models to the

relatively sparse range data.

An interactive model fitting system like ours overcomes this problem by employing

human supervisory control in addition to automated optimization. The supervisory

control method inherent in our application is known as traded control7. Traded control,

with respect to our application, means that either one or the other of simulated annealing

and human control via the 6 DOF manipulation device is manipulating the current

primitive at a given time. Therefore, when operating in interactive mode, touching the 6

37

DOF manipulation device will give control to the human operator. This control will not

be returned until the operator releases the device for a short period of time (525 ms).

The implementation of traded control was done via the use of a periodic timer class

called “V kPeriodic” . Creation of a derived class of VkPeriodic enabled us to redefine a

function called “tick” which automatically executes at intervals of 175 ms. W hen

“Interactive” model fitting is running, “tick” calls 100 iterations of the simulated

annealing routine and then reduces the temperature prior to the next period. If the

spaceball is touched, a flag within the class is tripped and “tick” instead calls functions

corresponding to purely manual fitting at every period. Additionally, control remains

with the 6 DOF manipulation device until no movements had been attempted during the

course of three periods (525 ms).

Previously, it was mentioned that traded control could be used to move the current

model out of a local minimum and encourage it toward the correct pose of the object of

interest. The experiments whose description follows this section showed that traded

control could also be used to place a primitive model initially and then fine tune the fit

via simulated annealing. A direct comparison of the performance of this fitting strategy

to one where control was initially granted to the simulated annealing routine also

highlights differences between the two. In cases where the primitive did encounter a

local minimum, the amount of encouragement necessary by the supervisor was minimal.

38

4. EXPERIMENTS

During the course of our research we designed several experiments to demonstrate the

performance and reliability of our interactive site modeling application. In particular, we

wanted to compare our application to an identical but purely manual site modeling

system. Using human subjects, we executed two sets of experiments:

1. An informal set of experiments in the summer of ‘96

2. A formal set of experiments in November of ‘96 whose design was based on the

preliminary experiments.

This section summarizes these experiments in terms of their design, execution, and an

analysis of the data that resulted. Each portion of the formal experiments was designed to

bring about a conclusion relative to specific hypotheses set forth prior to the experiments.

In addition, rules were made concerning the execution of these experiments to ensure

minimal corruption of experimental data. Finally, results were tabulated and analyzed

utilizing formal statistical methods. The results were promising: all but a portion of one

of the null hypotheses set forth was refuted.

39

4.1. Preliminary Experiments

Our first set of experiments were as much a trial in patience as a set of trials. In all,

four human subjects devoted no less than an hour-and-a-half apiece to sitting in front of

our application and fitting models to data. The first 10 to 15 minutes of each session was

devoted to practicing the use of the 6 DOF device. The rest was devoted to fitting the

scenes and cutting and pasting the data to a file at the end of each trial. A trial was

completed when the subject felt that an acceptable fit to the data had been attained.

The purpose of the experiments was to test the performance in terms of time and

accuracy of the interactive application versus an identical but purely manually-driven

fitting routine. W e compared performances by having the subjects fit 16 different scenes:

8 of the scenes contained “real” data and 8 contained synthetically-generated data. The

scenes also contained varying densities of range data on the objects of interest. We had

each subject perform both interactive and manual model fitting on each scene (although

not necessarily in that order). Trials for the same scene using different fitting techniques

were spaced well apart to discourage subjects from memorizing a particular scene. The

order of the scenes as well as their depictions are shown in Figure 12 and Table 2.

Figure 12: Scenes used for preliminary experiment (see Table 2 for order)

41

Table 2: Order in which the scenes were introduced to the subjects (order
repeated during second half of trial with opposite fitting methods)

Scene Fitting Method
synth 1 Manual
synth2 Interactive
synth 3 Manual
synth4 Interactive
synthS Manual
synthô Interactive
synth? Manual
synthS Interactive
drum? Manual
drum3 Interactive
box? Manual
boxl Interactive
gantry 1 Manual
gantry? Interactive
gantry 3 Manual
gantryô Interactive

The results of these preliminary experiments were quite promising. From the results

shown in Table 3, it is evident that interactive fitting was superior to manual fitting in

task time and accuracy. To further support the reliability of SIMON, we ran the

interactive routine without the aid of manual supervision (purely automated fitting).

Automated fitting resulted in a correct solution (nearly identical to the interactive

solution) only 50% of the time — an unacceptable rate of success. The remaining 50% of

the time, the final pose was not even close to ground truth. Therefore, we had evidence

that traded control was vital to consistently fitting models to data within SIMON.

42

Table 3: Summary o f preliminary evaluation results

Manual Interactive Improvement
Task Time 83 sec 30 sec 53 sec (63%)

Pose Translation Error 1.1 cm 0.9 cm 0.2 cm (18%)
Pose Orientation Error 2.3° 1.0° 1.4° (57%)

Fit Error Score 527 485 42(8%)

4.2. Form al Experiments

In November of 1996, we designed and executed a formalized set of experiments

which more specifically addressed the differences in performance between interactive and

manual model fitting. Similar experiments, designed to realize the effect of an operator

aid on performance, were done for a machine-vision-based teleoperation system27.

Several of our aims and methods for carrying out the experiments remained similar to the

preliminary experiments, however. First of all, human subjects were asked to fit cylinder

and box models to range data using both interactive and purely manual fitting. For a fair

comparison under experimental conditions, our manual modeling scheme was simply

interactive mode without the automated portion (as was done in H sieh’s work on the

RADIUS project14). This measure required the subject to fit the model using only the 6

DOF device. Also, each scene was fit once interactively and once manually by each

subject. This enabled a direct comparison between fitting methods.

The hypotheses we wished to prove through formal experimentation were ultimately

based on the results and observations of our preliminary experiments. However, there

43

were many major differences between the experiments. The formal experiments were

developed and executed with the purpose of refuting specific hypotheses. Also, several

strategies for interactive fitting were compared. The experiments were shortened (fewer

scenes to fit) in the interest of attracting more subjects and creating more well-distributed

data. In addition, both the subject and the person administering the experiments needed

to agree on when the best fit to the data had been reached. This measure ensured that the

subject would not terminate the fitting process prematurely or would not commit a gross

fitting error. Finally, only synthetic data was used for the actual experimental trials. This

ensured consistent results since the ground truth pose of the object was known.

4.2.1. Discussion of hypotheses

Prior to designing our experimental evaluations, we set forth the following hypotheses

concerning the performance of our interactive model fitting application (which we wished

to refute):

1) Interactive modeling should not significantly outperform purely manual modeling in

total task time and fitting accuracy (where fitting accuracy includes both pose error

and error in fitting to the range data).

2) Operator effort (measured in terms of user time) will not decrease significantly when

utilizing interactive modeling.

44

3) Interactive modeling does not make up for a lack of expertise. Specifically, subjects

who differ greatly in mean task time using purely manual modeling will be

statistically distinguishable on the basis of task time using interactive modeling.

4) Initial placement of the primitive object model by the human supervisor will not

significantly improve performance when interactively modeling a “difficult” scene,

while minimal human interaction (no initial placement) will not significantly increase

performance on “easy” scenes.

These hypotheses were based on the results and observations of the preliminary

experiments done in the summer of ‘96.

The first hypothesis specifically states what we set out to refute in our preliminary

experiments. This hypothesis embodies the assumption that the automated component of

an interactive system such as this will speed the process of model fitting through fast

computation. Enhanced computational capabilities should also allow more accurate

model fitting since the computer can recognize more subtle differences in translation and

orientation with respect to the data than can the human operator.

Hypothesis two focuses on the amount of effort exerted by the human operator. This

is an especially important consideration in an industrial setting since a relaxed operator

typically performs better. “Effort,” in this case, would be measured in user time or the

time spent using the 6 DOF manipulation device during completion of a task. A

significant reduction, say on the order of 50 percent, would be helpful to people who do

45

site modeling for extensive periods of time. It was assumed that the time saved would be

a result of the savings in total task time realized using interactive fitting as well as the fact

that control would be traded between the human operator and the automated fitting

routine.

The third hypothesis dictated a division between novice and expert users. The

assumption here was based on our observation that subjects in the preliminary

experiments differed greatly in manual task times and very little when using interactive

mode. As a result, interactive fitting seemed to have closed the gap between the

proficient and non-proficient manual modelers. Refutation of the third hypothesis would

support this assumption.

The fourth and final hypothesis was derived from the observation that different fitting

strategies seemed to work better for scenes of differing difficulties. W e defined difficulty

as a function of the time it takes the average subject to manually fit a model to data for

the given scene. W e then assumed that since the more difficult scenes were more likely

to contain more local minima, that initial placement of a model in the region of the global

minimum would reduce simulated annealing’s chances of being influenced by local

minima. Conversely, minimal human interaction should be necessary for easy scenes in

interactive mode because of an obvious global minimum or lack of local minima.

Thus, we designed our experiments around these hypotheses. The next subsection

describes how our experimental design proceeded relative to the hypotheses.

46

4.2.2. Experimental design

The design of our experiments followed logically from the hypotheses set forth prior to

this stage. Specifically, each hypothesis implied the existence of certain experimental

variable(s) whose values would need to differ amongst the trials. Several sources,

including works by Hsieh14, Hoff, et al.21, Hockman and Jenkins28, and Knotts29, cite

experimental design or the design of experiments (DOE) methodology as a crucial step in

testing one’s research.

Table 4: Independent experimental variables

Variable Name Possible Values
Modeling Method manual, interactive
User Expertise expert, novice
Scene Difficulty easy, difficult
Fitting Strategy initial placement, no initial placement

The independent variables present in our experiments are summarized in Table 4. The

first of these, the “M odeling M ethod” employed for a particular trial, was introduced as a

result of the first and second hypotheses. These two hypotheses stated the need for a

direct comparison of interactive fitting’s performance in terms of time (total and user) as

well as accuracy. Thus, each subject was asked to fit each scene once using manual

fitting and once using interactive fitting during the course of the experiment.

The second variable, “User Expertise” , was calculated following the experiments.

Upon their completion, we calculated the average time taken by each subject to fit the

47

scenes manually. Those in the top 50 percent were deemed experts, while the remaining

50 percent were given a rating of novice. By rating expertise, we could use the subjects’

interactive task times to support the third hypothesis; that is, the difference between

average interactive task times for novices and experts could be compared to see if there

was a negligible difference amongst them.

The final two experimental variables, “Scene Difficulty” and “Fitting Strategy”, stem

from the fourth hypothesis. Scene Difficulty was calculated following the experiments

based on the average time taken to fit that particular scene manually. Similar to User

Expertise, the toughest 50 percent were labeled difficult while the other 50 percent

received a rating of easy. It was our intention to create scenes of varying difficulty by

varying the attributes of these scenes such as number and types of objects (cylinders and

cubes, to be exact) as well as the density of range data. Fitting Strategy, on the other

hand, was varied in much the same way as Modeling M ethod — for the interactive trials,

half of the scenes were done with initial placement of the model and the other half with

no initial placement. The distribution of Modeling M ethods and Fitting Strategies for

every subject is shown in Table 5.

48

Table 5: Schedule o f scenes encountered during experiments

Scene Modeling Method Fitting Strategy
synl manual
syn3 interactive initial placement
syn9 manual
synlO interactive no initial placement
syn4 manual
syn2 interactive no initial placement
syn!2 manual
sy n ll interactive initial placement
syn2 manual
syn!2 interactive no initial placement
synlO manual
synl interactive initial placement
syn3 manual
syn9 interactive initial placement
sy n ll manual
syn4 interactive no initial placement

4.2.3. Procedure/Execution

The need for more experimental subjects caused us to use fewer scenes in our

evaluations. As a result, we obtained the services of 14 subjects during mid-to-late

November of 1996. The subjects: were all students at the School of Mines; were all

males save for three; were all fairly computer literate (most exceptionally so). In

addition, all had normal or corrected vision and depth perception. Also, all but three were

in their early twenties (two older, one younger). Left or right-handedness was not an

issue due to the design of the 6 DOF device.

To begin with, each subject was briefed by the administrator (the author) on the

scientific and industrial significance of the application. This briefing was followed by a

49

training session on the use of the 6 DOF manipulation device. The training session

covered the three translations (x, y, z) and changes of orientation (roll, pitch, yaw). Also,

the subjects were asked to fit several practice scenes not in the list for the formal

procedure. Each of manual modeling, interactive with initial placement, and interactive

modeling without initial placement were used in this 10 to 15 minute practice session.

The intent of the training session was also to minimize the learning curve in the trials that

followed.

W hen practice was completed, the subject proceeded to complete all 16 trials for the 8

synthetically-generated scenes. These scenes are shown in Figure 13. Each scene

contained approximately 80 to 100 range points, of which anywhere from 20 to 75

percent were outliers with respect to the object to be fit, and a background consisting of

random grayscale noise placed at infinity. Points on the object were located exactly on

the surface. Completion of a trial required the fitting of one model to data corresponding

to the preselected object. This entire phase took anywhere from 30 to 50 minutes. This

meant that 55 minutes to an hour on average was taken to complete the experiment for a

particular subject. Scenes were introduced in pseudo-random fashion to reduce the

possibility of the user having learned the sequence of the scenes. The object to be fit to

was always that which contained the highest density of range points.

50

#0

Figure 13: Scenes utilized in the formal experiments, L to R from top: syn l,
s y n ll , syn2, and synlO (easy); syn3, syn9, syn4, and syn l2 (difficult)

51

To keep from skewing the experimental results, several special considerations were

built into the experimental procedure. First of all, the training time for each subject on

the 6 DOF manipulation device was held fairly constant. Second, room lighting for the

subjects was kept constant, as well. Third, the evaluator and evaluee had to agree as to

when the closest possible fit of the model to the data was obtained. Fourth, the same

number of applications and application windows were open on the workstation for each

subject (an attempt to eliminate any machine performance issues, if they existed).

Finally, each subject was asked to reduce the annealing temperature to zero when an

interactive modeling task was completed so that each had the opportunity to achieve the

best possible score.

Figure 14 and Figure 15 contain a blank evaluation sheet as well as the formal

guidelines as they were written prior to the commencement of the evaluations.

52

Evaluation Form

Subject:
Expertise Notes
SB translate drum-!:

SB Rotate druml :

Practice scenes --

druml (manual)

boxl (int. IP)

gantryl (int. A-C)

Scenes

restarts score
synl manual
syn3 int. IP
syn9 manual
synlO int. A-C
syn4 manual
syn2 int. A-C
syn12 manual
syn11 int. IP

syn2 manual
syn12 int. A-C
synlO manual
synl int. IP
syn3 manual
syn9 int. IP
syn11 manual
syn4 int. A-C

-tim e

Figure 14: Individual subject evaluation form

53

Formal Evaluation Guidelines

Schedule

1) Introduction to the application (2-3 minutes).

2) Introduction to the spaceball (6 DOF device) and begin evaluating expertise of subject. (2-3 m inutes)

3) Practice sc e n e s (5-10 minutes):
a) Druml - fit manually, explain error score, color significance, and sensitivity control.
b) Boxl - fit interactively using initial p lacem ent (IP) strategy, explain tem peratu re significance.
c) G antryl - fit interactively using autom ated-catch (A-C) strategy, end of initial expertise evaluation.

4) 16 trials, 8 different scen es , final expertise evaluation (35-45 minutes):
a) 8 m anual fitting trials (4 easy , 4 difficult)
b) 4 interactive (IP) fitting trials (2 easy , 2 difficult)
c) 4 interactive (A-C) fitting trials (2 easy , 2 difficult)
‘"N O T E - Trial will be restarted if primitive “e sc a p e s” from view for m ore than five seconds.

Sum m ary of Trials and S cen es

EASY:

sy n l interactive(IP) m anual
syn2 interactive(A-C) m anual
syn3 interactive(IP) m anual
syn4 interactive(A-C) m anual

DIFFICULT:

syn9 interactive(IP) m anual
sy n l Ointeractive(A-C) m anual
syn11interactive(IP) m anual
syn12interactive(A-C) m anual

Specifics

IP:
The subject will be asked to place the model in the region of interest initially, then allow the autom ated fitting

procedure to fine-tune the fit with minimal interaction following.

&Ç:
The subject will allow the autom ated fitting procedure five to ten seco n d s a s need ed to sn ap the model into the

region of interest, then coax the model into the final position through interaction.

Interactive:
The subject m ust reduce the tem perature to zero for the final placem ent before terminating the fitting routine.

M anual:
The spaceball sensitivity m ust be reduced at least once in the subject’s attem pt to fine-tune the fit.

All:
The subject and evaluator m ust ag ree on the c losest fit. The subject may ask the evaluator for hints a s to the

proper orientation if it is not obvious.

Figure 15: Sheet containing form al evaluation guidelines

54

4.2.4. Results

To verify which experimental variables had a significant effect on the performance of

our system (and which did not), we used a statistical process known as analysis o f

variance (ANOVA)30. ANOVA, when applied to a particular experimental variable,

resulted in a confidence measure expressed as a value of the one-sided F distribution.

The confidence in terms of percentage can then be verified using a look-up table. The

locations in this table are mapped using the number of divisions (i.e., the number of

possible values for the experimental variable) and the number of degrees of freedom (in

this case, degrees of freedom refers to the number of trials associated with a particular

value of the experimental variable). If the value obtained from the analysis meets or

exceeds the value in the table, then the confidence associated with the values in the table

can be assumed. The results of ANOVA for our experiments are summarized in Table 6.

Comparisons that passed the ANOVA test exceeded 99 percent confidence. However,

those that failed fell well below the values in the 95 percent confidence table.

55

Table 6: Results o f ANOVA

Dependent Variable Independent Independent
Variable Affects Dependent?

Total Task Time M odeling Method Yes
User Time Modeling Method Yes
Translation Error Modeling Method No
Orientation Error Modeling Method Yes
Error Score Modeling Method Yes
Task Time (easy interactive scenes) User Expertise No
Task Time (difficult int. scenes) User Expertise No
Task Time (easy interactive scenes) Fitting Strategy Yes
Task Time (difficult int. scenes) Fitting Strategy No

The comparisons that passed the ANOVA test (i.e., returned a confidence above 99

percent) indicated that they had a significant effect on the associated dependent variables.

Note also the comparisons that did not pass the ANOVA test. We concluded from the

resulting confidence level that these independent variables did not have a significant

effect on the associated dependent variables. For instance, User Expertise did not have a

significant effect on interactive task times. Also, note that Modeling M ethod did not

significantly affect Translation Error and Fitting Strategy did not have a discernible effect

on task times for difficult interactive scenes. This indicates that assumptions concerning

these variables were neither proven nor disproven.

Table 7, Table 8, Table 9, Table 10, and Figure 16 summarize the experimental

performance of our system, indicates the improvement that interactive fitting brought

about for each subject. Table 8 shows the improvement by the group as a whole in terms

of the mean performance. Table 9 presents evidence that user expertise does not have a

56

significant effect on interactive modeling task time. Table 10 shows evidence of the

im provement in fitting “easy” scenes when no initial placement was used. Finally, Figure

16 graphically indicates the performance gains realized using interactive methods. These

results, when com bined with the results of ANOVA and the fact that user time was

reduced by 88 percent using interactive modeling, confirmed the following:

1) Interactive modeling outperformed purely manual modeling in total task time and

fitting accuracy. This was by virtue of the fact that ANOVA showed M odeling

M ethod to have a significant effect on Total Task Time, Orientation Error, and

Error Score (refuted Hypothesis 1).

2) Operator effort (in user time) decreased significantly when utilizing interactive

modeling. This was due to ANOVA s conclusion that M odeling M ethod

significantly affected User Time (refuted Hypothesis 2).

3) User expertise did not have a significant effect on interactive modeling task time.

ANOVA showed that there was not a statistically discernible difference in Task

Time based on User Expertise (refuted Hypothesis 3).

4) M inimal human interaction increased performance on “easy” scenes. To

demonstrate this, the results of ANOVA indicated that Fitting Strategy had a

significant effect on Task Time for easy interactively-fit scenes (refuted

Hypothesis 4, part 2).

57

Therefore, all but the first part of hypothesis 4 were refuted based on our experimental

evaluations.

58

Table 7: M ean experimental results for the individual test subjects

Subject Manual Time
(sec)

Interactive
Time (sec)

Mean Unsealed
Error (Manual)

Mean Unsealed Error
(Interactive)

1 121.75 41 470.6738 414.185
2 143.75 49.25 429.67 414.1688
3 216.25 44 454.9838 414.2013
4 183.375 53.125 462.2038 414.18
5 197.375 50.125 472.3113 414.1788
6 127.25 36 429.11 414.2188
7 211.375 41.75 415.9325 414.2363
8 162.5 57.125 455.8113 414.385
9 142.5 31.75 428.4438 414.1325
10 223 34.5 426.3813 414.5738
11 162 26.125 416.0738 414.295
12 252.625 36.75 419.79 414.1575
13 233.25 25.125 416.2613 414.225
14 321.5 42.875 418.7938 414.1338

Table 8: M ean experimental results for all scenes

Manual Interactive
Task time (sec) 192.75 40.68
User time (sec) 192.75 23.23
Scaled error score (min 1000.0) 1101.48 1000.62
Orientation error (deg) 1.886 .758
Translation error (m) .014 .025

59

Table 9: Interactive task times for varying user expertise

User Exoertise Modeling Mean Task Time (seconds)
Novice Interactive 39.30
Expert Interactive 42.05

Table 10: Interactive task times using various fitting strategies

Fitting Strategy Scene Difficulty Mean Task Time (seconds)
Initial placement Easy 50.75
No init. placement Easy 31.14
Initial placement Difficult 38.71
No init. placement Difficult 42.11

450

400

350

300 -

% Manual
Interactive (total time)
Interactive (user time)

250
I

200«
£ /\y

I
syn2 syn3

150

100 -

50

syn4 syn9 synlO synll synl2synl

Scene

Figure 16: Comparison of mean task times for each scene (error bars represent
standard deviations)

60

5. CONCLUSIONS AND FUTURE WORK

We have created an interactive site modeling system for use in hazardous and

unstructured environments. The system combines simulated annealing and traded

control to quickly and accurately fit primitive graphical models to sparse 3-D range data.

W e performed several experiments to demonstrate the quickness and accuracy of our

interactive system compared to an identical but purely manually-driven system. In all but

a few cases, the interactive system outperformed the manual system by a significant

margin. In particular, our experimental results supported the following claims:

1) Interactive modeling outperforms purely manual modeling in total task time and

fitting accuracy.

2) Operator effort (in user time) decreases significantly when utilizing interactive

modeling.

3) User expertise does not have a significant effect on interactive modeling task

time.

4) M inimal human interaction increases performance on “easy” scenes.

Also, through preliminary experimentation, we demonstrated how a purely automated

system lacked the reliability to solve the site modeling problem consistently.

61

Several directions for future work and improving the site modeling application are

possible. One such improvement was com pleted recently and involved building a

finished site model. The previous application had the ability to fit multiple objects in

scene, but the effects of data from objects that had already been fit made accurate fitting

of the remaining objects difficult. Therefore, the removal of points associated with an

object after it had been fit would eliminate the influence of such data. Our means of

creating finished site models has not been formally tested as yet, but an example of a

completed site model using the removal of points from “fit” objects is shown in Figure

17.

FITTING

New Primitive

Radius

Height

Temperature
6DOF SensttMty

Figure 17: A completed site model

62

Note the wireframe boxes surrounding the objects. These boxes enable manipulation of

the primitives via a 2-D mouse as opposed to a 6 DOF manipulation device.

Incomplete data, which can occur when using stereo range data, presents a problem for

a system like ours. Although our application performs an accurate fit to sparse data, data

that is not well-distributed can cause a poor approximation to the pose of the object itself.

Figure 18 demonstrates an accurate fit to the data, but a much less accurate fit to the

object. The poorer fit results from a lack of range points gathered from the top rim of the

cylinder as well as the presence of a single, “faulty” point immediately below it. With

more range data on the top rim, the object would not have the freedom to move vertically

w ithout increasing the distance from its surface to the range points. This shortcoming

suggests that another source of range data could be beneficial although stereo is a

relatively inexpensive source.

Another solution could be the use of shared control7. W e already have some of these

measures installed in the form of “constraints” . Shared control is just as one might

expect: the human operator controls one or more degrees of freedom, while the machine

simultaneously manipulates the remaining degrees. Our “constraints” were implemented

by allowing the operator to specify the degrees constrained and the values desired, then

adding a penalty to the objective function if the constraints were not followed. This

improvement has not been thoroughly tested and we are still exploring alternatives in our

63

implementation. In the figure, a vertical constraint could have been used to fit the object

pose more accurately.

Figure 18: An exam ple of how incomplete data can skew a m odel’s fit

A nother possible improvement would be to add scaling to the state vector. For

instance, allow the fitting routine to manipulate the radius of a cylinder as well as its

position and orientation. This would give us a wider variety of models to work with. The

addition of cones and spheres to the models already available would add to the variety, as

well. Ultimately, it would be useful to have more “generic models which can represent a

wider variety of shapes, such as superquadrics31.

64

The addition of “smart” subroutines to the automated portion of the system might also

improve performance. Contrast, edge detection, and other visual cues could help segment

objects from the background and thus, aid fitting. Use of the SGI stereo display feature

could aid operator depth perception and, thus, improve interaction. Similarly, a simulated

annealing schedule which is optimized for the site modeling problem (if such a schedule

exists) could aid performance, as well. Also, we may find a more suitable algorithm than

simulated annealing to further decrease user interaction and total task time.

Finally, the ultimate goal of the project is to integrate the system with an operational

robotics environment. This would necessitate the development of a completed site model

representation that is understandable by the robots in that particular environment.

Rewriting of the application code has begun to facilitate this goal. Particularly, we wish

to bring about a more definitive separation of the user interface from the modeling code.

In this way, we can keep the modeling routine the same and build user interfaces that

work best with the given robotic environments.

65

REFERENCES CITED

[1] S. Heuel and R. Nevada, “Including Interaction in an Automated Modeling

System,” Proc. o f Image Understanding Workshop, Morgan Kaufmann, Palm Springs,

pp. 429-434, 1996.

[2] MTI, “M easurement and Diagnostics: Precision M apping, Visualization, and

M odeling Systems,” . http://www.m echtech.com .

[3] W. E. L. Crimson, T. Lozano-Perez, W. M. W. Ill, G. J. Ettinger, S. J. White, and

R. Kikinis, “An Automatic Registration M ethod for Frameless Stereotaxy, Image Guided

Surgery, and Enhanced Reality Visualization,” Proc. o f IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, pp. 430-436,

1994.

[4] Y. Roth-Tabak and R. Jain, “Building an Environment Model Using Depth

Inform ation,” Computer M agazine (IEEE), Vol. 22, No. 6, pp. 85-90, 1989.

[5] M. Hebert, R. Hoffman, A. Johnson, and J. Osborn, “Sensor-Based Interior

M odeling,” Proc. o f Robotics and Remote Systems, American N uclear Society,

M onterey, CA, pp. 731-737, 1995.

[6] R. Nevada, “USC RADIUS Related Research: An Overview,” Proc. o f Image

Understanding Workshop, Vol. 1, Morgan Kaufmann, Palm Springs, pp. 317-323, 1996.

http://www.mechtech.com

66

[7] T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control,

Cambridge, M assachusetts, MIT Press, 1992.

[8] M. J. M cDonald and R. D. Palmquist, “Graphical programming: On-line Robot

Simulation for Telerobotic Control,” Proc. o f International Robots and Vision

Automation Conference, pp. 22-59..22-73, 1993.

[9] C. W ang and D. J. Cannon, “Virtual Reality-Based Point-and-Direct Robotic

Inspection in M anufacturing,” IEEE Transactions in Manufacturing, Vol. 12, No. 4, pp.

516-530, 1996.

[10] Vexcel, “Product Profile: FotoG-FMS (tm) Industrial Photogram metry,” .

http://ww w.vexcel.com .

[11] A. Leonard!s, A. Gupta, and R. Bajcsy, “Segmentation of Range Images as the

Search for Geometric Parametric M odels,” International Journal o f Computer Vision,

Vol. 14, No. 3, pp. 253-277, 1995.

[12] R. Krishnapuram and D. Cassent, “Determination of Three-Dimensional Object

Location and Orientation from Range Images,” IEEE Transactions on Pattern Analysis

and M achine Intelligence, Vo\. 11, No. 11, pp. 1158-1167, 1989.

[13] P. J. Besl and N. D. M cKay, “A M ethod for Registration of 3-D Shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256,

1992.

http://www.vexcel.com

67

[14] Y. Hsieh, “Design and Evaluation of a Semi-Automated Site M odeling System,”

Proc. o f Image Understanding Workshop, Vol. 1, Morgan Kaufmann, Palm Springs, CA,

pp. 435-459, 1996.

[15] M. A. Fischler and R. C. Folles, “Random Sample Consensus: A Paradigm for

M odel Fitting with Applications to Image Analysis and Automated Cartography,”

Communications o f the ACM , Vol. 24, No. pp. 381-395, 1981.

[16] S. P. Banks and R. F. Harrison, “Simple Object Recognition by Neural Networks:

Application of the Hough Transform,” International Journal o f Control, Vol. 54, No. 6,

pp. 1469-1476, 1991.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C, 2nd ed., Cambridge University Press, 1992.

[18] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, New York, McGraw-

Hill, 1995.

[19] S. Kirkpatrick, J. C D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, Vol. 220, No. 4598, pp. 671-680, 1983.

[20] F. Durbin, J. Haussy, G. Berthiau, and P. Siarry, “Circuit Performance

Optimization and Model Fitting Based on Simulated Annealing,” International Journal o f

Electronics, Vol. 73, No. 6, pp. 1267-1271, 1992.

[21] B. Bhanu and S. Lee, Genetic Learning fo r Adaptive Image Segmentation,

Norwell, Mass., Kluwer Academic, 1994.

68

[22] N. Ay ache and F. Lustman, “Fast and reliable passive trinocular stereo vision,”

Proc. o f First Intl. Conf. Computer Vision, IEEE, pp. 422-427, 1987.

[23] W. A. Hoff, F. W. Hood, and R. King, “An Interactive System for Creating Object

M odels from Range Data Using Simulated Annealing,” Proc. o f International Conference

on Robotics and Automation, Albequerque, NM, 1997.

[24] K. H. Hoffman and P. Salamon, “The Optimal Simulated Annealing Schedule for

a Simple M odel,” Journal o f Physics A: M athematical and General, Vol. 23, No. 15, pp.

3511-3523, 1990.

[25] J. Craig, Introduction to Robotics, Mechanics, and Control, 2nd ed., Addison

W esley, 1990.

[26] J. W ernecke, The Inventor Mentor: Programming Object-Oriented 3-D Graphics

with Open Inventor, 2 ed., Reading, Mass., Addison W esley, 1994.

[27] W. Hoff, L. Gatrell, and J. Spofford, “Machine Vision Based Teleoperation Aid,”

Telematics and Informatics, Vol. 8, No. 4, pp. 403-423, 1991.

[28] K. K. Hockman and M. W. Jenkins, “Design of Experiments: Neglected Key to

Competitive R&D,” Industrial Engineering, 1994, pp. 50-51.

[29] W. Knotts, “Problem Solving Using Experimental Design Techniques,” Ceramic

Engineering Science Proceedings, Vol. 16, No. 3, pp. 119-122, 1995.

[30] R. R. Johnson, Elementary Statistics, 3 ed., Boston, Duxbury Press, 1980.

69

[31]R. Bajcsy and F. Solina, “Three Dimensional Object Representation Revisited,”

Proc. o f First International Conference on Computer Vision, Computer Society Press,

London, pp. 231-240, 1987.

APPENDIX

//Appendix Code

^ *

* Function: funk_cyl
* Edited by : Dr. W. Hoff, Fred Hood
* Description:
* Evaluates fit o f a primitive to the data points.
* For now, just do translation, not rotation
* Fit is defined as:
* NPOINTS/dmin - sum [1 / max(dmin, d)]
* where d = dist to surface
***/

float funk_cyl(float p[])
{

static int nPoints=0; // number of points
static float points[MAXPOINTS][3]; // array of points
float f; // total error score

xO = p [l] , yO = p[2], zO = p[3]; /* primitive center */float
float ax, ay, az;
float H_c_w[4][4];
float closest[3];
float kx, ky, kz, theta;
float d;
int i, debug=-l;
float cnst_error_score=0;
float XO, YO, ZO, AX, AY, AZ;
SbV ec3f posVec, rotVec;
float rotAngle;
AppBB *myBB=getCurrentBB();
SbRotation rVec, rot;
Cylinder *Cyl=(Cylinder *)myBB->currentModel;

/* primitive axis */

// closest point to given point
/* unit axis, angle */
// distances from point

// read points if haven’t already
if (myBB->ptflag==0) {

ReadData(points, nPoints);
myBB->ptflag=:l;

}

// set initial error score
f = G * nPoints / DIST_MIN;

71

if DO_ORIENT
/* Get the rotation from the p vector */
ax = p[4];
ay = p[5j;
az = p[6];
angleTOaxangle(ax, ay, az, theta);
rVec.setValue(SbVec3f(ax, ay, az), theta);

#else
/* Get the rotation from the current pose */

rVec=myBB->pinfo.pnodes.primitive_xForm->rotation.getValue();

#endif
// axis conversion to a 3D vector
axConvert(rVec, ax, ay, az);
// output parameters for debugging
if (debug >= 2) {

printf("In funk_cyl: xO, yO, zO, ax, ay, az = %f, %f, %f, %f, %f, %f\n",
xO, yO, zO, ax, ay, az);

}

/*
* Force the x,y,z location to be within some sane bounds. W e’ll do this
* by abruptly changing the error function to some large value if we
* exit this bounding box.
*/

if (xO > M AX_BO UND II yO > M AX_BO UND II zO > M AX_BOUND II
xO < -M AX_BO UND II yO < -M AX_BOUND II zO < 0)

return (100000000.0);

/*
* Figure out how to rotate the world frame to align with the
* cylinder frame (Calculate H_c_w). This can be done by rotating the y axis about k
* to align it with the cylinder axis. The axis o f rotation for this is given
* by the cross product o f y x a. The cross product of y x a is
* just (az, 0, -ax). Now normalize this vector.
* /

float xzmag = sqrt(az*az + ax*ax);
if (xzmag < le -5) {

kx - 0.0;
ky = 1.0;
kz = 0.0;

} else {
kx = az / xzmag;
kz = -ax / xzmag;
ky = 0.0;

theta = acos(ay);

/ *

* Figure out H_c_w; i.e., the transformation matrix to transform world points
* to cylinder points. These equations are from Craig’s book on robotics.
* /

float vt = 1 - cos(theta);
float ct = cos(theta);
float st = sin(theta);
H_c_w[0][0] = kx*kx*vt + ct;
H _c_w [0][l] = kx*ky*vt - kz*st;
H_c_w[0][2] = kx*kz*vt + ky*st;

H _c_w [l][0] = kx*ky*vt + kz*st;
H _c_ w [l][l] = ky*ky*vt + ct;
H _c_w [l][2] = ky*kz*vt - kx*st;

H_c_w[2][0] = kx*kz*vt - ky*st;
H _c_w [2][l] = ky*kz*vt + kx*st;
H_c_w[2][2] = kz*kz*vt + ct;

/*
* Set the location of the cylinder in world coordinates.
*/

H_c_w[0][3] = xO;
H _ c _ w [1][3] = yO;
H _ c _ w [2][3] = zO;

H _ c_ w [3][0] = 0;
H _c_w [3][l] = 0;
H_c_w[3][2] = 0;
H_c_w[3][3] = I;

//printf("Transformation matrix (H_c_w):\nM);
//for (i=0; i < 4; i++)
// printf("%f %f %f %An",
// H _c_w[i][0], H _c_w [i][l], H_c_w[i][2], H_c_w[i][3]);

Cyl->ComputeVisible(H_c_w);
//Cyl->Print();

for (i=0; i < nPoints; i++) {

// Find closest point on primitive
Cyl->ClosestPoint(points[i], closest, d, i);

if((m yBB->lineFlag)& &(i==10))
myBB->addLine(points[i], closest);

// output straight line distance from point to primitive
if (debug >= 3) printf(" d = %f\n", d);

// calculate error score for point and subtract from total
f -= G / MAX(DIST_M IN, d);

}

// output total error score
f= 1000*(f/(G*nPoints/DIST_M IN)) ;

if(myBB->pinfo.constraintOn== 1) {
posVec=myBB->pinfo.pnodes.constraint_xForm->translation.getValue();
rot=myBB->pinfo.pnodes.constraint_xForm->rotation.getValue();
posVec.getValue(XO, YO, ZO);
axConvert(rot, AX, AY, AZ);
switch(myBB->pinfo.crossOn) {

case(D2): cnst_error_score=constraint2D(xO, yO, zO, XO, YO, ZO);
break;

case(D3): cnst_error_score=constraint3D(xO, yO, zO, XO, YO, ZO);
break;

case(ROTATE): cnst_error_score=constraintOrientCyl(ax, ay, az, AX, AY, AZ);
break;

case(NONE): break;
}

}
if (cnst_error_score ! =0) {

f=cnst_error_score;
}
if (myBB->mytimer->manualFlag)

myBB->writeErrorText(f);
if (debug >= 2) printff'score = %f\n", f);
if(f<=1000)

((SoMaterial *)(myBB->pinfo.currentPrimSep->getChild(1)))->
diffuseColor.setValue((f/1000), (l-f/1000), 0);

else
((SoMaterial *)(myBB->pinfo.currentPrimSep->getChild(!)))->

diffuseColor.setValue(l, 0, 0);

// return total error score
return f;

74

y *

* Function: funk_box
* Edited by : Dr. W. Hoff, Fred Hood
* Description:
* Evaluates fit o f a primitive to the data points.
* Fit is defined as:
* NPOINTS/dmin - sum [1 / max(dmin, d)]
* where d = dist to surface
***/

float funk_box(float p[])
{

static int nPoints=0; // number of points
static float points[MAXPOINTS] [3] ; // array of points
float f; // total error score
float xO = p [l] , yO = p[2], zO = p[3]; /* primitive center */
float ax, ay, az, theta; /* rotation axis, angle */
float H_b_w[4][4];
float closest[3]; // closest point to given point
float d; // distances from point
int i, j, debug=0;
float cnst_error_score=0;
float XO, YO, ZO, AX, AY, AZ;
SbV ec3f posVec, rotVec;
float rotAngle;
SbRotation rVec, rot;
SbMatrix rMat;

AppBB *myBB=getCurrentBB();
Box *box=(Box *)myBB->currentModel;

// read points if haven’t already
if (myBB->ptflag==0){

ReadData(points, nPoints);
m yBB->ptflag=l;

}

// set initial error score
f = G * nPoints / DIST_MIN;

if DO_ORIENT
/* Get the rotation from the p vector */
ax = p[4];
ay = p[5]
az = p[6]

// output parameters for debugging

75

if (debug >= 2) {
printff'In funk_box: xO, yO, zO, ax, ay, az, theta = \n");
printf(" %f, %f, %f, %f, %f, %f,

xO, yO, zO, ax, ay, az, theta);
}

angleTOaxangle(ax, ay, az, theta);
rVec.setValue(SbVec3f(ax, ay, az), theta);

#else
/* Get the rotation from the current pose */
rVec=myBB->pinfo.pnodes.primitive_xForm->rotation.getValue();

#endif
// matrix equivalent
rMat.setTransform(SbVec3f(xO, yO, zO), rVec, SbV ec3f(l, 1, 1));
for (i=0; i<4; i++) {

for (j=0; j<4; j++) {
H_b_w[i][j] = rMat[J][i]; // have to transpose since inventor

} // stores row-major
}

/*
* Force the x,y,z location to be within some sane bounds. W e’ll do this
* by abruptly changing the error function to some large value if we
* exit this bounding box.
*/

if (xO > M AX_BO UND II yO > M AX_BO UND II zO > M AX_BOUND II
xO < -M AX_BOUND II yO < -M AX_BOUND II zO < 0)

return (100000000.0);

box->ComputeVisible(H_b_w);
//box->Print();

for (i=0; i < nPoints; i++) {

// Find closest point on primitive
box->ClosestPoint(points[i], closest, d);

if((m yBB->lineFlag)& &(i==10))
myBB->addLine(points[i], closest);

// output straight line distance from point to primitive
if (debug >= 3) printf(" d = %f\n", d);

// calculate error score for point and subtract from total
f -= G / MAX(DIST_M IN, d);

}

76

// output total error score
f=1000*(f/(G*nPoints/DIST_M IN));

if(myBB->pinfo.constraintOn== 1) {
posVec=myBB->pinfo.pnodes.constraint_xForm->translation.getValue();
rot=myBB->pinfo.pnodes.constraint_xForm->rotation.getValue();
rot.getValue(rotVec, rotAngle);
posVec.getValue(XO, YO, ZO);
rotVec.getValue(AX, AY, AZ);
switch(myBB->pinfo.crossOn){

case(D2): cnst_error_score=constraint2D(xO, yO, zO, XO, YO, ZO);
break;

case(D3): cnst_error_score=constraint3D(xO, yO, zO, XO, YO, ZO);
break;

case(ROTATE): cnst_error_score=constraintOrient(ax, ay, az, theta,
AX, AY, AZ, rotAngle);

break;
case(NONE): break;

}

}
if (cnst_error_score !=0){

f=cnst_error_score;
}
if (myBB->mytimer->manualFlag)

myB B -> writeErrorT ext(f) ;
if (debug >= 2) printf("score = %ftn", f);
if(f<=1000)

((SoMaterial *)(myBB->pinfo.currentPrimSep->getChild(1)))->
diffuseColor.setValue((f/1000), (l-f/1000), 0);

else
((SoMaterial *)(myBB->pinfo.currentPrimSep->getChild(1)))->

diffuseColor.setValue(l, 0, 0);

// return total error score
return f;

}

77

y***

* Function: Cylinder::ComputeVisible
* Created by : Bill H off
* Description:
* Computes which parts of a cylinder are visible.
* This function MUST be called BEFORE calling ClosestPoint!
*

* Input parameters:
* H[4] [4] = pose o f model wrt camera
* Side effects:
* Sets some internal data fields of this object:
* H_mod_cam, H_cam_mod, fCapTop, fCapBot, fSide, thetaCam
***/
void Cylinder::
ComputeVisible(float H[4][4])
{

int ij , debug=0;
float n_cam[3], cap_cam[3], a_cam[3], dperp_cam[3], dperp_cyl[3];
float v_cyl[3], v_cam[3], vparallel_cam[3], vperp_cam[3];
float dotProd, vperp_len, r, h;

if((debug>2))
cout « "computing visible portions o f cylinder" « endl;

^ *

* Copy the input pose to our own data structure.
* Then compute the inverse.
**/

for (i=0; i < 4; i++)
for (j=0; j < 4; j++)

H_mod_cam[i][j] = H[i][j];
for (i=0; i < 3; i++)
for G=0; j < 3; j++)

H_cam_mod[j][i] = H[i][j]; /* transpose */
for (i=0; i < 3; i++) {

H_cam_mod[i][3] = 0;
for (j=0; j < 3; j++)

H_cam_mod[i][3] -= H_cam_mod[i][j]*H[j][3];
}

y *

* See if we can see top cap. The normal vector n to this cap
* is just the cylinder axis, which is the same as the y axis.
* The 2nd column of H_mod_cam is ymod_cam.
* /

n_cam[0] = H_m od_cam [0][l];

78

n_cam [l] = H_m od_cam [l][1];
n_cam[2] = H_mod_cam[2] [1] ;

/*
* The center o f this cap is (0,height/2,0) in cyl coords.
* Compute location of the center of cap in camera coords.
*/

for (i=0; i < 3; i++)
cap_cam[i] = H _m od_cam[i][l]*height/2 + H_mod_cam[i][3];

/*

* Test if we can see this cap. The angle between the
* vectors cap_cam and n_cam must be greater than 90 degrees.
* Or, equivalently, their dot product must be < 0.
*/

dotProd = 0;
for (i=0; i < 3; i++)

dotProd += cap_cam[i] *n_cam[i] ;
if (dotProd < 0)

fCapTop = 1;
else

fCapTop = 0;

/ *

* See if we can see bottom cap. Normal vector n to this cap
* is the negative of cylinder axis, which is the -y axis.
* The 2nd column of H_mod_cam is ymod_cam.
**/

n_cam[0] = -H_m od_cam [0][l];
n_cam [l] = -H _m od_cam [l][l];
n_cam[2] = -H_mod_cam [2] [1] ;

/*

* The center o f this cap is (0,-height/2,0) in cyl coords.
* Compute location o f the center of cap in camera coords.
*/

for (i=0; i < 3; i++)
cap_cam[i] = -H_mod_cam[i] [1] *height/2 + H_mod_cam[i][3];

/*
* Test if we can see this cap. The angle between the
* vectors cap_cam and n_cam must be greater than 90 degrees.
* Or, equivalently, their dot product must be < 0.
*/

dotProd = 0;
for (i=0; i < 3; i++)

dotProd += cap_cam[i]*n_cam[i];
if (dotProd < 0)

79

fCapBot = 1;
else

fCapBot = 0;

^ * *

* Identify which hemicylinder is visible, based on the pose.
* Compute the angle thetaCam in the direction of the camera.
* To do this:
* Compute the vector v from the camera to the cyl center.
* Find vperp, the component of v that is perpendicular
* to the cylinder axis. This is v - a(v dot a).
* If vperp = 0, just set thetaCam = 0
* else
* thetaCam = the angle between -vperp and the cyl x axis
* (which is acos(-vperp dot x))
**/

for (i=0; i < 3; i++)
v_cam[i] = H_mod_cam[i] [3] ; /* vector to center */

if((debug>2))
vector_print("v_cam", v_cam);

for (i=0; i < 3; i++)
a_cam[i] = H _m od_cam [i][l]; /* cylinder axis */

if((debug>2))
vector_print("a_cam", a_cam);

dotProd = 0;
for (i=0; i < 3; i++)

dotProd += v_cam[i]*a_cam[i];
for (i=0; i < 3; i++) /* component parallel */

vparallel_cam[i] = dotProd*a_cam[i] ;
if((debug>2))

vector_print("vparallel_cam", vparallel_cam);
for (i=0; i < 3; i++) /* component perpendic */

vperp_cam[i] = v_cam[i] - vparallel_cam[i];
if((debug>2))

vector_print("vperp_cam", vperp_cam);
vperp_len = sqrt(SQR(vperp_cam[0])-i-SQR(vperp_cam[1])+SQR(vperp_cam[2]));
if (vperp_len < TINY) {

thetaCam = 0;
fSide = 0;
return;

}
for (i=0; i < 3; i++) /* dir perpendic */

dperp_cam[i] = -vperp_cam[i]/vperp_len;
if((debug>2))

vector_print("dperp_cam", dperp_cam);
for (i=0; i < 3; i++)

dperp_cyl[i] = /* dir in cyl coords */

80

H_cam_mod[i] [0] *dperp_cam[0] +
H_cam_mod[i] [1] *dperp_cam[1] +
H_cam_mod[i] [2] *dperp_cam[2] ;

if((debug>2))
vector_print("dperp_cyl", dperp_cyl);

cart_to_cyl(dperp_cyl, r, h, thetaCam); /* get angle */

^ *

* Now, the stripe on the side of the cylinder, that consists
* of points with theta=thetaCam, should be the closest stripe
* to the camera. Test if we can see this stripe:
* Compute the vector v to the point (RAD,0,thetaCam) in
* cylinderical coordinates
* Compute the surface normal n at that point.
* The angle between v and n must be greater than 90 degrees.
* Or, equivalently, their dot product must be < 0.
* If we can see the stripe, then we can see the hemicylinder
* defined by the angles (thetaCam-90 .. thetaCam+90).
**/

cyl_to_cart(radius,0,thetaCam, v_cyl); /* get pt in cyl coords */
if((debug>2))

vector_print("v_cyl", v_cyl);
for (i=0; i < 3; i++)

v_cam[i] = /* get pt in cam coords */
H_m od_cam[i][0]*v_cyl[0] +
H _m od_cam [i][l]*v_cyl[l] +
H_m od_cam [i][2]*v_cyl[2] +
H_mod_cam[i][3];

if((debug>2))
vector_print("v_cam", v_cam);

for (i=0; i < 3; i++)
n_cam[i] = /* surface normal */

H_m od_cam [i][0]*v_cyl[0] +
H _m od_cam [i][l]*v_cyl[l] +
H_mod_cam[i] [2] * v_cyl[2] ;

if((debug>2))
vector_print("n_cam", n_cam);

dotProd = 0;
for (i=0; i < 3; i++)

dotProd += v_cam[i]*n_cam[i];
if (dotProd < 0)

fSide = 1 ;
else

fSide = 0;

81

/***
* Function: Cylinder::ClosestPoint
* Created by : Bill H off
* Description:
* Computes which parts of a cylinder are visible.
*

* Input parameters:
* P0_cam[3] = input point in camera coords
* Output parameters:
* Pl_cam [3] = closest point on cylinder, in camera coords
* dClosest = distance to closest point
*

* Detailed description:
* Given a point and the cylinder pose, find which point on the cylinder
* it is closest to. Specifically, given:
* P0_c = (xO_c, yO_c, zO_c) = point in camera coords
* H_m_c = pose o f model to camera
* fCapTop, fCapBot, fSide = flags for which patch we can see
* thetaCam - angle towards camera
* Find:
* P l_ c = (x l_ c , y l_ c , z l_ c) = closest point on cylinder, cam coords
* d = distance to that point
* Our cylinder is actually only half a cylinder. At most one cap is
* visible, and at most half o f the curved surface. Parts:
* Surfaces: side, cap
* Curves: edge (2), half rim, full rim
* Points: corner (up to 4)
***/
void Cylinder::
ClosestPoint(float P0_cam[3], float P l_cam [3], float &dClosest, int index)
{

int i, debug=0;
int fCap, flnsideR, flnsideH, fFront;
float P0_mod[3], Pl_m od[3];
float r, h, theta; /* P0 in cylindrical coords */
float r l, h i, thetal; /* PI in cylindrical coords */
float hCap, hRim;

if((debug>2)&&(index== 10)) {
cout « "computing closest point to cylinder" « endl;

cout « "input point (cam coords):" « endl;

for (i=0; i < 3; i++) cout « P0_cam[i] « " ";

cout « endl;
}/**

82

* Transform point P0_cam to P0_mod, and then from cartesian
* coords to cylindirical coords (r,h,theta).
***/

for (i=0; i < 3; i++)
P0_mod[i] =

H_cam_mod[i] [0] *P0_cam[0] +
H_cam_mod[i] [1] *P0_cam[1] +
H_cam_mod[i] [2] *P0_cam[2] +
H_cam_mod[i][3];

if((debug>2)&&(index== 10)) {
cout « "input point (cyl coords):" « endl;
for (i=0; i < 3; i++) cout « P0_mod[i] « "
cout « endl;

}
cart_to_cyl(P0_mod, r, h, theta);
if((debug>2)& & (index~ 10)) {

cout « " Input pt (cyl coords): r = " « r « " h = " « h;
cout « " theta = " « theta « endl;

}

y *

* Calculate some flags indicating whether the point lies within
* the bounds o f the cylinder’s individual degrees of freedom.
***/

flnsideR = (r < radius ? 1 : 0);
flnsideH = (fabs(h) < height/2 ? 1 : 0);
fFront = (diffAngle(theta, thetaCam) < M_PI/2 ? 1 : 0);

if (fCapTop) {
hCap = height/2; hRim = -height/2;fCap = 1;

} else if (fCapBot) {
hCap = -height/2; hRim = height/2; fCap = 1;

} else
fCap = 0;

if((debug>2)&&(index— 10)) {
cout « "fCap = " « fCap « endl;
cout « "fSide = " « fSide « endl;
cout « "flnsideR = " « flnsideR « endl;
cout « "flnsideH = " « flnsideH « endl;
cout « "fFront = " « fFront « endl;

}
y *

* Form a number out of the combination of flags:
* (fCap, fSide, flnsideR, flnsideH, fFront)
* Then process the combination that we have.
* This switch statement calculates r l, h i, thetal.
* Initialize r l, h i, thetal to some far away point.

83

* /

rl = 5;
hi = 5 ;
thetal = 0;
int combination = fCap*0x 10000 + fSide*OxlOOO + f!nsideR*OxlOO + flnsideH*OxlO + fFront;
switch (combination) {

case 0x00000:
case 0x00001:
case 0x00010:
case 0x00011:
case 0x00100:
case 0x00101:
case 0x00110:
case 0x00111:

radius,-height/2,thetaCam-M_PI/2, /* first corner */
radius,-height/2,thetaCam+M_PI/2, /* second corner */
radius, height/2,thetaCam-M_PI/2, /* third corner */
radius, height/2,thetaCam+M_PI/2 /* fourth corner */
);

/* we can’t see neither side nor cap - inside cylinder??? */
//cerr « "Hey! can’t see neither side nor cap!" « endl;
break;

case 0x01000: /* one of the 4 corners */
case 0x01100:

GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,

break;

case 0x01001: /* either half rim */
case 0x01101:

GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,
radius,height/2,theta,
radius,-height/2,theta
);

/* pt on first half rim */
/* pt on second half rim */

break;

case 0x01010: /* one of the edges */
case 0x01110:

GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,
radius,h,thetaCam-M_PI/2, /* pt on first edge */
radius,h,thetaCam+M_PI/2 /* pt on second edge */
);

break;

case 0x01011: /* side */
case 0x01 111:

rl = radius; h i = h; thetal = theta;
break;

84

case
case
case
case

case
case
case
case

case

case

case

case

case

0x10000:
0x10001:
0x10010:
0x10011:
rl = radius;
break;

/* rim */

h i = hCap; thetal = theta;

0x10100: /* cap */
0x10101
0x10110
0x10111
rl = r; h i = hCap;
break;

thetal = theta;

0x11000: /* full rim or the corners */
GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,

radius,hCap,theta, /*
radius,hRim,thetaCam-M_PI/2, /*
radius,hRim,thetaCam+M_PI/2 /*
);

break;

0x11001: /* either full or half rim */
GetClosestPtCyl(r,h,theta, rl,h i,th eta l,

radius,hCap,theta, /* pt on full rim */
radius,hRim,theta /* pt on half rim */
);

break;

0x11010: /* either full rim or the edges */
GetClosestPtCyl(r,h,theta, r 1 ,h 1,thetal,

radius,hCap, theta,
radius,h,thetaCam-M_PI/2,
radius,h,thetaCam+M_PI/2
);

break;

0x11011: /* side */
rl = radius; h i = h; thetal = theta;
break;

0x11100: /* either the cap or the corners */
GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,

r,hCap,theta, /* pt on cap */
radius,hRim,thetaCam-M_PI/2, /* first corner */

/* pt on full rim */
/* pt on first edge */
/* pt on second edge */

pt on full rim */
first corner */
second corner */

85

radius,hRim,thetaCam+M_PI/2 /* second corner */
);

break;

case 0x11101 : /* either the cap or the half rim */
GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,

r,hCap,theta, /* pt on cap */
radius,hRim,theta /* pt on half rim */
);

break;

case 0x11110: /* either the cap or the edges */
GetClosestPtCyl(r,h,theta, r 1 ,h 1,thetal,

r,hCap,theta, /* pt on cap */
radius,h,thetaCam-M_PI/2, /* pt on first edge */
radius,h,thetaCam+M_PI/2 /* pt on second edge */
);

break;

case 0x11111: /* either the cap or the side */
GetClosestPtCyl(r,h,theta, r 1 ,h 1,theta 1,

r,hCap,theta, /* pt on cap */
radius,h,theta /* pt on side */
);

break;

default:
cerr « "Whoops! No way., bad combination number" « endl;

} // end switch
if((debug>2)&&(index== 10)) {

cout « " Closest pt (cyl coords): rl = " « rl « " h i = " « h i;
cout « " thetal = " « thetal « endl;

y *

* We now have the closest point (rl,h i,theta l) in cylindrical coords.
* Transform it to cartesian coords and then to camera coords.
* Then calculate the distance.
***/

cyl_to_cart(r 1 ,h 1,theta 1, Pl_m od);
for (i=0; i < 3; i++)

Pl_cam [i] =
H_mod_cam [i] [0] *P 1 _mod [0] +
H_mod_cam[i] [1] *P 1 _mod[1] +
H _m od_cam [i][2]*Pl_m od[2] +
H_mod_cam[i][3];

dClosest = sqrt(
SQR(Pl_cam [0]-P0_cam [0]) +

86

SQ R(Pl_cam [l]-PO _cam [l]) +
SQR(Pl_cam [2]-P0_cam [2])
);

if((debug>2)&&(index== 10)) {
cout « " Closest pt (cam coords): x = " « Pl_cam[0] « " y = " « P l_cam [l];
cout « " z = " « P l_cam [2] « endl;
cout « " Closest distance = " « dClosest « endl;

/***
* Function: Cylinder::GetClosestPtCyl
* Created by : Bill H off
* Description:
* Computes which o f 2 points is closest to the given point.
* All points are in cylindrical coords.
*

* Input parameters:
* rO, hO, thetaO = input point
* rl,h i,th eta l = first candidate point
* r2,h2,theta2 = second candidate point
* Output parameters:
* re, he, thetac = closest point
***/
void Cylinder::
GetClosestPtCyl(

float rO, float hO, float thetaO, /* input original point */
float &rc, float &hc, float &thetac, /* output closest point */
float r l, float h i, float thetal, /* first candidate point */
float r2, float h2, float theta2 /* second candidate point */
)

{
float P 0[3],P 1[3],P 2[3];

/* Transform cylindirical coords to cartesian coords */
cyl_to_cart(r0,h0,thetaO, P0);
cyl_to_cart(rl,hi,thetal, PI);
cyl_to_cart(r2,h2,theta2, P2);

float dOl = sqrt(SQR(P0[0]-Pl [0]) + SQR(P0[1]-P1[1]) + SQR(P0[2]-P1[2]));
float d02 = sqrt(SQR(P0[0]-P2[0]) + SQR(P0[1]-P2[1]) + SQR(P0[2]-P2[2]));

if (dOl < d02) {
rc = r 1 ; he = h i; thetac = thetal;

} else {

87

rc = r2; he = h2; thetac = theta2;
}

}

^ *

* Function: Cylinder::GetClosestPtCyl
* Created by : Bill H off
* Description:
* Computes which of 3 points is closest to the given point.
* All points are in cylindrical coords.
*

* Input parameters:
* rO, hO, thetaO = input point
* rl,h i,th eta l = first candidate point
* r2,h2,theta2 = second candidate point
* r3,h3,theta3 = third candidate point
* Output parameters:
* rc, he, thetac = closest point
* /

void Cylinder::
GetClosestPtCyl(

float rO, float hO, float thetaO, /* input original point */
float &rc, float &hc, float &thetac, /* output closest point */
float r l, float h i, float thetal, /* first candidate point */
float r2, float h2, float theta2, /* second candidate point */
float r3, float h3, float theta3 /* third candidate point */
)

{
float P0[3], P l[3], P2[3], P3[3];

/* Transform cylindirical coords to cartesian coords */
cyl_to_cart(rO,hO,thetaO, PO);
cyl_to_cart(rl,hi,thetal, PI);
cyl_to_cart(r2,h2,theta2, P2);
cyl_to_cart(r3,h3,theta3, P3);

float dOl = sqrt(SQR(P0[0]-Pl[0]) + SQR(P0[1]-P1[1]) + SQR(P0[2]-P1[2]));
float d02 = sqrt(SQR(P0[0]-P2[0j) + SQR(P0[1]-P2[1]) + SQR(P0[2]-P2[2]));
float d03 = sqrt(SQR(P0[0] -P3 [0]) + SQR(P0[1]-P3[1]) + SQR(P0[2]-P3[2]));

if (dOl < d02 && dOl < d03) {
rc = rl; he = h i; thetac = thetal;

} else if (d02 < dOl && d02 < d03) {
rc = r2; he = h2; thetac = theta2;

} else {
rc = r3; he = h3; thetac = theta3;

88

y***

* Function: Cylinder::GetClosestPtCyl
* Created by : Bill H off
* Description:

Computes which of 4 points is closest to the given point.
All points are in cylindrical coords.*

* Input parameters:
* rO, hO, thetaO = input point
* r 1 ,h 1,thetal = first candidate point
* r2,h2,theta2 = second candidate point
* r3,h3,theta3 = third candidate point
* r4,h4,theta4 = fourth candidate point
* Output parameters:
* rc, he, thetac = closest point
* /

void Cylinder::
GetClosestPtCyl(

float rO, float hO, float thetaO, /* input original point */
float &rc, float &hc, float &thetac, /* output closest point */
float r l, float h i, float thetal, /* first candidate point */
float r2, float h2, float theta2, /* second candidate point */
float r3, float h3, float theta3, /* third candidate point */
float r4, float h4, float theta4 /* fourth candidate point */
)

{
float P0[3j, P I [3], P2[3], P3[3], P4[3];

/* Transform cylindirical coords to cartesian coords */
cyl_to_cart(rO,hO,thetaO, PO);
cyl_to_cart(rl,hi,thetal, PI);
cyl_to_cart(r2,h2,theta2, P2);
cyl_to_cart(r3,h3,theta3, P3);
cyl_to_cart(r4,h4,theta4, P4);

float dOl = sqrt(SQR(P0[0]-Pl [0]) + SQR(P0[1]-P1[1]) + SQR(P0[2]-P1[2]))
float d02 = sqrt(SQR(P0[0]-P2[0]) + SQR(P0[1]-P2[1]) + SQR(P0[2]-P2[2]))
float d03 = sqrt(SQR(P0[0]-P3[0]) + SQR(P0[1]-P3[1]) + SQR(P0[2]-P3[2]))
float d04 = sqrt(SQR(P0[0]-P4[0]) + SQR(P0[1]-P4[1]) + SQR(P0[2]-P4[2]))

if (d 0 1 < d 0 2 & & d 0 1 < d 0 3 & & d 0 1 < d 0 4) {
rc = rl ; he = h 1 ; thetac = thetal ;

89

} else if (d02 < dOl && d02 < d03 && d02 < d04) {
rc = r2; he = h2; thetac = theta2;

} else if (d03 < dOl && d03 < d02 && d03 < d04) {
rc = r3; he = h3; thetac = theta3;

} else {
rc = r4; he = h4; thetac = theta4;

}

90

/ *

* Function: Box::ComputeVisible
* Created by : Bill H off
* Description:
* Computes which parts o f a box are visible.
* This function M UST be called BEFORE calling ClosestPoint!
*

* Input parameters:
* H[4][4j = pose of model wrt camera
* Side effects:
* Sets some internal data fields of this object:
* H_mod_cam, H_cam_mod,
* fFaceW[2], fFaceH[2], fFaceD[2],
* fEdgeW H[4], fEdgeHD[4], fEdgeWD[4];
* fVertex[8]
***/
void Box::
ComputeVisible(float H[4][4])
{

int i,j;

//cout « "computing visible portions o f box" « endl;

y *

* Copy the input pose to our own data structure.
* Then compute the inverse.
* # * y

for (i=0; i < 4; i++)
for (j=0; j < 4; j++)

H_mod_cam[i][j] = H[i][j];
for (i=0; i < 3; i++)
for G=0; j < 3; j++)

H_cam_mod[j][i] = H[i][j]; /* transpose */
for (i=0; i < 3; i++) {

H_cam_mod[i][3] = 0;
for G=0; j < 3; j++)

H_cam_mod[i][3] -= H_cam_mod[i][j]*H[j][3];
}
for (i=0; i < 3; i++)

H_cam_mod[3][i] = 0; /* last row */
H_cam_mod[3][3] = 1.0;

/* Compute coordinates o f the faces (for convenience) */
xLeft = -width/2;
xRight = width/2;
y Top = -height/2;
yBot - height/2;
zFront = -depth/2;

91

zBack = depth/2;

^ * *

* See which faces are visible. A face is visible iff
* its surface normal (pointing outwards) makes an angle
* o f greater than 90 degrees with respect to the vector
* from the camera origin to the center of the face.
* /

fFaceLeft = checkFaceVisible(H_mod_cam, /* left */
-1.0, 0.0, 0.0, /* normal to face, in model coords */
-width/2, 0.0, 0.0 /* center of face, in model coords */
);

fFaceRight = checkFaceVisible(H_mod_cam, /* right */
1.0, 0.0, 0.0, /* normal to face, in model coords */
width/2, 0.0, 0.0 /* center o f face, in model coords */
);

fFaceTop = checkFaceVisible(H_mod_cam, /* top */
0.0, -1.0, 0.0, /* normal to face, in model coords */
0.0, -height/2, 0 .0 /* center of face, in model coords */
);

fFaceBot = checkFaceVisible(H_mod_cam, /* bottom */
0.0, 1.0, 0.0, /* normal to face, in model coords */
0.0, height/2, 0.0 /* center of face, in model coords */
);

fFaceFront = checkFaceVisible(H_mod_cam, /* front */
0.0, 0.0, -1.0, /* normal to face, in model coords */
0.0, 0.0, -depth/2 /* center of face, in model coords */
);

IFaceBack = checkFaceVisible(H_mod_cam, /* back */
0.0, 0.0, 1.0, /* normal to face, in model coords */
0.0, 0.0, depth/2 /* center o f face, in model coords */
);

y *

* Function: Box: :checkFaceVisible
* Created by : Bill H off
* Description:
* Determines if a face is visible.
*

* Input parameters:
* H[4] [4] = pose o f model wrt camera
* nx, ny, nz = unit normal vector to face, model coords
* cx, cy, cz = center o f face, model coords
* Returns:
* True (1) if face is visible, false (0) otherwise.

92

***/
int Box::
checkFaceVisible(float H[4][4],

float nx, float ny, float nz,
float cx, float cy, float cz)

{
float nx_cam, ny_cam, nz_cam;
float cx_cam, cy_cam, cz_cam;

/* Transform n, c from model to camera coords */
nx_cam = H[0][0]*nx + H [0][l]*ny + H[0][2]*nz;
ny_cam = H [l][0]*nx + H [l][l]* n y + H [l][2]*nz;
nz_cam = H[2][0]*nx + H [2][l]*ny + H[2][2]*nz;

cx_cam = H [0][0]*cx + H [0][l]*cy + H [0][2]*cz + H[0][3];
cy_cam = H [l][0]*cx + H [l][l]* c y + H [l][2]*cz + H [l][3];
cz_cam = H[2][0]*cx + H [2][l]*cy + H [2][2]*cz + H[2][3];

/ *
* Face is visible iff the angle between n and c is greater than
* 90 degrees; or equivalently, the dot product of n and c < 0.
*/

float dotProd = nx_cam*cx_cam + ny_cam*cy_cam + nz_cam*cz_cam;
if (dotProd < 0) return 1 ;
else return 0;

}

^/* *

* Function: Box::ClosestPoint
* Created by : Bill H off
* Description:
* Computes the closest point on a box to the given point.
*

* Input parameters:
* P0_cam[3] = input point in camera coords
* Output parameters:
* P l_cam [3] = closest point on box, in camera coords
* dClosest = distance to closest point
*

* Our box is actually only half a box. At most three faces, 9 edges,
* and 7 vertices are visible.
***/

void Box::
ClosestPoint(float P0_cam[3], float P l_cam [3], float &dClosest)
{

int i;

93

int flnsideW , flnsideH, flnsideD;
float P0_mod[3], Pl_m od[3];

/**********
cout « "computing closest point to box" « endl;
cout « "input point (camera coords):" « endl;
for (i=0; i < 3; i++) cout « P0_cam[i] « " ";
cout « endl;

/* Transform the given point to model coords */
for (i=0; i < 3; i++)

P0_mod[i] =
H_cam_mod[i][0]*P0_cam[0] +
H_cam _m od[i][l]*PO_cam [l] +
H_cam_mod[i][2]*P0_cam[2] +
H_cam_mod[i][3];

y * * * * * * * * * *

cout « "input point (model coords):" « endl;
for (i=0; i < 3; i++) cout « P0_mod[i] « " ";
cout « endl;
* * * * * * * * * * y

/* For convenience, get individual x,y,z */
float xO = P0_mod[0];
float yO = P0_m od[l];
float zO = P0_mod[2];

y *
* Determine whether the x,y,z components individually
* lie within the bounds o f the box.
* y

flnsideW = (fabs(xO) < width/2 ? 1 : 0);
flnsideH = (fabs(yO) < height/2 ? 1 : 0);
flnsideD = (fabs(zO) < depth/2 ? 1 : 0);

y * * * * * * * * * *

cout « "flnsideW = " « flnsideW « endl;
cout « "flnsideH = " « flnsideH « endl;
cout « "flnsideD = " « flnsideD « endl;
* * * * * * * * * * y

y * *

* Now, look at each face individually. If the face is
* visible, we may have the shortest distance to a point on
* that face. There are three possibilities:
* 1. The shortest distance to the face is a perpendicular

94

* to the face itself.
* 2. The shortest distance to the face is a perpendicular
* to one of the edges o f the face.
* 3. The shortest distance to the face is a line segment
* to one of the vertices of the face.
* Check for these three cases, in this order.
***/

dClosest = HUGE; /* Keeps track of minimum distance found */
Pl_m od[0] = 0.0; /* Closest point */
P l_m od [l] = 0.0;
P l_m od[2] = 0.0;

if (fFaceLeft) {
if (flnsideH && flnsideD) {

/* Closest to the face */
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yO, zO);

} else if (flnsideH) {
/* Closest to one o f the up-down edges of this face */
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yO, zFront);
PickClosest(P0_mod, P l_m od, dClosest, xLeft, yO, zBack);

} else if (flnsideD) {
/* Closest to one o f the front-back edges of this face */
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yTop, zO);
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yBot, zO);

} else {
/* Closest to one of the vertices o f this face */
PickClosest(P0_mod, P l_m od, dClosest, xLeft, yTop, zFront);
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yTop, zBack);
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yBot, zFront);
PickClosest(P0_mod, Pl_m od, dClosest, xLeft, yBot, zBack);

}
} /* fFaceLeft */

if (fFaceRight) {
if (flnsideH && flnsideD) {

/* Closest to the face */
PickClosest(P0_mod, Pl_m od, dClosest, xRight, yO, zO);

} else if (flnsideH) {
/* Closest to one o f the up-down edges of this face */
PickClosest(P0_mod, Pl_m od, dClosest, xRight, yO, zFront);
PickClosest(P0_mod, Pl_m od, dClosest, xRight, yO, zBack);

} else if (flnsideD) {
/* Closest to one of the front-back edges of this face */
PickClosest(P0_mod, Pl_m od, dClosest, xRight, yTop, zO);
PickClosest(P0_mod, Pl_m od, dClosest, xRight, yBot, zO);

} else {
/* Closest to one of the vertices of this face */
PickClosest(P0_mod, P l_m od, dClosest, xRight, yTop, zFront);

95

PickClosest(PO_mod, P l_m od, dClosest, xRight, yTop, zBack);
PickClosest(PO_mod, P l_m od, dClosest, xRight, yBot, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yBot, zBack);

}
} /* fFaceRight */

if (fFaceTop) {
if (flnsideW && flnsideD) {

/* Closest to the face */
PickClosest(PO_mod, Pl_m od, dClosest, xO, yTop, zO);

} else if (flnsideW) {
/* Closest to one o f the left-right edges o f this face */
PickClosest(PO_mod, P l_m od, dClosest, xO, yTop, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xO, yTop, zBack);

} else if (flnsideD) {
/* Closest to one of the front-back edges of this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yTop, zO);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yTop, zO);

} else {
/* Closest to one of the vertices of this face */
PickClosest(PO_mod, P l_m od, dClosest, xLeft, yTop, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yTop, zBack);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yTop, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yTop, zBack);

}
} /* fFaceTop */

if (fFaceBot) {
if (flnsideW && flnsideD) {

/* Closest to the face */
PickClosest(PO_mod, P l_m od, dClosest, xO, yBot, zO);

} else if (flnsideW) {
/* Closest to one o f the left-right edges of this face */
PickClosest(PO_mod, P l_m od, dClosest, xO, yBot, zFront);
PickClosest(PO_mod, P l_m od, dClosest, xO, yBot, zBack);

} else if (flnsideD) {
/* Closest to one o f the front-back edges of this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yBot, zO);
PickClosest(PO_mod, P l_m od, dClosest, xRight, yBot, zO);

} else {
/* Closest to one o f the vertices o f this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yBot, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yBot, zBack);
PickClosest(PO_mod, P l_m od, dClosest, xRight, yBot, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yBot, zBack);

}
} /* fFaceBot */

96

if (fFaceFront) {
if (flnsideW && flnsideH) {

/* Closest to the face */
PickClosest(PO_mod, Pl_m od, dClosest, xO, yO, zFront);

} else if (flnsideW) {
/* Closest to one o f the left-right edges of this face */
PickClosest(PO_mod, Pl_m od, dClosest, xO, yTop, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xO, yBot, zFront);

} else if (flnsideH) {
/* Closest to one o f the up-down edges of this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yO, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yO, zFront);

} else {
/* Closest to one o f the vertices o f this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yBot, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yTop, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yBot, zFront);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yTop, zFront);

}
} /* fFaceFront */

if (fFaceBack) {
if (flnsideW && flnsideH) {

/* Closest to the face */
PickClosest(PO_mod, Pl_m od, dClosest, xO, yO, zBack);

} else if (flnsideW) {
/* Closest to one of the left-right edges of this face */
PickClosest(PO_mod, Pl_m od, dClosest, xO, yTop, zBack);
PickClosest(PO_mod, Pl_m od, dClosest, xO, yBot, zBack);

} else if (flnsideH) {
/* Closest to one o f the up-down edges of this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yO, zBack);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yO, zBack);

} else {
/* Closest to one of the vertices o f this face */
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yBot, zBack);
PickClosest(PO_mod, Pl_m od, dClosest, xLeft, yTop, zBack);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yBot, zBack);
PickClosest(PO_mod, Pl_m od, dClosest, xRight, yTop, zBack);

}
} /* fFaceBack */

/ * * * * * * * * *

cout « "closest point (model coords):" « endl;
for (i=0; i < 3; i++) cout « P l_m od[i] « " ";
cout « endl;
**********/

97

/* Transform the closest point to camera coords */
for (i=0; i < 3; i++)

Pl_cam [i] =
H _m od_cam [i][0]*Pl_m od[0] +
H_mod_cam[i] [1] *P 1 _mod [1] +
H_mod_cam[i] [2] *P 1 _mod[2] +
H_mod_cam[i][3];

y*********
cout « "closest point (camera coords):" « endl;
for (i=0; i < 3; i++) cout « Pl_cam [i] « "
cout « endl;

} / / Box::ClosestPoint

y * *

* Function: Box:PickClosest:
* Created by : Bill Hoff
* Description:
* A utility function that picks the closest point to the given
* point.
*

* Input parameters:
* P0[3] = the given point
* P I [3] = the closest point so far
* dClosest = the closest distance so far (to PI)
* x,y,z = the coords o f the new candidate point
* Output parameters:
* PI [3] = possibly revised closest point
* dClosest = possibly revised closest distance
***/
void Box::
PickClosest(float P0[3],

float P I[3], float &dClosest,
float x, float y, float z)

{
/* Calculate new distance */
float d = sqrt(SQR(x-P0[0]) + SQ R (y-P0[l]) + SQR(z-P0[2]));

if (d < dClosest) {
dClosest = d;
P1[0] = x; P l [l] = y; P l[2] = z;

}
} // Box::PickClosest

