
T-4795

A GENERALIZED ALGORITHM USING

THE HARMONIC MEAN FOR SOLVING

UNCONSTRAINED BALANCED POSYNOMIALS

by
Mark B. Pomeroy

ARTHUR LAKES LIBRARY
COLORADO SCHOOL Of MINES
GOLDEN, CO 80401

ProQuest Number: 10794153

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10794153

Published by ProQuest LLC (2018). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

T-4795

A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of

Mines in partial fulfillment of the requirements for the degree of Master of Science

(Mathematical and Computer Sciences).

Golden, Colorado

Date g o c j r (j i r

Signed: 5 ."Ryu
Mark B. Pomeroy

Approved:
I
Thesis Advisor

Golden, Colorado

Date j r o c X l ^ r

leme Fairweather
Professor and Head
Mathematical and Computer
Sciences Department

ii

T-4795

ABSTRACT

A generalized algorithm, called harmonic programming, which is based on the

harmonic mean, will solve a large class of unconstrained nonlinear optimization

problems which have balanced exponents. This algorithm is then expanded by using a

technique similar to that used by Ratliff in geometric programming, to solve

multivariable, multiple degree of difficulty problems in the form described above.

The new algorithm opens the door to a whole new field in nonlinear optimization

problem solving. The algorithm covers a large span of nonlinear optimization problems

in both engineering, and economics. In addition, harmonic programming was for every

test problem, as good, or (in most cases) better in running time and accuracy than

MINOS, LINGO, and MULTICON.

The algorithm was successfully tested on a variety of engineering, economic and

nonlinear test problems. Overall, harmonic programming appears to have the same

general applicability as geometric programming.

iii

T-4795

TABLE OF CONTENTS

P a g e
ABSTRACT . iii

LIST OF TABLES . vi

ACKNOWLEDGMENTS vii

DEDICATION viii

Chapter 1 INTRODUCTION . 1

1.1 The Arithmetic-Geometric-Harmonic Mean Inequality and
Posynomial Functions. 1

1.2 The Nonnegative Weights (ai’s) . 3

1.3 Condensation and Ratliffs Method 5

1.4 Previous Uses of the Harmonic Mean 7

1.5 Chapter 1 Summary 9

Chapter 2 THE HARMONIC PROGRAMMING ALGORITHM . 11

2.1 General 11

2.2 Harmonic Programming Algorithm #1 . 12

2.3 Harmonic Programming Algorithm #2 24

2.4 Harmonic Programming Algorithm #3 30

2.5 The General Algorithm for Harmonic Programming 36

iv

T-4795

Chapter 3 ALGORITHM COMPARISON . 38

3.1 The Test Algorithms 3 8

3.2 MULTICON 38

3.3 MINOS . 39

3.4 LINGO 39

3.5 The Test Set 40

3.6 Summary Table of the Problem Set 41

3.7 The Comparison . 43

3.8 Summary Table of the Comparison Results 44

3.9 Comparison Results and Table . 47

Chapter 4 CONCLUSIONS & SUGGESTIONS FOR FURTHER STUDY 49

4.1 Conclusion 49

4.2 Limitations 49

4.3 Areas for Further Research 49

REFERENCES CITED 53

GLOSSARY OF TERMS 55

Appendix A TEST PROBLEMS 58

Appendix B THE PROGRAM LISTING 81

Appendix C SAMPLE COMPUTER RUN FOR HARMONIC
PROGRAMMING 102

v

T-4795

LIST OF TABLES

Page

Table 3.6 Summary Table of the Test Problem Set . 41

Table 3.8 Summary Table of the Comparison Results 44

Table 3.9 Comparison Results and Table 47

vi

T-4795

ACKNOWLEDGMENTS

I would like to thank Dr. Woolsey for serving as my advisor, and for introducing

me to Geometric Programming, which eventually led to my thesis topic. Additionally,

my thanks go to Dr. Maurer and Professor Astle for assisting in my graduate education,

and respectively, for chairing and serving on my thesis committee.

Several fellow students deserve recognition for their assistance with this thesis. I

thank CPT Bill Dolan for helping me to get my algorithm to work for the first test

problem, and to Jason Kierstein for his expertise in turning my algorithm into a program

in FORTRAN.

I thank my wife, Kelly, for all of her support throughout my Army and academic

careers.

vii

T-4795

DEDICATION

I would like to dedicate this thesis, first, to my beautiful, loving bride and best

friend, Kelly, whose devotion to our family and my military career have never wavered.

Secondly, I would like to dedicate this to my two sons, Luke and Kyle, who make every

day an adventure.

I want also to dedicate this thesis to my parents who have made me who I am

today.

viii

T-4795 1

Chapter 1

INTRODUCTION

1.1 The Arithmetic-Geometric-Harmonic Mean Inequality and Posynomial

Functions

The arithmetic-geometric mean inequality is the foundation for geometric

programming. In a similar manner, the arithmetic-geometric-harmonic mean (A.M. -

G.M. - H.M.) inequality is the foundation for harmonic programming. This inequality

can be represented as follows

Using weighted means it can be rewritten in the form (Duffin, Peterson and Zener 1967

£ tjxr x2---xn >
f t ;=1

A.M. G.M. H.M.

n (i.i)

Pg. 315)

-1
(1.2)

where the V; are positive quantities and a; are nonnegative weights which must sum to
one. Letting U; = cqv; yields

T-4795 2

/ \
w.

i= l i= l x C t , y

A.M. G.M.
y=l \ M; /
H.M.

-i
(1.3)

The variables (ii;) are positive quantities, and the inequalities hold if and only if

w, =ct, 2 Uj ; for i = 1, 2,..., n.
y=i

(1.4)

The harmonic programming algorithm described in chapters 2 and 3 will use the

inequality described above, and is designed to solve unconstrained nonlinear optimization

problems in the form

where

Minimize z - 2 ^ , f l x7 »
i"=l y=l

r ,) o .

(1.5)

" 8
x . eSR*
^ + = Positive real numbers

for i = 1, ...,n; j = l,...,m.

When the coefficients (K;) have a positive value, the problem in the form listed is called

a posynomial function.

T-4795 3

It is assumed here, that the reader has a general knowledge of geometric

programming. Some of the areas of geometric programming which are used in harmonic

programming will be discussed briefly in the following sections.

1.2 The Nonnegative Weights (a/s)

The nonnegative weights (a/s) are the percentage contributions of each term to

the objective function. For the remainder of this thesis, when the optimal weight of each

term (a j , is discussed it will be called delta (ôj. These weights, as with geometric

programming, play an integral part in harmonic programming. The contribution of each

term remains the same regardless of whether the arithmetic, geometric, or harmonic mean

is used.

Most of the early work in geometric programming was done by Duffin, Peterson,

and Zener (1967). Dr. R. E. D. Woolsey used their concepts to develop four rules to

solve zero degree of difficulty geometric programming problems (Woolsey 1992). Since

the ô /s remain the same for harmonic programming, two of his rules, which pertain to the

deltas, will be used extensively (rule II and rule III). Rule II is used to solve for the ô^’s.

The ô;''s must satisfy two conditions. The first condition, which was stated above, will

be referred to as the normality condition, where

= 1. (1.6)
z=l

T-4795 4

The second condition, which will be called the orthogonality condition, requires the

following

Dy =] ^ ô , = 0; for j = 1, 2,..., m (1.7)
i=i

where ay is the power for term; and variable^ The final condition requires that

ô j> 0, for i= 1, 2,..., n (1.8)

For zero degree of difficulty problems, these conditions can be written as a system of

simultaneous equations called the exponent matrix, and then solved for the ô/s. For

example, given the following optimization problem:

Minimize TC = 1.43jc_1 + \656x~xs~' + 47.6rV36,

the exponent matrix is

ô i +Ô 2+ ô 3 = l
— Ô j ~ Ô 2 +;90 3 — 0

05 j —5 2+365 3 = 0

Solving the system of equations yields 5i = .284, ô2 = .189, ô3 = .526.

The second of Woolsey’s rules which will be used in harmonic programming is

rule III. Rule III uses the ô /’s to back out the values for each variable from the optimal

value of the objective function. This can be written as:

* FIRST J W M _OF JM J . FUN. _____ NTH TERM OF OBJ . FUN.
Z — 5, — 6(rt (!•")

where z* is the value of the objective function at optimality.

T-4795 5

1.3 Condensation and Ratliff’s Method

Condensation is a method developed by Duffin, Peterson, and Zener (1967), in

which, as described by Beightler and Phillips (1976, pp. 331-367), a multiterm

posynomial function is approximated with a monomial or a single term function. The

primary advantage of this technique is that the number of degrees of difficulty of the

problem can be reduced without reducing the number of variables. A single variable

problem can be reduced to a zero degree of difficulty problem by condensing the terms

with positive and negative exponents separately, and then restating the objective function.

A synopsis of condensation for a single variable problem follows. Given a single

variable posynomial function in the form

using the arithmetic-geometric mean inequality, the terms with positive powers in the

function can be restated as

n n

(1.10)

(1.11)

where the alphas can be defined as

/ A
(1.12)

T-4795 6

In a like manner, the terms with negative powers can be condensed. Adding the

condensed positively powered terms and the condensed negatively powered terms yields

the following inequality, where the right hand side is now a zero degree of difficulty

problem

z = Ë K x' + Ê L x * > n
/=i j=i «=i

^ a ,x a , mxjc +ny=i (1.13)
v a , y

Using this approach, Richard M. Ratliff developed the MULTICON algorithm in

1986. MULTICON is a generalized condensation algorithm for the solution of

unconstrained, balanced, multivariable, posynomial problems using geometric

programming.

A brief version of his algorithm (Ratliff 1986) follows:

1) Put the equation in unconstrained, balanced posynomial form.

2) Choose initial values for each variable in the problem, and call these variables

xioid (where i = 1 to the number of variables). Treat all variables but one as constants

using the values of xioid. State the simplified single variable problem with revised

coefficients.

3) Condense the simplified objective function into a zero degree difficulty

problem. Solve the problem using conventional geometric programming techniques.

Extract a new value for variable of interest (xinew).

T-4795 7

4) Using xinew, calculate a value for the simplified objective fimction (VALHAT).

Compare values of VALHAT on successive iterations. When the difference becomes

negligible for all variables, use the current variable values as the final solution.

5) If the difference is not negligible set xioid = xinew. Treat the next variable in the

original objective fimction as a variable, and all others as constants. State the simplified

single variable problem with revised coefficients. Return to step 3, and continue stepping

through the algorithm until changes in the objective fimction become negligible.

A detailed discussion of MULTICON can be found in Ratliff’s thesis (1986), and

condensation can be referenced in Beightler and Phillips (1976, pp. 331-367), and

Woolsey (1992, pp. 3-1 through 3-6).

1.4 Previous Uses of the Harmonic Mean

In the past, the harmonic mean has rarely been used in mathematical

programming. The most significant use of the harmonic mean in solving optimization

type problems is a method developed by Duffin and Peterson in 1972, and later described

by Beightler and Phillips in 1976. This method is called “treating reversed geometric

programs with harmonic means.” A simplified version of Beightler and Phillips’

description is given in the subsequent three paragraphs.

Geometric programming is designed to solve posynomial minimization problems

in the form shown in equation (1.5) containing only prototype constraints. A prototype

constraint is one in the form

T-4795 8

(1.14)

where ym(x) is a posynomial. A reversed geometric program is one which contains one or

more reversed constraints in the form

where again ym(x) is a posynomial. Each reversed constraint in the form of equation

(1.15) can then be converted into a prototype constraint in the form

Calling each term of ym(x), ui, equation (1.16) can be rewritten as

where M is the number of terms.

When the reversed constraint (1.15) is converted into a prototype constraint

(1.17), it can be difficult to work with computationally. This constraint can be further

restated using either the geometric mean approximation or the harmonic mean

approximation. The geometric mean approximation is most useful when it is desirable to

reduce the constraint into one term and, as a result, reduce the degrees of difficulty of the

entire problem. The harmonic mean approximation, on the other hand, is most useful

when using the geometric mean approximation would reduce the degrees of difficulty of

the problem below zero. The geometric mean approximation for equation (1.17) is

(1.15)

£1 ; m = 1,2,..., M, (1.17)

T-4795 9

(1.18)

where a, is the weight associated with each term. The harmonic mean approximation for

equation (1.17) is

A brief version of Beightler and Phillips’ algorithm (1976) follows:

1) Put the equation in constrained, balanced posynomial form. Pick a feasible

solution for each variable.

2) Approximate the reversed constraint by either the harmonic or geometric

mean. Calculate the weight for each term in the reversed constraint using equation

(1.12), and the values picked in step 1 for the first iteration and those from step 3 for

subsequent iterations.

3) Solve the restated problem using a posynomial programming code.

4) Using the solution from step 3, determine whether or not the original

constraints are satisfied. If they are satisfied, stop. If not, return to step 2.

1.5 Chapter 1 Summary

In this chapter, the arithmetic-geometric-harmonic mean inequality, posynomial

functions, the nonnegative weights, condensation, Ratliffs method, and previous uses of

the harmonic mean were addressed. These topics are the fundamental concepts which

(1.19)

T-4795 10

were used to develop the harmonic programming algorithm. Chapter 2 covers the

development of the three harmonic programming algorithms, and finally, the general

algorithm for harmonic programming.

T-4795 11

Chapter 2

THE HARMONIC PROGRAMMING ALGORITHM

2.1 General

As stated in chapter 1, the arithmetic-geometric-mean inequality is the foundation

for the development of a harmonic programming algorithm. The algorithm is designed to

solve unconstrained nonlinear optimization problems in the form

n m
Minimize ̂= X^TTx7 » (2.1)

/ = i j = \

where

r,> o ,
aÿ g 91 ,

X, G 91*
= Positive real numbers

for i= 1, ...,n; j= 1, ...,m.

When all the coefficients (K,) have a positive value, the problem in the form listed above

is called a posynomial function. When the coefficients have negative values the problem

is referred to as a signomial function. Although signomials are touched upon in this

thesis, the primary algorithm is designed to solve posynomials. The first algorithm

T-4795 12

focuses on zero degree of difficulty problems and subsequent algorithms solve multiple

degree of difficulty problems.

2.2 Harmonic Programming Algorithm #1: An Algorithm to Solve Unconstrained,

Zero Degree of Difficulty, Posynomial Optimization Problems in the Form of

Equation (2.1)

From the weighted arithmetic-geometric-harmonic mean inequality

the variables u, are, positive quantities, and the inequalities hold at equality if and only if

(Beightler and Phillipps 1976 pg.315). For the first algorithm, only the arithmetic-

harmonic-mean inequality will be used. The following inductive proof will show that

(2.2)

A.M. G.M. H.M.

«, = û) , î > y; for i = 1, 2, . . . , n

(2.3)

that if

Vh > 0;
u. e 9t,

(2.4)

T-4795 13

then the arithmetic-harmonic mean inequality will become an equality (2.5).

/"gA

\ u , j
(2.5)

This proof is fundamentally important to harmonic programming. It is important to note,

that the reverse is also true, specifically, that if the inequality is an equality, then the

conditions in (2.4) will also be true. Since we are primarily concerned with the first proof

this is all that will be shown.

Proof 2.2.1

Given that the one and two term examples are trivial, we begin the proof with a three

term example by stating the arithmetic-harmonic-mean portion of equation (2.2).

U . + u + u > rÈ i + È l + È l
l " . If. If

(2.6)

Assuming that

(2.7)

we can substitute this into (2.6), which yields

Mj + w2 + w3 >

f \
Ul

2 Z
«2

X 2 Z
m3

X

U i + M2 + M3 y U + m2 + M3 y u + m2 + M3 y
+ +

Mi

-1

(2.8)

Simplifying inside the brackets in (2.8) yields the following inequality

T-4795 14

W, + «2 + M3 > + +
(« J + w 2 + w 3) (w j + w 2 + W 3) (« J + w 2 + w 3)

-1
(2.9)

Since the denominators of each term of the harmonic mean approximation in (2.9) are

now the same, it follows that

Wl + «2 + «3 ^
(%1 + + %])
(«i +z/2 +m3)2

(2.10)

Dividing the numerator and denominator of the harmonic mean approximation in (2.10)

by (u, + u2 + u3), yields

U \ + U 2 + U z >
1

(u, +«2 +«3)

-1

(2.11)

which can be restated as

H, + w2 + w3 = Mj + m2 + w3. (2 .1 2)

Thus for this three term example (n = 3) we see that, if the deltas equal the weights for

each term, the inequality becomes an equality. Assuming that this argument is true for

the case n=k, we must now show that this implies it is true for the case n=k+l, to

complete the inductive argument. Assuming the argument is true for the n=k case, we

begin with the following equality

Il+...+M =
II II

(2.13)

Adding uk+1 to both sides of equation (2.13) yields

T-4795 15

ux +.. ,+uk +w*+1 -
U, Uy

+ Uy

Substituting

5. =-A-z«.
into (2.14) yields

u

u .

u
VM+.^+i^y

u.
+ u.

Simplifying inside the brackets in (2.16) yields the following equality

u II.

(2.14)

(2.15)

(2.16)

(2.17)

Since the denominators of each term of the harmonic mean approximation in (2.17) are

now the same, it follows that

i i + . . .+ I I , (2.18)

L(".+—+M*) _

Dividing the numerator and denominator of the harmonic mean approximation in (2.18)

by (u, +... + uk), yields

. + 11, + i i , +i -
(2.19)

T-4795 16

which can be restated as

#,+—+«.+ = «,+—+«,+ «.„• (2-2°)

Thus we have shown by induction, that if the deltas equal the weights for each term, the

inequality becomes an equality. It is important to note that, if the optimal deltas are not

chosen, the inequality will still become an equality when the weights equal the deltas.

Since zero degree of difficulty, balanced, posynomials are globally optimal (Beightler

and Phillips 1976 pg. 115), there is only one optimal solution. Therefore, if the optimal

deltas are used, the Xj ’s will converge to optimality. As previously stated, for zero degree

of difficulty posynomial problems, the optimal ôj’s can be calculated for each term of a

problem, in the form of equation (2.1), using Woolsey’s rule II. For example, given the

following unconstrained, zero degree of difficulty optimization problem:

Minimize TC = \A3x'1 + 165Gx~ls~l + 47.6x V * , (2.21)

as shown in chapter 1, the exponent matrix is

ô , + ô 2+Ô3 = l
—Ô i — ô 2+.9ô 3 = 0
05 j — Ô2+.36Ô3 = 0.

Solving the system of equations yields: b, = .284, ô2 = .189, ô3 = .526. Letting U; = term;,

and substituting these values into the harmonic and arithmetic portions of equation (2.2)

yields

Arithmetic Mean: 1.43x-1 + 1656:xf V 1 + 47.6x 9536 > (2.22)

T-4795 17

Harmonic Mean:
2842 .1892 ,5262

+ ------------- ;— r +
1.43%-' 1656%-y 47.6% V 6

(2.23)

Using the optimal weights, if values for each of the variables are chosen at random, we

know that the inequalities will not become equalities unless optimality has been reached.

Choosing x = s = 1, and substituting these values into (2.22), and (2.23), gives arithmetic

and harmonic mean approximations which will henceforth be called zobj and zh,

respectively, of 1705 and 16.07. Using the harmonic mean approximation (zh) and the

optimal deltas, new values for x and s can then be backed out, using Woolsey’s rule III

which was described in chapter 1. This method very closely resembles the method Ratliff

used with geometric programming. The new values for each variable will be closer to

optimality than the old values. The calculations are as follows

1.43%"116.07 =
284 '

.313:
(2.24)

284
• * *new —•313,
1.43%-' 1656%-y

284 .189
Snew — 1 7 4 0 .

Using these new values for x and s, in equations (2.22), and (2.23), gives zobjnew = 253.19,

and zhnew = 32.75. Extensive computational experience suggests that, with successive

iterations, the values for each variable will eventually converge, as will the values of zobj

T-4795 18

and a . For this example, it is apparent that neither the variables, nor the mean

approximations have converged yet.

Labeling xoid = xnew, sold = Snew, and using ztmew, the second iteration begins. This

process continues for seven iterations using epsilon = .01. The results are as follows

zobj = 94.6

z h = 94.6

x = .0532

s = 1740.

Comparing these results to the known values at optimality, of z = 94.65, s = 1740, and x

= .0532, it is apparent that optimality has been reached for this problem using harmonic

programming.

In equation (2.24) rule III was used to calculate new values for x and s. Although

this is easy to do by hand, it is significantly harder to program when a variable does not

exist by itself in a term (e.g., s above). To simplify the programming, the following

technique was used.

1) Does the variable exist by itself in a term? If yes, then solve for its new value

using rule III, and move to the next variable. Check and solve for all variables that exist

by themselves.

For example: Does x appear by itself in a term? Yes, then

T-4795 19

(2.25)

x =.313

The next variable is s. Does s appear by itself in a term? No. Have all other variables

been checked? Yes, then go to step two.

2) Start with the first variable that does not exist by itself in a term. Call this

variable xint. Use the latest value calculated for all other variables, and set them as

constants. State the simplified objective function ignoring any constants.

For example: s is the first variable that does not exist by itself in a term; s = xint. Use

the latest value calculated for all other variables, and set them as constants, i.e. x = .313.

State the simplified objective function

3) Is the simplified objective function for xint a zero degree of difficulty problem?

If yes, then using the latest value for xint, calculate new deltas, and the harmonic mean

approximation. If no, go to step five.

For example: is the simplified objective function (2.26) zero degree of difficulty? Yes.

Using rule II: ôi = .23 and 82 = .77. The harmonic mean approximation is

1 6 5 6 ^ +
.313

5290.7j ’1 + 16.7s3

'simplified s ' + 4 7 .6 (3 1 3)9S 3 (2.26)

-1
_ 2 Ÿ ,772

2,1 "" 5290.7(1)"' + 16.7(1)3
= 28.15

(2.27)

T-4795 20

4) Solve for a new value of xint using rule III, and the deltas and harmonic mean

approximation calculated in step three. Move to the next variable that does not exist

alone in a term, and go to step two. Continue until new values have been calculated for

each variable.

For example: using rule III

28.15 = (5290,")A23;
•■V. =816.9.

5) Condense the simplified objective function into a zero degree of difficulty

problem using the method outlined in chapter 1. Go to step 3.

For example: if the simplified objective function (2.26), had instead been the following

one degree of difficulty problem

= 5290.7,-' + 16 .7 / + 2 / , (2.29)

it would have needed to be condensed, before solving for the new value, of the variable of

interest. Using the method outlined in chapter 1, this problem can be condensed in the

following manner

a. Group the positively powered terms and negatively powered terms

together. For this problem, since there is only one negatively powered term, it does not

need to be condensed. The positively powered terms are

1 6 .7 /+ 2 ? . (2.30)

T-4795 21

b. Calculate the weights for each term using the latest value for the

variable of interest.

16.7(1/
oo, =

' 16.7(1)' +2(l)
.'. oo i =.89;

2 ’

2(1)' (2'31)
16.7(1)' + 2(1)' ’

.'. 00 2 = .1 1 .

c. Using the weights calculated above, condense the terms.

r 16.7$3'189 f ̂ 2 \

.89 >

= 18.625487

2 s
X

V .11/

.11

(2.32)

d. Combine the condensed positively powered term and negatively

powered term and state the new zero degree of difficulty, simplified objective function.

= 5290.7,-' + 18 .62 /" (2.33)

The algorithm used in this section is called Harmonic Programming Algorithm

#1. As mentioned before, this algorithm is designed to solve unconstrained, zero degree

of difficulty, posynomial optimization problems in the form of equation (2.1). This

algorithm is the basis for the other algorithms which will be described in the next section

The flow chart for this algorithm follows on the next page.

T-4795 22

Harmonic Programming Algorithm #1 Flowchart

Choose starting values for x ' s

Compute 5 ' s

Compute z using
original objective

function

Compute z f using the harmonic mean
approximation:

- i - i

z' =
Terml Term! TermN

Does
Xi appear alone in
^ a term?

Solve for xiNew using
Rule IIIYes

Does i =
of variables? NoNo

Treat all variables but xi as
constants.

Xi = Xi+1

Yes

32 41

T-4795 23

Harmonic Programming Algorithm #1 Flowchart (continued):

State new objective
function

Is new
objective function

0 D.D.?

Condense
terms

to a 0 D.D.
problem using
the method in

Harmonic
Programming
Algorithm #2

Compute ô ' s

is \Z - z ' \<£ No

Yes

io ld ^ it No

Yes

Stop

T-4795 24

2.3 Harmonic Programming Algorithm #2: An Algorithm to Solve Unconstrained,
Multiple Degree of Difficulty, Single Variable, Posynomial Optimization Problems
in the Form of Equation (2.1)

This algorithm uses condensation extensively. It is designed to solve

unconstrained, multiple degree of difficulty, single variable, posynomial optimization

problems in the form of equation (2.1). The approach is to condense the problem into a

zero degree of difficulty problem, solve the simplified problem, and back out a new

variable using the method described in harmonic programming algorithm #1. The new

value is then used to recondense the original problem. This process is repeated, until the

values of the variable converge, between successive iterations. This technique is very

similar to the approach Ratliff used in MULTICON, with the exception that the harmonic

mean approximation is used in place of the geometric mean approximation. This

algorithm, along with the one described in section 2.2, will be combined to give the third

algorithm which solves multivariable, multiple degree of difficulty problems. Since there

are no new concepts introduced for this algorithm, a step by step example follows.

The economic order quantity model for use in nuclear medicine as reported by

Woolsey (1992), is a simple example of a problem which can be solved using harmonic

programming algorithm #2. The problem is

Minimize: Cost = 10£> + lOOOg-1 + Q2 (2.34)

T-4795 25

1) Group together negatively powered terms and positively powered terms. Since there

is only one negatively powered term, it does not need to be condensed. The following

condensation steps will address only the positively powered terms. If there had been

more than one negatively powered term, the same approach would be used to condense

them. The positively powered terms are

1O 5+02 (2.35)

2) Pick a starting value for x. Call this value xbar. For this example xbar = 1.

3) Using xbar, calculate the condensation weights for each term.

10(1)
co 1 —

1 io (i)+ 12 ’
..co, =.9091;

I2
10(1) + 12 ’

(2.36)
t o -, —

co 2 =.0909

4) Using the condensation weights (2.36), condense the positively powered terms into a

single term.

(2.37)
l o g "

.9091
" e 2 "

.0909

.9091 .0909
1.0909= i i g

5) Using the condensed positively powered terms, and condensed negatively powered

terms, state the simplified objective function.

T-4795 26

= 116' + 1000g-' (238)

6) Use Woolsey’s rule II to solve for the deltas in the simplified objective function.

The exponent matrix is

8l+S2 =1 (2 39)
1.0915,- S 2 = 0 ;

Solving the system of equations gives ôi = 4782, and 02 = 52 1 8.

7) Use the deltas calculated in step six, xbar, and the harmonic mean approximation to

calculate a value for the cost.

Cost =

= 4 7 5

.47822 52182
+

1 1(1)10909 1000(1)-' (2.40)

8) Use the value calculated for the cost in step seven, the appropriate delta calculated in

step six, and Woolsey’s rule III to calculate a new value for x.

. . g=1.89

9) Compare the difference between xbar and xnew. If the difference is negligible,

substitute the value of xnew into the original objective function. If the difference is not,

label xbar = xnew, and return to step three. For this example, using epsilon = .000001, this

process repeats itself for 8 iterations, until it converges at

Cost* = 261.07

T-4795 27

Q*=6.57

The flowchart for harmonic programming algorithm #2 is shown on the following page.

T-4795

Harmonic Programming Algorithm #2 Flowchart

What is the
power of the
^exponentTy

Positive Negative

Compute ô ' s

Group the term
in set exf ~

Group the term
in set axb+

State simplified objective
function

Choose initial value for variable
label Xbar

Put the equation in unconstrained,
balanced, posynomial form.

Using xbar calculate
condensation weights in the

sets axb+ 8c exf ~

Using condensation weights
condense sets axb+ & exf ~

using conventional G.P. format

T-4795

Harmonic Programming Algorithm #2 Flowchart (continued):

< e!S fta r-* ,

No
Stop

Yes

Xnew

becomes
Xbar

Solve for Xnew

using Rule III

Compute z using harmonic
mean approximation

T-4795 30

2.4 Harmonic Programming Algorithm #3: An Algorithm to Solve Unconstrained,
Multiple Degree of Difficulty, Multiple Variable, Posynomial Optimization
Problems in the Form of Equation (2.2)

Algorithm #3 combines the first two algorithms to solve unconstrained, multiple

degree of difficulty, multiple variable, posynomial optimization problems in the form of

equation (2.2). The approach is as follows

1) Pick starting values for each variable.

2) Using the starting values, or last value calculated for each variable, treat all

variables but one (xj) as constants. Restate the problem.

3) If the simplified problem is zero degree of difficulty:

a. Solve the simplified problem using harmonic programming algorithm

#1, and back out a new value for xj.

b. If after consecutive iterations, the value for each variable does not

change significantly, then stop; if not, set all but the next variable in the problem as

constants, and return to step 2.

If the simplified problem is not zero degree of difficulty:

a. Solve the simplified problem using harmonic programming algorithm

#2, and back out a new value for xj.

b. If after consecutive iterations, the value for each variable does not

change significantly then stop; if not, set all but the next variable in the problem as

constants, and return to step 2.

T-4795 31

Like algorithm #2, this algorithm uses a technique similar to that used by Ratliff

in MULTICON, with the exception that the harmonic mean approximation is used in

place of the geometric mean approximation. A step by step example follows.

The modification of the pipeline design problem as reported by Woolsey (1993),

is one which can be solved using harmonic programming algorithm #3. The problem is

Minimize: Cost =.225L>147 +.475iW1D 337 +.6687V+.785B"47, (2.42)

where D is the diameter of the pipe, and N is the number of pumping stations.

1) Choose starting values for D and N. Label the values Dow and Now.

Doid = 1

Nold = 1

2) Treat all variables but one as constants. State the simplified problem.

For example: on the first iteration, D will be treated as a variable and N as a constant.

Using the starting value for N the simplified objective function is

^ ^ = . 2 2 5 D '47+.475D337+.785D-47. (2.43)

Note that the constant .668 is not used in the simplified objective function.

3) Is the simplified objective function zero degree of difficulty? If yes, then solve for a

new value of D using one iteration of harmonic programming algorithm #1. If no, then

solve for a new value of D using one iteration of harmonic programming algorithm #2.

T-4795 32

For this example, it is one degree of difficulty so it is necessary to use harmonic

programming algorithm #2.

a. The problem is first condensed using the techniques described previously in

this thesis, which yields the following zero degree of difficulty problem

zsmpiifad =-7£*'70IJ+.785D~47. (2.44)

b. Using Woolsey’s rule I I yields: ôi = .4013 and 02 = .5987 for the simplified

objective function.

c. Using the deltas from b., and the starting value for D , a value for zsimpiified is

calculated using the harmonic mean approximation.

^simplified
.4013" .5987"

+
.7(1) 7012 .785(1)-" (2.45)

= 1.456

d. Using the value for zsimpiified calculated in c., the appropriate delta, and

Woolsey’s rule I I I , a new value for D is calculated.

•7Z)7012
.4013 ’ (2.46)

:.Dm.= .r m

4) Set the first variable D as a constant, and use N as a variable. State the simplified

objective function. Using the new value for D (.7731), the simplified objective function is

z ^ ,= .4 3 6 A r '+ .6 6 8 # . (2.47)

T-4795 33

Once again, note that all constants are dropped from the simplified objective fimction.

5) Is the simplified objective fimction zero degree of difficulty? If yes, then solve for a

new value of N using one iteration of harmonic programming algorithm #1. If no, then

solve for a new value of N using one iteration of harmonic programming algorithm #2.

The new simplified objective function (2.47) is zero degree of difficulty; therefore

harmonic programming algorithm #1 will be used.

a. Using Woolsey’s rule II yields: = .5 and §2 = -5 for the simplified objective

b. Using the deltas from a., and the starting value for N, a value for zsimpiified is

calculated using the harmonic mean approximation.

d. Using the value for zsimpiified calculated in b., the appropriate delta, and

Woolsey’s rule III, a new value for N is calculated.

function.

-i

^simplified
.52 | .52

..436(1)-' + .668(1) (2.48)

= 1.055

.66SN

new

(2.49)

6) Compare the difference between Doid and Dnew, and Noid and Nnew. If the difference is

negligible, plug the new values for each variable into the objective function and stop. If

T-4795 34

the difference is not, label Doid = Dnew, and Noid = Nnew, and return to step 2. For this

example, using epsilon = .000001, this process repeats itself for 10 iterations until it

converges at:

Cost = 2.1188,

D = .7842;

N = .8094.

The flowchart for harmonic programming algorithm #3 is shown on the following

page.

T-4795 35

Harmonic Programming Algorithm #3 Flowchart

Choose initial values for each
variable label x o id

Treat all variabh
constants. Simp

combining terms

;s but one (xj) as
)lify problem by
with like powers

Call
HarmonicProgramming
Algorithm # 2 . G e t x j N e w

a n d Zjnew.

Yes

Call Harmonic Programming
Algorithm #1. Get xjNew and zjNew.

1st Iteration? No Yes

Stop

Yes No

Label XjNew xjoid treat xj as a constant
use xj+i as the active variable

Is simplified^
problem 0 D.D.?

T-4795 36

2.5 The General Algorithm for Harmonic Programming

In the previous three sections, harmonic programming algorithms 1, 2 and 3 were

discussed. Combining these three algorithms produces a single algorithm which will

solve unconstrained, posynomial, zero or multiple degree of difficulty, as well as single

or multiple variable optimization problems in the form of equation (2.1).

The flowchart for this algorithm is shown on the following page. Using the

general algorithm for harmonic programming, a computer program was written in

FORTRAN for use on personal computers. The program listing is found in appendix B

and the program is further discussed in the next chapter. A sample computer run for

harmonic programming is found in appendix C.

T-4795 37

General Algorithm Flowchart

Use Harmonic
Programming
Alogorithm #3

Put equation in unconstrained
balanced form

Posynomial?

0 D.D. Problem?

Multivariables?

Use another
No nonlinear

optimization code,
such as:
MULTISIG,
MINOS, or LINGO.

Use Harmonic
Yes Programming

Algorithm #1

Use Harmonic
No Programming

Algorithm #2

T-4795 38

Chapter 3

ALGORITHM COMPARISON

3.1 The Test Algorithms

Once the harmonic programming algorithm was coded, the next step was to

compare it to the software for three established algorithms. The algorithms used for this

comparison were MULTICON, MINOS, and LINGO. A brief description of each

follows.

3.2 MULTICON (Ratliff, 1986)

As discussed in chapter 1, MULTICON is the program for Ratliff’s algorithm.

MULTICON is a generalized algorithm which solves unconstrained, balanced, multi-

variable, posynomial problems using geometric programming. In Jackson’s Ph. D.

Thesis (1994) he found that MULTICON produced excellent results for unconstrained

posynomial problems. Specifically, MULTICON will converge to the one and only local

minimum which also is the global minimum (Jackson, 1994 p. 87). Since MULTICON

is the closest algorithm to harmonic programming, it was chosen as one of the test

programs for the comparison. A version of MULTICON written in BASIC was used for

the test.

T-4795 39

3.3 MINOS (Murtagh and Saunders, 1983)

MINOS is a software package which is generally accepted by the mathematical

programming community as the baseline by which new algorithms are tested. Although

it is slower than many of the newer algorithms, it has proven over time to be reliable. As

described by Jackson (1994), a new algorithm typically must demonstrate that it is at least

superior in speed and equal in reliability to MINOS before the nonlinear programming

community is willing to exert any effort on it. The best current codes are generally 3-5

times faster than MINOS.

For the types of problems (nonlinear, unconstrained) which are solved by

Harmonic Programming, MINOS employs a reduced gradient method with quasi-Newton

line searches. This line search, on most problems, will provide superlinear convergence

(Jackson 1994 pp. 38-39).

3.4 LINGO (Liebman, et al 1986)

The primary algorithm used by LINGO is a version of the generalized reduced

gradient method called GRG2. GRG2 uses a reduced gradient method like MINOS, but

rather than employing a single line search method, LINGO chooses from a menu of line

search techniques. GRG2 will then choose the technique that it has heuristically

determined to produce the quickest, most efficient results. Since GRG2 is not confined

to a single line search technique, it is generally several times faster than MINOS.

T-4795 40

Through continuous testing and improvements, LINGO remains competitive with

comparable software packages (Jackson 1994 pp. 40-43).

3.5 The Test Set

The test set for the comparison consists of 23 unconstrained, posynomial

optimization problems ranging from zero to five degrees of difficulty. The test set was

compiled from a variety of sources, and is comprised of a majority of “real world”

optimization problems. A table listing each test problem, degrees of difficulty, and

reference is found on the next two pages.

T-4795 41

3.6 Summary Table of the Problem Set

EQUATION D
D

Reference

1)
z = 78%, + 27%1"1%21 +58%2

0 Thome (1988) Pg. 17

2)
z = 40Z™1 H~x W~x +10LW + 20 L H + 40 HW

0 Woolsey (1992) pg. 1-13
Gravel Box Design Problem

3)
z = $31625'5 + $34.3 Z’ + $108 p - lS~5

0 Woolsey (1992) pg. 1-9
Plastic Batch Reactor

4)
z = 1.43X"1 + lô S S .S x 'V 1 + 47.6% V 36

0 Woolsey (1992) pg. 1-18
Pumping Coal Slurry Problem

5)
z = 3660% + 175%2 + 1.34x3 + 50,000%^

2 Proposed by Neghabat and Stark
(1972), reported by Wilde (1978)
Cofferdam Problem

6)
z = 40H~l L~lW-1 +10LW + 20HL + 40HW
+10Z

1 Duffin, Peterson and Zener (1967)
Gravel Sled Problem

7)
z = 4%1%2 + 3%1-2 + 2%2%21

0 Woolsey G.P. Handout

8)
z = io 2 + io o o g "1+ g 2

1 Woolsey (1992) pg. 2-4
EOQ Model for Nuclear Medicine

9)
z =225DlA1+A75N-lD337 +.668A^+.785Z>"47

1 Woolsey G.P. Exam 93, Prob. #5
Pipeline Design Problem

10)
z = 62 • 107j "3 + 25-lO"4^^ + 96- lO-4^

+35- 1045_1(f + 1.2)”1

2 Wilde (1978)
Fruit Van Design Problem

11)
z = lo g 12̂ "1 + 600g -1 + 10-V

0 Schweyer (1955)
Batchsize Problem

12)
z = C23v4 + C19G + C20G2*N-1* + C21A '1
+C22A~1G -8N-8 + C23G-1
(assume all constants =1)

2 Sherwood (1970)
Ammonia Refrigerator Problem

ARTHUR LAKES LIBRARY
COLORADO SCHOOL OF MIMEl
GOLDEN, CO 80401

T-4795 42

EQUATION D
D

Reference

13)
z =.968 • 106Z)163 + 2.88 • 106D '61N~'

+.3M 06£)"48,+217-106Af

1 Woolsey (1992) pg. 3-5
Pipeline Pumping Station Problem
#1

14)

z = 106Z>18 + 3 • 106D 'sN~' + 3 • lO6/) " 87

+.15-106Ai

1 Woolsey(1992) pg. 3-6
Pipeline Pumping Station Problem
#2

15)
z = 1 OOOx + 4 • 109 + 2.5 - 105_y + ÇOOOxy

1 Beightler and Phillips (1976)
Chemical Plant Problem

16)
z = 70.0035m + 2333.33Z'1 + 3333.337T1
+8333.337/''ZT1

1 Taylor (1986)
Mining Problem

17)
z = 5000TJ + 250007’"'5

0 Woolsey (1975)
Optimum Bitcycle Selection Problem

18)
z = 30j + 100z_1 +40

0 Schweyer (1955)
Steampipe Insulation Problem

19)
z = 11.8609822*470 + 441.1192843*"146
+3218347592*648 + 1467706.463*568
+1040* + 0.077708883*736 + 23.68803092*"^

5 Ratliff (1986)
Space Shuttle Design Problem

20)

z =.1r i2 +*7+ , 7 2 + ^ ; +j ool
* (*y)

2 Ravindran et al (1983)
Gear Train Inertia Problem

21)
z = 5xy + 7x + 83/ + 4x"2 + 8y~2

2 Wessels (1989)
Wessels Problem 1

22)
z = 60x~3y~2 + 50x3_y + 20x"3̂ 3

0 Reklaitis et al Problem pg. 499
(1983)

23)
z = (xy)-1 + x 5 + y 75

0 Reklaitis et al Problem pg. 531
(1983)

T-4795 43

3.7 The Comparison

Since the software for each of the algorithms used in this comparison, are written

in different computer languages, and by different programmers, this comparison is not a

truly fair one. Each of the algorithms is constrained by how quickly its respective

language can process the code. In order to make the comparison as impartial as possible,

the software for each of the four algorithms was loaded on the same computer. The

computer was a 386 EVEREX PC, with 8 megabytes of RAM. Each test problem was

then solved using each of the algorithms. A starting value of 1 was given to each of the

variables for every problem. This value was used since it was an unbiased number, and

because previous algorithm comparisons (Dolan, Jackson) had also used it as an initial

value. The number of iterations, running time, and solutions were recorded. A summary

table of these results is given on the following three pages, and a complete listing of these

test results can be found in appendix A.

T-4795

3.8 Summary Table of the Comparison Results
So

lut
ion

Fo

un
d

&
Ru

nn
in

g
Ti

me

|

0

1 z*
=

14
8.

85

xi*

=
.6

36
7

X2
*

=
.8

55
6

tim
e

<
1

se
c

z*
=

10
0

L*
=

1.
99

68

H*

=
.5

02
1

W*

=
1.

00
0

tim
e:

1 s
ec

z*
=

30
,8

22

S*
=1

05
5.

76

P*
=

29
9.

54

tim
e:

2
se

c *n m

III!
Il H II g

^ to *5 z*
=

29
,1

72

x*
=

3.
21

8
tim

e:
1

se
c

z*
=

11
5.

72

H*

=
.5

95
0

L*
=

1.
29

29

W*
=

1.
18

99

tim
e:

3
se

c _ o o
R S P %Cs VO <-y

i i i i III

M
IN

O
S

z*
=

14
8.

85

xi*

=
.6

36

X2
*

=.
85

5
tim

e:
8

se
c

z*
=1

00

L*
=

2.
00

0
H*

=

.5
00

W*

=

1.
00

0
tim

e:
11

se
c

z*
=

30
,8

22

S*
=1

05
5.

80

P*
=

29
9.

54

tim
e:

8
se

c
z*

=
94

.6
3

x*
=

.0
53

s*

=1
74

0.
00

tim

e:
9

se
c

z*
=2

9,
17

2
x*

=
3.

21
8

tim
e:

8
se

c
z*

=
11

5.
72

H*

=

.5
95

L*

=
1.

29
3

W*

=
1.

19
0

tim
e:

9
se

c
z*

=
8.

53
3

xi*

=
.9

06

X2
*

=
67

3
tim

e:
8

se
c

O r- 8ur> m

m

M
UL

TI
CO

N
z*

=
14

8.
85

xi*

=

.6
36

1
X2

*
=

.8
55

5
tim

e:
8

se
c

z*
=

10
0

L*

=
2.

00
06

H*

=

.4
99

9
W*

=

.9
99

8
tim

e:
24

se
c

z*
=

30
,8

22

S*
=1

05
5.

89

P*
=

29
9.

54

tim
e:

8
se

c
z*

=
94

.6
3

x*
=

.0
53

2
s*

=1
73

9.
71

tim

e:2
1

se
c

z*
=2

9,
17

2
x*

=
3.

21
8

tim
e:

1
se

c
z*

=
11

5.
72

H*

=

.5
94

9
L*

=
1.

29
30

W*

=
1.

18
99

tim

e:
25

se
c

z*
=

8.
53

3
xi*

=

.9
05

7
X2

*
=

.6
73

0
tim

e:
4

se
c P r- 8i—< <n tzi

Ibi

H.
 P

.
z*

=
14

8.
85

xi*

=

.6
36

1
X2

*
=

.8
55

5
tim

e:<

1 s
ec

z*
=

10
0

L*

=
1.

99
99

H*

=

.5
00

0
W*

=

.9
99

9
tim

e:<

1 s
ec

z*
=

30
,8

22

S*
=1

05
5.

80

P*
=

29
9.

54

tim
e:<

1 s

ec
z*

=
94

.6
3

x*
=

.0
53

2
s*

=1
73

9.
99

tim

e:<

1 s
ec

z*
=

29
,1

72

x*
=

3.
21

8
tim

e:<

1 s
ec

z*
=

11
5.

72

H*

=
.5

94
9

L*
=

1.
29

30

W
*=

l
.1

89
9

tim
e:<

1 s

ec
z*

=
8.

53
3

xi*

=
.9

05
7

X2
*

=
.6

73
0

tim
e:<

1 s

ec p S

S f v

V a l

O
pt

im
al

So
lu

tio
n

3 %
3 $ £

i i i z*
=

10
0

L*
=

2.
00

H*

=

.5
00

W*

=

1.
00

z*=

$3
0,

82
2

S*
=1

05
5.

80

P*
=

29
9.

54

z*
=

94
.6

0
x*

=
.0

53
2

s*
=

17
40

p! oo

cn rn
II «
N % z*

=1
15

.7
2

H*

=
.5

96
2

L*
=

1.
29

42

W
=

1.
18

84 sis
Hi

^ in

Si

EQ
U

A
TI

O
N

X00m
+

:*
X

<N
+
Xoor-
II

C - N

1
!
+

o
+

II
FT n

«1.i
7
Ay
o

+
Ay
n
m
+

•n

3
m
II

m N

n
on6"3

X

r-~

+
Tjo
7

XOO
OOun
VO
+

7
Xm

2
h

7
ë

1un
+

mx2
+

a
+

iVOm
II

GF N

i
8
+

•*40
+

L)

1 =
(o' N +

“x
CN
+

7X-m
+

4T
II

P N

+

o§o
+

o

oo N

T-4795 45

(N

Q Z

00
<o

5 S— in
N to

CN m y CN
m va m
NO m CN CN
r n m
F—H 0 0 i n i n
II II II Ï II

a l

VO Tf oo On tj-
» n
i n

II
*
<

O On 'T fS
OO •

g
I f
(N

xr vm tzim in
II U

Q Z

VO
o _
T f Ov
VO
m

r~
m r ~
00 (N
CN VO
— m
Il II

Q Z

CN

O

^ Tl; On umi
CN c n — i _

•l v l i

OO
0 0 Tt- O n

OO O
OO

CN
IIII II

* *
*N Q z

ÇN
T f oo

h VON- ^ r- u jn cn vo
i n

O rr O n

ll (U
1 - Ü
h 11 h «>

* n a S u I

en oo o
■y — <N u
in (N CN to
^ °o U oo
II II II o

* * * g
< O Z - 5

h . U
ii " ii a

n Q z I

in

—I in on
a>II " I'

N Q Z

i .
8 S $
CN ^ —

II O

X >N

H

§

s; «
O co
OO ^
II

Q Z - 5

r ~ON in
P 5 §
O CN

— VO

0 0 y
= ^ 3 %
S D 22 ONCN

Il II i i

a l l

T f O
§
«=>

S l ï i
Il II II i i

*N Q Z I

il ll a>

N < O Z

i n
00
m m i n

|!!!
i â i i

^ o o O n

111 CN Tf «

«

9 s:
o o o
f - 00

N Q Z

ÇN
TT OO

— « n

r -
o or— i n i n

s E =
II <u

N co n a B t

o o r ~
cn r~ r~

o CN
i n CN CN
- 0 0 ^

Il II II
* * *
< o z

O
OO u
O 1 4)" no in co

E^v
n 11 11 «
N Q Z I

in
OO um in in (u
m . t^ ^ m vII 11 11 «

Q Z J

! «

II
CN N "

II

O n
i n O
o U
VO
w m

II i i
* fc
>»

n
OO O n
Tf O n
OO O
t~~ OO

Il II
Q Z

CN
T f o o
T t ^
i n m
O T f

i n

0 0
r ~ r-~

=5 CN
OV VO CN
o o T CN
o o r ~ i n

CN i n
II II II

* *
c x i l *N

VO T f
ÇN CN NO
^ O CN
i n CN CN
- -

< o z

o
o o
o

m
rn

m
o o
c n m i n

m o o
o o O n

U* <n i n
— i n

Q Z n Q Z

! $ r

111
CN —

V II

X %N

1

I
1

o ? N

to
To

VO
Ov
+
co

7o
m
CN
+
co

O

S
ii

X N

+

'c n

O

m

?

o
+

boo
VO

+

O)o
ll
N

Ü 3

+
°°
T

=°

o

u s

+
o

u 2

+

u s

II
N

us 7 + &

Ii

Q

o

oo
o o
CN
+

2

Q

o
oo
VO

II
N

o

r s
+

°°

Q

o

+

Q

m

+

Q

o

m
+

oo

Q

o

ii

Z N

O

+

t
Ov
+

+

o

id "
+

— N

T-4795 46

S I 3 S

f î ' T i
•n S: i I

OO
<D
O

<N ^
II ü
N H

r -
o un en

Tf un CN
un

$ § V
Os
en 1

%
n- o

II II S II II S* * *
N «l +-> N X ■M

fN ^

-H tS

r -
% SO 3 S 1 CN
un Tf OS

§
O

en
p V Si

II n II y n II II
* * * Ë * * *
N X >n N X >n

m r*O t~- r—'oo «n o

N X >%

^ g ; °
(N On mm oo
f t

 ̂Im o s
II o

ooso
s

N H

•n vo
o< 5

Il II
i
*x

en o «Tf en
O O

-H CN
II II

*x *
> n

a

so
S — U
"i 3 o %
^ °® - ^n n n y
i<i

»-< o
2 3 %
^ OS Ov

II II O
N X >> +

1 § « 8
(N - ” ^II II II «
* * * r
N X >» ‘i

f

i
«a

1
£
§

S ? c s 0s æ 3 »
s t t ;

i j !N

OO
so
o
SO

3 - 5

n H

II II <U

r~
un
un § o
OS o

o UJ
en o
n - O
II II P* *
N X

^ 29 o so o — %

S $ §
-H —' (N
ll II II «

%
oo

so
OO (N yso °o ^ a>i n (N Os en

^ S 5
II H II

en

N X * N X > . '-S

3 —' oO en

§ 5 1 =
n n n y

*N "x %,'E

1 § 3 5

II II II <P
N X >% •*3

S OS o %
(N OS enen OO TfO
en n - en V

II II II <u

*N Se U

OO
SO
O
SO
m
es o
(N un
II

5; s» "

Il O

N H
II II g
N "va -*3

» !
m o
r r O

i l

g m o %
^ S S -

e s

Isl *X

il 2

v !

SO
OO
so 60
«n e s Os
s i S 5 v
II II II 2

*
X >s "i

ii i"
ii ii ii y
N *X V ’Ü

en en
o t~-
00 SO
oo r -
(N »-«

V
hi

*• * * _
N X > > -S

II 11

I
O

Ov
(N OS
en OO
O
m Ti

II ll

X

en

S
sen
r f
cn un

U

•y
un so
3 S i

*
X

un Os so r -
Ti SO OO 00 (N
en Ov so r~
Tfr CN un CN Os
r - O so O

CN en oo

II II II II II
* » * *x Pn N X Pn

II!
n " il

I s X t n

III
..........

I
I

S
n
m
m
m
m
+

L)
m

S
m
m
(N

i
e no
§r-~

S
n
m
m
m

%

Ë-,
Ooo
u n
(N
+

L
§o
u n

II
N

O
Tj-

Oo
+
o
m

Os

S
+
%
%

+
> s
+

+

+
CN

*
+

4f
+
&
+
£
+

$
n

(N N

î
(N
+

S
u n
+

S
< o

N

+
\
+

T-4795 47

3.9 Comparison Results & Table

The following table illustrates how harmonic programming compared to the other

algorithms, subject to the caveat on page 43. An “X” in a column signifies that harmonic

programming was faster or produced more accurate results (at least .0001 closer to the

optimal solution), than the specified program. A " signifies no difference. A “w”

signifies that harmonic programming was slower or produced less accurate results.

MULTICON MULTICON MINOS MINOS LINGO LINGO
Problem # RUNTIME ACCURACY RUNTIME ACCURACY RUNTIME ACCURACY

1 X — X — — X
2 X X X — X X
3 X X X — X X
4 X X X — X X
5 X — X — X —

6 X — X — X —

7 X — X — X —

8 X — X — ■ — —

9 X — X — X —

10 X X X — X —

11 X — X — X X
12 X X X — X X
13 X — X — X —

14 X — X — X X
15 X — X — X X
16 X — X — X X
17 — — X — — —

18 — X — — —

19 X — X — X —

20 X X X — X —

21 X — X — — X
22 X — X — X —

23 X X X — X X

T-4795 48

The comparison showed, subject to the caveat on page 43, that for every test

problem, harmonic programming produced as good, or (in most cases) better results in

running time and accuracy than the other three algorithms. Specifically, harmonic

programming was more accurate and faster than MULTICON and LINGO, and as

accurate and faster than MINOS.

T-4795 49

Chapter 4

CONCLUSIONS &
SUGGESTIONS FOR FURTHER STUDY

4.1 Conclusion

The harmonic programming algorithm shows that, like the geometric mean, the

harmonic mean can be used in mathematical programming. Most significantly, not only

did the algorithm work, but for every test problem, subject to the caveat on page 43,

harmonic programming produced as good or (in most cases) better results in running time

and accuracy than MULTICON, MINOS, and LINGO. Also important is the fact that,

since harmonic programming is a whole new field in mathematical programming, it

opens many doors for further research.

4.2 Limitations

Although harmonic programming has been shown to be successful for solving

unconstrained posynomial functions, its greatest limitations are its inability to solve

constrained posynomial functions, and signomial problems. The author tried,

unsuccessfully, to hand calculate a few of these problems, but this area was not

researched extensively.

T-4795 50

4.3 Areas for Further Research

Signomials have always been a topic of many studies. Most recently, William T.

Dolan developed an algorithm (MULTISIG) to solve unconstrained signomials. He

discovered that, given a signomial function, one could bring all negative terms to the left

hand side, condense it, divide back through and solve the new posynomial with Ratliffs

method. Since harmonic programming has been shown to be as accurate as and faster

than MULTICON, it is logical to assume that harmonic programming could replace

Ratliffs method in MULTISIG. The resulting algorithm would probably be faster than

MULTISIG.

Another interesting point about signomials involves Woolsey’s rule II exponent

matrix. In geometric programming, if a zero degree of difficulty signomial is

encountered, it is possible to solve the problem using slight modifications to Woolsey’s

rules II and III. Using the same modification to the rule II matrix, I was able to solve by

hand a couple of zero degree of difficulty signomial problems using harmonic

programming. One of these problems was

Minimize: z = SO*3 - 1 Ox. (4.1)

The signomial rule II matrix is built in the same way as posynomials, with two

exceptions. The first exception is that the right hand side of the first row is represented as

<7. Sigma will be either 1 or -1, depending on which value will produce positive deltas

T-4795 51

when the system of equations is solved. The second exception is that each delta in the

matrix is also multiplied by the power of its corresponding coefficient. For the problem

above, the exponent matrix would be as follows

Ô- " Ô2=CT (4.2)
3 0 , - 0 2 = 0.

For this example, using a = -1, and solving the system of equations yields: bl = .5, and

ô2 = 1.5. Using these deltas, and harmonic programming algorithm #1, the optimal value

of x was calculated to be .333, and the optimal value for z was -2.22. These values match

the optimal values which result when using calculus. Since this technique works for

some signomials, another area for research would be to determine for what kinds of

signomials this method will work.

A third area for research would be to expand the harmonic programming

algorithm so that it would be able to solve constrained problems.

A fourth area for research would be to see whether the logarithmic mean could be

used to develop an algorithm similar to those for geometric and harmonic programming.

We would conjecture that a hybrid algorithm using the geometric, harmonic, and

logarithmic mean might well be worth investigating, in a manner similar to that of this

thesis.

T-4795 52

A final suggested topic would be to prove whether or not the squared deltas in the

approximation cause harmonic programming to converge faster than geometric

programming.

T-4795 53

REFERENCES CITED

Beightler, C. and D. Phillipps. 1976. Applied Geometric Programming. New York:
John Wiley and Sons.

Beyer, W.H. 1991. CRC Standard Mathematical Tables and Formulae. Boca Raton,
Florida: CRC Press.

Dolan, W.T. 1995. “A Geometric Programming Algorithm for Solving a Class of
Unconstrained Signomials.” Master’s Thesis, Colorado School of Mines.

Duffin, R.J., E.L. Peterson, and C. Zener. 1967. Geometric Programming. New York:
Wiley and Sons.

Duffin, R.J., E.L. Peterson, and C. Zener. 1972. “Reversed Geometric Programs Treated
by Harmonic Means.” Indiana University Mathematics Journal vol. 22: 531-
550.

Jackson, J.A. 1994. “A Mathematical Experiment in Geometric Programming.” Ph. D.
Thesis, Colorado School of Mines.

Ratliff, R.M. 1986. “A Generalized Condensation Algorithm for the Solution of
Unconstrained Balanced Posynomial Problems Using Geometric Programming.”
Master’s Thesis, Colorado School of Mines.

Reklaitis, G. V., A. Ravindran, and K. M. Ragsdell. 1983. Engineering Optimization.
New York: Wiley and Sons.

Schweyer, H. 1955. Process Engineering Economics. New York: McGraw-Hill.

Sherwood, T. K. 1970. A Course in Process Design. New York: John Wiley and Sons.

Taylor, D. 1986. An unpublished report on a shrink stop mining process. University of
Nevada at Reno.

Thome, J. 1988. “An Algorithm for Solving a Class of Nonlinear Unconstrained
Signomial Economic Models Using the Greening Technique.” Ph. D. Thesis,
Colorado School of Mines.

T-4795 54

Wessels, G. J. 1989. “A Geometric Programming Algorithm for Solving a Class of
Nonlinear, Signomial Optimization Problems.” Ph. D. Thesis, Colorado School
of Mines.

Wilde, D. J. 1978. Globally Optimal Design. New York: Wiley and Sons.

Woolsey, R. E. D. 1992 Engineering Design Optimized with Geometric Programming.
Vol. 1 in the Useful Engineering Series.

Woolsey, R. E. D. And H. S. Swanson. 1975. Operations Research for Immediate
Application: A Quick and Dirty Manual. New York: Harper and Row.

T-4795 55

GLOSSARY OF TERMS (RATLIFF 1986)

Balanced: at least one positive and one negative exponent must appear for each variable

in the problem.

Condensation: a method used to reduce the degree of difficulty of a problem. It is an

iterative procedure which employs the geometric inequality a second time while solving

the original problem.

Constraint: a relationship which defines some bounds to the possible values of the

variables in the problem.

Convergence Condition: the maximum change in the value of the function (or the values

of the variables) through successive iterations which is allowed for convergence to have

occurred.

Degree of Difficulty: an indication of how difficult it is to solve the original problem;

progressively higher numbered problems become much more difficult to solve. The

T-4795 56

degree of difficulty is defined to be the number of terms, minus the number of variables,

minus one.

Harmonic Programming: an algorithm similar to geometric programming, which uses the

arithmetic-geometric-harmonic mean inequality to solve unconstrained balanced

posynomials.

Iterations: a measurement of the number of solutions which are evaluated until one is

found which satisfies the convergence condition.

Nonlinear: an equation in which the variables may appear with powers other than one.

Posynomial: similar to a polynomial; the coefficients must be positive and the exponents

on each variable are real constants.

Term: any part of the equation set apart from the rest by a +, -, or inequality as well as

having both a constant and a variable part to it.

Unconstrained: no restrictions exist on the variables or the objective function other than

they be positive, real values.

T-4795 57

Weight: the fraction of the total value of an equation contributed by a particular term

T-4795 58

Appendix A

Test Problems

1) THOME PROBLEM 1 (Thome 1988)

Minimize: z = 78x, + 27x, 'x2l + 58x2

Optimal solution: z = 148.85
xi = .6361
X2 = .8555

Initial values: xi = 1
X2 = 1

y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

5 < 1 sec xi = .6361
X2 = .8555

148.85

MULTICON 38 8 sec xi = .6361
X2 = .8555

148.85

MINOS 6 8 sec xi = .636
X2 = .855

148.85

LINGO 4 < 1 sec xi = .6367
X2 = .8556

148.85

T-4795 59

2) THE GRAVEL BOX PROBLEM (Woolsey 1992)

Minimize: z = AQL~X + 10L W + 20LH + 40HW

Optimal solution: z = 100
L = 2.00
H = 0.50
W= 1.00

Initial values: L = 1
H = 1
W =1
y = .00001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

25 < 1 sec L = 1.9999
H = 0.5000
W = 0.9999

100

MULTICON 102 24 sec L = 2.0006
H = 0.4999
W = 0.9998

100

MINOS 11 11 sec L = 2.000
H = 0.500
W = 1.000

100

LINGO 12 1 sec L = 1.9968
H = 0.5021
W = 1.000

100

T-4795 60

3) PLASTIC BATCH REACTOR PROBLEM (Woolsey 1992)

Minimize: z = $316 .255 + $34 .3P + $108/ , - '5 ’ 5

Optimal solution: z = 30,822
S= 1055.80
P = 299.54

Initial values: S = 1
P= 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

18 < 1 sec S= 1055.80
P = 299.54

30,822

MULTICON 53 8 sec S = 1055.89
P = 299.54

30,822

MINOS 17 8 sec S = 1055.80
P = 299.54

30,822

LINGO 15 2 sec S= 1055.76
P = 299.54

30,822

T-4795 61

4) PUMPING COAL SLURRY PROBLEM (Woolsey 1992)

Minimize: z = 1.43x 1 + 1658.8x ls 1 +47.6x'9s 36

Optimal solution: z = 94.6
x = 0.0532
s= 1740

Initial values: x = 1
s = 1
y — .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

14 < 1 sec x = 0.0532
s= 1739.99

94.63

MULTICON 132 21 sec x = 0.0532
s= 1739.71

94.63

MINOS 22 9 sec x = .053
s= 1740.00

94.63

LINGO 65 7 sec x = 0.2071
s = 144.63

131.45

T-4795 62

5) COFFERDAM PROBLEM (Wilde 1978)

Minimize: z — 3660% + 175x2 + 1.34%3 + 50,000%

Optimal solution: z= 29,172.35
x = 3.218

Initial values: x = 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

8 < 1 sec x = 3.218 29,172.35

MULTICON 6 1 sec x = 3.218 29,172.35
MINOS 5 8 sec x = 3.218 29,172.35
LINGO 4 1 sec x = 3.218 29,172.35

T-4795 63

6) GRAVEL SLED PROBLEM (Duffin, Peterson, and Zener 1967)

Minimize: z = AOH^L^W'1 + WLW + 20HL + 40HW + 10L

Optimal solution: z= 115.72
H = .5962
L= 1.2942
W= 1.1884

Initial values: H = 1
L= 1
W= 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

26 < 1 sec H = 0.5949
L = 1.2930
W = 1.1899

115.72

MULTICON 131 25 sec H = 0.5949
L = 1.2930
W = 1.1899

115.72

MINOS 10 9 sec H = 0.595
L = 1.293
W = 1.190

115.72

LINGO 27 3 sec H = 0.5950
L = 1.2929
W = 1.1899

115.72

T-4795 64

7) WOOLSEY PROBLEM 1 (Woolsey Handout)

Minimize: z — 4XjX2 + 3x12 + 2x2 x21

Optimal solution: z = 8.533
xi = 0.906
X2 = 0.673

Initial values: xi = 1
X2 = 1,

y =.000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

5 < 1 sec xi-= 0.9057
X2 = 0.6730

8.533

MULTICON 25 4 sec xi = 0.9057
X2 = 0.6730

8.533

MINOS 5 8 sec xi = 0.906
X2 = 0.673

8.533

LINGO 11 1 sec xi = 0.9057
X2 = 0.6730

8.533

T-4795 65

8) EOQ MODEL FOR NUCLEAR MEDICINE (Woolsey 1992)

Minimize: z — 1 0 Q + 10000 1 + Q 2

Optimal solution: z = 261.07
Q = 6.57

Initial value: Q = 1
y = .00001

METHOD # TIME SOLUTION Z
ITERATIONS OBTAINED VALUE

HARMONIC 8 < 1 sec Q = 6.57 261.07
PROGRAMMING
MULTICON 7 1 sec Q = 6.57 261.07
MINOS 3 7 sec Q = 6.57 261.07
LINGO 2 < 1 sec Q = 6.57 261.07

T-4795 66

9) PIPELINE DESIGN PROBLEM (Woolsey 1993)

Minimize: z =.225D,47+.475Ar,Z>337+.668W-K785Zr 47

Optimal solution: z = 2.1188
D = 0.7848
N = 0.8099

Initial values: D = 1
N = 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

10 < 1 sec D = 0.7842
N = 0.8094

2.1188

MULTICON 48 7 sec D = 0.7842
N = 0.8094

2.1188

MINOS 4 8 sec D = 0.784
N = 0.809

2.1188

LINGO 4 1 sec D = 0.7847
N = 0.8097

2.1188

T-4795 67

10) FRUIT VAN DESIGN PROBLEM (Wilde 1978)

Minimize: z = 62 • 10V3 + 25 • l(rV f + 96• l(rV + 35 • lOV1̂ + 1.2)"1

Let: u = t + 1.2
t = u -1.2

The new objective function is:

Minimize: z = 62 • 1 0 V 3 + 25• IO’V h + 35• IO V 'm̂ +.OOôôs2

Optimal solution: z = 1054.42
s = 143.68
t = 5.67

Initial values: s = 1
t = 1
y = .0000000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

42 < 1 sec s = 143.68
t = 5.67

1054.42

MULTICON 45 8 sec s = 128.05
t = 6.96

1072.97

MINOS 13 9 sec s = 143.68
t = 5.67

1054.42

LINGO 13 2 sec s = 143.68
t = 5.67

1054.42

T-4795 68

11) BATCHSIZE PROBLEM (Schweyer 1955)

Minimize: z = \ 0 Q l 2 P ~ x + 600g ' + 10"6/ >

Optimal solution: z = 0.9033
Q= 1809.78
P = 279687

Initial values: Q = 1
P=1
y = .0000000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

z
VALUE

HARMONIC
PROGRAMMING

37 < 1 sec
 ̂

o
H

II

=
3

un
un

00 <1

.9011

MULTICON 56 9 sec Q = 1775
P = 281,587

.9011

MINOS 19 8 sec Q = 1776
P = 281,600

.9011

LINGO 101 12 sec

H
ll

2
2

2
V,

U)

1.3652

T-4795 69

12) AMMONIA REFRIGERATOR PROBLEM (Sherwood 1970)

Minimize: z = C22A + Cl9G + C20G2SN~]-8 + + C22A-'G-*N* + C23G 'X

(assume all constants (C) = 1)

Optimal solution: z = 5.5222
A = 1.5426
G = .8202
N = 1.2264

Initial values: A = 1
G= 1
N = 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

25 < 1 sec A = 1.5428
G = 0.8207
N = 1.2277

5.5222

MULTICON 156 29 sec A = 1.5420
G = 0.8168
N = 1.2194

5.5222

MINOS 7 8 sec A = 1.543
G = 0.821
N = 1.228

5.5222

LINGO 6 1 sec A = 1.5586
G = 0.8409
N = 1.2944

5.5232

T-4795 70

13) PIPELINE PUMPING STATION 1 (Woolsey 1992)

Minimize: z =.968 ■ 106D163 + 2.88 • 106JD1-63̂ “1+31 • • 1067V

Optimal solution: z = 2,784,080
D = 0.9006
N = 3.3451

Initial values: D = 1
N = 1
y =.000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

9 < 1 sec D = 0.9006
N = 3.3451

2,784,080

MULTICON 28 5 sec D = 0.9006
N = 3.3451

2,784,080

MINOS 10 8 sec D = 0.901
N = 3.345

2,784,080

LINGO 33 5 sec D = 0.9006
N = 3.3451

2,784,080

T-4795 71

14) PIPELINE PUMPING STATION PROBLEM 2 (Woolsey 1992)

Minimize: z = 106£>18 + 3 • \ 0 6D u N ~ l + 3 • I C f D ^ + A S • 106iV

Optimal solution: z = 4,136,385
D =1.2835
N =5.5985

Initial values: D = 1
N = 1
Y = .0000000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

12 <1 sec D = 1.2835
N = 5.5985

4,136,385

MULTICON 28 5 sec D = 1.2835
N = 5.5985

4,136,385

MINOS 9 9 sec D=1.284
N = 5.599

4,136,385

LINGO 16 2 sec 0=1.2839
N = 5.6277

4,136,406

T-4795 72

15) CHEMICAL PLANT PROBLEM (Beightler and Phillips 1976)

Minimize: z = IOOOjc + 4 • l O V y + 2 .5-10^ + 9 0 0 0 x y

Optimal solution: z = 12,809,668
x = 401.565
y = 1.60557

Initial values: x = 1
y= 1
y =.0000000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

415 3 sec x = 401.48
y = 1.6059

12,809,668

MULTICON 632 1 min 44 sec x = 401.48
y = 1.6059

12,809,668

MINOS 21 10 sec x = 401.48
y = 1.606

12,809,668

LINGO 30 4 sec x = 344.24
y =1.8819

12,819,650

T-4795 73

16) MINING PROBLEM (Taylor 1986)

Minimize: z = 70.00357#, + 2333.33#' + 3333.33//"' + 8333.33//"'#'

Optimal solution: z = 3032
H = 4.899
L = 3.429

Initial values: H = 1
L = 1
y = .0000000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

31 < 1 sec H = 4.899
L = 3.430

3032.92

MULTICON 97 16 sec H = 4.899
L = 3.430

3032.92

MINOS 8 9 sec H = 4.899
L = 3.430

3032.92

LINGO 8 1 sec H = 4.898
L = 3.432

3032.92

T-4795 74

17) OPTIMUM BITCYCLE SELECTION PROBLEM (Woolsey 1975)

Minimize: z = 5000T'5 + 25000T 5

Optimal solution: z = 22,360.67
T = 5

Initial values: T = 1
y = .000001

METHOD # TIME SOLUTION Z
ITERATIONS OBTAINED VALUE

HARMONIC 6 < 1 sec T = 5.00 22,360.68
PROGRAMMING
MULTICON 2 < 1 sec T = 5.00 22,360.68
MINOS 1 8 sec T = 5.00 22,360.68
LINGO 2 < 1 sec T = 5.00 22,360.68

T-4795 75

18) STEAMPIPE INSULATION PROBLEM (Schweyer 1955)

Minimize: z — 305+ 1005 1 + 40

Optimal solution: z = 149.54
s = 1.826

Initial values: s = 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

5 < 1 sec s = 1.826 149.54

MULTICON 2 < 1 sec s = 1.826 149.54
MINOS 4 9 sec s= 1.826 149.54
LINGO 2 < 1 sec s = 1.826 149.54

T-4795 76

19) SPACE SHUTTLE DESIGN PROBLEM (Ratliff 1986)

Minimize:
z = 11.8609822*470 + 441.1192843*"146

+3218347592*648 +1467706.463*568

+1040* + 0.077708883*736 + 23.68803092*"229

Optimal solution: z = 4,319.55
x = .00000237

Initial values: x = 1
y = .00000000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

5 < 1 sec .00000237 4,319.55

MULTICON 7 1 sec .00000237 4,319.55
MINOS 1 10 sec .00000237 4,319.55
LINGO 7 1 sec .00000237 4,319.55

T-4795 77

20) GEAR TRAIN INERTIA PROBLEM (Ravindran e t a l 1983)

Minimize: z -•! 12 + x + i+y +
x2/ +100

This can be rewritten as:

Minimize: z = 1.2+.lx2 +.lx-2 +.lx"2/ +.lx"2̂ "2 +1 Ox"4̂ "4

Optimal solution: z = 1.74415
x = 1.74345
y = 2.02969

Initial values: x = 1
y = l
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

9 < 1 sec x = 1.7435
y = 2.0297

1.7442

MULTICON 47 8 sec x = 1.6808
y = 2.041

1.7461

MINOS 9 10 sec x= 1.743
y = 2.030

1.7442

LINGO 8 1 sec x = 1.7435
y = 2.0297

1.7442

T-4795 78

21) WESSELS PROBLEM 1 (Wessels 1989)

Minimize: z — 5 x y + 7x + + 4x 2 +

Optimal solution: z = 31.5686
x = 0.862787
y = 1.09121

Initial values: x = 1
y= 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

5 < 1 sec x = 0.8628
y =1.0912

31.5686

MULTICON 15 3 sec x = 0.8628
y = 1.0912

31.5686

MINOS 5 9 sec x = 0.863
y = 1.091

31.5686

LINGO 2 < 1 sec x = 0.8646
y = 1.0926

31.5687

T-4795 79

22) REKLAITIS ^ a l PROBLEM pg. 499 (1983)

Minimize: z — 60x ^ 2 + 50x3y + 20% 3y 3

Optimal solution: z = 126.049
x= 1.10114
y = 0.944088

Initial values: x = 1
y= 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

10 < 1 sec x = 1.1011
y = 0.9441

126.049

MULTICON 72 11 sec x = 1.1011
y - 0.9441

126.049

MINOS 5 9 sec x = 1.101
y = 0.944

126.049

LINGO 8 1 sec x = 1.1012
y = 0.9441

126.049

T-4795 80

23) REKLAITIS e t a l PROBLEM pg. 531 (1983)

Minimize: z — (xy) + x 5 + y 15

Optimal solution: z = 2.88033
x = 1.76726
y = 0.851293

Initial values: x = 1
y = 1
y = .000001

METHOD #
ITERATIONS

TIME SOLUTION
OBTAINED

Z
VALUE

HARMONIC
PROGRAMMING

5 < 1 sec x = 1.7673
y = 0.8513

2.8803

MULTICON 28 4 sec x = 1.7667
y = 0.8515

2.8803

MINOS 7 9 sec x= 1.767
y = 0.851

2.8803

LINGO 5 1 sec x = 1.7571
y = 0.8701

2.8805

T-4795 81

Appendix B

The Program Listing

* *

*

* PROGRAM: HARMONIC PROGRAMMING
*

* PURPOSE: This program solves unconstrained, multivariable, posynomial
* problems by using the harmonic mean approximation and
* condensation.
*

* AUTHOR: Mark B. Pomeroy
* CPT U.S. Army
* Department of Mathematics and Computer Science
* Colorado School of Mines
*

* PROGRAMMED BY: Jason Kierstein
* Department of Mathematics and Computer Science
* Colorado School of Mines
*

* Mark B. Pomeroy
* CPT U.S. Army
* Department of Mathematics and Computer Science
* Colorado School of Mines
*

* WRITTEN: June 1995
*

* INPUTS: NVBLS: number of variables in the objective function
* VNAME(K): name of the Kth variable
* VARPWR(J,K): power in the Jth term of the Kth variable
* COEF(J): coefficient of the Jth term
* EPS: convergence tolerance
* XBAR(I): starting value for the Ith variable
* TERMS: number of terms in the objective function
*

* OUTPUTS : DELTA(I): the optimal delta of the Ith term
* ITER: the # of outerloop iterations to reach optimality

T-4795 82

* OBJ: the optimal objective function value
* XBAR(I): the optimal value of the Ith variable
*

* VARIABLES: A: upper triangular matrix
* AA: exponent matrix
* COEF(J): coefficient of the Jth term
* COND: an estimate of the condition number of A
* CONDAA: exponent matrix for the condensed obj. function
* CONDCOEF(J): the Jth term coefficient in the condensed
* obj. function
* CONDELTA(J): the delta for the Jth term in the
* condensed objective function
* CONDPWR(J): the Jth term power in the condensed
* objective function
* CONVERGE: reports whether the value has converged
* COUNT : a counter used when calculating XNEW
* DD: degree of difficulty
* DELTA(I): the calculated delta of the Ith term
* EPS: convergence tolerence
* FLAG: reports whether matrix A has a zero pivot
* ITER: the # of outerloop iterations to reach optimality
* OBJ: the harmonic mean objective function value
* OBJCOND: the H.M. value for the condensed obj. funct.
* OBJ 1 ST : the objective function value using XBAR(I)
* MARK: reports whether HP2 or HP3 is being used
* NEWCOEF: intermediate value when calculating OBJ 1ST
* NVBLS: number of variables in the objective function
* PVTIDX: pivot vector keeping track of row interchanges
* TEMP: a vector used in calculating deltas
* TEMPV: intermediate value when calculating XNEW
* TERMS: number of terms in the objective function
* VARPWR(J,K): power in the Jth term of the Kth variable
* VNAME(K): name of the Kth variable
* XBAR(I): last value for the Ith variable
* XNEW(I): current value of the Ith variable
* XVAL(I): an intermediate value for X(I) when calculating
* XNEW
* VARINT: the variable of interest
* *

T-4795 83

program hpl

implicit none

real*8 obj,obj 1 st,eps,newcoef(50),condpwr(2),objcond,newterm(50)
real*8 coef(50),varpwr(50,20),xval(20),xbar(20),xnew(20)
real*8 delta(50),tempv,condelta(2),condaa(2,2),condcoef(2)
double precision aa(20,20),temp(20),cond
integer i j ,k,rivbls,terms,varint,term,count,pvtidx(20),flag
integer converge, dd, marketer
character* 10 vname(20)
character* 1 rerun

common iter

print*, 'This program optimizes multivariable, unconstrained'
print*, '0-dd nonlinear programming problems using the.'
print*, 'harmonic mean approximation.'
print*, ' '
print*, 'The program is capable of handling functions with 20'
print*, 'variables and 50 terms.'
print*, ' '
print*, 'Variable names must be no greater the 10 characters.'
print*, ' '
print*, 'Enter the number of variables in the problem: '
read*, nvbls

* *

** INPUT THE VARIABLE NAMES

4 format (Ix,'Enter variable name ',12,' ')
do 6 i = 1,nvbls
print 4,i
read*, vname(i)

6 continue

print*, ' '
print*, 'Enter the number of terms in the problem: '
read*, terms

T-4795 84

* *

** INPUT THE COEFFICIENTS AND VARIABLE POWERS

print*, ' '
11 format (lx,'For term ',i2,' enter')
12 format (lx,'The power on \alO,' ')

do 13 j = 1,terms
print 11, j
print*, 'The coefficient: '
read*, coef(j)
do 14 k = 1,nvbls
print 12, vname(k)
read*, varpwr(j,k)

14 continue
13 continue

1 print*, ' '
print*, 'Enter a convergence tolerance xxxxx '
read*, eps

print*, ' '
print*, 'We now need to enter a starting value for each of the'
print*, 'variables.'
print*, ' '
do 18 i = 1, nvbls

print 20, 'Enter the starting value for variable ',i,' '
read *, xbar(i)

18 continue
20 format(lx,a,i2,a)

dd = terms - nvbls - 1
iter = 0

if((dd.gt.O).and.(nvbls.eq. 1)) then
mark = 0
call hp2(coef,varpwr,xbar,terms,eps,obj ,mark, 1)
goto 157

endif
if((dd.gt.O).and.(nvbls.gt.l)) then

T-4795 85

call hp3(coef,varpwr,terms,nvbls,xbar,eps,obj)
goto 157

endif
* *

** BUILD THE RULE 2 MATRIX

do 25 i = 1,terms
aa(l,i) = 1

25 continue

do 30 i = 2,nvbls+l
do 35 j = 1,terms

aa(ij) = varpwr(j,i-l)

35 continue
30 continue

delta(l) = 1

do 40 i = 2,nvbls+l
delta(i) = 0.0

40 continue
* *

** CALCULATE THE DELTAS

call factor(aa,20,terms,cond,pvtidx,flag,temp)

** CHECK FOR VALID OUTPUT FROM FACTOR SUBROUTINE

if(flag.gt.0) then
print*,'Zero pivot in delta calculation'

endif
if(flag.lt.0) then

print*,'Input error...check problem size'
endif

call solve(aa,20,terms,pvtidx,delta)

T-4795 86

* *

** CALCULATE THE 1ST OBJECTIVE FUNCTION VALUE

42 objlst = 0.0
do 45 i = 1,terms

newcoef(i) =1.0
do 47 j = 1,nvbls

newcoef(i) = newcoef(i) * xbar(j)**varpwr(ij)
47 continue

obj 1st = obj 1st + newcoef(i)*coef(i)
45 continue

* *

call harmonic_mean(delta,coef,xbar,varpwr,obj ,terms,nvbls)

** *

** CALCULATE NEW X's

varint = 1
term = 1

do 141 i = 1,nvbls
xnew(i) = -1

141 continue

145 if (varpwr(term,varint).ne.O) then
count = 0
do 153 j = 1,nvbls
if((varpwr(termj).eq.O).and.(j .ne.varint)) then

count = count + 1
endif

153 continue
if (count .eq. nvbls-1) then

xnew(varint)=(obj * delta(term)/coef(term)) * * (1 /varpwr(term,va
+rint))

if(varint.lt.nvbls) then

T-4795 87

varint = varint + 1
term = 1
goto 145

elseif(varint.eq.nvbls) then
goto 190

endif
else

if(term.lt.terms) then
term = term+1
goto 145

endif
endif

else
if(term.lt.terms) then

term = term + 1
goto 145

endif
endif

do 170 i = 1,nvbls
if(xnew(i) .eq. -1) then
xval(i) = xbar(i)

else
xval(i) = xnew(i)

endif
170 continue

do 178 j = 1,terms
tempv =1.0
do 179 i = 1,nvbls
if(i.ne. varint) then
tempv = tempv*xval(i)* * varpwr(j ,i)

endif
newcoef(j) = tempv* coef(j)

179 continue
178 continue

call condense(newcoef,varpwr,xval,terms,varint,condcoef,condpwr)

T-4795 88

condaa(l,l) = 1.
condaa(l,2) = 1.
condaa(2,l) = condpwr(l)
condaa(2,2) = condpwr(2)

call factor(condaa,2,2,cond,pvtidx,flag,temp)

** CHECK FOR VALID OUTPUT FROM FACTOR SUBROUTINE

iffflag.gt.O) then
print*,'Zero pivot in delta calculation'

endif
if(flag.ltO) then

print*,'Input error...check problem size'
endif

condelta(l) = 1.
condelta(2) = 0.
call solve(condaa,2,2,pvtidx,condelta)

call harmonic_mean(condelta,condcoef,xval(varint),condpwr,objcond,
+2,1)

xnew(varint)=(obj cond* condelta(1)/condcoef(1))**(! /condpwr(1))
if(varint.lt.nvbls) then

varint = varint + 1
goto 145

elseif(varint.lt.nvbls) then
goto 190

endif

190 converge = 1
i = 1
do while ((converge.eq. 1).and.(i.le.nvbls))

call compare_values(xbar(i),xnew(i),eps,converge)
i = i+1

enddo

if (converge.eq. 1) then
call compare_values(obj ,obj 1 st,eps,converge)

T-4795 89

endif

if(converge.eq.O) then
do 195 i = 1,nvbls

xbar(i) = xnew(i)
195 continue

iter = iter + 1
goto 42
endif

iter = iter + 1

157 print*, ' '
do 160 i = 1,nvbls

print *, 'Optimal value of',vname(i),' is xbar(i)
160 continue

print*,
print*, 'Optimal Objective Function Value is ',obj
print*,
print*,'Number of Iterations = ',iter

* *

** PRINT DELTAS

do 19 i = 1,terms
newterm(i) =1.0

19 continue

do 22 i = 1,terms
do 23 j = 1,nvbls
newterm(i) = newterm(i)*xbar(j)**varpwr(ij)

23 continue
delta(i) = coef(i) * newterm(i) / obj

22 continue

print*,
do 50 i = 1, terms

print 48,i,delta(i)

T-4795 90

50 continue
48 format(lx,'% contribution at optimality for term ',12,' = ',f6.4)

print*,
print*,'Would you like to rerun the problem with different'
print*,'starting values and/or epsilon? (y or n) '
read*, rerun

if(rerun.eq.'y') then
goto 1

endif

stop
end

* *

** SUBROUTINE TO COMPARE XOLD, XNEW, AND OBJ FCN VALUES

subroutine compare_values(first,second,eps,converge)

real* 8 first,second,eps,diff
integer converge

diff = abs(first-second)
if(diff.lt.eps) then

converge = 1
else

converge = 0
endif
return
end

* *

** SUBROUTINE TO CONDENSE PROBLEM TO 0 DD

subroutine condense(newcoef,varpwr,xval,terms,varint,condcoef,
+condpwr)

T-4795 91

real* 8 newcoef(50),varpwr(50,20),xval(20),condcoef(2)
real* 8 condpwr(2),wp(50),wn(50),sdpos,sdneg
integer varint,terms,i

sdpos = 0.
sdneg = 0.
condcoef(l) = 1.
condcoef(2) = 1.
condpwr(l) = 0.
condpwr(2) = 0.

do 300 i = 1,terms

if(varpwr(i, varint). gt.O) then
sdpos = sdpos+newcoef(i)*xval(varint)**varpwr(i,varint)

elseif (varpwr(i,varint).lt.O) then
sdneg = sdneg+newcoef(i)*xval(varint)**varpwr(i,varint)

else
endif

300 continue

do 310 i = 1,terms
if(varpwr(i,varint).gt.O) then

wp(i) = (newcoef(i)*xval(varint)**varpwr(i,varint))/sdpos
elseif(varpwr(i,varint).lt.O) then

wn(i) = (newcoef(i)*xval(varint)**varpwr(i,varint))/sdneg
else
endif

310 continue

do 320 i = 1,terms
if(varpwr(i,varint).gt.O) then

condcoef(l) = condcoef(l)*(newcoef(i)/wp(i))**wp(i)
condpwr(l) = condpwr(l)+varpwr(i,varint)* wp(i)

elseif(varpwr(i,varint).lt.O) then
condcoef(2) = condcoef(2)*(newcoef(i)/wn(i))**wn(i)
condpwr(2) = condpwr(2)+varpwr(i,varint)*wn(i)

else

T-4795 92

endif
320 continue

return
end

* *

** SUBROUTINE TO CALCULATE THE HARMONIC MEAN

subroutine harmonic_mean(delta,coef,xbar,varpwr,zh,terms,nvbls)

implicit none
real*8 delta(50),coef(50),xbar(20),varpwr(50,20),zh
real* 8 term(50),newcoef(50)
integer ij,terms,nvbls

do 45 i = 1,terms
newcoef(i) = 1.0
do 47 j = 1,nvbls

newcoef(i) = newcoef(i) * xbar(j)**varpwr(i,j)
47 continue

term(i) = newcoef(i)*coef(i)
45 continue

zh = 0.0

do 80 i = 1,terms
z h = z h + (delta(i)* *2)/term(i)

80 continue
zh = zh**(-l)
end

* *

** SUBROUTINE TO FACTOR THE COEFFICIENT MATRIX

SUBROUTINE FACTOR(A,MAXROW,NEQ,COND,PVTIDX,FLAG,TEMP)

INTEGER MAXROW,NEQ,PVTIDX(*),FLAG
DOUBLE PRECISION A(MAXROW,*),COND,TEMP(*)

FACTOR decomposes the matrix A using Gaussian elimination
and estimates its condition number. FACTOR may be used in
conjunction with SOLVE to solve A*x=b.

Input variables:
A = matrix to be triangularized.
MAXROW = maximum number of equations allowed; the declared row

dimension of A.
NEQ = actual number of equations to be solved; NEQ cannot

exceed MAXROW.
Output variables:

A = the upper triangular matrix U in its upper portion
and a permuted version of a lower triangular matrix
I-L such that (permutation matrix)*A = L*U; a
record of interchanges is kept in PVTIDX.

FLAG = an integer variable that reports whether or not the
matrix A has a zero pivot. A value of FLAG = 0
means all pivots were nonzero; if positive, the
first zero pivot occurred at equation FLAG and the
decomposition could not be completed. If FLAG = -1
then there is an input error (NEQ or MAXROW not positive
or NEQ > MAXROW).

COND = an estimate of the condition number of A (unless
FLAG is nonzero).

PVTIDX = the pivot vector which keeps track of row inter
changes; also,

PVTIDX(NEQ) = (-l)**(number of interchanges).
TEMP = a vector of dimension NEQ used for a work area.

The determinant of A can be obtained on output from
DET(A) = PVTIDX(NEQ) * A (l,l) * A(2,2) * ... * A(NEQ,NEQ).

Declare local variables and initialize:
DOUBLE PRECISION ANORM,DNORM,T,YNORM
INTEGER I,J,K,M
DOUBLE PRECISION ZERO,ONE
DATA ZERO/O.DO/,ONE/1 .DO/

IF ((NEQ .LE. 0) OR. (MAXROW .LE. 0) OR. (NEQ .GT. MAXROW)) THEN

T-4795 94

FLAG = -1
RETURN

ENDIF
FLAG = 0
COND = ZERO
PVTIDX(NEQ) = 1
IF (NEQ .EQ. 1) THEN

*

* NEQ = 1 is a special case.
*

IF (A(l,l) .EQ. ZERO) THEN
FLAG = 1

ELSE
COND = ONE

ENDIF
RETURN

ENDIF
*

* Compute 1 -norm of A for later condition number estimation.
*

ANORM = ZERO
DO 15 J = 1,NEQ

T = ZERO
DO 10 I = 1,NEQ

T = T+ABS(A(I,J))
10 CONTINUE

ANORM = MAX(T,ANORM)
15 CONTINUE

*

* Gaussian elimination with partial pivoting.
*

DO 40 K > 1,NEQ-1
*

* Determine the row M containing the largest element in
* magnitude to be used as a pivot.
*

M = K
DO 2 0 1 = K+1,NEQ

IF (ABS(A(I,K)) .GT. ABS(A(M,K))) M = I
20 CONTINUE

ARTHUR LAKES LIBRARY
COLORADO SCHOOL OF M IN b ^
GOLDEN, CO 80401

T-4795 95

Check for a nonzero pivot; if all possible pivots are zero,
matrix is numerically singular.

IF (A(M,K) .EQ. ZERO) THEN
FLAG = K
RETURN

ENDIF
PVTIDX(K) = M
IF (M .NE. K) THEN

Interchange the current row K with the pivot row M.

PVTIDX(NEQ) = -PVTIDX(NEQ)
DO 25 J = K,NEQ

T = A(M,J)
A(M,J) = A(K,J)
A(K,J) = T

25 CONTINUE
ENDIF

Eliminate subdiagonal entries of column K.

DO 35 I = K+1,NEQ
T = A(I,K)/A(K,K)
A(I,K) = -T
IF (T .NE. ZERO) THEN

DO 30 J = K+1,NEQ
A(I,J) = A(I,J)-T*A(K,J)

30 CONTINUE
ENDIF

35 CONTINUE
40 CONTINUE

IF (A(NEQ,NEQ) .EQ. ZERO) THEN
FLAG = NEQ
RETURN

ENDIF

* Estimate the condition number of A.

T-4795 96

DO 50 K = 1,NEQ
T = ZERO
DO 45 I = 1,K-1

T = T+A(I,K)*TEMP(I)
45 CONTINUE

TEMP(K) = -(SIGN(ONE,T)+T)/A(K,K)
50 CONTINUE

DO 60K>NEQ-1,1,-1
T = ZERO
DO 55 I = K+1,NEQ

T = T+A(I,K)*TEMP(K)
55 CONTINUE

TEMP(K) = T
M = PVTIDX(K)
IF (M .NE. K) THEN

T = TEMP(M)
TEMP(M) = TEMP(K)
TEMP(K) = T

ENDIF
60 CONTINUE

DNORM = ZERO
DO 65 I = 1,NEQ

DNORM = DNORM+ABS(TEMP(I))
65 CONTINUE

CALL SOLVE(A,MAXROW,NEQ,PVTIDX,TEMP)
YNORM = ZERO
DO 70 I = 1,NEQ

YNORM = YNORM+ABS(TEMP(I))
70 CONTINUE

COND = ANORM* YNORM/DNORM
RETURN

END
* *

** SUBROUTINE TO SOLVE THE LINEAR SYSTEM

SUBROUTINE SOLVE(A,MAXROW,NEQ,PVTIDX,B)
*

INTEGER MAXROW,NEQ,PVTIDX(*)

T-4795 97

DOUBLE PRECISION A(MAXROW,*),B(*)
*

* SOLVE solves the linear system A*x=b using the factorization
* obtained from FACTOR. Do not use SOLVE if a zero pivot has
* been detected in FACTOR.
*

* Input variables:
* A = an array returned from FACTOR containing the
* triangular decomposition of the coefficient matrix.
* MAXROW = as in FACTOR.
* NEQ = number of equations to be solved.
* PVTIDX = vector of information about row interchanges obtained
* from FACTOR.
* B = right hand side vector b.
* Output variables:
* B = solution vector x.
*

* Local variables:
INTEGER I,J,K,M
DOUBLE PRECISION T

*

* Forward elimination.
*

IF (NEQ .GT. 1) THEN
DO 20 K = 1,NEQ-1

M = PVTIDX(K)
T = B(M)
B(M) = B(K)

B(K) = T
DO 101 = K+1,NEQ

B(I) = B(I)+A(I,K)*T
10 CONTINUE
20 CONTINUE

*

* Back substitution.
*

DO 401= NEQ,1,-1
DO 30 J = 1+1,NEQ

B(I) = B(I)-A(I,J)*B(J)
30 CONTINUE

T-4795 98

B(I) = B(I)/A(I,I)
40 CONTINUE

ELSE
B(l) = B(l)/A(l,l)

ENDIF
RETURN
END

* *

** SUBROUTINE TO SOLVE MULTIPLE DD SINGLE VARIABLE PROBLEMS

subroutine hp2(coef,varpwr,xbar,terms,eps,obj cond,mark,varint)

real* 8 eps,condpwr(2),objcond
real* 8 coef(50),varpwr(50,20),xbar(20),xnew(20)
real*8 condelta(2),condaa(2,2),condcoef(2)
double precision temp(20),cond
integer terms,pvtidx(20),flag,varint
integer converge, marketer

common iter
iter = 0

300 call condense(coef,varpwr,xbar,terms, 1 ,condcoef,condpwr)

condaa(l,l) = 1.
condaa(l,2) = 1.
condaa(2,l) = condpwr(l)
condaa(2,2) = condpwr(2)

call factor(condaa,2,2,cond,pvtidx,flag,temp)

condelta(l) = 1.
condelta(2) = 0.
call solve(condaa,2,2,pvtidx,condelta)

call harmonic jnean(condelta,condcoef,xbar(varint),condpwr,obj cond,
+2,1)

xnew(varint)=(obj cond* condelta(1)/condcoef(!))**(! /condpwr(1))

T-4795 99

if(mark.eq.l) then
xbar(varint) = xnew(varint)

endif

if(mark.eq.O) then
iter = iter + 1
call compare_values(xbar(varint),xnew(varint),eps,converge)

if (converge.eq.O) then
xbar(varint) = xnew(varint)
goto 300

endif
endif

return
end

* *

** SUBROUTINE TO SOLVE MULTIPLE VARIABLE, MULTIPLE DD PROBLEMS

subroutine hp3(coef,varpwr,terms,nvbls,xbar,eps,obj)

real*8 obj,eps,newcoef(50),xval(20),condaa(2,2),objcond
real*8 coef(50),varpwr(50,20),xbar(20),xnew(20),temp(20)
real* 8 tempv,condpwr(2),condcoef(2),cond,condelta(2)
integer i j ,nvbls,terms,varint,pvtidx(20)
integer converge,flag,iter

common iter

404 varint = 1
do 401 i = 1,nvbls

xnew(i) = -1
401 continue

405 do 402 i = 1,nvbls
if(xnew(i).eq.-l) then
xval(i) = xbar(i)

T-4795 100

else
xval(i) = xnew(i)

endif
402 continue

do 478 j = 1,terms
tempv = 1.0
do 479 i = 1,nvbls
if(i.ne.varint) then
tempv = tempv*xval(i)**varpwr(j,i)

endif
newcoef(j) = tempv*coef(j)

479 continue
478 continue

call condense(newcoef,varpwr,xval,terms, varint,condcoef,condpwr)

condaa(l,l) = 1.
condaa(l,2) = 1.
condaa(2,1) = condpwr(1)
condaa(2,2) = condpwr(2)

call factor(condaa,2,2,cond,pvtidx,flag,temp)

condelta(l) = 1.
condelta(2) = 0.
call solve(condaa,2,2,pvtidx,condelta)

call harmonic_mean(condelta,condcoef,xval(varint),condpwr,obj cond,
+2,1)

xval(varint)=(obj cond* condelta(1)/condcoef(!))**(! /condpwr(1))

if(varint.eq.nvbls) then
converge = 1
iter = iter + 1
do 400 i = 1,nvbls

if(converge.eq.l) then
xnew(varint) = xval(varint)
call compare_values(xbar(i),xnew(i),eps,converge)

T-4795 101

endif
400 continue

if(converge.eq.O) then
do 410 i = 1,nvbls

xbar(i) = xnew(i)
410 continue

endif
else

xnew(varint) = xval(varint)
varint = varint + 1
goto 405

endif

if(converge.eq.0) then
goto 404

endif

obj = 0.0
do 445 i = 1,terms

newcoef(i) = 1.0
do 447 j = 1,nvbls

newcoef(i) = newcoef(i) * xbar(j)**varpwr(ij)
447 continue

obj = obj + newcoef(i)*coef(i)
445 continue

return
end

T-4795 102

Appendix C

Sample Computer Run for Harmonic Programming

C:YLP77>HP1

This program optimizes multivariable, unconstrained
0-dd, nonlinear programming problems using the
harmonic mean approximation.

The program is capable of handling functions with 20
variables and 50 terms.

Variable names must be no greater than 10 characters.

Enter the number of variables in the problem: 2

Enter variable 1 ’s name: xl

Enter variable 2’s name: x2

Enter the number of terms in the problem: 3

For term 1 enter
the coefficient: 78

The power on xl : 1

The power on x2: 0

For term 2 enter
the coefficient: 27

T-4795 103

The power on xl : -1

The power on x2: -1

For term 3 enter
the coefficient: 58

The power on xl : 0

The power on x2: 1

Enter a convergence tolerence .xxxxx .000001

We now need to enter a starting value for each of the
variables.

Enter the starting value for variable 1: 1

Enter the starting value for variable 2: 1

Optimal value of xl is 0.636112864970562
Optimal value of x2 is 0.855462128753514

Optimal Objective Function Value is 148.850412159240

Number of Iterations = 5

% contribution at optimality for term 1 = 0.3333
% contribution at optimality for term 2 = 0.3333
% contribution at optimality for term 3 = 0.3333

Would you like to rerun the problem with different
starting values and/or epsilon? (y or n)

